TW202038310A - 半導體元件的製造方法及太陽電池的製造方法 - Google Patents

半導體元件的製造方法及太陽電池的製造方法 Download PDF

Info

Publication number
TW202038310A
TW202038310A TW108144362A TW108144362A TW202038310A TW 202038310 A TW202038310 A TW 202038310A TW 108144362 A TW108144362 A TW 108144362A TW 108144362 A TW108144362 A TW 108144362A TW 202038310 A TW202038310 A TW 202038310A
Authority
TW
Taiwan
Prior art keywords
impurity diffusion
carbons
group
diffusion composition
manufacturing
Prior art date
Application number
TW108144362A
Other languages
English (en)
Inventor
弓場智之
門田祥次
守屋豪
Original Assignee
日商東麗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東麗股份有限公司 filed Critical 日商東麗股份有限公司
Publication of TW202038310A publication Critical patent/TW202038310A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明的目的在於提供一種不需要複雜的裝置而能夠以簡單的方法製造具有選擇發射極結構的太陽電池且雜質濃度的面內均勻性優異的半導體元件的製造方法及太陽電池的製造方法。用於達成所述目的的本發明為一種半導體元件的製造方法,其是於半導體基板上形成2水準以上的不同的雜質濃度且同型的雜質擴散層區域的半導體元件的製造方法,其中,至少1水準以上的雜質擴散層區域藉由如下方法形成,所述方法包括:將雜質擴散組成物(a)塗佈於半導體基板上而部分性地形成雜質擴散組成物膜(b)的步驟、以及將其加熱使雜質向半導體基板中擴散而形成雜質擴散層區域(c)的步驟,雜質擴散組成物(a)包含(a-1)具有特定結構的矽烷化合物的聚合物、以及(a-2)雜質擴散成分。

Description

半導體元件的製造方法及太陽電池的製造方法
本發明是有關於一種半導體元件的製造方法及太陽電池的製造方法,尤其是有關於一種高效率的半導體元件的製造方法及太陽電池的製造方法。
於先前的具有pn接合的太陽電池的製造中,例如藉由於矽等p型半導體基板上擴散n型雜質而形成n型擴散層,從而形成pn接合。
近年來,揭示了一種為了降低與電極的接觸電阻且抑制載子的再結合而提出的選擇發射極結構的太陽電池(非專利文獻1)。例如,於以n型矽基板作為基底的選擇發射極結構的太陽電池中,於光接收面側的p型擴散層中,於電極正下方形成高濃度p型擴散層(p++ 層),於電極正下方以外的光接收面形成低濃度至中濃度的p型擴散層(p+ 層)。為了形成選擇發射極結構,已知需要將多次擴散與基於遮蔽(masking)的部分蝕刻加以組合的複雜的步驟(專利文獻1)。進而,提出了為了簡化步驟而將多個雜質濃度的擴散劑藉由噴墨法分別塗佈於基板上來使雜質擴散的方法(專利文獻2)、藉由使用包含雜質擴散成分的塗液來選擇性地於基板上形成圖案且於摻雜氣體環境下對帶有圖案的基板進行熱處理而形成多個雜質濃度區域的方法(專利文獻3、專利文獻4、專利文獻5)、藉由使用包含雜質擴散成分的塗液來選擇性地於基板上形成圖案且有效利用熱處理引起的自圖案的向外擴散(out diffusion)現象而形成多個雜質濃度區域的方法(專利文獻6、專利文獻7)等。 [現有技術文獻] [專利文獻]
專利文獻1:日本專利特開2004-193350號公報 專利文獻2:日本專利特開2004-221149號公報 專利文獻3:日本專利特開2012-134571號公報 專利文獻4:日本專利特開2015-50357號公報 專利文獻5:日本專利特開2006-310368號公報 專利文獻6:日本專利特開2017-22350號公報 專利文獻7:日本專利特表2002-503390號公報 [非專利文獻]
非專利文獻1:E.Lee等人(E.Lee et.al.)、「效率超過19%的具有選擇性發射極的6吋網版印刷晶體矽太陽電池(Exceeding 19% efficient 6 inch screen printed crystalline silicon solar cells with selective emitter)」、可再生能源(Renewable Energy)、第42卷(Volume 42)(2012年6月)、p.95-99
[發明所欲解決之課題] 但是,專利文獻1中記載的方法中,為了形成選擇發射極結構,需要用於圖案形成及蝕刻的步驟,存在步驟數變多的傾向。另外,專利文獻2中記載的噴墨法中,需要具有多個噴頭的專用裝置,自各噴頭的噴射的控制亦變得複雜。另外,專利文獻3~專利文獻5中記載的擴散糊存在如下課題:由於雜質自糊膜的向外擴散的抑制不充分,因此圖案形成部分以外的部分的雜質擴散濃度的偏差大。進而,專利文獻6、專利文獻7中記載的方法存在如下課題:向外擴散的控制困難,圖案形成部分以外的部分的雜質擴散濃度的偏差仍然大。
本發明是鑒於所述先前的問題而成者,目的在於提供一種不需要複雜的裝置而能夠以簡單的方法製造具有選擇發射極結構的太陽電池且雜質濃度的面內均勻性優異的半導體元件的製造方法及太陽電池的製造方法。 [解決課題之手段]
為了解決所述課題,本發明的半導體元件的製造方法具有以下構成。即,一種半導體元件的製造方法,是於半導體基板上形成2水準以上的不同的雜質濃度且同型的雜質擴散層區域的半導體元件的製造方法,其中,至少1水準以上的雜質擴散層區域藉由如下方法形成,所述方法包括:將雜質擴散組成物(a)塗佈於半導體基板上而部分性地形成雜質擴散組成物膜(b)的步驟、以及將其加熱使雜質向半導體基板中擴散而形成雜質擴散層區域(c)的步驟,雜質擴散組成物(a)包含 (a-1)下述通式(1)所表示的矽烷化合物的聚合物、以及 (a-2)雜質擴散成分。
[化1]
Figure 02_image001
(通式(1)中,R1 及R2 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R1 及R2 可分別相同亦可不同。l1 表示1~10000的整數) [發明的效果]
根據本發明,可提供一種不需要複雜的裝置而能夠以簡單的方法製造具有選擇發射極結構的太陽電池且雜質濃度的面內均勻性優異的半導體元件的製造方法及太陽電池的製造方法。
以下,首先對本發明中使用的雜質擴散組成物(a)、雜質擴散組成物(d)進行說明,繼而參照圖示來對較佳的半導體元件(選擇發射極結構)的製造方法進行說明。再者,以下的實施形態為例示,本發明並不限於該些形態。 <雜質擴散組成物(a)> 本發明中使用的雜質擴散組成物(a)包含(a-1)下述通式(1)所表示的矽烷化合物的聚合物作為必須成分。
[化2]
Figure 02_image002
通式(1)中,R1 及R2 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R1 及R2 可分別相同亦可不同。l1 表示1~10000的整數。就製膜後的膜的強韌性及塗膜厚度的均勻性的觀點而言,較佳為5~9000,更佳為10~8000。
通式(1)的R1 及R2 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基均可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。
作為碳數1~6的烷基、碳數1~6的烷氧基、碳數2~6的醯氧基的取代物,較佳為烴被取代為胺基、巰基、羥基、縮水甘油基、縮水甘油氧基、異氰酸酯基的結構。取代數較佳為1~3,更佳為1。
作為碳數2~10的烯基的取代物,較佳為烴被取代為胺基、巰基、羥基、縮水甘油基、縮水甘油氧基、異氰酸酯基、碳數2~8的羰氧基烷基的結構。取代數較佳為1~3,更佳為1。
作為碳數6~15的芳基的取代物,較佳為於芳香環鍵結有碳數1~5的烷基、碳數2~5的烯基、碳數1~5的烷氧基、碳數2~5的醯氧基、碳數2~7的羰氧基烷基、胺基、巰基、羥基、縮水甘油基、縮水甘油氧基、異氰酸酯基的結構;或者自芳香環中經由碳數1~3的烷基鍵結有碳數2~5的醯氧基、胺基、巰基、羥基、縮水甘油基、縮水甘油氧基、異氰酸酯基的結構。取代數較佳為1~3,更佳為1。
作為碳數1~6的烷基的具體例,可列舉:甲基、乙基、正丙基、異丙基、正丁基、第三丁基、正己基、三氟甲基、3,3,3-三氟丙基、3-縮水甘油氧基丙基、3-胺基丙基、3-巰基丙基、3-異氰酸酯丙基等。
作為碳數1~6的烷氧基的具體例,可列舉:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第三丁氧基等。
作為碳數2~10的烯基的具體例,可列舉:乙烯基、3-丙烯醯氧基丙基、3-甲基丙烯醯氧基丙基等。
作為碳數2~6的醯氧基的具體例,可列舉:乙醯氧基等。
作為碳數6~15的芳基的具體例,可列舉:苯基、甲苯基、對羥基苯基、對苯乙烯基、對甲氧基苯基、1-(對羥基苯基)乙基、2-(對羥基苯基)乙基、4-羥基-5-(對羥基苯基羰氧基)戊基、萘基等。
就容易抑制自雜質擴散組成物的向外擴散的觀點而言,R1 、R2 中的至少一個較佳為表示碳數1~6的烷基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者。
更佳為R1 表示碳數1~6的烷基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,且R2 表示羥基、碳數1~6的烷氧基中任一者。
就容易抑制自雜質擴散組成物的向外擴散的觀點而言,所述矽烷化合物的聚合物較佳為下述通式(2)所表示的矽烷化合物的聚合物。
[化3]
Figure 02_image003
通式(2)中,R3 表示碳數6~15的芳基,多個R3 可分別相同亦可不同。R4 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R4 可分別相同亦可不同。R5 及R6 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基中任一者,多個R5 及R6 可分別相同亦可不同。n1 、m1 表示1~9999的整數,n1 +m1 為2~10000的整數,n1 :m1 =95:5~25:75。就製膜後的膜的強韌性的觀點而言,較佳的(n1 +m1 )的範圍為5~9000,更佳為10~8000。
通式(2)的R3 中的碳數6~15的芳基可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。較佳的取代物的結構可列舉與R1 、R2 中者相同者。作為碳數6~15的芳基的具體例,可列舉與R1 、R2 中者相同者。
通式(2)的R4 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基均可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。較佳的取代物的結構可列舉與R1 、R2 中者相同者。作為該些的具體例,可列舉與R1 、R2 中者相同者。
通式(2)的R5 及R6 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基均可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。較佳的取代物的結構可列舉與R1 、R2 中者相同者。作為該些的具體例,可列舉與R1 、R2 中者相同者。
作為可用作通式(1)所表示的矽烷化合物的聚合物的原料的有機矽烷的具體例,可列舉:四甲氧基矽烷、四乙氧基矽烷、四乙醯氧基矽烷等4官能性矽烷;甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三異丙氧基矽烷、甲基三正丁氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三異丙氧基矽烷、乙基三正丁氧基矽烷、正丙基三甲氧基矽烷、正丙基三乙氧基矽烷、正丁基三甲氧基矽烷、正丁基三乙氧基矽烷、正己基三甲氧基矽烷、正己基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、3-甲基丙烯醯氧基丙基三乙氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷、三氟甲基三甲氧基矽烷、三氟甲基三乙氧基矽烷、3,3,3-三氟丙基三甲氧基矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、3-縮水甘油氧基丙基三甲氧基矽烷、3-縮水甘油氧基丙基三乙氧基矽烷、3-巰基丙基三甲氧基矽烷等3官能性矽烷;二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二甲基二乙醯氧基矽烷、二正丁基二甲氧基矽烷、(3-縮水甘油氧基丙基)甲基二甲氧基矽烷、(3-縮水甘油氧基丙基)甲基二乙氧基矽烷等2官能性矽烷。再者,該些有機矽烷可單獨使用,亦可組合使用兩種以上。該些有機矽烷中,就容易抑制自雜質擴散組成物的向外擴散的觀點而言,可較佳地使用3官能性矽烷。
作為可用作通式(2)所表示的矽烷化合物的具有R3 及R4 的單元的原料的有機矽烷的具體例,可較佳地使用苯基三甲氧基矽烷、苯基三乙氧基矽烷、對羥基苯基三甲氧基矽烷、對甲苯基三甲氧基矽烷、對苯乙烯基三甲氧基矽烷、對甲氧基苯基三甲氧基矽烷、1-(對羥基苯基)乙基三甲氧基矽烷、2-(對羥基苯基)乙基三甲氧基矽烷、4-羥基-5-(對羥基苯基羰氧基)戊基三甲氧基矽烷、二苯基二甲氧基矽烷、1-萘基三甲氧基矽烷、2-萘基三甲氧基矽烷、1-萘基三乙氧基矽烷、2-萘基三乙氧基矽烷、蒽三甲氧基矽烷。其中,就成本的方面而言,相較於萘系、蒽系等具有多環的芳基者而言,更佳為如苯基系般具有單環的芳基者。
作為可用作通式(2)的具有R5 及R6 的單元的原料的有機矽烷的具體例,可列舉與作為通式(1)所表示的矽烷化合物的聚合物的原料的有機矽烷相同者。其中,就容易抑制自雜質擴散組成物的向外擴散的觀點而言,可較佳地使用3官能性矽烷。
通式(2)所表示的矽烷化合物的聚合物是含有碳數6~15的芳基的單元以Si原子換算計為25莫耳%~95莫耳%的聚矽氧烷。即,n1 :m1 =95:5~25:75。藉由為所述範圍內,抑制雜質擴散成分的向外擴散、減少於熱處理後去除雜質擴散成分時的有機殘渣的效果提高。另外,藉由為所述範圍內,即便在添加有增黏劑等熱分解成分的雜質擴散組成物中,藉由矽氧烷的回流(reflow)效果,亦可填埋因熱分解而生成的空孔,從而可形成空孔少的緻密的膜。因此,不易受擴散時的環境所影響,且可獲得對其他雜質的高遮罩性。
另外,末端基較佳為氫、羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基中任一者。
通式(2)所表示的矽烷化合物的聚合物只要以所述既定的比率含有各構成成分即可,可為嵌段共聚物,亦可為無規共聚物。
就抑制向外擴散、遮罩性的進一步提高的觀點而言,含有碳數6~15的芳基的單元更佳為35莫耳%以上,進而佳為40莫耳%以上。另外,為了不受環境或膜厚的影響,不產生殘渣,較佳為含有芳基的單元為80莫耳%以下。即,更佳為n1 :m1 =80:20~35:65,進而佳為n1 :m1 =80:20~40:60。
通式(1)、通式(2)所表示的矽烷化合物的聚合物例如可藉由如下方式而獲得:將有機矽烷化合物水解後,使該水解物在溶媒的存在下、或無溶媒下進行縮合反應。水解反應的各種條件,例如酸濃度、反應溫度、反應時間等可考慮反應規模、反應容器的大小、形狀等而適宜設定,例如較佳為在溶媒中對有機矽烷化合物歷時1分鐘~180分鐘添加酸觸媒及水後,在室溫~110℃下反應1分鐘~180分鐘。藉由在此種條件下進行水解反應,可抑制急遽的反應。反應溫度更佳為30℃~130℃。
水解反應較佳為在酸觸媒的存在下進行。作為酸觸媒,可例示:鹽酸、氫溴酸、氫碘酸等鹵化氫系無機酸;硫酸、硝酸、磷酸、六氟磷酸、六氟銻酸、硼酸、四氟硼酸、鉻酸等其他無機酸;甲磺酸、乙磺酸、苯磺酸、對甲苯磺酸、三氟甲磺酸等磺酸;乙酸、檸檬酸、甲酸、葡萄糖酸、乳酸、乙二酸、酒石酸、丙酮酸、檸檬酸、琥珀酸、富馬酸、蘋果酸等羧酸。本發明中,就摻雜性的觀點而言,酸觸媒較佳為儘量不含除矽、氫、碳、氧、氮、磷以外的原子,且較佳為使用磷酸、甲酸、乙酸、羧酸系的酸觸媒。 其中較佳為磷酸。
酸觸媒的較佳的含量相對於水解反應時所使用的全部有機矽烷化合物100質量份,較佳為0.1質量份~5質量份。藉由將酸觸媒的量設為所述範圍,可容易地控制水解反應以使其必要且充分地進行。
有機矽烷化合物的水解反應及該水解物的縮合反應中所使用的溶媒並無特別限定,可考慮樹脂組成物的穩定性、塗佈性、揮發性等而適宜選擇。另外,可組合兩種以上的溶媒,亦可在無溶媒下進行反應。作為溶媒的具體例,可列舉:甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇、第三丁醇、1-甲氧基-2-丙醇、戊醇、4-甲基-2-戊醇、3-甲基-2-丁醇、3-甲基-3-甲氧基-1-丁醇、1-第三丁氧基-2-丙醇、二丙酮醇等醇類;乙二醇、丙二醇等二醇類;乙二醇單甲醚、乙二醇單乙醚、丙二醇單甲醚、丙二醇單乙醚、丙二醇單丙醚、丙二醇第三丁醚、丙二醇正丁醚、乙二醇二甲醚、乙二醇二乙醚、乙二醇二丁醚、二乙醚、二乙二醇甲基乙醚、二丙二醇正丁醚、二丙二醇單甲醚、二異丙醚、二正丁醚、二苯醚、二乙二醇乙基甲醚、二乙二醇二甲醚、乙二醇單丁醚等醚類;甲基乙基酮、乙醯丙酮、甲基丙基酮、甲基丁基酮、甲基異丁基酮、二異丁基酮、環戊酮、2-庚酮、二異丁基酮、環己酮、環庚酮等酮類;二甲基甲醯胺、二甲基乙醯胺等醯胺類;乙酸異丙酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙醯乙酸乙酯、乙二醇單甲醚乙酸酯、乙二醇單乙醚乙酸酯、二乙二醇單乙醚乙酸酯、丙二醇單甲醚乙酸酯、3-甲氧基乙酸丁酯、3-甲基-3-甲氧基乙酸丁酯、丁基二甘醇乙酸酯、1,3-丁二醇二乙酸酯、乙基二甘醇乙酸酯、二丙二醇甲醚乙酸酯、乳酸甲酯、乳酸乙酯、乳酸丁酯、三乙醯基甘油等乙酸酯類;甲苯、二甲苯、己烷、環己烷、苯甲酸乙酯、萘、1,2,3,4-四氫萘等芳香族或脂肪族烴、γ-丁內酯、N-甲基-2-吡咯啶酮、N,N-二甲基咪唑啶酮、二甲基亞碸、碳酸丙烯酯等。
本發明中,就溶解性、印刷性的方面而言,可較佳地例示二乙二醇甲基乙醚(沸點176℃)、乙二醇單乙醚乙酸酯(沸點156.4℃)、乙二醇單甲醚乙酸酯(沸點145℃)、乳酸甲酯(沸點145℃)、乳酸乙酯(沸點155℃)、二丙酮醇(沸點169℃)、丙二醇單甲醚乙酸酯(沸點145℃)、3-甲氧基-3-甲基-1-丁醇(沸點174℃)、二丙二醇單甲醚(沸點188℃)、二丙二醇-正丁醚(沸點229℃)、γ-丁內酯(沸點204℃)、二乙二醇單乙醚乙酸酯(沸點217℃)、丁基二甘醇乙酸酯(沸點246℃)、乙醯乙酸乙酯(沸點181℃)、N-甲基-2-吡咯啶酮(沸點204℃)、N,N-二甲基咪唑啶酮(沸點226℃)、二丙二醇甲醚乙酸酯(沸點213℃)、1,3-丁二醇二乙酸酯(沸點232℃)、二異丁基酮(沸點168℃)、丙二醇第三丁醚(沸點151℃)、丙二醇正丁醚(沸點170℃)。
在藉由水解反應生成溶媒的情況下,亦可在無溶媒下使其水解。亦較佳為在反應結束後,藉由進而添加溶媒而調整為作為樹脂組成物而言為適當的濃度。另外,亦可根據目的而在水解後,在加熱及/或減壓下餾出、去除適量的生成醇等,然後添加較佳的溶媒。
水解反應時所使用的溶媒的量較佳為相對於全部有機矽烷化合物100質量份為80質量份以上且500質量份以下。藉由將溶媒的量設為所述範圍,可容易地控制水解反應以使其必要且充分地進行。另外,水解反應中所使用的水較佳為離子交換水。水的量可任意選擇,較佳為相對於Si原子1莫耳,在1.0莫耳~4.0莫耳的範圍內使用。
本發明中使用的雜質擴散組成物(a)包含用以在半導體基板中形成雜質擴散層的(a-2)雜質擴散成分。作為n型雜質擴散成分,較佳為包含15族元素的化合物,其中較佳為磷化合物。作為p型雜質擴散成分,較佳為包含13族元素的化合物,其中較佳為硼化合物。
於在本發明的半導體元件的製造方法中使用雜質擴散組成物(a)的情況下,於在未形成雜質擴散層區域(c)的區域中藉由氣體、塗佈等以熱擴散方式形成不同濃度的同型雜質的擴散層時,與僅施加相同的熱歷程相比,具有雜質擴散層區域(c)的擴散進一步進行的優點。雖為推測,但認為其是由於關於同型雜質,產生了對雜質擴散層區域(c)的追加供給。尤其是於p型雜質中,明顯確認到所述效果。結果,具有可使得用於獲得相同的擴散層的狀態的處理條件更溫和的優點。
作為磷化合物,可例示:五氧化二磷、磷酸、多磷酸、磷酸甲酯、磷酸二甲酯、磷酸三甲酯、磷酸乙酯、磷酸二乙酯、磷酸三乙酯、磷酸丙酯、磷酸二丙酯、磷酸三丙酯、磷酸丁酯、磷酸二丁酯、磷酸三丁酯、磷酸苯酯、磷酸二苯酯、磷酸三苯酯等磷酸酯,或者亞磷酸甲酯、亞磷酸二甲酯、亞磷酸三甲酯、亞磷酸乙酯、亞磷酸二乙酯、亞磷酸三乙酯、亞磷酸丙酯、亞磷酸二丙酯、亞磷酸三丙酯、亞磷酸丁酯、亞磷酸二丁酯、亞磷酸三丁酯、亞磷酸苯酯、亞磷酸二苯酯、亞磷酸三苯酯等亞磷酸酯等。其中,就摻雜性的方面而言,較佳為磷酸、五氧化二磷或多磷酸。
作為硼化合物,可列舉:硼酸、三氧化二硼、硼酸甲酯、硼酸苯酯、硼酸三甲酯、硼酸三乙酯、硼酸三丙酯、硼酸三丁酯、硼酸三辛酯、硼酸三苯酯等。
本發明中使用的雜質擴散組成物(a)除了矽烷化合物的聚合物以外亦可包含黏合劑樹脂。作為較佳的具體例,可列舉:聚乙烯醇、聚丙烯醯胺、聚乙烯吡咯啶酮、聚環氧乙烷、聚碸、纖維素醚、羧基甲基纖維素、羥基乙基纖維素、乙基纖維素、明膠、澱粉、糊精、聚(甲基)丙烯酸、聚(甲基)丙烯酸酯、(甲基)丙烯酸聚二甲基胺基乙酯、聚丁二烯、聚苯乙烯、聚丁醛等,但並不限定於該些。該些樹脂可單獨使用一種或者將兩種以上組合使用。
於雜質擴散組成物(a)中的(a-1)矽烷化合物的聚合物為通式(2)所表示的矽烷化合物的聚合物的情況下,作為尤佳的樹脂,可列舉(a-3)皂化度為20莫耳%以上且未滿50莫耳%的聚乙烯醇。聚乙烯醇是用於與(a-2)雜質擴散成分、尤其是p型雜質擴散成分形成錯合物,於塗佈時形成均勻的被膜的成分。藉由將聚乙烯醇的皂化度設為20%以上,與(a-2)雜質擴散成分的錯合物穩定性提高,擴散性與擴散均勻性進一步提高。另外,藉由將聚乙烯醇的皂化度設為未滿50%,容易提高相對於有機溶媒的溶解性。包含通式(2)所表示的矽烷化合物的聚合物的雜質擴散組成物(a)於水中的溶解性低,於溶媒中有機溶媒的比率高,因此有時相對於有機溶媒的溶解性變得重要。於所述情況下,藉由將聚乙烯醇的皂化度設為20%以上且未滿50%,可提供如下雜質擴散組成物:於有機溶媒系中形成非常穩定的錯合物,進一步提高雜質的擴散均勻性,可進一步促進擴散的進行。可進一步促進擴散的進行的組成具有結果可使用於獲得相同的擴散層的狀態的處理條件更溫和的優點。
就溶解度與錯合物穩定性的方面而言,聚乙烯醇的平均聚合度較佳為150~1000。本發明中,平均聚合度及皂化度均為依據日本工業標準(Japanese Industrial Standards,JIS)K 6726(1994)所測定的值。皂化度是於所述JIS中記載的方法中藉由反滴定法所測定的值。
本發明中使用的雜質擴散組成物(a)較佳為含有溶劑。作為較佳的具體例,可列舉:丙酮、甲基乙基酮、甲基-正丙基酮、甲基異丙基酮、甲基-正丁基酮、甲基異丁基酮、甲基-正戊基酮、甲基-正己基酮、二乙基酮、二丙基酮、二異丁基酮、三甲基壬酮、環己酮、環戊酮、甲基環己酮、2,4-戊二酮、丙酮基丙酮等酮溶劑;二乙醚、甲基乙醚、甲基-正丙醚、二異丙醚、四氫呋喃、甲基四氫呋喃、二噁烷、二甲基二噁烷、乙二醇二甲醚、乙二醇二乙醚、乙二醇二-正丙醚、乙二醇二丁醚、二乙二醇單丁醚、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇甲基乙醚、二乙二醇甲基-正丙醚、二乙二醇甲基-正丁醚、二乙二醇二-正丙醚、二乙二醇二-正丁醚、二乙二醇甲基-正己醚、三乙二醇二甲醚、三乙二醇二乙醚、三乙二醇甲基乙醚、三乙二醇甲基-正丁醚、三乙二醇二-正丁醚、三乙二醇甲基-正己醚、四乙二醇二甲醚、四乙二醇二乙醚、四乙二醇甲基乙醚、四乙二醇甲基-正丁醚、四乙二醇二-正丁醚、四乙二醇甲基-正己醚、四乙二醇二-正丁醚、丙二醇二甲醚、丙二醇二乙醚、丙二醇二-正丙醚、丙二醇二丁醚、二丙二醇二甲醚、二丙二醇二乙醚、二丙二醇甲基乙醚、二丙二醇甲基-正丁醚、二丙二醇二-正丙醚、二丙二醇二-正丁醚、二丙二醇甲基-正己醚、三丙二醇二甲醚、三丙二醇二乙醚、三丙二醇甲基乙醚、三丙二醇甲基-正丁醚、三丙二醇二-正丁醚、三丙二醇甲基-正己醚、四丙二醇二甲醚、四丙二醇二乙醚、四丙二醇甲基乙醚、四丙二醇甲基-正丁醚、四丙二醇二-正丁醚、四丙二醇甲基-正己醚、四丙二醇二-正丁醚等醚溶劑;乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸第二丁酯、乙酸正戊酯、乙酸第二戊酯、乙酸3-甲氧基丁酯、乙酸甲基戊酯、乙酸2-乙基丁酯、乙酸2-乙基己酯、乙酸2-(2-丁氧基乙氧基)乙酯、乙酸苄酯、乙酸環己酯、乙酸甲基環己酯、乙酸壬酯、乙醯乙酸甲酯、乙醯乙酸乙酯、乙酸二乙二醇甲醚、乙酸二乙二醇單乙醚、乙酸二丙二醇甲醚、乙酸二丙二醇乙醚、二乙酸二醇、乙酸甲氧基三乙二醇、丙酸乙酯、丙酸正丁酯、丙酸異戊酯、乙二酸二乙酯、乙二酸二-正丁酯、乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯、乙二醇甲醚丙酸酯、乙二醇乙醚丙酸酯、乙二醇甲醚乙酸酯、乙二醇乙醚乙酸酯、丙二醇甲醚乙酸酯、丙二醇乙醚乙酸酯、丙二醇丙醚乙酸酯、γ-丁內酯、γ-戊內酯等酯溶劑;乙腈、N-甲基吡咯啶酮、N-乙基吡咯啶酮、N-丙基吡咯啶酮、N-丁基吡咯啶酮、N-己基吡咯啶酮、N-環己基吡咯啶酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、二甲基亞碸等非質子性極性溶劑;甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、第三丁醇、正戊醇、異戊醇、2-甲基丁醇、第二戊醇、第三戊醇、3-甲氧基丁醇、3-甲氧基-3-甲基丁醇、正己醇、2-甲基戊醇、第二己醇、2-乙基丁醇、第二庚醇、正辛醇、2-乙基己醇、第二辛醇、正壬醇、正癸醇、第二-十一烷基醇、三甲基壬醇、第二-十四烷基醇、第二-十七烷基醇、苯酚、環己醇、甲基環己醇、苄基醇、異冰片基環己醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二乙二醇、二丙二醇、三乙二醇、三丙二醇等醇溶劑;乙二醇單甲醚、乙二醇單乙醚(溶纖劑)、乙二醇單苯醚、二乙二醇單甲醚、二乙二醇單乙醚、二乙二醇單-正丁醚、二乙二醇單-正己醚、乙氧基三甘醇、四乙二醇單-正丁醚、丙二醇單甲醚、二丙二醇單甲醚、二丙二醇單乙醚、三丙二醇單甲醚等二醇單醚溶劑;α-萜品烯(α-terpinene)、α-萜品醇(α-terpineol)、月桂油烯(myrcene)、別羅勒烯(alloocimene)、檸檬烯(limonene)、二戊烯、α-蒎烯(α-pinene)、β-蒎烯、萜品醇、香旱芹酮(carvone)、羅勒烯(ocimene)、水芹烯(phellandrene)等萜烯(terpene)溶劑;異冰片基環己醇、異冰片基苯酚、1-異丙基-4-甲基-雙環[2.2.2]辛-5-烯-2,3-二羧酸酐、對薄荷基苯酚、以及水。該些樹脂可單獨使用一種或者將兩種以上組合使用。
其中,於雜質擴散組成物(a)中的(a-1)矽烷化合物的聚合物為通式(2)所表示的結構的情況下,考慮到矽烷化合物的聚合物的溶解性,水的比例較佳為相對於全部溶媒為20質量%以下。
尤其是就進一步提高利用網版印刷法或旋轉塗佈印刷法等的情況下的印刷性的觀點而言,較佳為沸點為100℃以上的溶劑。若沸點為100℃以上,則例如在網版印刷法中所使用的印刷版印刷雜質擴散組成物時,容易抑制雜質擴散組成物在印刷版上乾燥而黏著。
沸點為100℃以上的溶劑的含量較佳為相對於溶劑的總量為20質量%以上。作為沸點100℃以上的溶媒,可例示:二乙二醇甲基乙醚(沸點176℃)、乙二醇單乙醚乙酸酯(沸點156.4℃)、乙二醇單甲醚乙酸酯(沸點145℃)、乳酸甲酯(沸點145℃)、乳酸乙酯(沸點155℃)、二丙酮醇(沸點169℃)、丙二醇單甲醚乙酸酯(沸點145℃)、3-甲氧基-3-甲基-1-丁醇(沸點174℃)、二丙二醇單甲醚(沸點188℃)、二丙二醇正丁醚(沸點229℃)、γ-丁內酯(沸點204℃)、二乙二醇單乙醚乙酸酯(沸點217℃)、丁基二甘醇乙酸酯(沸點246℃)、乙醯乙酸乙酯(沸點181℃)、N-甲基-2-吡咯啶酮(沸點204℃)、N,N-二甲基咪唑啶酮(沸點226℃)、二丙二醇甲醚乙酸酯(沸點213℃)、1,3-丁二醇二乙酸酯(沸點232℃)、二異丁基酮(沸點168℃)、丙二醇第三丁醚(沸點151℃)、丙二醇正丁醚(沸點170℃)、乙醯丙酮(沸點140℃)、二乙二醇單丁醚(沸點171℃)、二乙二醇單丁醚乙酸酯(沸點245℃)。
本發明中使用的雜質擴散組成物(a)亦可含有界面活性劑。藉由含有界面活性劑,改善塗佈不均而可獲得均勻的塗佈膜。作為界面活性劑,可較佳地使用氟系界面活性劑、或矽酮系界面活性劑。
作為氟系界面活性劑的具體例,可列舉包含如下在末端、主鏈及側鏈的至少任一部位具有氟烷基或氟伸烷基的化合物的氟系界面活性劑:1,1,2,2-四氟辛基(1,1,2,2-四氟丙基)醚、1,1,2,2-四氟辛基己醚、八乙二醇二(1,1,2,2-四氟丁基)醚、六乙二醇(1,1,2,2,3,3-六氟戊基)醚、八丙二醇二(1,1,2,2-四氟丁基)醚、六丙二醇二(1,1,2,2,3,3-六氟戊基)醚、全氟十二烷基磺酸鈉、1,1,2,2,8,8,9,9,10,10-十氟十二烷、1,1,2,2,3,3-六氟癸烷、N-[3-(全氟辛烷磺醯胺)丙基]-N,N'-二甲基-N-羧基亞甲基銨甜菜鹼、全氟烷基磺醯胺丙基三甲基銨鹽、全氟烷基-N-乙基磺醯基甘胺酸鹽、磷酸雙(N-全氟辛基磺醯基-N-乙基胺基乙酯)、單全氟烷基乙基磷酸酯等。另外,市售品有Megafac F142D、Megafac F172、Megafac F173、Megafac F183、Megafac F444、Megafac F475、Megafac F477(以上為大日本油墨化學工業(Dainippon Ink And Chemicals)(股)製造)、Eftop EF301、Eftop 303、Eftop 352(新秋田化成(股)製造)、Fluorad FC-430、Fluorad FC-431(住友3M(股)製造)、AsahiGuard AG710、Surflon S-382、Surflon SC-101、Surflon SC-102、Surflon SC-103、Surflon SC-104、Surflon SC-105、Surflon SC-106(旭硝子(股)製造)、BM-1000、BM-1100(裕商(股)製造)、NBX-15、FTX-218、DFX-218(尼歐斯(Neos)(股)製造)等氟系界面活性劑。
作為矽酮系界面活性劑的市售品,可列舉SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(均為東麗道康寧(Toray Dow Corning)(股)製造)、BYK067A、BYK310、BYK322、BYK331、BYK333、BYK355(日本畢克化學(BYK-Chemie Japan)(股)製造)等。
含有界面活性劑時的含量較佳為設為在雜質擴散組成物中為0.0001質量%~1質量%。
為了調整黏度,本發明中使用的雜質擴散組成物(a)較佳為含有增黏劑。藉此,可利用網版印刷等印刷法以更精密的圖案進行塗佈。
作為增黏劑,在有機系中,可列舉:纖維素、纖維素衍生物、澱粉、澱粉衍生物、聚乙烯吡咯啶酮、聚乙酸乙烯酯、聚乙烯醇、聚乙烯丁醛、聚胺基甲酸酯樹脂、聚脲樹脂、聚醯亞胺樹脂、聚醯胺樹脂、環氧樹脂、聚苯乙烯系樹脂、聚酯樹脂、合成橡膠、天然橡膠、聚丙烯酸、各種丙烯酸系樹脂、聚乙二醇、聚環氧乙烷、聚丙二醇、聚環氧丙烷、矽油(silicone oil)、海藻酸鈉、三仙膠(xanthan gum)系多糖類、結蘭膠(gellan gum)系多糖類、瓜爾膠(guar gum)系多糖類、卡拉膠(carrageenan)系多糖類、刺槐豆膠(locust bean gum)系多糖類、羧基乙烯基聚合物、氫化蓖麻油系、氫化蓖麻油系與脂肪酸醯胺蠟系、特殊脂肪酸系、氧化聚乙烯系、氧化聚乙烯系與醯胺系的混合物、脂肪酸系多元羧酸、磷酸酯系界面活性劑、長鏈聚胺基醯胺與磷酸的鹽、特殊改質聚醯胺系等。在無機系中,可例示膨潤土、蒙脫石、鎂蒙脫石、鐵蒙脫石、鐵鎂蒙脫石、貝得石、鋁貝得石、皂石(saponite)、鋁皂石、合成鋰皂石、矽酸鋁、矽酸鋁鎂、有機鋰膨潤石、微粒氧化矽、膠體氧化鋁、碳酸鈣等。該些可組合多種而使用。
另外,作為市售品的纖維素系增黏劑,可列舉:1110、1120、1130、1140、1150、1160、1170、1180、1190、2200、2260、2280、2450(均由大賽璐精細化工(Daicel FineChem)(股)製造)等。
作為市售品的多糖類系增黏劑,可列舉:Viscarin PC209、Viscarin PC389、SeaKem XP8012(以上為FMC化學(股)製造)、CAM-H、GJ-182、SV-300、LS-20、LS-30、XGT、XGK-D、G-100、LG-10(均為三菱商事(股))等。
作為市售品的丙烯酸系增黏劑,可列舉:#2434T、KC7000、KC1700P(以上為共榮社化學(股)製造)、AC-10LHPK、AC-10SHP、845H、PW-120(以上為東亞合成(股)製造)等。
作為市售品的氫化蓖麻油系增黏劑,可列舉:Disparlon 308、NAMLONT-206(以上為楠本化成(股)製造)、T-20SF、T-75F(以上為伊藤製油(股)製造)等。
作為市售品的氧化聚乙烯系增黏劑,可列舉:D-10A、D-120、D-120-10、D-1100、DS-525、DS-313(以上為伊藤製油(股)製造);Disparlon 4200-20、Disparlon PF-911、Disparlon PF-930、Disparlon 4401-25X、Disparlon NS-30、Disparlon NS-5010、Disparlon NS-5025、Disparlon NS-5810、Disparlon NS-5210、Disparlon NS-5310(以上為楠本化成(股)製造);Flownon SA-300、Flownon SA-300H(以上為共榮社化學(股)製造)等。
作為市售品的醯胺系增黏劑,可列舉:T-250F、T-550F、T-850F、T-1700、T-1800、T-2000(以上為伊藤製油(股)製造)、Disparlon 6500、Disparlon 6300、Disparlon 6650、Disparlon 6700、Disparlon 3900EF(以上為楠本化成(股)製造)、Talen 7200、Talen 7500、Talen 8200、Talen 8300、Talen 8700、Talen 8900、Talen KY-2000、Talen KU-700、Talen M-1020、Talen VA-780、Talen VA-750B、Talen 2450、Flownon SD-700、Flownon SDR-80、Flownon EC-121(以上為共榮社化學(股)製造)等。
作為市售品的膨潤土系增黏劑,可列舉:Bengel、Bengel HV、Bengel HVP、Bengel F、Bengel FW、Bengel Bright 11、Bengel A、Bengel W-100、Bengel W-100U、Bengel W-300U、Bengel SH、MultiBen、S-Ben、S-Ben C、S-Ben E、S-Ben W、S-Ben P、S-Ben WX、Organite、Organite D(以上為禾菌(Hojun)(股)製造)等。
作為市售品的微粒子氧化矽系增黏劑,可列舉:AEROSIL R972、AEROSIL R974、AEROSIL NY50、AEROSIL RY200S、AEROSIL RY200、AEROSIL RX50、AEROSIL NAX50、AEROSIL RX200、AEROSIL RX300、AEROSIL VPNKC130、AEROSIL R805、AEROSIL R104、AEROSIL R711、AEROSIL OX50、AEROSIL 50、AEROSIL 90G、AEROSIL 130、AEROSIL 200、AEROSIL 300、AEROSIL 380(以上為日本艾羅西爾(AEROSIL)(股)製造)、WACKER HDK S13、WACKER HDK V15、WACKER HDK N20、WACKER HDK N20P、WACKER HDK T30、WACKER HDK T40、WACKER HDK H15、WACKER HDK H18、WACKER HDK H20、WACKER HDK H30(以上為旭化成(股)製造)等。
就形成緻密膜或減少殘渣的方面而言,增黏劑較佳為90%熱分解溫度為400℃以下。具體而言,較佳為聚乙二醇、聚環氧乙烷、聚丙二醇、聚環氧丙烷、各種丙烯酸酯系樹脂,其中,較佳為聚環氧乙烷、聚環氧丙烷或丙烯酸酯系樹脂。就保存穩定性的方面而言,尤佳為丙烯酸酯系樹脂。此處,所謂90%熱分解溫度是增黏劑的重量因熱分解而減少90%的溫度。90%熱分解溫度可使用熱重測定裝置(TGA)等進行測定。
作為丙烯酸酯系樹脂,可列舉:聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸丙酯、聚甲基丙烯酸丁酯、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丙酯、聚丙烯酸丁酯、聚甲基丙烯酸羥基乙酯、聚甲基丙烯酸苄酯、聚甲基丙烯酸縮水甘油酯等聚丙烯酸酯及該些的共聚物。在共聚物的情況下,所述丙烯酸酯成分只要以聚合比率計為60 mol%以上即可,作為其他共聚合成分,可將聚丙烯酸、聚苯乙烯等可進行乙烯基聚合的成分共聚合。
另外,關於聚環氧乙烷、聚環氧丙烷,亦較佳為該兩種的共聚物。丙烯酸酯系樹脂、聚環氧乙烷、聚環氧丙烷均是重量平均分子量10萬以上者的增黏效果高,而較佳。
該些增黏劑的含量較佳為在雜質擴散組成物中為3質量%以上且20質量%以下。藉由為所述範圍內,可獲得充分的黏度調整效果,同時容易進行緻密的膜形成。
就網版印刷性的方面而言,本發明中的雜質擴散組成物(a)較佳為含有賦予觸變性的觸變劑。此處,所謂賦予觸變性,是增大低剪切應力時的黏度(η1)與高剪切應力時的黏度(η2)的比(η1/η2)。藉由含有觸變劑,可提高網版印刷的圖案精度。推測所述情況是由以下的原因引起。即,推測含有觸變劑的雜質擴散組成物由於在高剪切應力時黏度低,因此在網版印刷時不易引起網版的堵塞,由於在低剪切應力時黏度高,因此不易引起剛印刷後的滲出或圖案線寬的變粗。
作為觸變劑,具體而言,可例示:纖維素、纖維素衍生物、海藻酸鈉、三仙膠系多糖類、結蘭膠系多糖類、瓜爾膠系多糖類、卡拉膠系多糖類、刺槐豆膠系多糖類、羧基乙烯基聚合物、氫化蓖麻油系、氫化蓖麻油系與脂肪酸醯胺蠟系、特殊脂肪酸系、氧化聚乙烯系、氧化聚乙烯系與醯胺系的混合物、脂肪酸系多元羧酸、磷酸酯系界面活性劑、長鏈聚胺基醯胺與磷酸的鹽、特殊改質聚醯胺系、膨潤土、蒙脫石、鎂蒙脫石、鐵蒙脫石、鐵鎂蒙脫石、貝得石、鋁貝得石、皂石、鋁皂石、合成鋰皂石、矽酸鋁、矽酸鋁鎂、有機鋰膨潤石、微粒氧化矽、膠體氧化鋁、碳酸鈣等。觸變劑可單獨使用,亦可組合2種以上的觸變劑。另外,更佳為與所述增黏劑組合使用,可獲得更高的效果。
本發明中的雜質擴散組成物的黏度並無限制,可根據印刷法、膜厚進行適宜變更。此處,例如在作為較佳的印刷方式之一的網版印刷方式的情況下,雜質擴散組成物的黏度較佳為5,000 mPa·s以上。其原因在於,可抑制印刷圖案的滲出而獲得良好的圖案。進而佳的黏度為10,000 mPa·s以上。上限並無特別限制,就保存穩定性或操作性的觀點而言,較佳為100,000 mPa·s以下。此處,在黏度未滿1,000 mPa·s的情況下,是基於JIS Z 8803(1991)「溶液黏度-測定方法」,使用E型數位黏度計在轉數20 rpm下所測定的值,在黏度為1,000 mPa·s以上的情況下,是基於JIS Z 8803(1991)「溶液黏度-測定方法」,使用B型數位黏度計在轉數20 rpm下所測定的值。觸變性可根據利用所述黏度測定方法所獲得的不同轉數下的黏度的比而求出。本發明中,將轉數20 rpm下的黏度(η20)與轉數2 rpm下的黏度(η2)的比(η2/η20)定義為觸變性。為了利用網版印刷形成精度良好的圖案,觸變性較佳為2以上,進而佳為3以上。
本發明中,雜質擴散組成物(a)的固體成分濃度並無特別限制,較佳的範圍是1質量%以上~90質量%以下。若低於本濃度範圍,則有時塗佈膜厚變得過薄,難以獲得所需的摻雜性、遮罩性,若高於本濃度範圍,則有時保存穩定性降低。 <雜質擴散組成物(d)> 本發明中,雜質擴散組成物(d)的第一較佳的態樣是雜質擴散組成物(d)包含(d-1)矽烷化合物的聚合物及(d-2)雜質擴散成分。
矽烷化合物聚合物(d-1)中包含含有Si原子的單體的縮聚物、加成聚合物、聚加成物等。
於雜質擴散組成物(d)的第一較佳的態樣中,矽烷化合物聚合物(d-1)較佳為下述通式(3)所表示的矽烷化合物的聚合物。
[化4]
Figure 02_image005
通式(3)中,R7 及R8 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R7 及R8 可分別相同亦可不同。l2 表示1~10000的整數。就製膜後的膜的強韌性的觀點而言,較佳為5~10000,更佳為10~10000。
通式(3)的R7 及R8 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基均可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。
作為碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基的具體例,可列舉與R1 、R2 中者相同者。
就容易抑制自雜質擴散組成物的向外擴散的觀點而言,R7 、R8 中的至少一個較佳為表示碳數1~6的烷基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者。
更佳為R7 表示碳數1~6的烷基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,且R8 表示羥基、碳數1~6的烷基中任一者。
於雜質擴散組成物(d)的第一較佳的態樣中,就容易抑制自雜質擴散組成物的向外擴散的觀點而言,(d-1)矽烷化合物的聚合物進而佳為下述通式(4)所表示的矽烷化合物的聚合物。
[化5]
Figure 02_image006
通式(4)中,R9 表示碳數6~15的芳基,多個R9 可分別相同亦可不同。R10 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R10 可分別相同亦可不同。R11 及R12 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基中任一者,多個R5 及R6 可分別相同亦可不同。n2 、m2 表示1~9999的整數,n2 +m2 為2~10000的整數,n2 :m2 =95:5~25:75。 就製膜後的膜的強韌性的觀點而言,較佳的(n2 +m2 )的範圍為5~10000,更佳為10~10000。
通式(4)的R9 中的碳數6~15的芳基可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。作為碳數6~15的芳基的具體例,可列舉與R1 、R2 中者相同者。
通式(4)的R10 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基均可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。作為該些的具體例,可列舉與R1 、R2 中者相同者。
通式(4)的R11 及R12 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基均可為未經取代物、經取代物中任一者,可根據雜質擴散組成物的特性進行選擇。作為該些的具體例,可列舉與R1 、R2 中者相同者。
關於作為通式(3)所表示的矽烷化合物的聚合物的原料的有機矽烷的具體例,可列舉與作為通式(1)所表示的矽烷化合物的聚合物的原料的有機矽烷的具體例相同者。
該些有機矽烷中,就容易抑制自雜質擴散組成物的向外擴散的觀點而言,可較佳地使用3官能性矽烷。
作為可用作通式(4)所表示的矽烷化合物的具有R9 及R10 的單元的原料的有機矽烷的具體例,可列舉與可用作通式(2)所表示的矽烷化合物的具有R3 及R4 的單元的原料的有機矽烷的具體例相同者。
作為可用作通式(4)的具有R11 及R12 的單元的原料的有機矽烷的具體例,可列舉與作為通式(1)所表示的矽烷化合物的聚合物的原料的有機矽烷的具體例相同者。其中,就容易抑制自雜質擴散組成物的向外擴散的觀點而言,可較佳地使用3官能性矽烷。
通式(4)所表示的矽烷化合物的聚合物是含有碳數6~15的芳基的單元以Si原子換算計為25莫耳%~95莫耳%的聚矽氧烷。即,n2 :m2 =95:5~25:75。藉由為所述範圍內,抑制雜質擴散成分的向外擴散、減少於熱處理後去除雜質擴散成分時的有機殘渣的效果提高。另外,藉由為所述範圍內,即便在添加有增黏劑等熱分解成分的雜質擴散組成物中,藉由矽氧烷的回流效果,亦可填埋因熱分解而生成的空孔,從而可形成空孔少的緻密的膜。因此,不易受擴散時的環境所影響,且可獲得對其他雜質的高遮罩性。
另外,末端基較佳為氫、羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基中任一者。
通式(2)所表示的矽烷化合物的聚合物只要以所述既定的比率含有各構成成分即可,可為嵌段共聚物,亦可為無規共聚物。 就抑制向外擴散、遮罩性的進一步提高的觀點而言,含有碳數6~15的芳基的單元更佳為35莫耳%以上,進而佳為40莫耳%以上。另外,為了不受環境或膜厚的影響,不產生殘渣,較佳為含有芳基的單元為80莫耳%以下。即,尤佳為n2 :m2 =80:20~40:60。
通式(3)、通式(4)所表示的矽烷化合物的聚合物例如可藉由如下方式而獲得:將有機矽烷化合物水解後,使該水解物在溶媒的存在下、或無溶媒下進行縮合反應。具體的方法與通式(1)、通式(2)所表示的矽烷化合物的聚合物相同。
關於雜質擴散組成物(d)的第一較佳的態樣中所含的(d-2)雜質擴散成分的具體例,與雜質擴散組成物(a)中所含的雜質擴散成分相同。
進而,於雜質擴散組成物(d)中的(d-1)矽烷化合物的聚合物為通式(4)所表示的結構的情況下,亦可包含(d-3)皂化度為20莫耳%以上且未滿50莫耳%的聚乙烯醇。(d-3)的具體例與(a-3)相同。
雜質擴散組成物(d)的第一較佳的態樣亦可包含溶劑、界面活性劑、增黏劑、觸變劑。具體例與雜質擴散組成物(a)中所含的溶劑、界面活性劑、增黏劑、觸變劑相同。
本發明中,雜質擴散組成物(d)的第二較佳的態樣是雜質擴散組成物(d)於全部溶媒中包含25質量%以上的(d-4)選自由聚乙烯醇及聚環氧乙烷所組成的群組中的至少一種樹脂、(d-5)雜質擴散成分、以及(d-6)水。
於雜質擴散組成物(d)的第二較佳的態樣中,(d-4)選自由聚乙烯醇及聚環氧乙烷所組成的群組中的至少一種樹脂是用於與(d-5)雜質擴散成分形成錯合物,於塗佈時形成均勻的被膜。就與(d-5)雜質擴散成分的錯合物的形成性及所形成的錯合物的穩定性的方面而言,(d-4)選自由聚乙烯醇及聚環氧乙烷所組成的群組中的至少一種樹脂更佳為聚乙烯醇。
就溶解度與錯合物穩定性的方面而言,聚乙烯醇的平均聚合度較佳為150~1000。進而,就於水中的溶解度與錯合物穩定性的方面而言,聚乙烯醇的皂化度較佳為70莫耳%~95莫耳%。本發明中,所述平均聚合度及皂化度均為依據JIS K 6726(1994)所測定的值,皂化度是藉由反滴定法所測定的值。
就錯合物穩定性的方面而言,雜質擴散組成物中所含的樹脂(d-4)較佳為雜質擴散組成物中所含的全部樹脂中的80質量%以上、較佳為90質量%以上、最佳為95質量%以上。
另外,就熱擴散、雜質擴散組成物去除後的基板上的有機殘渣抑制的方面而言,樹脂(d-4)的量較佳為雜質擴散組成物整體的0.1質量%~20質量%,更佳為1質量%~10質量%。
於雜質擴散組成物(d)的第二較佳的態樣中,關於(d-5)雜質擴散成分的具體例,與雜質擴散組成物(a)中所含的雜質擴散成分相同。
另外,溶劑、界面活性劑、增黏劑、觸變劑的具體例與雜質擴散組成物(a)中所含的溶劑、界面活性劑、增黏劑、觸變劑相同。
<半導體元件(選擇發射極)的製造方法> 本發明的半導體元件的製造方法是於半導體基板上形成2水準以上的不同的雜質濃度且同型的雜質擴散層區域的半導體元件的製造方法,其中,至少1水準以上的雜質擴散層區域藉由如下方法形成,所述方法包括:將雜質擴散組成物(a)塗佈於半導體基板上而部分性地形成雜質擴散組成物膜(b)的步驟、以及將其加熱使雜質向半導體基板中擴散而形成雜質擴散層區域(c)的步驟,雜質擴散組成物(a)包含(a-1)所述通式(1)所表示的矽烷化合物的聚合物、以及(a-2)雜質擴散成分。此處所述的所謂不同的雜質濃度是指以雜質濃度差計為1×1017 /cm3 以上,形成雜質擴散層區域的部分的基板表面的片電阻值的差為10 Ω/□以上。
本發明的半導體元件的製造方法的第一較佳的態樣較佳為包括將雜質擴散組成物膜(b)作為遮罩,使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟。
以下,使用圖示對本發明的半導體元件的製造方法的第一較佳的態樣進行說明。再者,均為一例,本發明的半導體元件的製造方法並不限於該些。
首先,如圖1的(i)所示,於半導體基板1上部分性地塗佈雜質擴散組成物(a)而形成雜質擴散組成物膜(b)的圖案4。
作為半導體基板,例如可列舉雜質濃度為1015 atoms/cm3 ~1016 atoms/cm3 的n型單晶矽、多晶矽及混合有如鍺、碳等般的其他元素的結晶矽基板。亦可使用p型結晶矽或矽以外的半導體。半導體基板較佳為厚度為50 μm~300 μm、外形為一邊為100 mm~250 mm的大致四邊形。另外,為了去除切片損傷(slice damage)或自然氧化膜,較佳為預先利用氫氟酸溶液或鹼溶液等對表面進行蝕刻。
作為雜質擴散組成物(a)的塗佈方法,例如可列舉:旋轉塗佈法、網版印刷法、噴墨印刷法、狹縫塗佈法、噴霧塗佈法、凸版印刷法、凹版印刷法等。
較佳為於利用該些方法塗佈雜質擴散組成物(a)後,利用加熱板、烘箱等,在50℃~260℃的範圍內將塗佈有雜質擴散組成物(a)的半導體基板乾燥30秒~30分鐘,形成雜質擴散組成物膜(b)的圖案。
就藉由進行矽烷化合物的聚合物的硬化且抑制雜質的昇華等揮發來提高擴散後的雜質濃度的面內均勻性的觀點而言,更佳的乾燥溫度為180℃~260℃的溫度。另外,就相同的觀點而言,乾燥時的氧濃度較佳為15%~25%。
就雜質的擴散性的觀點而言,乾燥後的雜質擴散組成物膜(b)的膜厚較佳為100 nm以上,就蝕刻後的殘渣的觀點而言,較佳為3 μm以下。
其次,如圖1的(ii)所示,對雜質進行加熱並向半導體基板中擴散而形成雜質擴散層區域(c)。雜質的擴散方法可利用公知的熱擴散方法,例如可使用:電加熱、紅外加熱、雷射加熱、微波加熱等方法。
熱擴散的時間及溫度可以獲得雜質擴散濃度、擴散深度等所需的擴散特性的方式適宜設定。例如,藉由在800℃以上且1200℃以下加熱擴散1分鐘~120分鐘,可形成表面雜質濃度為1019 atoms/cm3 ~1021 atoms/cm3 的擴散層。
其中,存在擴散溫度越高,矽基板的缺陷密度越高,壽命越短,太陽電池的光轉換效率越降低的傾向,因此為了形成相同的擴散層的狀態,較佳為於更溫和的條件下進行擴散。
擴散環境並無特別限定,可在大氣中進行,亦可使用氮氣、氬氣等惰性氣體並適宜控制環境中的氧量等進行。就縮短擴散時間的觀點而言,較佳為使環境中的氧濃度為3%以下。另外,亦可視需要在擴散前在200℃~850℃的範圍內進行煆燒,進行雜質擴散組成物膜(b)中的有機物的分解去除。
其次,如上所述,較佳為包括將雜質擴散組成物膜(b)作為遮罩,使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟。具體而言,例如如圖1的(iv-1)~圖1的(iv-3)所示,將雜質擴散組成物膜(b)的圖案作為遮罩,於圖案未形成部分形成與雜質擴散層區域(c)為同型的導電性且雜質濃度不同的雜質擴散層區域(f)。
於本發明的半導體元件的製造方法的第一較佳的態樣中,使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟(形成雜質擴散層區域(f)的步驟)可於對雜質擴散組成物膜(b)進行加熱且使雜質向所述半導體基板擴散而形成雜質擴散層區域(c)之後進行。
作為使雜質向雜質擴散組成物膜(b)未形成部分擴散的方法的具體例,可列舉:向帶有雜質擴散組成物膜(b)的圖案的半導體基板1中注入包含雜質擴散成分的離子後(圖1的(iii-1))退火(iv-1)的方法,將帶有雜質擴散組成物膜(b)的圖案的半導體基板1在包含雜質擴散成分的環境中加熱(iv-2)的方法,在帶有雜質擴散組成物膜(b)的圖案的半導體基板1中將雜質擴散組成物(d)塗佈於雜質擴散組成物膜(b)未形成部分,形成雜質擴散組成物膜(e)後(圖1的(iii-3))進行電加熱、紅外加熱、雷射加熱、微波加熱(iv-3)的方法等。
於本發明的半導體組成的製造方法的第一較佳的態樣中,第一更佳的態樣是:使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是注入包含雜質擴散成分的離子的步驟。
於注入離子的步驟中,硼的注入以例如1 keV~40 keV的能量、0.5~5e15 1/cm2 之間的劑量、較佳為3 keV~10 keV的能量、1.5~3e15 1/cm2 之間的劑量進行。注入了硼的雜質擴散層區域(f)的電阻在恢復後為30歐姆/平方~300歐姆/平方(ohm/square、Ω/□),較佳為60歐姆/平方~100歐姆/平方。
磷的注入以例如1 keV~40 keV的能量、0.5~5e15 1/cm2 之間的劑量、較佳為10 keV的能量、2.5~4e15 1/cm2 之間的劑量進行。注入了磷的雜質擴散層區域(f)的電阻在恢復後為10歐姆/平方~300歐姆/平方(ohm/square、Ω/□),較佳為30歐姆/平方~120歐姆/平方。
恢復(所注入的摻雜劑的活性化)可藉由將帶有雜質擴散組成物膜(b)的圖案的半導體基板於惰性環境(N2 、Ar)中於高溫(800℃-1100℃)下進行退火來進行。
根據離子注入的能量、劑量、恢復時的溫度條件設定,可將雜質擴散層區域(f)的雜質濃度設定為高於雜質擴散層區域(c)的雜質濃度,亦可設定為低於雜質擴散層區域(c)的雜質濃度。
於本發明的半導體元件的製造方法的第一較佳的態樣中,使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟(形成雜質擴散層區域(f)的步驟)亦可與對雜質擴散組成物膜(b)進行加熱且使雜質向所述半導體基板擴散的步驟同時進行。
例如,如圖1的(i)所示,亦可於半導體基板1上部分性地塗佈雜質擴散組成物(a)而形成雜質擴散組成物膜(b)的圖案後,不進行圖1的(ii)的擴散步驟而進行圖1的(iii-1)的離子注入,利用圖1的(iv-1)的退火同時形成雜質擴散層區域(f)、雜質擴散層區域(c)。另外,如後所述,於第二更佳的態樣、第三更佳的態樣中,亦可同時形成形成雜質擴散層區域(f)、雜質擴散層區域(c)。
於本發明的半導體元件的製造方法的第一較佳的態樣中,第二更佳的態樣是:使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是於包含雜質擴散成分的環境中進行加熱的步驟。
於在包含雜質擴散成分的環境中進行加熱的情況下,例如在p型的情況下使溴化硼(BBr3 )起泡,在n型的情況下使氧氯化磷(POCl3 )起泡,以N2 流動,藉此在形成包含雜質擴散成分的環境中對帶有雜質擴散組成物膜(b)的圖案的半導體基板進行加熱,可形成雜質擴散層區域(f)。根據氣壓、加熱條件設定,可將雜質擴散層區域(f)的雜質濃度設定為高於雜質擴散層區域(c)的雜質濃度,亦可設定為低於雜質擴散層區域(c)的雜質濃度。
此時,為了避免其他成分的混入,較佳為將形成雜質擴散組成物膜(b)的圖案後利用圖1的(ii)的擴散步驟進行的雜質擴散層區域(c)的形成、以及利用圖1的(iv-2)的加熱進行的雜質擴散層區域(f)的形成利用同一批次的擴散裝置連續地進行。
另外,如圖1的(i)所示,亦可於在半導體基板1上部分性地塗佈雜質擴散組成物(a)而形成雜質擴散組成物膜(b)的圖案後,不進行圖1的(ii)的擴散步驟,利用圖1的(iv-2)的加熱同時形成雜質擴散層區域(f)、雜質擴散層區域(c)。
另外,如圖1的(i)所示,亦可於在半導體基板1上部分性地塗佈雜質擴散組成物(a)而形成雜質擴散組成物膜(b)的圖案後,不進行圖1的(ii)的擴散步驟,投入至圖1的(iv-2)的加熱爐中,首先於僅惰性氣體下進行加熱而形成雜質擴散層區域(c),直接於爐內追加導入包含雜質擴散成分的氣體,在與僅惰性氣體的加熱條件不同的條件下進行加熱,藉此一批次形成雜質濃度與雜質擴散層區域(c)不同的雜質擴散層區域(f)。
於本發明的半導體元件的製造方法的第一較佳的態樣中,第三更佳的態樣是:使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是於形成有雜質擴散組成物膜(b)的半導體基板上將雜質擴散組成物(d)塗佈於雜質擴散組成物膜(b)未形成部分並對所形成的雜質擴散組成物膜(e)進行加熱的步驟。
作為雜質擴散組成物(d)的塗佈方法,例如可列舉:旋轉塗佈法、網版印刷法、噴墨印刷法、狹縫塗佈法、噴霧塗佈法、凸版印刷法、凹版印刷法等。
作為對雜質擴散組成物膜(e)進行加熱的步驟,例如可列舉:電加熱、紅外加熱、雷射加熱、微波加熱等。
尤其是藉由以覆蓋雜質擴散組成物膜(b)的圖案的方式進行塗佈,於雜質擴散組成物膜(b)與雜質擴散組成物膜(e)的邊界面亦良好地進行雜質擴散,因此可以說較佳。為了邊界面的良好的雜質擴散,最佳的是以覆蓋雜質擴散組成物膜(b)的圖案的方式將雜質擴散組成物(d)於基板上進行整面塗佈。
較佳為於利用該些方法塗佈雜質擴散組成物(d)後,利用加熱板、烘箱等,在50℃~200℃的範圍內將塗佈有雜質擴散組成物(d)的半導體基板1乾燥30秒~30分鐘,形成雜質擴散組成物膜(e)。
其次,如圖1的(iv-3)所示,使雜質向半導體基板1中擴散而形成雜質擴散層區域(f)。雜質的擴散方法可利用公知的熱擴散方法,例如可使用:電加熱、紅外加熱、雷射加熱、微波加熱等方法。
熱擴散的時間及溫度可以獲得雜質擴散濃度、擴散深度等所需的擴散特性的方式適宜設定。例如,藉由在800℃以上且1200℃以下加熱擴散1分鐘~120分鐘,可形成表面雜質濃度為1019 atoms/cm3 ~1021 atoms/cm3 的擴散層。
其中,存在擴散溫度越高,矽基板的缺陷密度越高,壽命越短,太陽電池的光轉換效率越降低的傾向,因此為了形成相同的擴散層的狀態,較佳為於更溫和的條件下進行擴散。
擴散環境並無特別限定,可在大氣中進行,亦可使用氮氣、氬氣等惰性氣體並適宜控制環境中的氧量等進行。就縮短擴散時間的觀點而言,較佳為使環境中的氧濃度為3%以下。另外,亦可視需要在擴散前在200℃~850℃的範圍內進行煆燒,進行雜質擴散組成物膜(e)中的有機物的分解去除。
此時,藉由調整雜質擴散組成物(d)的雜質濃度或雜質擴散組成物膜(e)的膜厚,可將雜質擴散層區域(f)的雜質濃度設定為高於雜質擴散層區域(c)的雜質濃度,亦可設定為低於雜質擴散層區域(c)的雜質濃度。
另外,如圖1的(i)所示,亦可於在半導體基板1上部分性地塗佈雜質擴散組成物(a)而形成雜質擴散組成物膜(b)的圖案後,不進行圖1的(ii)的擴散步驟而進行圖1的(iii-3)的雜質擴散組成物膜(e)的形成,利用圖1的(iv-3)的加熱同時形成雜質擴散層區域(f)、雜質擴散層區域(c)。
本發明的半導體元件的製造方法的第一較佳的態樣中的第一~第三更佳的態樣中,就雜質擴散層區域(c)、雜質擴散層區域(f)的雜質擴散濃度均勻性的提高的方面而言,進而佳為第三更佳的態樣。
其次,如圖1的(v)所示,可藉由公知的蝕刻法,將形成於半導體基板1的表面的雜質擴散組成物膜(b)、雜質擴散組成物膜(e)去除。作為用於蝕刻的材料,並無特別限定,較佳為例如包含氟化氫、銨、磷酸、硫酸、硝酸中的至少一種作為蝕刻成分且包含水或有機溶劑等作為蝕刻成分以外的成分的材料。藉由以上步驟,可在半導體基板上形成同型、雜質擴散濃度不同的2水準的雜質擴散層。
本發明的半導體元件的製造方法的第二較佳的態樣包括:於使用選自於半導體基板上注入包含雜質擴散成分的離子的步驟、於包含雜質擴散成分的環境中進行加熱的步驟、以及整面塗佈雜質擴散組成物(d)並對所形成的雜質擴散組成物膜(e)進行加熱的步驟中的至少一個步驟來形成雜質擴散層區域(f)後,塗佈雜質擴散組成物(a)來部分性地形成雜質擴散組成物膜(b)的步驟;以及將其加熱使雜質向半導體基板中擴散而形成雜質擴散層區域(c)的步驟。
以下,使用圖示對本發明的半導體元件的製造方法的第二較佳的態樣進行說明。再者,均為一例,本發明的半導體元件的製造方法並不限於該些。
首先,如圖2的(ii-1)~圖2的(ii-3)所示,在半導體基板1上形成雜質擴散層區域(f)。
作為形成雜質擴散層區域(f)的方法的具體例,可列舉:向半導體基板1中注入包含雜質擴散成分的離子後(圖1的(i-1))退火(ii-1)的方法,將半導體基板1在包含雜質擴散成分的環境中加熱(ii-2)的方法,將雜質擴散組成物(d)於半導體基板1上進行整面塗佈而形成雜質擴散組成物膜(e)後(圖2的(i-3))進行電加熱、紅外加熱、雷射加熱、微波加熱(ii-3)的方法等。
關於各詳情,可利用與之前敘述的方法相同的方法進行。
其次,如圖2的(iii)所示,於半導體基板1上部分性地塗佈雜質擴散組成物(a)而形成雜質擴散組成物膜(b)的圖案。
關於圖案形成的詳情,可利用與之前敘述的方法相同的方法進行。
其次,如圖2的(iv)所示,使雜質向半導體基板1中擴散而形成雜質擴散層區域(c)。
關於雜質擴散的詳情,可利用與之前敘述的方法相同的方法進行。
本發明的半導體元件的製造方法的第三較佳的態樣包括:於半導體基板上整面塗佈雜質擴散組成物(d)而形成雜質擴散組成物膜(e),於其上塗佈雜質擴散組成物(a)來部分性地形成雜質擴散組成物膜(b)的步驟;以及將該些同時加熱使雜質向半導體基板中擴散而同時形成雜質擴散層區域(c)、雜質擴散層區域(f)的步驟。
以下,使用圖示對本發明的半導體元件的製造方法的第三較佳的態樣進行說明。再者,均為一例,本發明的半導體元件的製造方法並不限於該些。
例如,如圖2的(i-3)所示,可於在半導體基板1上整面塗佈雜質擴散組成物(d)而形成雜質擴散組成物膜(e)後,不進行圖2的(ii-3)的擴散步驟而進行圖2的(iii)的雜質擴散組成物膜(b)的圖案形成,利用圖2的(iv)的加熱同時形成雜質擴散層區域(f)、雜質擴散層區域(c)。
於本發明的半導體元件的製造方法的第二較佳的態樣及第三較佳的態樣中,例如最後如圖2的(v)所示,可藉由公知的蝕刻法,將形成於半導體基板1的表面的雜質擴散組成物膜(b)、雜質擴散組成物膜(e)去除。關於詳情,可利用與之前敘述的方法相同的方法進行。
本發明的半導體元件的製造方法亦可展開至太陽電池等光電元件、或在半導體表面將雜質擴散區域進行圖案形成的半導體設備,例如電晶體陣列(transistor array)或二極體陣列(diode array)、光電二極體陣列(photo diode array)、轉換器(transducer)等。
本發明的太陽電池的製造方法包括本發明的半導體元件的製造方法。
藉由本發明的太陽電池的製造方法由利用本發明的半導體元件的製造方法所獲得的半導體元件來獲得太陽電池的方法的一例為如下所述。
作為本發明的太陽電池的製造方法,較佳為於藉由本發明的半導體元件的製造方法所獲得的半導體元件上設置用於抑制表面再結合且防止光反射的鈍化膜。例如,作為n型擴散層的鈍化膜,亦可設置在700℃以上的高溫氧環境下的熱處理中所得的SiO2 、以及用於保護該膜的氮化矽膜。另外,亦可僅設置SiNx 膜。該情況下,可藉由以SiH4 與NH3 的混合氣體作為原料的電漿CVD法而形成。此時,氫向結晶中擴散,對矽原子的鍵結無貢獻的軌道、即、懸空鍵與氫鍵結,使缺陷惰性化(氫鈍化)。更具體而言,於混合氣體流量比NH3 /SiH4 為0.05~1.0、反應室的壓力為13.3 Pa~266.6 Pa(0.1 Tor~2 Tor)、成膜時的溫度為300℃~550℃、用於電漿放電的頻率為100 kHz以上的條件下形成。
繼而,於光接收面的防反射膜上利用網版印刷法印刷光接收面電極用金屬糊,且於n型擴散層的鈍化膜上利用網版印刷法印刷金屬糊,使其乾燥而形成光接收面電極。光接收面電極用金屬糊以金屬粒子與玻璃粒子作為必須成分,視需要包含樹脂黏合劑、其他添加劑等。此時使用的金屬糊較佳為分別應用適合於p型擴散層的金屬糊、適合於n型擴散層的金屬糊。關於金屬粒子,可較佳地使用Ag、Al。
繼而,對電極進行熱處理(煆燒)而完成太陽電池元件。若於600℃~900℃的範圍內進行數秒~數分鐘熱處理(煆燒),則於光接收面側藉由電極用金屬糊中所含的玻璃粒子,作為絕緣膜的防反射膜熔融,進而矽表面的一部分亦熔融,糊中的金屬粒子(例如銀粒子)與半導體基板形成接觸部並凝固。藉此,將所形成的光接收面電極與半導體基板導通。將其稱為經火(fire through)。
光接收面電極通常由匯流條電極、以及與該匯流條電極交差的指狀電極構成。所述光接收面電極可藉由所述金屬糊的網版印刷、或者電極材料的鍍敷、高真空中的利用電子束加熱進行的電極材料的蒸鍍等方法而形成。匯流條電極及指狀電極可利用公知的方法來合成。 [實施例]
以下,藉由實施例對本發明加以具體說明,但本發明不限定於該些實施例。再者,所使用的化合物中,使用略語者示於以下。
KBM-13:甲基三甲氧基矽烷(信越化學(股)製造) KBM-103:苯基三甲氧基矽烷(信越化學(股)製造) GBL:γ-丁內酯 BYK-333:矽酮系界面活性劑(畢克化學(BYK-Chemie)(股)製造) SH30PA:矽酮系界面活性劑(東麗道康寧(Toray Dow Corning)(股)製造) <評價方法> 片電阻值(表面電阻值)均勻性(雜質擴散濃度均勻性) 關於實施例1~實施例14、比較例1~比較例4中進行至雜質擴散組成物的去除的半導體基板,於圖3所示的部位(A~D、E~M)使用四探針式表面電阻測定裝置RT-70V(奈普森(Napson)(股)製造)對表面電阻值進行測定。
將A~D的平均值、最大值、最小值設為A1、B1、C1,將E~M的平均值、最大值、最小值設為A2、B2、C2,若偏差(B1-C1)/A1×100、(B2-C2)/A2×100的值均為20%以內,則設為合格,若超過20%,則設為不合格。
調配例1 <二氧化矽化合物的聚合物溶液的合成> 向2000 mL的三口燒瓶中裝入KBM-13 164.93 g、KBM-103 204.07 g、GBL 363.03 g,在40℃下一面攪拌一面歷時30分鐘添加在水130.76 g中溶解有甲酸1.215 g的甲酸水溶液。滴加結束後,在40℃下攪拌1小時後,升溫至70℃,攪拌30分鐘。然後,將油浴(oil bath)升溫至115℃。在升溫開始1小時後溶液的內溫達到100℃,自該溫度起加熱攪拌1小時(內溫為100℃~110℃)。利用冰浴冷卻所獲得的溶液,獲得二氧化矽化合物的聚合物。聚合溶液的固體成分濃度為39.8重量%。 <p型雜質擴散組成物的製備> 以相對於溶液整體達到300 ppm的方式添加所述所合成的二氧化矽化合物的聚合物4.39 g、硼酸1.47 g及GBL 12.55 g、BYK-333,充分攪拌以使其變得均勻,獲得p型雜質擴散組成物A。
調配例2 <二氧化矽化合物的聚合物溶液的合成> 於500 mL的三口燒瓶中裝入3-縮水甘油氧基丙基三甲氧基矽烷112.47 g、二乙二醇單甲醚130.47 g,藉由加熱升溫至40℃。然後,滴加添加濃硫酸0.24 g與水42.83 g的混合溶液。於完成滴加添加後於40℃下繼續攪拌1小時。然後,升溫至70℃,且攪拌1小時20分鐘。然後,升溫至100℃,且攪拌1小時。然後,將油浴溫度升溫至120℃,進行攪拌。於120℃下攪拌1小時後,冷卻至40℃以下,獲得二氧化矽化合物的聚合物溶液。 <p型雜質擴散組成物的製備> 於500 mL的三口燒瓶中依次添加3-甲氧基-3-甲基丁醇58.55 g、聚乙烯醇(日本醋酸聚乙烯醇(JAPAN VAM & POVAL)(股)製造:聚合度300、皂化度85%)4.22 g。藉由加熱升溫至80℃,然後滴加添加水36.00 g。於完成滴加添加後於80℃下繼續攪拌直至完全溶解聚乙烯醇。然後,添加三氧化二硼0.73 g且於80℃下繼續攪拌1小時。然後,冷卻至40℃以下,滴加添加所述所合成的二氧化矽化合物的聚合物溶液20 g。持續攪拌1小時,獲得p型雜質擴散組成物B。
調配例3 <p型雜質擴散組成物的製備> 於300 mL的三口燒瓶中依次添加水73.74 g、丙二醇單甲醚113.4 g、聚乙烯醇(日本醋酸聚乙烯醇(JAPAN VAM & POVAL)(股)製造:聚合度300、皂化度85%)9.3 g。藉由加熱升溫至80℃,於80℃下繼續攪拌直至完全溶解聚乙烯醇。然後,添加三氧化二硼1.793 g且於80℃下繼續攪拌1小時。然後,冷卻至40℃以下,添加SH30PA 0.01 g,進一步攪拌1小時,獲得p型雜質擴散組成物C。
調配例4 <含有雜質擴散成分的粒子的合成> 以B2 O3 、SiO2 、Al2 O3 及CaO的組成莫耳比分別成為40 mol%、45 mol%、5 mol%及10 mol%的方式秤量B2 O3 、SiO2 、Al2 O3 及CaSO4 (全部為高純度化學研究所(股)製造)。利用瑪瑙乳缽混合後,添加至鉑坩堝中,利用玻璃熔融爐於1500℃下保持2小時。然後,進行驟冷而獲得玻璃塊。利用瑪瑙乳缽將所述玻璃塊粉碎後,利用行星型球磨機進行粉碎,獲得粒子形狀為球狀、平均粒徑為0.35 μm、軟化點約800℃的玻璃粒子。 <p型雜質擴散組成物的製備> 將所述玻璃粒子10 g、乙基纖維素6 g及萜品醇84 g混合並進行糊化,獲得p型雜質擴散組成物D。
調配例5 <p型雜質擴散組成物的製備> 以相對於溶液整體達到300 ppm的方式添加濃度40%的三甲氧基矽烷的GBL溶液4.39 g、硼酸1.47 g及GBL 12.55 g、BYK-333,充分攪拌以使其變得均勻,獲得p型雜質擴散組成物E。
調配例6 <二氧化矽化合物的聚合物溶液的合成> 於2000 mL的三口燒瓶中裝入KBM-13(甲基三甲氧基矽烷)183.25 g、KBM-103(苯基三甲氧基矽烷)266.75 g、GBL 403.36 g,在40℃下一面攪拌一面歷時30分鐘添加在水145.29 g中溶解有甲酸0.45 g的甲酸水溶液。滴加結束後,在40℃下攪拌1小時後,升溫至70℃,攪拌30分鐘。然後,將油浴升溫至115℃。在升溫開始1小時後溶液的內溫達到100℃,自該溫度起加熱攪拌1小時(內溫為100℃~110℃)。利用冰浴冷卻所獲得的溶液,獲得二氧化矽化合物的聚合物溶液。 <p型雜質擴散組成物的製備> 將所述合成的二氧化矽化合物的聚合物13.42 g、硼酸1.31 g、皂化度49%的聚乙烯醇(日本醋酸聚乙烯醇(JAPAN VAM & POVAL)(股)製造)(以下,表示為聚乙烯醇(49))11.63 g、作為微粒子氧化矽的AEROSIL VPNKC130(日本艾羅西爾(AEROSIL)(股)製造)3.9 g、GBL 24.64 g、萜品醇35.1 g及水10 g混合,充分攪拌以使其變得均勻,獲得p型雜質擴散組成物F。
調配例7 除了將聚乙烯醇的皂化度設為70%以外,以與調配例6相同的方式獲得p型雜質擴散組成物G。
實施例1 作為基板,準備一邊為156 mm的包含n型單晶矽的半導體基板,為了去除切片損傷或自然氧化物,對兩表面進行鹼蝕刻。此時,於半導體基板的兩面形成典型的寬度為40 μm~100 μm、深度為3 μm~4 μm左右的無數個凹凸,將其作為塗佈基板(片電阻值:200 Ω/□)。
此處,利用網版印刷印刷p型雜質擴散組成物A。印刷圖案以4 cm×4 cm的正方形成為圖3般的配置的方式進行定位(網版印刷機(微技術(MicroTec)(股)TM-750型)、網版遮罩(SUS(股)製造、400目、線徑23 μm))。
將p型雜質擴散組成物進行網版印刷後,於空氣中,將基板利用140℃的加熱板加熱5分鐘,進而利用230℃的烘箱加熱30分鐘,藉此形成厚度約1.5 μm的圖案。
其次,將所述帶有圖案的基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,於氮氣19 L/min、氧氣0.6 L/min的環境下、於950℃下維持30分鐘而形成雜質擴散層。於該狀態下,將爐內的溫度降低為920℃,將氮氣以19 L/min流動,氧氣以0.06 L/min流動,且以氮氣0.06 L/min使溴化硼(BBR3 )起泡後流動,藉此將爐內設為包含雜質擴散成分的環境,進行圖案未形成部分的雜質擴散。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。
實施例2 塗佈基板使用與實施例1相同者。
此處,使用p型擴散層形成組成物A,利用與實施例1相同的方法形成厚度約1.5 μm的圖案。
其次,將所述帶有圖案的基板配置於離子注入裝置中,以10 kev的能量、2e15 l/cm2 之間的劑量進行離子注入。然後,將帶有圖案的基板配置於擴散爐中,於氮氣19 L/min、氧氣0.6 L/min的環境下、於950℃下維持30分鐘而形成雜質擴散層。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。
實施例3 塗佈基板使用與實施例1相同者。
此處,使用p型擴散層形成組成物A,利用與實施例1相同的方法形成厚度約1.5 μm的圖案。
其次,將所述帶有圖案的基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,將氮氣以19 L/min流動,氧氣以0.06 L/min流動,且以氮氣0.06 L/min使溴化硼(BBR3 )起泡後流動,藉此將爐內設為包含雜質擴散成分的環境,於950℃下同時進行30分鐘圖案形成部分與圖案未形成部分的雜質擴散。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。
實施例4 塗佈基板使用與實施例1相同者。
此處,使用p型擴散層形成組成物A,利用與實施例1相同的方法形成厚度約1.5 μm的圖案。
於所述基板上旋轉塗佈p型雜質擴散組成物B,以膜厚成為500 nm的方式製備轉數並進行整面塗佈,於空氣中利用140℃的加熱板對基板進行5分鐘加熱。
將所述帶有圖案的基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,於氮氣19 L/min、氧氣0.6 L/min的環境下、於950℃下同時進行30分鐘圖案形成部分與圖案未形成部分的雜質擴散。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。
實施例5 除了將p型雜質擴散組成物B變更為p型雜質擴散組成物C以外,與實施例4同樣地進行至片電阻值的測定為止。
實施例6 塗佈基板使用與實施例1相同者。
將所述基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,將氮氣以19 L/min流動,氧氣以0.06 L/min流動,且以氮氣0.06 L/min使溴化硼(BBR3 )起泡後流動,藉此將爐內設為包含雜質擴散成分的環境,於920℃下於基板整面進行30分鐘雜質擴散。
繼而,於所述基板上使用p型擴散層形成組成物A,利用與實施例1相同的方法形成厚度約1.5 μm的圖案。
其次,將所述帶有圖案的基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,於氮氣19 L/min、氧氣0.6 L/min的環境下、於950℃下維持30分鐘而形成雜質擴散層。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。 實施例7 塗佈基板使用與實施例1相同者。
將所述基板配置於離子注入裝置中,以10 kev的能量、2e15 l/cm2 之間的劑量進行離子注入。然後,將基板配置於擴散爐中,於氮氣環境下、於920℃下維持30分鐘而形成雜質擴散層。
繼而,於所述基板上使用p型擴散層形成組成物A,利用與實施例1相同的方法形成厚度約1.5 μm的圖案。
其次,將所述帶有圖案的基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,於氮氣19 L/min、氧氣0.6 L/min的環境下、於950℃下維持30分鐘而形成雜質擴散層。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。
實施例8 塗佈基板使用與實施例1相同者。
於所述基板上旋轉塗佈p型雜質擴散組成物B,以膜厚成為500 nm的方式製備轉數並進行整面塗佈,於空氣中利用140℃的加熱板對基板進行5分鐘加熱。
繼而,於所述基板上使用p型擴散層形成組成物A,利用與實施例1相同的方法形成厚度約1.5 μm的圖案。
其次,將所述帶有圖案的基板配置於擴散爐(光洋熱系統(koyo thermo systems)(股)製造)中,於氮氣19 L/min、氧氣0.6 L/min的環境下、於950℃下維持30分鐘而形成雜質擴散層。於擴散結束後,將基板於5%氫氟酸溶液中浸漬5分鐘,進行水洗並進行雜質擴散膜的去除,進行片電阻值的測定。
實施例9 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物F以外,與實施例1同樣地進行至片電阻值的測定為止。
實施例10 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物F以外,與實施例2同樣地進行至片電阻值的測定為止。
實施例11 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物F以外,與實施例3同樣地進行至片電阻值的測定為止。
實施例12 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物F以外,與實施例4同樣地進行至片電阻值的測定為止。
實施例13 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物F以外,與實施例5同樣地進行至片電阻值的測定為止。
實施例14 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物G以外,與實施例1同樣地進行至片電阻值的測定為止。
比較例1 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物D以外,與實施例1同樣地進行至片電阻值的測定為止。
比較例2 除了將p型雜質擴散組成物A變更為p型雜質擴散組成物E以外,與實施例1同樣地進行至片電阻值的測定為止。
比較例3 除了停止溴化硼(BBr3 )且不使爐內為包含雜質擴散成分的環境以外,與實施例1同樣地進行至片電阻值的測定為止。
比較例4 除了於形成有p型擴散層形成組成物A的圖案的基板上不塗佈p型雜質擴散組成物B以外,與實施例4同樣地進行至片電阻值的測定為止。
將評價結果示於表1中。
[表1] [表1]
圖案形成部分(A~D) 圖案未形成部分(E~M) 判定
平均值(Ω/□) 偏差(%) 平均值(Ω/□) 偏差(%)
實施例1 46 10 78 12 合格
實施例2 45 12 69 14 合格
實施例3 45 10 70 12 合格
實施例4 50 7 68 7 合格
實施例5 50 7 67 10 合格
實施例6 45 16 58 18 合格
實施例7 45 18 57 20 合格
實施例8 50 14 60 16 合格
實施例9 35 5 78 5 合格
實施例10 34 4 69 5 合格
實施例11 36 4 70 5 合格
實施例12 40 5 68 4 合格
實施例13 40 4 67 4 合格
實施例14 45 11 77 11 合格
比較例1 46 10 70 25 不合格
比較例2 45 25 70 40 不合格
比較例3 55 10 200 >40 不合格
比較例4 58 7 200 >40 不合格
1:半導體基板 2:離子注入 3:含有雜質擴散成分的氣體 4:雜質擴散組成物膜(b)的圖案 (a)、(d):雜質擴散組成物 (b)、(e):雜質擴散組成物膜 (c)、(f):雜質擴散層區域 A~G:p型雜質擴散組成物
圖1的(i)~圖1的(v)是表示本發明的半導體元件的製造方法的一例的步驟剖面圖。 圖2的(i-1)~圖2的(v)是表示本發明的半導體元件的製造方法的另一例的步驟剖面圖。 圖3是表示本發明的實施例中使用的網版印刷圖案與片電阻值測定部位的圖。

Claims (16)

  1. 一種半導體元件的製造方法,是於半導體基板上形成2水準以上的不同的雜質濃度且同型的雜質擴散層區域的半導體元件的製造方法,其中,至少1水準以上的雜質擴散層區域藉由如下方法形成,所述方法包括:將雜質擴散組成物(a)塗佈於半導體基板上而部分性地形成雜質擴散組成物膜(b)的步驟、以及將其加熱使雜質向半導體基板中擴散而形成雜質擴散層區域(c)的步驟,雜質擴散組成物(a)包含 (a-1)下述通式(1)所表示的矽烷化合物的聚合物、以及 (a-2)雜質擴散成分;
    Figure 03_image008
    (通式(1)中,R1 及R2 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R1 及R2 可分別相同亦可不同;l1 表示1~10000的整數)。
  2. 如申請專利範圍第1項所述的半導體元件的製造方法,其中所述矽烷化合物的聚合物為下述通式(2)所表示的矽烷化合物的聚合物;
    Figure 03_image009
    (通式(2)中,R3 表示碳數6~15的芳基,多個R3 可分別相同亦可不同;R4 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R4 可分別相同亦可不同;R5 及R6 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基中任一者,多個R5 及R6 可分別相同亦可不同;n1 、m1 表示1~9999的整數,n1 +m1 為2~10000的整數,n1 :m1 =95:5~25:75)。
  3. 如申請專利範圍第2項所述的半導體元件的製造方法,其中雜質擴散組成物(a)進一步包含 (a-3)皂化度為20莫耳%以上且未滿50莫耳%的聚乙烯醇。
  4. 如申請專利範圍第1項至第3項中任一項所述的半導體元件的製造方法,包括將雜質擴散組成物膜(b)作為遮罩,使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟。
  5. 如申請專利範圍第4項所述的半導體元件的製造方法,其中使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是於對雜質擴散組成物膜(b)進行加熱且使雜質向所述半導體基板擴散而形成雜質擴散層區域(c)之後。
  6. 如申請專利範圍第4項所述的半導體元件的製造方法,其中使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是與對雜質擴散組成物膜(b)進行加熱且使雜質向所述半導體基板擴散的步驟同時進行。
  7. 如申請專利範圍第5項或第6項所述的半導體元件的製造方法,其中使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是注入包含雜質擴散成分的離子的步驟。
  8. 如申請專利範圍第5項或第6項所述的半導體元件的製造方法,其中使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是於包含雜質擴散成分的環境中進行加熱的步驟。
  9. 如申請專利範圍第5項或第6項所述的半導體元件的製造方法,其中使雜質向雜質擴散組成物膜(b)未形成部分擴散的步驟是於形成有雜質擴散組成物膜(b)的半導體基板上將雜質擴散組成物(d)塗佈於雜質擴散組成物膜(b)未形成部分並對所形成的雜質擴散組成物膜(e)進行加熱的步驟。
  10. 如申請專利範圍第1項至第3項中任一項所述的半導體元件的製造方法,包括:於使用選自由於半導體基板上注入包含雜質擴散成分的離子的步驟、於包含雜質擴散成分的環境中進行加熱的步驟、以及整面塗佈雜質擴散組成物(d)並對所形成的雜質擴散組成物膜(e)進行加熱的步驟所組成的群組中的至少一個步驟來形成雜質擴散層區域(f)後,塗佈雜質擴散組成物(a)來部分性地形成雜質擴散組成物膜(b)的步驟;以及將其加熱使雜質向半導體基板中擴散而形成雜質擴散層區域(c)的步驟。
  11. 如申請專利範圍第1項至第3項中任一項所述的半導體元件的製造方法,包括:於半導體基板上整面塗佈雜質擴散組成物(d)而形成雜質擴散組成物膜(e),於其上塗佈雜質擴散組成物(a)來部分性地形成雜質擴散組成物膜(b)的步驟;以及將該些同時加熱使雜質向半導體基板中擴散而同時形成雜質擴散層區域(c)、雜質擴散層區域(f)的步驟。
  12. 如申請專利範圍第9項至第11項中任一項所述的半導體元件的製造方法,其中雜質擴散組成物(d)包含 (d-1)矽烷化合物的聚合物、以及 (d-2)雜質擴散成分。
  13. 如申請專利範圍第12項所述的半導體元件的製造方法,其中(d-1)矽烷化合物的聚合物為下述通式(3)所表示的矽烷化合物的聚合物;
    Figure 03_image010
    (通式(3)中,R7 及R8 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R7 及R8 可分別相同亦可不同;l2 表示1~10000的整數)。
  14. 如申請專利範圍第12項所述的半導體元件的製造方法,其中(d-1)矽烷化合物的聚合物為下述通式(4)所表示的矽烷化合物的聚合物;
    Figure 03_image011
    (通式(4)中,R9 表示碳數6~15的芳基,多個R9 可分別相同亦可不同;R10 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基、碳數6~15的芳基中任一者,多個R10 可分別相同亦可不同;R11 及R12 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數2~10的烯基、碳數2~6的醯氧基中任一者,多個R11 及R12 可分別相同亦可不同;n2 、m2 表示1~9999的整數,n2 +m2 為2~10000的整數,n2 :m2 =95:5~25:75)。
  15. 如申請專利範圍第9項至第11項中任一項所述的半導體元件的製造方法,其中雜質擴散組成物(d)包含 (d-4)選自由聚乙烯醇及聚環氧乙烷所組成的群組中的至少一種樹脂、 (d-5)雜質擴散成分、以及 (d-6)溶媒, 全部溶媒中的25質量%以上為水。
  16. 一種太陽電池的製造方法,包括如申請專利範圍第1項至第15項中任一項所述的半導體元件的製造方法。
TW108144362A 2018-12-07 2019-12-04 半導體元件的製造方法及太陽電池的製造方法 TW202038310A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229583 2018-12-07
JP2018229583 2018-12-07

Publications (1)

Publication Number Publication Date
TW202038310A true TW202038310A (zh) 2020-10-16

Family

ID=70975091

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144362A TW202038310A (zh) 2018-12-07 2019-12-04 半導體元件的製造方法及太陽電池的製造方法

Country Status (4)

Country Link
JP (1) JP7459511B2 (zh)
CN (1) CN113169248A (zh)
TW (1) TW202038310A (zh)
WO (1) WO2020116340A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060182A1 (ja) * 2019-09-26 2021-04-01 東レ株式会社 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法
CN118202443A (zh) * 2021-11-05 2024-06-14 东丽株式会社 p型杂质扩散组合物、使用其的太阳能电池的制造方法
WO2024057722A1 (ja) * 2022-09-16 2024-03-21 東レ株式会社 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976475A (ja) * 1982-10-26 1984-05-01 Sanyo Electric Co Ltd Mos半導体装置の製造方法
JPS62198120A (ja) * 1986-02-25 1987-09-01 Sanyo Electric Co Ltd 半導体装置の製造方法
JPH01179455A (ja) * 1988-01-07 1989-07-17 Fuji Xerox Co Ltd 半導体装置の製法
JP2006310368A (ja) * 2005-04-26 2006-11-09 Shin Etsu Handotai Co Ltd 太陽電池の製造方法及び太陽電池
CN105161404A (zh) * 2011-01-13 2015-12-16 日立化成株式会社 p型扩散层形成用组合物、p型扩散层的制造方法和太阳能电池元件的制造方法
JP2014197578A (ja) 2013-03-29 2014-10-16 パナソニック株式会社 太陽電池の製造方法
JP2016046302A (ja) * 2014-08-20 2016-04-04 日立化成株式会社 拡散層を有する半導体基板の製造方法及び拡散層を有する半導体基板
JP2016195203A (ja) * 2015-04-01 2016-11-17 東レ株式会社 p型不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池。
JP2017103379A (ja) 2015-12-03 2017-06-08 東レ株式会社 不純物拡散組成物、およびそれを用いた半導体素子の製造方法

Also Published As

Publication number Publication date
CN113169248A (zh) 2021-07-23
JPWO2020116340A1 (ja) 2021-10-14
WO2020116340A1 (ja) 2020-06-11
JP7459511B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
TW202038310A (zh) 半導體元件的製造方法及太陽電池的製造方法
EP3018699B1 (en) Impurity-diffusing composition and method for producing semiconductor element
US9870924B2 (en) Diffusion agent composition, method of forming impurity diffusion layer, and solar cell
WO2011052466A1 (ja) 太陽電池セル
TW201434884A (zh) 阻障層形成用組成物、帶有阻障層的半導體基板、太陽電池用基板的製造方法及太陽電池元件的製造方法
JP2016195203A (ja) p型不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池。
JP2017103379A (ja) 不純物拡散組成物、およびそれを用いた半導体素子の製造方法
JP7163774B2 (ja) 半導体用材料、半導体素子の製造方法
TW202112950A (zh) 雜質擴散組成物、使用其的半導體元件的製造方法及太陽電池的製造方法
WO2011052465A1 (ja) 太陽電池セルの製造方法
TW201639007A (zh) 不純物擴散組成物、使用其的半導體元件的製造方法及太陽電池
TWI699006B (zh) p型不純物擴散組成物、使用其的半導體元件的製造方法及太陽電池的製造方法
JPWO2019176716A1 (ja) 不純物拡散組成物、それを用いた半導体素子の製造方法および太陽電池の製造方法
WO2017099020A1 (ja) 半導体素子の製造方法および太陽電池の製造方法
JP2023061892A (ja) 太陽電池の製造方法
TW201829625A (zh) 不純物擴散組成物及使用其的半導體元件的製造方法