TW202031936A - 被覆粒子及含有此的導電性材料以及被覆粒子的製造方法 - Google Patents

被覆粒子及含有此的導電性材料以及被覆粒子的製造方法 Download PDF

Info

Publication number
TW202031936A
TW202031936A TW108139898A TW108139898A TW202031936A TW 202031936 A TW202031936 A TW 202031936A TW 108139898 A TW108139898 A TW 108139898A TW 108139898 A TW108139898 A TW 108139898A TW 202031936 A TW202031936 A TW 202031936A
Authority
TW
Taiwan
Prior art keywords
particles
fine particles
coated
insulating fine
conductive
Prior art date
Application number
TW108139898A
Other languages
English (en)
Other versions
TWI820245B (zh
Inventor
稲葉裕之
成橋智真
Original Assignee
日商日本化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本化學工業股份有限公司 filed Critical 日商日本化學工業股份有限公司
Publication of TW202031936A publication Critical patent/TW202031936A/zh
Application granted granted Critical
Publication of TWI820245B publication Critical patent/TWI820245B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Glanulating (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本發明之目的為,絕緣層被覆導電性粒子表面的被覆粒子,提供導電性粒子表面和絕緣層的密著性優良之被覆粒子。 本發明之被覆粒子為,具有在芯材表面形成金屬皮膜、且在該金屬皮膜中和該芯材相反側的表面配置具有疏水性基的鈦系化合物之導電性粒子,及被覆該導電性粒子的絕緣層之被覆粒子,該絕緣層具有包含具電荷的官能基的化合物。該絕緣層以層狀配置複數個微粒子所構成,或者為連續皮膜者為佳。又該疏水性基也可為碳原子數2以上、30以下的脂肪族烴基。

Description

被覆粒子及含有此的導電性材料以及被覆粒子的製造方法
本發明關於導電性粒子被絕緣層被覆的被覆粒子。
在樹脂粒子表面形成鎳或金等的金屬皮膜之導電性粒子作為導電性接著劑、異向性導電膜、異向性導電接著劑等的導電性材料使用。 近年,伴隨電子機器類更進一步的小型化,電子迴路的迴路寬度及間距逐漸變小。因此,用於上述導電性接著劑、異向性導電膜、異向性導電接著劑等的導電性粒子需要粒徑小。在使用如此小粒徑的導電性粒子時,為了提高其接續性,必須增加導電性材料中的導電性粒子的調配量。但是,一旦增加導電性粒子的調配量,則由於向不希望的方向通電、亦即向和對向電極間不同方向通電,而產生短路,難以得到在該方向的絕緣性成為問題。
為了解決上述問題,使用在導電性粒子的表面以具有對金屬皮膜具有親和性的官能基的絕緣性物質被覆,防止導電性粒子的金屬皮膜彼此接觸之絕緣層被覆導電性粒子。在如此的導電性粒子,在將其金屬表面以絕緣性物質被覆之前,事先以有機處理劑進行表面處理的技術為已知。
例如,在專利文獻1記載,導電性粒子的金屬表面以防鏽劑處理,使具有羥基的絕緣性粒子附著在處理後的導電性粒子。 在專利文獻2記載,導電性粒子的金屬表面以三唑化合物處理,使具有銨基的絕緣性粒子附著在處理後的導電性粒子。 [專利文獻]
專利文獻1:特開2014-29857號 專利文獻2:國際公開第2016/063941號
對於被絕緣性粒子被覆的導電性粒子,絕緣性粒子和導電性粒子的密著性的提升是課題。絕緣性粒子和導電性粒子的密著性,在獲得和對向電極不同方向的絕緣性並且謀求在對象電極間通電(以下也僅稱為接續信賴性)上是重要的。關於此點,專利文獻1及2為以防鏽及防氧化為目的在導電性粒子的金屬表面進行有機處理劑的處理,沒有考慮絕緣性粒子和導電性粒子的密著性。因此,本發明之目的為,提供可解決上述習知技術所具有的課題之絕緣層被覆導電性粒子。
本發明人等為了解決上述課題潛心研究之結果,發現在使用包含具有電荷的官能基的絕緣層時,使導電性粒子表面具有具疏水性基的鈦系化合物,則絕緣層和具有鈦系化合物的導電性粒子的親和性優良,和習知技術相比,絕緣性物質對導電性粒子的被覆率更為增加提高,遂完成本發明。
亦即,本發明提供,具有在芯材表面形成金屬皮膜的導電性粒子,及配置於上述金屬皮膜的外表面、具有疏水性基的鈦系化合物,以及被覆上述具有鈦系化合物的該導電性粒子的表面之絕緣層的被覆粒子,上述絕緣層具有包含具有電荷的官能基的化合物之被覆粒子。
[為實施發明之型態]
以下,基於本發明之較佳實施態樣進行說明。 本實施態樣之被覆粒子為,具有在芯材表面形成金屬皮膜、且在該金屬皮膜的外表面配置具有疏水性基的鈦系化合物之導電性粒子,以及被覆該導電性粒子之絕緣層之被覆粒子, 上述絕緣層具有包含具有電荷的官能基之化合物。金屬皮膜的外表面表示在金屬皮膜和該芯材相反側的表面。
導電性粒子可使用習知用於導電性接著劑、異向性導電膜、異向性導電接著劑之公知者。 導電性粒子的芯材可為粒子狀,也可為無機物或有機物,沒有特別限制。無機物的芯材粒子例如金、銀、銅、鎳、鈀、焊錫等的金屬粒子,合金、玻璃、陶瓷、二氧化矽、金屬或非金屬的氧化物(也包括水合物)、含鋁矽酸鹽的金屬矽酸鹽、金屬碳化物、金屬氮化物、金屬碳酸鹽、金屬硫酸鹽、金屬磷酸鹽、金屬硫化物、金屬酸鹽、金屬鹵化物及碳等。另一方面,有機物的芯材粒子例如天然纖維、天然樹脂、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚丁烯、聚醯胺、聚丙烯酸酯、聚丙烯腈、聚縮醛、離子聚合物、聚酯等的熱塑性樹脂,醇酸樹脂、酚樹脂、尿素樹脂、苯胍胺(benzoguanamine)樹脂、三聚氰胺樹脂、二甲苯樹脂、矽酮樹脂、環氧樹脂、鄰苯二甲酸二烯丙酯(diallylphthalate)樹脂等。這些可單獨使用,也可組合2種以上使用。這些之中,從和金屬所構成的芯材粒子相比,比重小而難沈降、分散安定性優良、因樹脂的彈性而容易維持接電的觀點,由樹脂材料所構成的芯材粒子為佳。
在使用有機物作為芯材粒子的情形,從在異向導電接續步驟中容易維持芯材粒子的形狀及在形成金屬皮膜的步驟中容易維持芯材粒子的形狀的觀點,沒有玻璃轉移溫度或玻璃轉移溫度超過100℃者為佳。在芯材粒子有玻璃轉移溫度的情形,從在異向導電接續中導電性粒子容易軟化而使接觸面積變大、容易通電的觀點,玻璃轉移溫度為200℃以下者為佳。從此觀點,在芯材粒子有玻璃轉移溫度的情形,玻璃轉移溫度較佳超過100℃、180℃以下,特佳超過100℃、160℃以下。玻璃轉移溫度可以後述實施例所記載之方法測量。
在使用有機物作為芯材粒子的情形,該有機物為高度交聯的樹脂時,即使玻璃轉移溫度如下述實施例記載之方法測試至200℃,也幾乎未被觀測到。本說明書中如此的粒子也稱為不具有玻璃轉移點的粒子。上述如此不具有玻璃轉移溫度的芯材粒子材料的具體例,可併用前述舉例的構成有機物的單體和交聯性的單體、進行共聚合而得。交聯性的單體例如四亞甲基二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、環氧乙烷二(甲基)丙烯酸酯、四環氧乙烷(甲基)丙烯酸酯、1,6-己烷二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、三羥鉀基丙烷三(甲基)丙烯酸酯、四羥甲基甲烷二(甲基)丙烯酸酯、四羥甲基甲烷三(甲基)丙烯酸酯、四羥甲基甲烷四(甲基)丙烯酸酯、四羥甲基丙烷四(甲基)丙烯酸酯、二新戊四醇五(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、甘油三二(甲基)丙烯酸酯等的多官能(甲基)丙烯酸酯;二乙烯基苯、二乙烯基甲苯等的多官能乙烯類單體;乙烯基三甲氧基矽烷、三甲氧基矽烷基苯乙烯、γ-(甲基)丙烯醯氧基丙基三甲氧基矽烷等的含矽烷類單體;三烯丙基異氰脲酸酯(triallyl isocyanurate)、二烯丙基鄰苯二甲酸酯、二烯丙基丙烯醯胺、二烯丙基醚等的單體。特別是在COD(Chip on Glass)領域多使用由如此硬質的有機材料所形成的芯材粒子。
芯材粒子的形狀沒有特別限制。一般而言,芯材粒子為球狀。然而,芯材粒子除球狀以外的形狀,也可為例如纖維狀、中空狀、板狀或針狀,也可為其表面有多個突起者或不定型者。本發明中,以填充性優良、容易被覆金屬的觀點,以球狀的芯材粒子為佳。 導電性粒子的形狀,也根據芯材粒子的形狀,但沒有特別限制。例如也可為纖維狀、中空狀、板狀或針狀,也可為其表面有突起或不定型者。本發明中,以填充性、接續性優良的觀點,以球狀或表面有突起的形狀為佳。在導電性粒子為表面有突起的形狀之情形,較佳為表面有複數個突起,更佳為球狀的表面有複數個突起。在導電性粒子為有複數個突起的形狀之情形,芯材粒子也可為有複數個突起者,也可為芯材粒子沒有突起、金屬皮膜有複數個突起者。較佳為芯材粒子沒有突起、金屬皮膜有複數個突起者。
本發明之被覆粒子透過在金屬皮膜表面配置鈦系化合物,且絕緣層具有包含具有電荷的官能基的化合物,絕緣層對導電性粒子的密著性優良,為了可確實通電,導電性粒子表面也可具有突起。透過在導電性粒子表面具有突起,在封裝時因電極而壓縮導電性粒子時,經由該突起可有效推出絕緣層。從封裝時排除絕緣層而使通電確實的觀點,以導電性粒子的突起的高度記為H、絕緣層的厚度記為L時,H/L為0.1以上者為佳。又從得到填充性及和對向電極不同方向的絕緣性的觀點,H/L為10以下者為佳。從這些觀點,H/L為0.2以上、5以下者更佳。在此等較佳範圍中,厚度L是指在絕緣層為絕緣性微粒子時絕緣性微粒子的平均粒徑。
突起的高度H平均為20nm以上、特別是50nm以上為佳。突起的數目可根據導電性粒子的粒徑,以每1個粒子有1~20000個、特別是5~5000個,從導電性粒子的導電性更為增加的觀點為佳。又,突起的長寬比,較佳為0.3以上,更佳為0.5以上。突起的長寬比越大,可容易突破形成於電極表面的氧化皮膜因此有利。長寬比為,突起的高度H和突起的基部的長度D的比,亦即H/D所定義的值。突起的高度H、突起的基部的長度D為,以電子顯微鏡觀察的20個不同粒子所測量的平均值,突起的長寬比為,以電子顯微鏡觀察的20個不同粒子所計算出的長寬比,求其平均值者。基部的長度D為,在電子顯微鏡下突起的基部沿著導電性粒子表面的長度。
形成於導電性粒子的表面的突起的長寬比如上所述,突起的基部長度D本身為5~500nm、特別是10~400nm為佳,突起的高度H為20~500nm、特別是50~400nm為佳。
表面具有突起的導電性粒子,在絕緣層為絕緣性微粒子的情形時,有部分突起的被覆不足者。本發明之被覆粒子,由於在後述本發明所使用之鈦系化合物本身顯示絕緣性,經由在金屬皮膜的外表面配置該鈦系化合物,可更提高表面具有突起的導電性粒子的絕緣性。
導電性粒子的金屬皮膜為具有導電性者,其構成金屬例如金、鉑、銀、銅、鐵、鋅、鎳、錫、鉛、銻、鉍、鈷、銦、鈦、銻、鉍、鍺、鋁、鉻、鈀、鎢、鉬等的金屬或這些的合金,或是ITO、焊錫等的金屬化合物等。這些之中,以金、銀、銅、鎳、鈀或焊錫因電阻小為佳,特別是,金、銀、銅、鎳、鈀、金合金、銀合金、銅合金、鎳合金或鈀合金,因為和絕緣性微粒子中具有電荷的官能基的結合性高,所以較佳使用,以包含選自這些金屬之至少1種者為佳。導電性粒子的金屬皮膜中的金屬可1種或組合2種以上使用。
金屬皮膜可為單層結構,也可為由複數層所構成的積層結構。在由複數層所構成的積層結構之情形,以最表層為金、銀、銅、鎳、鈀、金合金、銀合金、銅合金、鎳合金或鈀合金為佳。
金屬皮膜可以不被覆芯材粒子的全部表面,也可以只被覆其一部分。在只被覆芯材粒子表面一部分的情形,被覆部位可以是連續的,也可以如島狀地不連續被覆。金屬皮膜的厚度宜為如0.001μm以上、2μm以下。在金屬皮膜有突起的情形,此處所謂的金屬皮膜厚度不包含突起的高度。
在芯材粒子的表面形成金屬皮膜的方法,例如利用蒸鍍法、濺鍍法、機械化學法、混成法等的乾式法,利用電鍍法、無電鍍法的等的濕式法。又,也可組合這些方法在芯材粒子表面形成金屬皮膜。
導電性粒子在金屬皮膜的外表面具有鈦系化合物。在導電性粒子表面具有鈦系化合物的情形,容易和具有電荷的絕緣層密著,因此可以使導電性粒子表面經絕緣層的被覆率充足且有效地防止絕緣層從導電性粒子剝離等。因此,容易發揮防止因絕緣層導致在和對向電極不同方向的短路的效果,可期待在該方向的絕緣性的提升。因此,經由本發明之被覆粒子使接續信賴性更為提升。
鈦系化合物,從和絕緣層的親和性的觀點,以具有疏水性基的化合物為佳。鈦系化合物的疏水性基例如有機基,其碳原子數,從容易獲得及和絕緣層的親和性的觀點,例如以2以上、30以下為佳。以相同觀點,鈦系化合物的疏水性基較佳例如碳原子數2以上、30以下的脂肪族烴基、碳原子數6以上、22以下的芳基、碳原子數7以上、23以下的芳烷基。上述的芳基或芳烷基也可取代為碳原子數1以上、18以下的脂肪族烴基。 上述碳原子數2以上、30以下的脂肪族烴基,例如直鏈狀或支鏈狀的飽和脂肪族烴基及不飽和脂肪族烴基,飽和脂肪族烴基的例子,例如甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基等。不飽和脂肪族烴基的例子,例如烯基,例如十二烯基、十三烯基、十四烯基、十五烯基、十六烯基、十七烯基、十九烯基、二十烯基(icosenyl)、二十烯基(eicosenyl)、二十一烯基、二十二烯基。 碳原子數6以上、22以下的芳基,例如苯基、甲苯基、萘基、蒽基等。 碳原子數7以上、23以下的芳烷基,例如苄基、苯乙基、萘甲基等。 疏水性基以直鏈狀或支鏈狀的脂肪族烴基特佳,以直鏈狀的脂肪族烴基特別為佳。 從提高絕緣層和導電性粒子的親和性的觀點,作為疏水性基的脂肪族烴基,特別以碳原子數4以上、28以下者更佳,以6以上、24以下者最佳。
鈦系化合物,從存在導電性粒子表面的情形容易得到絕緣層和導電性粒子的親和性觀點及容易在溶劑中分散而可使導電性粒子表面均勻處理的觀點,以例如具有一般式(I)所示結構之化合物特佳。
Figure 02_image001
(R12 為2價或3價的基,R13 為碳原子數4以上、28以下的脂肪族烴基、碳原子數6以上、22以下的芳基或碳原子數7以上、23以下的芳烷基,p及r分別為1以上、3以下的整數,滿足p+r=4,q為1或2的整數,當R12 為2價的基時,q為1,當R12 為3價的基時,q為2。當q為2時,複數個R13 可相同或不同。*表示鍵結。)
R13 所表的碳原子數4以上、28以下的脂肪族烴基,例如上述疏水性基的上述脂肪族烴基之例。
R12 所表的2價的基,例如-O-、-COO-、-OCO-、-OSO2 -等。R12 所表的3價的基,例如-P(OH)(O-)2 、-OPO(OH)-OPO(O-)2 等。
一般式(I)中*為鍵結,該鍵結可以和導電性粒子的金屬皮膜連接,也可以和其他原子或基團等連接。對於在該情形的其他原子或基團等,例如於後述一般式(I’)中說明者。
具有一般式(I)所表結構的鈦系化合物,從容易獲得及無損導電性粒子的導電特性而可進行處理的觀點,以具有一般式(I)中R12 為2價的基的結構之化合物為佳。一般式(I)中R12 為2價的基的結構如下列一般式(II)所示。
Figure 02_image003
(R12 為選自-O-、-COO-、-OCO-、-OSO2 -之基,p、r及R13 同一般式(I)定義。)
一般式(I)及(II)中,從提高絕緣層和導電層的密著性的觀點,r為2或3為佳,以r為3最佳。
鈦系化合物可以和導電性粒子的表面的金屬化學連接,也可以不連接。例如,鈦系化合物也可以透過如上述的一般式(I)及(II)的鍵結和金屬皮膜化學連接。又,化學連接例如共價鍵結、靜電力結合等。
鈦系化合物只要是存在導電性粒子的表面即可,在此情形,也可以存在導電性粒子的全部表面,也可以只存在部分表面。鈦系化合物也可以形成被覆導電性粒子的部分或全部的表面的層。透過在導電性粒子的表面具有鈦系化合物,成為和表面具有具電荷的官能基的絕緣層親和性高者。
為了在導電性粒子的金屬皮膜的外表面具有鈦系化合物,在後述的較佳的被覆粒子之製造方法中,只要進行以鈦系化合物的導電性粒子的表面處理即可。
導電性粒子的平均粒徑較佳為0.1μm以上、50μm以下,更佳為1μm以上、30μm以下。透過導電性粒子的平均粒徑在上述範圍內,所得的被覆粒子在和對向電極間不同方向的短路不會發生,容易確保在對向電極間的通電。又,本發明中,導電性粒子的平均粒徑為使用電子掃描顯微鏡(Scanning Electron Microscope:SEM)所測量的粒徑的平均值。當在電子掃描顯微鏡中導電性粒子為球狀的情形,使用SEM測量的粒徑為圓形的導電性粒子的直徑。在絕緣性微粒子不是球形的情形,使用SEM測量的粒徑為導電性粒子的影像的橫切線中的最大的長度(最大長度)。但是,在導電性粒子有突起的情形,對於突起以外的部分,以上述最大長度為平均粒徑。在此,對於後述的絕緣性微粒子的平均粒徑也是相同。 具體為,導電性粒子的平均粒徑如實施例記載之方法測量。
本發明之絕緣層由聚合物所構成,且具有包含具有電荷的官能基之化合物。絕緣層例如由複數個絕緣性微粒子層狀配置所構成,或者為絕緣性的連續皮膜。
首先,對於絕緣層由絕緣性微粒子所構成、該微粒子包含具有具電荷的官能基之化合物的情形,進行說明。在此情形,經由在電極間熱壓被覆粒子,使絕緣性微粒子熔融、變形、剝離或移動導電性粒子表面,在被熱壓的部分的導電性粒子的金屬表面露出,可使電極間的通電而獲得接續性。另一方面,向被覆粒子的熱壓方向以外的方向的表面部分,由於通常維持因絕緣性微粒子的導電性粒子表面的被覆狀態,可防止在熱壓方向以外的方向的通電。 絕緣性微粒子由於其表面包含具有電荷的官能基(以下也只稱作「帶電官能基」),和表面具有鈦系化合物的導電性粒子容易密著,因此可使在導電性粒子表面被絕緣性微粒子被覆的比例充足,且有效地防止絕緣性微粒子從導電性粒子的剝離等。因此,容易發揮防止因絕緣性微粒子導致在和對向電極間不同方向的短路的效果,可期待在該方向的絕緣性的提升。 又,本發明之被覆粒子,由於具有和帶電官能基相同的電荷,絕緣性微粒子彼此排斥,因此容易在導電性粒子的表面形成單層的絕緣性微粒子的層。因此,在本發明之被覆粒子用於異向導電材料的情形,有效防止因絕緣性微粒子多層存在所導致的伴隨熱壓的通電不良,可期待接續性的提升。 因此,根據絕緣層由其表面包含帶電官能基的絕緣性微粒子所構成的本發明之被覆粒子,使接續信賴性提高。
絕緣性微粒子以其表面具有帶電官能基者為佳。本說明書中,如果絕緣性微粒子具有帶電官能基、且經電子掃描顯微鏡觀察可確認絕緣性微粒子附著於導電性粒子表面者,相當為「絕緣性微粒子的表面有具有具電荷的官能基」者。
絕緣性微粒子的形狀沒有特別限制,可以是球狀,或者也可以是球狀以外的形狀。球狀以外的形狀,例如纖維狀、中空狀、板狀或針狀。絕緣性微粒子也可以是其表面有多數個突起者或不定型者。從對導電性微粒子的附著性的觀點及合成容易性的觀點,以球狀的絕緣性微粒子為佳。
絕緣性微粒子的帶電官能基為構成絕緣性微粒子的物質的一部分,成為該物質的化學結構的一部分為佳。絕緣性微粒子的帶電官能基包含於構成絕緣性微粒子的聚合物的結構中為佳。帶電官能基和構成絕緣性微粒子的聚合物化學連接為佳,較佳為和聚合物的側鏈連接。本說明書中,如果絕緣性微粒子具有帶電官能基、且經電子掃描顯微鏡觀察可確認絕緣性微粒子附著於金屬被覆粒子表面者,相當為「絕緣性微粒子的表面具有具電荷的官能基」。
帶電官能基中,具有正電荷的官能基,較佳例如鏻基、銨基、鋶(sulfonium)基、胺基等。又,具有負電荷的官能基,較佳例如羧基、羥基、巰基、磺酸基、磷酸基等。
帶電官能基,從表面具有鈦系化合物或醯胺類化合物的導電性粒子和絕緣層更容易密著的觀點,特別以鏻基、銨基、鋶基等的鎓類的官能基為佳,以鏻基最佳。
鎓類官能基較佳例如以下列一般式(1)表示。
Figure 02_image005
(式中,X為磷原子、氮原子、或硫原子,R可相同或相異地為氫原子、直鏈狀、支鏈狀或環狀的烷基、或芳基。當X為氮原子、磷原子時,n為1,當X為硫原子時,n為0。*為鍵結。)
例如對於具有正電荷的官能基的相對離子(counter ion),較佳例如鹵化物離子。鹵化物離子例如Cl- 、F- 、Br- 、I-
R所表的直鏈狀烷基,例如甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基等。
R所表的支鏈狀烷基,例如異丙基、異丁基、第二丁基、第三丁基、異戊基、第二戊基、第三戊基、異己基、第二己基、第三己基、乙基己基等。
R所表的環狀烷基,例如環丙基、環丁基、環戊基、環己基、環庚基、環辛基、環十八烷基之環烷基等。
R所表的芳基,例如苯基、苄基、甲苯基、鄰二甲苯基等。
從提高導電性粒子和絕緣性微粒子的密著性的觀點,及在異向性導電膜的內部被熱壓時絕緣性微粒子從導電性粒子脫離、容易確保通電的觀點,R為碳原子數1以上、12以下的烷基為佳,碳原子數1以上、10以下的烷基較佳,碳原子數1以上、8以下的烷基最佳。又從容易使絕緣性微粒子接近導電性粒子而密著的觀點,R也可為直鏈狀烷基。
在絕緣性微粒子的表面具有帶電官能基的方法,以經由具有乙烯性不飽和鍵的聚合性化合物所構成的聚合性組合物的聚合物構成絕緣性微粒子之時,該聚合性組合物包含具有帶電官能基且具有乙烯性不飽和鍵的聚合性化合物為佳。
具有構成聚合性組合物的乙烯性不飽和鍵的聚合性化合物,例如苯乙烯類、烯烴類、酯類、α,β不飽和羧酸類、醯胺類、腈類等。苯乙烯類例如苯乙烯、o,m,p-甲基苯乙烯、二甲基苯乙烯、乙基苯乙烯、氯化苯乙烯等的核取代苯乙烯,或α-甲基苯乙烯、α-氯化苯乙烯、β-氯化苯乙烯等的苯乙烯衍生物等。烯烴類例如乙烯、丙烯等。酯類例如乙酸乙烯酯、丙酸乙烯酯、苯甲酸乙烯酯等的乙烯酯,及(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸苯酯等的(甲基)丙烯酸的酯類等。α,β不飽和羧酸類例如丙烯酸、甲基丙烯酸、伊康酸、順丁烯二酸等。這些α,β不飽和羧酸的鹽類也包含於α,β不飽和羧酸類。醯胺類例如丙烯醯胺、甲基丙烯醯胺等。腈類例如丙烯腈等。這些也可進一步被取代,取代基例如鏻基、胺基、四級銨基、醯胺基、鋶基、磺酸基、巰基、羧基、磷酸基、氰基、醛基、酯基、羰基等。這些單體可使用1種或組合2種以上使用。構成絕緣性微粒子的聚合物,以聚合率高的觀點、容易形成球狀的觀點,特別以選自苯乙烯類、酯類、及腈類之至少1種的聚合性單體的聚合物為佳。構成絕緣性微粒子的聚合物,在具有複數個結構單元的情形,聚合物中的該等結構單元的存在態樣可以是無規的,也可以是交替的,也可以是嵌段的。構成絕緣性微粒子的聚合物也可以被交聯,也可以是不交聯的。在構成絕緣性微粒子的聚合物被交聯的情形,交聯劑例如二乙烯基苯、二乙烯基萘等的芳香族二乙烯基化合物;甲基丙烯酸烯丙酯、六氫化-1,3,5-三(1-氧代-2-丙烯基)-1,3,5-三嗪(triacrylformal)、三烯丙基異氰酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、三羥甲基丙烷三甲基丙烯酸酯、甘油二甲基丙烯酸酯、二羥甲基三環癸烷二丙烯酸酯、新戊四醇三(甲基)丙烯酸酯、新戊四醇四丙烯酸酯、二新戊四醇六丙烯酸酯、新戊二醇丙烯酸苯甲酸酯、三羥甲基丙烷丙烯酸苯甲酸酯、2-羥基-3-丙烯醯氧基丙基甲基丙烯酸酯、羥基三甲基乙酸新戊二醇二丙烯酸酯、二三羥甲基丙烷四丙烯酸酯、2-丁基-2-乙基-1,3-丙二醇二丙烯酸酯等的二(甲基)丙烯酸酯化合物。
包含帶電官能基且具有乙烯性不飽和鍵的聚合性化合物,例如具有鎓類的官能基、具有乙烯性不飽和鍵之聚合性化合物,例如N,N-二甲基胺基乙基甲基丙烯酸酯、N,N-二甲基胺基丙基丙烯醯胺、N,N,N-三甲基-N-2-甲基丙烯醯氧基乙基銨氯化物等的含銨基單體;甲基丙烯酸苯基二甲基鋶甲基鹽酸鹽等的含鋶基單體;4-(乙烯基苄基)三乙基鏻氯化物、4-(乙烯基苄基)三甲基鏻氯化物、4-(乙烯基苄基)三丁基鏻氯化物、4-(乙烯基苄基)三辛基鏻氯化物、4-(乙烯基苄基)三苯基鏻氯化物、2-(甲基丙烯醯氧基乙基)三甲基鏻氯化物、2-(甲基丙烯醯氧基乙基)三乙基鏻氯化物、2-(甲基丙烯醯氧基乙基)三丁基鏻氯化物、2-(甲基丙烯醯氧基乙基)三辛基鏻氯化物、2-(甲基丙烯醯氧基乙基)三苯基鏻氯化物等的含鏻基單體等。
在絕緣性微粒子為具有帶電官能基、具有乙烯性不飽和鍵的聚合性化合物、和不具有帶電官能基、具有乙烯性不飽和鍵的聚合性化合物之共聚物的情形,具有帶電官能基的聚合性化合物和不具有帶電官能基的聚合性化合物可以是相同或者不同的種類。此述之種類例如前述之苯乙烯類、烯烴類、酯類、不飽和羧酸類、醯胺類、腈類等。例如具有帶電官能基、具有乙烯性不飽和鍵的聚合性化合物之至少1種,和不具有帶電官能基、具有乙烯性不飽和鍵的聚合性化合物之至少1種可以是相同種類,例如苯乙烯類。
特別是,從單體的容易獲得性或聚合物合成的容易性的觀點,構成絕緣性微粒子的聚合物具有下列一般式(2)或一般式(3)所示的結構單元為佳。式(2)及式(3)中的R的例子,如上述說明之一般式(1)中的R的例子。帶電官能基可以對式(2)的苯環的CH基以對位、鄰位、間位任一種連接,以對位連接為佳。式(2)及式(3)中,一價的An- 較佳如鹵化物離子。鹵化物離子例如Cl- 、F- 、Br- 、I-
Figure 02_image007
(式中,X、R、n和一般式(1)相同定義。m為0~5的整數。An- 表示一價的陰離子。)
Figure 02_image009
(式中,X、R、n和一般式(1)相同定義。An- 表示一價的陰離子。m1 為1~5的整數。R5 為氫原子或甲基。)
在構成絕緣性微粒子的聚合物中,全結構單元中,連接帶電官能基的結構單元的比例為0.01莫耳%以上、5.0莫耳%以下為佳,0.02莫耳%以上、2.0莫耳%以下較佳。在此,聚合物中的結構單元的數目以來自1個乙烯性不飽和鍵的結構作為1個結構單元來計算。
上述一般式(2)中,m為0~2為佳,為0或1較佳,為1特佳。上述一般式(3)中,m1 為1~3為佳,為1或2較佳,為2最佳。
構成絕緣性微粒子的聚合物為具有2種以上、更佳為3種以上的結構單元的共聚物,這些的結構單元的至少1種在結構中具有酯鍵者為佳。據此,除了可以使聚合物的玻璃轉移溫度容易成為較佳低者,絕緣性微粒子中和導電性粒子接觸的面積比例增加,使絕緣性微粒子和導電性粒子的密著性提高以外,可提高絕緣性微粒子彼此的結合度,可更增加被覆粒子間的絕緣性。
結構中具有酯鍵的結構單元,例如來自結構中具有乙烯性不飽和鍵及酯鍵的聚合性化合物者。此聚合性化合物例如前述列舉的酯類,具體如丙酸乙烯酯、苯甲酸乙烯酯等的乙烯酯或(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸己酯、(甲基)丙烯酸苯酯等的(甲基)丙烯酸的酯類等。特別是結構中具有乙烯性不飽和鍵及酯鍵的聚合性化合物,其結構中具有-COOR1 或-OCOR2 (R1 及R2 為烷基)所示之基為佳,特別以這些基和H2 C=CH*、或H2 C=C(CH3 )*(*為上記-COOR1 或-OCOR2 所示之基的鍵結的鍵結位)連接的化合物為佳。R1 及R2 為直鏈狀或支鏈狀的烷基為佳,以碳原子數為1以上、12以下為佳,2以上、10以下為較佳。這些可1種或組合2種以上使用。
構成絕緣性微粒子的聚合物中,全結構單元中,結構中具有酯鍵的結構單元的比例,從使絕緣性微粒子的玻璃轉移溫度成為較佳範圍的觀點,及在聚合反應進行時所生成的絕緣性微粒子經熱而熔融、不附著於反應容器的壁面而可取出的觀點,以0.1莫耳%以上、30莫耳%以下為佳,1莫耳%以上、25莫耳%以下較佳。此述的結構中具有酯鍵的結構單元的較佳例,如下列一般式(4)所示。
Figure 02_image011
(式中,R3 為氫原子或甲基。R4 為-COOR1 或-OCOR2 所示之基。)
絕緣性微粒子的玻璃轉移溫度低於導電性粒子的芯材的玻璃轉移溫度為佳。透過如此的結構,可輕易增加絕緣性微粒子中和導電性粒子的接觸面積的比例、及絕緣性微粒子彼此的附著性。
更具體地說,絕緣性微粒子的玻璃轉移溫度為100℃以下為佳,95℃以下較佳,90℃以下特佳。 又從被覆粒子在保存時等的形狀安定性及絕緣性微粒子的合成容易性的觀點,絕緣性微粒子的玻璃轉移溫度為40℃以上為佳,45℃以上較佳,50℃以上特佳。玻璃轉移溫度可如後述實施例記載之方法測量。
和前述相同觀點,在芯材具有玻璃轉移溫度的情形,絕緣性微粒子的玻璃轉移溫度和導電性粒子的芯材的玻璃轉移溫度的差,為160℃以下為佳,120℃以下較佳,100℃以下特佳。絕緣性微粒子的玻璃轉移溫度和導電性粒子的芯材的玻璃轉移溫度的差,為5℃以上為佳,10℃以上較佳。
玻璃轉移溫度的測量方法,例如下述方法。 使用差示掃描量熱儀「STAR SYSTEM」(METTLER TOLEDO社製),將樣本0.04g~0.06g升溫至200℃,以降溫速度5℃/min從該溫度冷卻至25℃。接著以升溫速度5℃/min使樣本升溫,測量熱量。在觀察到波峰時的該波峰溫度,和未觀測到波峰而觀察到階差時,顯示該階差部分的曲線的最大斜率的切線和該階差的高溫側的基線的延長線的交叉點的溫度,為玻璃轉移溫度。
絕緣性微粒子的平均粒徑(D)較佳為10nm以上、3,000nm以下,較佳為15nm以上、2,000nm以下。透過絕緣性微粒子的平均粒徑在上述範圍,所得的被覆粒子在和對向電極間不同方向的短路不會發生,容易確保對向電極間的通電。又本發明中,絕緣性微粒子的平均粒徑為使用電子掃描顯微鏡觀察所測量的值,具體如後述實施例所記載之方法。
根據前述方法所測量的絕緣性微粒子的粒徑分布有寬度。一般而言,粉體的粒徑分布的寬度由下列算式(1)所示的變異係數(Coefficient of Variation,以下也記載為「C.V.」)所示。 C.V.(%)=(標準差/平均粒徑)×100…(1) 此C.V.大者顯示粒徑分布有寬度,另一方面,C.V.小者顯示粒徑分布狹小。本實施態樣之被覆粒子希望使用C.V.宜為0.1%以上20%以下,較佳為0.5%以上15%以下,最佳為1%以上10%以下的絕緣性微粒子。由於C.V.在此範圍,有使因絕緣性微粒子所形成的被覆層的厚度均勻的優點。
又,絕緣層也可為由聚合物形成的、具有帶電官能基的連續皮膜,以代替由上述的絕緣性微粒子所形成者。在絕緣層為包含具有帶電官能基的化合物的連續皮膜之情形,在電極間熱壓該被覆粒子,使該連續皮膜熔融、變形或剝離而使導電性粒子的金屬表面露出,因此使電極間得以通電,得到接續性。特別是,透過在電極間熱壓被覆粒子,使連續皮膜破裂而露出金屬表面的情形多。另一方面,在向被覆粒子的熱壓方向不同方向的表面部分,由於一般維持因連續皮膜所形成的導電性粒子的被覆狀態,所以可防止在熱壓方向以外的方向的通電。絕緣性皮膜也在表面具有帶電官能基者為佳。
即使在絕緣層是由連續皮膜所構成的情形,由於具有帶電官能基,絕緣性的連續皮膜也容易和表面具有鈦系化合物的導電性粒子密著。又,在如後述連續皮膜為加熱絕緣性微粒子而成或者是將被覆導電性粒子的絕緣性微粒子以有機溶劑溶解的情形,由於可使成為絕緣層的前驅物的絕緣性微粒子均勻排列,透過絕緣性微粒子的熔融或溶解,具有可使所得被膜的膜厚均一的效果。根據這些理由,即使在絕緣層是由連續皮膜所構成的情形,由於具有鈦系化合物及帶電官能基,容易發揮防止在和對向電極間不同方向的短路的效果,使在該方向的絕緣性提高,成為接續信賴性提高者。在絕緣層為包含具有帶電官能基的化合物的連續皮膜的情形,該皮膜可以被覆導電性粒子的全部表面,也可以是被覆一部份表面者。連續皮膜的表面也可以是平坦的,也可以是來自絕緣性微粒子熔融或溶解而具有凹凸表面。
從提高在和對向電極間不同方向的絕緣性的觀點,連續皮膜的厚度為10nm以上為佳,從容易在對向電極間通電的觀點,為3,000nm以下為佳。從此觀點,連續皮膜的厚度為10nm以上、3,000nm以下為佳,15nm以上、2,000nm以下較佳。
和絕緣性微粒子相同,連續皮膜中帶電官能基為構成連續皮膜的物質的一部份,成為該物質的化學結構的一部分者為佳。連續皮膜中帶電官能基包含於構成連續皮膜的聚合物的結構單元的至少1種結構中者為佳。帶電官能基和構成連續皮膜的聚合物化學連接者為佳,較佳和聚合物的側鏈連接。 連續皮膜所具有的帶電官能基,如上述具有絕緣性微粒子的帶電官能基相同之例。 構成連續皮膜的聚合物的結構單元及其組成之例,如上述構成絕緣性微粒子的聚合物的結構單元及其組成相同之例,上述結構單元的較佳比例範圍全部適用於連續皮膜。連續皮膜的玻璃轉移溫度,如上述絕緣性微粒子的玻璃轉移溫度。連續皮膜的玻璃轉移溫度和芯材粒子的玻璃轉移溫度的關係,如上述絕緣性微粒子的玻璃轉移溫度和芯材粒子的玻璃轉移溫度的相同關係。
在絕緣層為連續皮膜的情形,以表面具有帶電官能基的絕緣性微粒子被覆導電性粒子後,加熱該絕緣性微粒子而得到連續皮膜為佳。在此情形,如上述,對於導電性粒子,絕緣性微粒子容易和導電性粒子密著,因此導電性粒子表面被覆絕緣性微粒子的比例充足且容易防止絕緣性微粒子從導電性粒子剝離。又,如上述,具有帶電官能基的絕緣性微粒子容易以單層被覆導電性粒子。從這些理由,可將加熱被覆導電性粒子的絕緣性微粒子所得的連續皮膜,成為厚度均勻且在導電性粒子表面的被覆比例高者。
又,一開始希望,對於經由特定的絕緣性微粒子進行加熱處理所得的連續皮膜的結構及特性全部,在使用某種方法測量之後,在本說明中直接寫明。 但是,至少在申請之時,以申請人的技術水平無法確認關係本發明效果的其他連續皮膜的結構或特性。 又,假設即使追究所有的要因,有必要建立新的測量方法,確定和該等要因有關的連續皮膜的結構及特性,因此需要明顯過大的經濟支出及時間。 根據上述事實,有鑑於專利申請的性質上必須迅速性等,申請人記載上述製造方法所製造者為連續皮膜的較佳特徵之一。
以下,對於本實施態樣之被覆粒子的較佳製造方法進行說明。 本製造方法具有,使包含具有帶電官能基的聚合性組合物進行聚合,獲得表面具有帶電官能基的絕緣性微粒子之第1步驟, 使導電性粒子的表面具有鈦系化合物之第2步驟,以及 將含有絕緣性微粒子的分散液,和表面有鈦系化合物的導電性粒子混合,使導電性粒子表面附著絕緣性微粒子之第3步驟。 第1步驟和第2步驟任一者可先進行,也可同時進行。
(第1步驟) 上述聚合性組合物由2種以上的聚合性化合物所形成,例如至少1種包含帶電官能基。聚合性化合物例如構成上述絕緣性微粒子的聚合物的結構單元之具有乙烯性不飽和鍵的聚合性化合物。又,較佳的聚合性化合物及其構成比例,如上述構成絕緣性微粒子的聚合物的較佳結構單元及其較佳量比。
聚合方法例如乳液聚合、無皂乳液聚合、分散聚合、懸浮聚合等,任一種皆可,但從不使用界面活性劑而可製造單分散的微粒子的優點,以無皂乳液聚合為佳。在無皂乳液聚合的情形,聚合起始劑使用水溶性起始劑。聚合宜在氮或氬等的惰性氛圍氣下進行。 經由上述,獲得表面具有帶電官能基的絕緣性微粒子。
(第2步驟) 表面具有鈦系化合物的導電性粒子,在溶劑中和鈦系化合物混合後、過濾獲得。用於表面處理的鈦系化合物,例如具有上述疏水性基者,較佳例如具有上述一般式(I)所示結構者。具有上述一般式(I)所示結構的化合物,較佳例如一般式(I’)所示化合物。在以鈦系化合物處理前,導電性粒子也可用別的有機劑進行處理,也可以未處理。
Figure 02_image013
(R12 、R13 、p、q及r和上述一般式(I)相同定義。R11 為烴基。當p為2以上時,複數個R11 可相同或相異,也可以2個R11 互相連接,R11 所示之基中的亞甲基也可以-O-、-COO-或-OCO-取代。)
一般式(I’)中,R11 所表的烴基例如碳原子數1以上、12以下的烷基。當p為2以上時,2個R11 互相連接的連結基例如-(CH2 )W -所示之基(w為2以上12以下的整數)。這些R11 所表的基中的亞甲基,以氧原子彼此不連續的條件,也可經-O-、-COO-或-OCO-取代1次或2次以上。R11 所表的碳原子數1以上12以下的烷基,例如甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基等。
使導電性粒子和鈦系化合物混合的溶劑,例如水或有機溶劑。有機溶劑例如甲苯、甲醇、乙醇、丙酮、甲乙酮、四氫呋喃、乙腈、N-甲基吡咯酮、二甲基甲醯胺等。在導電性粒子和鈦系化合物投入溶劑的分散液中,鈦系化合物的濃度例如0.1質量%以上、20質量%以下。此分散液中的導電性粒子的濃度例如1質量%以上、50質量%以下。將處理後的分散液進行過濾,獲得表面具有鈦系化合物的導電性粒子。
在經鈦系化合物表面處理的情形,可透過在室溫混合導電性粒子及鈦系化合物和溶劑而進行處理。或者也可以,將導電性粒子及鈦系化合物在溶劑中混合後,加熱促進水解。加熱溫度例如30℃以上50℃以下。
(第3步驟) 接著,將含有絕緣性微粒子的分散液和表面具有鈦系化合物的導電性粒子混合,使絕緣性微粒子附著於導電性粒子表面。 分散液的媒液例如水及有機溶劑及其混合物,以水、乙醇、或乙醇和水的混合液為佳。
從容易獲得被覆率一定以上的被覆粒子的觀點,分散液含有無機鹽、有機鹽或有機酸者為佳。無機鹽、有機鹽或有機酸較佳使用使陰離子解離者,此陰離子較佳為Cl- 、F- 、Br- 、I- 、SO4 2- 、CO3 2- 、NO3 - 、COO- 、RCOO- (R為有機基)等。無機鹽可使用例如NaCl、KCl、LiCl、MgCl2 、BaCl2 、NaF、KF、LiF、MgF2 、BaF2 、NaBr、KBr、LiBr、MgBr2 、BaBr2 、NaI、KI、LiI、MgI2 、BaI2 、Na2 SO4 、K2 SO4 、Li2 SO4 、MgSO4 、Na2 CO3 、NaHCO3 、K2 CO3 、KHCO3 、Li2 CO3 、LiHCO3 、MgCO3 、NaNO3 、KNO3 、LiNO3 、MgNO3 、BaNO3 等。又,有機鹽可使用草酸鈉、醋酸鈉、檸檬酸鈉、酒石酸鈉等。有機酸可使用甘胺酸等的胺基酸、或琥珀酸、草酸、醋酸、檸檬酸、酒石酸、丙二酸、反丁烯二酸、順丁烯二酸等。
較佳的無機鹽、有機鹽及有機酸的濃度,根據導電性粒子表面積中絕緣性微粒子所佔的被覆面積而異,但在導電性粒子混合後的分散液中,例如為0.1mmol/L以上、100mmol/L以下的濃度,由於具有較佳被覆率,容易得到絕緣性微粒子為單層的被覆粒子,因此為佳。從此觀點,該分散液中的無機鹽、有機鹽及有機酸的濃度為1.0mmol/L以上、80mmol/L以下特佳。
當絕緣性微粒子及導電性粒子在媒液中混合時,可將含有絕緣性微粒子的分散液和導電性粒子混合,也可以將含有導電性粒子的分散液和絕緣性微粒子混合,或者也可以將絕緣性微粒子和導電性粒子分別投入媒液,也可以將含有絕緣性微粒子的分散液和含有導電性粒子的分散液混合。在含有導電性粒子及絕緣性微粒子的分散液中,導電性粒子以質量基準含有100ppm以上、100,000ppm以下為佳,含有500ppm以上、80,000ppm以下較佳。 在含有導電性粒子及絕緣性微粒子的分散液中,絕緣性微粒子以質量基準含有10ppm以上、50,000ppm以下為佳,含有250ppm以上、30,000ppm以下較佳。
在和導電性粒子混合的時點,分散液的溫度,從容易獲得品質一定的被覆粒子的觀點,一般為20℃以上、100℃以下為佳,40℃以上較佳。特別是,以絕緣性微粒子的玻璃轉移溫度記為Tg℃時,分散液的溫度以Tg-30℃以上、Tg+30℃以下為佳。當在此範圍,由於絕緣性微粒子可維持其形狀且和導電性粒子密著,容易獲得絕緣性微粒子和導電性粒子之間的較佳接觸面積,因此為佳。特別是,本發明之具有帶電官能基的絕緣性微粒子,由於和導電性粒子的親和性高,所以在上述溫度範圍內可充分被覆。
在導電性粒子混合後的分散液中,提供絕緣性微粒子對導電性粒子的附著的時間,較佳為0.1小時以上、24小時以下。期間以攪拌分散液為佳。接著,視需要,洗淨、乾燥分散液的固形分,獲得具有帶電官能基的絕緣性微粒子附著於導電性粒子之被覆粒子。
如上述,經由加熱絕緣性微粒子附著於導電性粒子表面之被覆粒子,使絕緣性微粒子呈熔融狀態,可膜狀被覆導電性粒子表面。由於絕緣性微粒子呈膜狀,使絕緣性變得更強。加熱的方法,例如使絕緣性微粒子附著於導電性粒子表面後的分散液加溫的方法,將被覆粒子在水等的溶劑中加溫方法,將被覆粒子在惰性氣體等的氣相中加溫的方法等。加熱溫度,從絕緣性微粒子不脫落、容易形成均勻膜狀的觀點,以構成絕緣性微粒子的聚合物的玻璃轉移溫度記為Tg時,為Tg+1℃以上、Tg+60℃以下為佳,Tg+5℃以上、Tg+50℃以下較佳,超過Tg+15℃最佳。加熱時間,從容易形成均勻膜狀的觀點,以0.1小時以上、24小時以下為佳。又,被覆粒子在氣相中加溫的情形,其壓力條件可在大氣壓下、減壓下或加壓下進行。
絕緣性微粒子附著於導電性粒子表面的被覆粒子,即使在其分散液添加有機溶劑,也可使絕緣性微粒子呈流動狀態,因此可膜狀被覆導電性粒子表面。在絕緣性微粒子溶解的情形,此有機溶劑可使用四氫呋喃、甲苯、甲乙酮、N-甲基-2-吡咯酮及N,N-二甲基甲醯胺等。有機溶劑的添加量,從絕緣性微粒子不脫落、容易形成均勻膜狀的觀點,相對於分散液中的被覆粒子1質量部,為1質量部以上、100質量部以下為佳,5質量部以上、50質量部以下較佳。添加溫度,從絕緣性微粒子不脫落、容易形成均勻膜狀的觀點,以10℃以上、100℃以下為佳,20℃以上、80℃以下較佳。從添加到形成膜狀的時間,從形成均勻膜狀的觀點,以0.1小時以上、24小時以下為佳。
膜狀被覆導電性粒子表面的被覆粒子,為了使連續皮膜更穩定化,也可以進行退火處理。退火處理的方法例如在惰性氣體等的氣相中加溫被覆粒子的方法。加熱溫度,以構成絕緣性微粒子的聚合物的玻璃轉移溫度記為Tg時,為Tg+1℃以上、Tg+60℃以下為佳,Tg+5℃以上、Tg+50℃以下較佳。加熱氛圍氣沒有特別限制,也可在氮、氬等的惰性氣體氛圍氣或空氣等的氧化氛圍氣中,在大氣壓下、減壓下或加壓下的任一條件進行。
以上說明較佳的製造方法,但本發明之被覆粒子也可經由其他製造方法製造。例如,也可以事先使不具有帶電官能基的絕緣性微粒子進行聚合反應而製造,將所得的絕緣性微粒子和具有帶電官能基的化合物進行反應等,在絕緣性微粒子表面導入帶電官能基。
如上所得的被覆粒子,有效使用因組合表面具有鈦系化合物的導電性粒子和具有帶電官能基的絕緣性微粒子或連續皮膜之優點所形成的被覆粒子間的絕緣性及在對向電極間的接續性,可較佳使用作為導電性接著劑、異向性導電膜、異向性導電接著劑等的導電性材料。 [實施例]
以下透過實施例說明本發明。然而,本發明之範圍不限於這些實施例。例中的特性是以下列方法測量。
(1)平均粒徑 從測量對象的電子掃描顯微鏡(SEM)照片(絕緣性微粒子倍率100,000倍,導電性粒子倍率10,000倍),隨意選取200個粒子,對該等測量上述粒徑,其平均值為平均粒徑。
(2)C.V.(變異係數) 從上述平均粒徑的測量,根據下式求得。 C.V.(%)=(標準差/平均粒徑)×100
(3)玻璃轉移溫度 在差示掃描量熱測量裝置(METTLER TOLEDO公司製、STAR SYSTEM)、升降溫速度5℃/min、氮氛圍氣下、測量溫度25℃至200℃的熱量變化,根據上述步驟測量。
(實施例1) [鏻類絕緣性微粒子的製造] 在裝有長60mm的攪拌子的200mL的四口燒瓶,加入純水100mL。之後,加入苯乙烯單體(關東化學製)30.00mmol、丙烯酸正丁酯(關東化學製)5.3mmol、4-(乙烯基苄基)三乙基鏻氯化物(日本化學工業製)0.30mmol、及聚合起始劑2,2’-偶氮雙(2-甲基丙脒基)二鹽酸鹽(和光純藥工業製,V-50)0.50mmol。通入氮氣15分鐘,去除溶氧後,升溫至60℃維持6小時,進行聚合反應。聚合後的微粒子的分散液通過網目150μm的SUS篩,去除凝集物。將去除凝集物的分散液,置入離心機(日立工機製,CR-21N)以20,000rpm、20分鐘的條件,使微粒子沈降,去除上清液。所得的固形物加純水洗淨,獲得聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物)的球狀微粒子。所得的微粒子的平均粒徑為86nm,C.V.為7.4%。玻璃轉移溫度為約62℃。 [絕緣性微粒子被覆導電性粒子的製造] 準備在球狀的樹脂粒子的表面具有厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入甲苯25mL,攪拌獲得鍍鎳粒子的分散液。將鈦系偶合劑(Ajinomoto Fine-Techno公司製,Plenact KR-TTS,上述一般式(I’)中p為3,r為1,R11 為異丙基,R12 為-OCO-,q=1,R13 為十七烷基的化合物)0.1g,加入此分散液,室溫下攪拌20分鐘進行表面處理。之後,通過網目2.0μm的薄膜濾器進行過濾,收集表面具有鈦系偶合劑層的鍍鎳粒子。在收集的鍍鎳粒子加入質量基準乙醇:純水=75:25的混合液100mL,進行表面處理,獲得鍍鎳粒子的分散液。在此分散液加入上述所得的絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為10,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的導電性粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。所得的被覆粒子的SEM照相如第1圖所示。
(實施例2) [鏻類絕緣性微粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 準備在球狀的樹脂粒子的表面具有平均高度0.1μm、平均的底部的長度0.197μm、長寬比0.5、有1,030個突起且厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入甲苯25mL,攪拌獲得鍍鎳粒子的分散液。將鈦系偶合劑(Ajinomoto Fine-Techno公司製,Plenact KR-TTS,上述一般式(I’)中p為3,r為1,R11 為異丙基,R12 為-OCO-,q=1,R13 為十七烷基的化合物)0.1g,加入此分散液,室溫下攪拌20分鐘進行表面處理。之後,通過網目2.0μm的薄膜濾器進行過濾,收集表面具有鈦系偶合劑層的鍍鎳粒子。在收集的鍍鎳粒子加入質量基準乙醇:純水=75:25的混合液100mL,進行表面處理,獲得鍍鎳粒子的分散液。在此分散液加入上述所得的絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為10,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的導電性粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(實施例3) [鏻類絕緣性微粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 除了將鈦系偶合劑(Ajinomoto Fine-Techno公司製,Plenact KR-41B,上述一般式(I’)中p為3,r為1,R11 為異丙基,R12 為-P(OH)(O-)2 ,q=1,R13 為辛基的化合物)0.1g加入鍍鎳粒子的分散液進行表面處理外,和實施例1相同方法,獲得絕緣性微粒子被覆導電性粒子。所得的被覆粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(實施例4) [鏻類絕緣性微粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 除了將鈦系偶合劑(Ajinomoto Fine-Techno公司製,Plenact KR-41B,上述一般式(I’)中p為3,r為1,R11 為異丙基,R12 為-P(OH)(O-)2 ,q=1,R13 為辛基的化合物)0.1g加入鍍鎳粒子的分散液進行表面處理外,和實施例2相同方法,獲得絕緣性微粒子被覆導電性粒子。所得的被覆粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(實施例5) 將實施例1所得的絕緣性微粒子被覆導電性粒子1.0g加入純水20mL中,形成分散液,在95℃攪拌該分散液6小時。攪拌結束後,用網目2μm的薄膜濾器分離固形分、使乾燥,獲得由最大厚度50nm、最小厚度20nm的連續皮膜所形成的絕緣層所被覆的被覆粒子。所得的被覆粒子中由連續皮膜所形成的絕緣層的被覆率以下列方法求得。結果如表1所示。
(實施例6) [鏻類絕緣性微粒子的製造] 在裝有長60mm的攪拌子的200mL的四口燒瓶,加入純水100mL。之後,加入交聯性單體之二乙烯基苯單體(新日鐵住金製)15.0mmol、非交聯性單體之苯乙烯單體(關東化學製)30.00mmol、及丙烯酸正丁酯(關東化學製)5.3mmol、4-(乙烯基苄基)三乙基鏻氯化物(日本化學工業製)0.03mmol、及聚合起始劑2,2’-偶氮雙(2-甲基丙脒基)二鹽酸鹽(和光純藥工業製,V-50)0.50mmol。通入氮氣15分鐘,去除溶氧後,升溫至60℃維持6小時,進行聚合反應。聚合後的微粒子的分散液通過網目150μm的SUS篩,去除凝集物。將去除凝集物的分散液,置入離心機(日立工機製,CR-21N)以20,000rpm、20分鐘的條件,使微粒子沈降,去除上清液。所得的固形物加純水洗淨,獲得聚(苯乙烯/二乙烯基苯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物)的球狀微粒子。所得的微粒子的平均粒徑微220nm,C.V.為9.7%。 [絕緣性微粒子被覆導電性粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子被覆導電性粒子。所得的被覆粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(實施例7) [銨類絕緣性微粒子的製造] 在裝有長60mm的攪拌子的200mL的四口燒瓶,加入純水100mL。之後,加入苯乙烯單體(關東化學製)30.00mmol、丙烯酸正丁酯(關東化學製)5.3mmol、4-(乙烯基苄基)三乙基銨氯化物(日本化學工業製)0.30mmol、及聚合起始劑2,2’-偶氮雙(2-甲基丙脒基)二鹽酸鹽(和光純藥工業製,V-50)0.50mmol。通入氮氣15分鐘,去除溶氧後,升溫至60℃維持6小時,進行聚合反應。聚合後的微粒子的分散液通過網目150μm的SUS篩,去除凝集物。將去除凝集物的分散液,置入離心機(日立工機製,CR-21N)以20,000rpm、20分鐘的條件,使微粒子沈降,去除上清液。所得的固形物加純水洗淨,獲得聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基銨氯化物)的球狀微粒子。所得的微粒子的平均粒徑為90nm,C.V.為8.6%。玻璃轉移溫度為約59℃。 [絕緣性微粒子被覆導電性粒子的製造] 準備在球狀的樹脂粒子的表面具有厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入甲苯25mL,攪拌獲得鍍鎳粒子的分散液。將鈦系偶合劑(Ajinomoto Fine-Techno公司製,Plenact KR-TTS,上述一般式(I’)中p為3,r為1,R11 為異丙基,R12 為-OCO-,q=1,R13 為十七烷基的化合物)0.1g,加入此分散液,室溫下攪拌20分鐘進行表面處理。之後,通過網目2.0μm的薄膜濾器進行過濾,收集表面具有鈦系偶合劑層的鍍鎳粒子。在收集的鍍鎳粒子加入質量基準乙醇:純水=75:25的混合液100mL,進行表面處理,獲得鍍鎳粒子的分散液。在此分散液加入上述所得的絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為10,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的被覆粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(比較例1) [鏻類絕緣性微粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 實施例1中不進行經鈦系偶合劑的表面處理。 詳細為,準備在球狀的樹脂粒子的表面具有厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入純水100mL,攪拌獲得鍍鎳粒子的分散液。在此分散液加入實施例1所得的鏻類絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為10,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的導電性粒子中的絕緣性微粒子的被覆率如表1所示。
(比較例2) [鏻類絕緣性微粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 實施例2中不進行經鈦系偶合劑的表面處理。 詳細為,準備在球狀的樹脂粒子的表面具有平均高度0.1μm、平均的底部的長度0.197μm、長寬比0.5、有1,030個突起且厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入純水100mL,攪拌獲得鍍鎳粒子的分散液。在此分散液,加入實施例1所得的鏻類絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為10,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的導電性粒子中的絕緣性微粒子的被覆率如表1所示。
(比較例3) [銨類絕緣性微粒子的製造] 以實施例7相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 實施例7中不進行經鈦系偶合劑的表面處理。 詳細為,準備在球狀的樹脂粒子的表面具有厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入純水100mL,攪拌獲得鍍鎳粒子的分散液。在此分散液加入上述實施例7所得的銨類絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為10,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的被覆粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(參考例1) 參考例1是用於比較和比較例2相同被覆率的被覆粒子的通電性及絕緣性的評估。 [鏻類絕緣性微粒子的製造] 以實施例1相同方法,獲得絕緣性微粒子。 [絕緣性微粒子被覆導電性粒子的製造] 準備在球狀的樹脂粒子的表面具有平均高度0.1μm、平均的底部的長度0.197μm、長寬比0.5、有1,030個突起且厚度0.125μm的鎳皮膜、平均粒徑3μm的鍍鎳粒子(日本化學工業製)。樹脂粒子由交聯性的丙烯酸酯樹脂所構成,玻璃轉移溫度為120℃。將上述鍍鎳粒子5.0g加入甲苯25mL,攪拌獲得鍍鎳粒子的分散液。將鈦系偶合劑(Ajinomoto Fine-Techno公司製,Plenact KR-TTS,上述一般式(I’)中p為3,r為1,R11 為異丙基,R12 為-OCO-,q=1,R13 為十七烷基的化合物)0.1g,加入此分散液,室溫下攪拌20分鐘進行表面處理。之後,通過網目2.0μm的薄膜濾器進行過濾,收集表面具有鈦系偶合劑層的鍍鎳粒子。在收集的鍍鎳粒子加入質量基準乙醇:純水=75:25的混合液100mL,進行表面處理,獲得鍍鎳粒子的分散液。在此分散液加入上述所得的絕緣性微粒子和Na2 SO4 ,在40℃攪拌30分鐘。在加入絕緣性微粒子及Na2 SO4 之後,分散液中絕緣性微粒子的固形分濃度以質量基準為4,000ppm,Na2 SO4 濃度為5mmol/L。去除上清液後,以純水重複洗淨3次後,在50℃真空乾燥,獲得絕緣性微粒子被覆導電性粒子。所得的被覆粒子中的絕緣性微粒子的被覆率以下列方法求得。結果如表1所示。
(被覆率的評估) 評估實施例1~7、比較例1~3及參考例1所得的被覆粒子的被覆率。被覆率由以下方法求得。下列半徑使用上述平均粒徑。 >被覆率的測量方法> 實施例5以外的實施例、比較例及參考例1,以下列計算式求出,在鍍鎳粒子的表面絕緣性微粒子以最密填充排列時,絕緣性微粒子的個數N。 N=4π(R+r)2 /2√3r2 (R:鍍鎳粒子的半徑(nm),r:絕緣性微粒子的半徑(nm)) 計數在SEM中附著在鍍鎳粒子的絕緣性微粒子的個數n,以下式計算被覆率。 被覆率(%)=(n/N)×100 用於評估的被覆率為鍍鎳粒子20個的平均值。 實施例5中,將被覆粒子的SEM照相影像的反射電子組成(COMPO)影像輸入自動影像分析裝置(NIRECO製,LUZEX(登錄商標)AP),以上述COMPO影像中20個被覆粒子為對象進行計算。
[表1]
  絕緣性微粒子 有無突起 表面處理劑 被覆率(%)
實施例1 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-TTS 68.3
實施例2 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-TTS 60.2
實施例3 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-41B 68.0
實施例4 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-41B 59.0
實施例5 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-TTS 80.2
實施例6 聚(苯乙烯/二乙烯基苯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-TTS 70.9
實施例7 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基銨氯化物) KR-TTS 23.0
比較例1 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) 18.4
比較例2 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) 15.4
比較例3 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基銨氯化物) 3.8
參考例1 聚(苯乙烯/丙烯酸正丁酯/4-(乙烯基苄基)三乙基鏻氯化物) KR-TTS 15.6
如表1所示,經由鈦系偶合劑作為鈦系化合物處理導電性粒子後,被覆絕緣性微粒子的被覆粒子,和未經鈦系偶合劑處理的被覆粒子相比,顯示良好的被覆率。 又,本發明之被覆粒子即使在使用表面具有多數突起的導電性粒子的情形,也顯示良好的被覆率。 根據上述,在以絕緣層被覆導電性粒子的被覆粒子,經由導電性粒子表面具有鈦系化合物,且絕緣層有具電荷的官能基,可看出導電性粒子和絕緣層的密著性加成地增加。
(通電性及絕緣性的評估) 使用實施例2、比較例2及參考例1的被覆粒子,以下列方法進行通電性及絕緣性的評估。
>通電性的評估> 將混合環氧樹脂100質量份、硬化劑150質量份及甲苯70質量份的絕緣性接著劑,和實施例2、比較例2及參考例1所得的被覆粒子15質量份混合,獲得絕緣性糊。使用棒塗佈機將此糊塗佈於矽酮處理的聚酯膜上,之後,使糊乾燥,在膜上形成薄膜。將所得的薄膜形成膜配置於表面全部蒸鍍鋁的玻璃基板和銅圖案形成50μm間隔的聚醯亞胺膜基板之間,進行接電。透過測量此基板間的導電電阻,室溫下(25℃、50%RH)評估被覆粒子的通電性。可評估為,電阻值越低,被覆粒子的通電性越高。被覆粒子的通電性評估,電阻值小於2Ω者記為「非常良好」(表2中以「○」表示),電阻值為2Ω以上、小於5Ω者記為「良好」(表2中以「△」表示),電阻值為5Ω以上者記為「不良」(表2中以「╳」表示)。結果如表2所示。
>絕緣性測量> 使用微小壓縮試驗機MCTM-500(株式會社島津製作所製),以20個被覆粒子為對象,以負重速度0.5mN/秒的條件,壓縮實施例2、比較例2及參考例1的被覆粒子,測量至電阻值被檢出時的壓縮變位,來評估被覆粒子的絕緣性。可評估為,至電阻值被檢出時的壓縮變位越大,被覆粒子的絕緣性越高。被覆粒子的絕緣性評估,至電阻值被檢出時的壓縮變位的算術平均值為10%以上者記為「非常良好」(表2中以「○」表示),壓縮變位的算術平均值大於3%、小於10%者記為「良好」(表2中以「△」表示),壓縮變位的算術平均值為3%以下者記為「不良」(表2中以「╳」表示)。結果如表2所示。
[表2]
  通電性 絕緣性
實施例2
比較例2
參考例1
如表2所示,以鈦系偶合劑表面處理的實施例2的被覆粒子,和未進行表面處理的比較例2的被覆粒子相比,可看出維持通電性且絕緣性也優良。和比較例2有相同程度被覆率的參考例1,雖然和比較例2的被覆率為相同程度,但絕緣性優良,可看出獲得因鈦系偶合劑的絕緣效果。 [產業上可利用性]
本發明之被覆粒子由於絕緣層具有的鏻基、以及導電性的配置在導電性粒子的表面的鈦系化合物,絕緣層和導電性粒子有優良的密著性。如此的本發明之被覆粒子具有高接續信賴性。
無。
第1圖為實施例1所得之被覆粒子的電子掃描顯微鏡影像。
Figure 108139898-A0101-11-0001-1

Claims (13)

  1. 一種被覆粒子,其為具有: 芯材表面形成金屬皮膜,且該金屬皮膜的外表面配置具有疏水性基的鈦系化合物之導電性粒子,以及 被覆該導電性粒子之絕緣層, 該絕緣層具有包含具有電荷的官能基之化合物。
  2. 如請求項1所述之被覆粒子,其中該絕緣層由複數個微粒子所構成,或者為連續皮膜。
  3. 如請求項1所述之被覆粒子,其中該疏水性基為碳原子數2以上、30以下的脂肪族烴基。
  4. 如請求項1所述之被覆粒子,其中該具有電荷的官能基為鏻基或銨基。
  5. 如請求項1所述之被覆粒子,其中該金屬皮膜為包含選自鎳、金、銀、銅、鈀、鎳合金、金合金、銀合金、銅合金、及鈀合金之至少1種的金屬皮膜。
  6. 如請求項1所述之被覆粒子,其中該絕緣層由選自苯乙烯類、酯類及腈類之至少1種的聚合性單體的聚合物所構成。
  7. 如請求項1所述之被覆粒子,其中該導電性粒子表面具有複數個突起。
  8. 一種導電性材料,包含如請求項1至7任一項所述之被覆粒子和絕緣性樹脂。
  9. 一種被覆粒子之製造方法,具有: 使包含具有具電荷的官能基的聚合性化合物之聚合性組合物進行聚合,獲得表面具有具電荷的官能基的絕緣性微粒子之第1步驟,及 使導電性粒子的表面具有鈦系化合物之第2步驟(第1步驟及第2步驟任一者可以先進行也可以同時進行),以及 將含有絕緣性微粒子的分散液,和表面具有鈦系化合物的導電性粒子混合,使導電性粒子表面附著具有帶電官能基的絕緣性微粒子之第3步驟。
  10. 如請求項9所述之被覆粒子之製造方法,更具有: 加熱該第3步驟所獲得的被覆粒子,使絕緣性微粒子呈熔融狀態,膜狀被覆導電性粒子表面之第4步驟。
  11. 如請求項9所述之被覆粒子之製造方法,更具有: 將該第3步驟所獲得的被覆粒子,在其分散液添加有機溶劑,使絕緣性微粒子呈溶解狀態,膜狀被覆導電性粒子表面之第4步驟。
  12. 如請求項9至11任一項所述之被覆粒子之製造方法,其中該疏水性基為碳原子數2以上、30以下的脂肪族烴基。
  13. 如請求項9至11任一項所述之被覆粒子之製造方法,其中該具電荷的官能基為鏻基或銨基。
TW108139898A 2018-11-07 2019-11-04 被覆粒子及含有此的導電性材料以及被覆粒子的製造方法 TWI820245B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-209996 2018-11-07
JP2018209996 2018-11-07

Publications (2)

Publication Number Publication Date
TW202031936A true TW202031936A (zh) 2020-09-01
TWI820245B TWI820245B (zh) 2023-11-01

Family

ID=70611833

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139898A TWI820245B (zh) 2018-11-07 2019-11-04 被覆粒子及含有此的導電性材料以及被覆粒子的製造方法

Country Status (5)

Country Link
JP (1) JP6825170B2 (zh)
KR (1) KR20210083246A (zh)
CN (1) CN112740338B (zh)
TW (1) TWI820245B (zh)
WO (1) WO2020095796A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115989252A (zh) * 2020-08-24 2023-04-18 日本化学工业株式会社 包覆颗粒及其制造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165247A (en) * 1997-02-24 2000-12-26 Superior Micropowders, Llc Methods for producing platinum powders
JP4563110B2 (ja) * 2004-08-20 2010-10-13 積水化学工業株式会社 導電性微粒子の製造方法
TWI356425B (en) * 2005-03-24 2012-01-11 Nippon Catalytic Chem Ind Coated fine particle and their manufacturing metho
JP4872620B2 (ja) * 2006-11-17 2012-02-08 Tdk株式会社 透明導電フィルムの製造方法
CN102474023A (zh) * 2009-07-01 2012-05-23 日立化成工业株式会社 包覆导电粒子及其制造方法
JP4640532B2 (ja) * 2009-07-02 2011-03-02 日立化成工業株式会社 被覆導電粒子
JP5512306B2 (ja) * 2010-01-29 2014-06-04 日本化学工業株式会社 導電性粒子の製造方法
CN102560448B (zh) * 2010-12-21 2014-01-08 苏州纳微生物科技有限公司 一种含树枝状结构聚合物复合微球及各向异性导电材料和各向异性导电膜的制备方法
JP5609716B2 (ja) * 2011-03-07 2014-10-22 デクセリアルズ株式会社 光反射性異方性導電接着剤及び発光装置
CN103030728B (zh) * 2011-09-06 2017-09-26 日立化成株式会社 绝缘包覆用粒子、绝缘包覆导电粒子、各向异性导电材料及连接结构体
JP2013203932A (ja) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及び成形品
JP6188456B2 (ja) * 2012-07-03 2017-08-30 積水化学工業株式会社 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6411119B2 (ja) * 2013-08-02 2018-10-24 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
WO2016063941A1 (ja) 2014-10-22 2016-04-28 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
CN107615403B (zh) * 2015-09-24 2021-12-24 积水化学工业株式会社 导电性粒子、导电材料及连接结构体
JP6798509B2 (ja) * 2016-02-10 2020-12-09 昭和電工マテリアルズ株式会社 絶縁被覆導電粒子、異方導電性接着剤、及び接続構造体
CN108604480B (zh) * 2016-02-10 2020-03-24 日立化成株式会社 导电粒子、绝缘被覆导电粒子、各向异性导电性粘接剂、连接结构体和导电粒子的制造方法
JP2017224602A (ja) * 2016-06-13 2017-12-21 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Also Published As

Publication number Publication date
CN112740338B (zh) 2022-09-06
CN112740338A (zh) 2021-04-30
WO2020095796A1 (ja) 2020-05-14
JP6825170B2 (ja) 2021-02-03
JPWO2020095796A1 (ja) 2021-03-25
TWI820245B (zh) 2023-11-01
KR20210083246A (ko) 2021-07-06

Similar Documents

Publication Publication Date Title
JP6458204B1 (ja) 被覆粒子及びその製造方法
TWI820245B (zh) 被覆粒子及含有此的導電性材料以及被覆粒子的製造方法
KR102650760B1 (ko) 피복 입자
JP7404099B2 (ja) 被覆粒子、その製造方法及びそれを含む導電性材料
JP7358065B2 (ja) 被覆粒子
WO2022044913A1 (ja) 被覆粒子及びその製造方法
KR20200002864A (ko) 피복 입자 및 그 제조 방법
JP7062555B2 (ja) 被覆粒子
JP7373965B2 (ja) 被覆粒子及びそれを含む導電性材料、並びに被覆粒子の製造方法
JP7430610B2 (ja) 被覆粒子及びその製造方法
JP2022126363A (ja) 被覆粒子の製造方法
JP2024016497A (ja) 絶縁性微粒子及び被覆粒子
JP2020084222A (ja) 被覆粒子の製造方法