TW202030652A - 預測半導體製程良率之方法 - Google Patents

預測半導體製程良率之方法 Download PDF

Info

Publication number
TW202030652A
TW202030652A TW108141334A TW108141334A TW202030652A TW 202030652 A TW202030652 A TW 202030652A TW 108141334 A TW108141334 A TW 108141334A TW 108141334 A TW108141334 A TW 108141334A TW 202030652 A TW202030652 A TW 202030652A
Authority
TW
Taiwan
Prior art keywords
yield
parameters
model
parameter
data
Prior art date
Application number
TW108141334A
Other languages
English (en)
Other versions
TWI721645B (zh
Inventor
幼平 張
伯瑞斯 曼徹奇可夫
希拉 艾米爾 塔伯里
鄒毅
林晨希
程亞娜
賽門 飛利浦 史賓斯 海斯汀思
麥辛姆 飛利浦 費德里科 杰尼
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202030652A publication Critical patent/TW202030652A/zh
Application granted granted Critical
Publication of TWI721645B publication Critical patent/TWI721645B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706837Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/22Yield analysis or yield optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明描述一種用於預測與在一基板上製造半導體裝置之一製程相關之良率的方法,該方法包含:獲得一經訓練之第一模型,該經訓練之第一模型將模型化參數轉譯為一良率參數,該等模型化參數包含:a)與以下各者中之一或多者相關聯的幾何參數:藉由該製程製造之一裝置元件的一幾何特性、尺寸或位置,及b)經訓練之自由參數;獲得製程參數資料,該製程參數資料包含特性化該製程的製程參數;將該製程參數資料轉換為該等幾何參數的值;及使用該經訓練之第一模型及該等幾何參數的該等值來預測該良率參數。

Description

預測半導體製程良率之方法
本發明係關於半導體製造製程,詳言之係關於預測經受該製程之基板之電特性及良率的方法。
微影設備係經建構以將所要圖案施加至基板上之機器。微影設備可用於(例如)積體電路(IC)製造中。微影設備可例如將圖案化裝置(例如遮罩)處之圖案(亦經常被稱作「設計佈局」或「設計」)投影至提供於基板(例如晶圓)上之輻射敏感材料(抗蝕劑)的層上。
為了將圖案投影至基板上,微影設備可使用電磁輻射。此輻射之波長決定可形成於基板上之特徵之最小尺寸。當前在使用中之典型波長為365 nm (i線)、248 nm、193 nm以及13.5 nm。相比於使用例如具有193 nm之波長之輻射的微影設備,使用具有介於4至20 nm範圍內之波長(例如6.7 nm或13.5 nm)的極紫外(extreme ultraviolet;EUV)輻射之微影設備可用於在基板上形成較小特徵。
低k1 微影可用於處理尺寸小於微影設備之典型解析度限值的特徵。在此製程中,可將解析度公式表達為CD = k1 ×λ/NA,其中λ為所使用輻射之波長,NA為微影設備中之投影光學件之數值孔徑、CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此狀況下為半間距)且k1 為經驗解析度因數。一般而言,k1 愈小,則愈難以在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案。為了克服此等困難,可將複雜微調步驟應用於微影投影設備及/或設計佈局。此等步驟包括例如但不限於NA之最佳化、自訂照明方案、使用相移圖案化裝置、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(optical proximity correction,OPC,有時亦被稱作「光學及製程校正」),或通常被定義為「解析度增強技術」(resolution enhancement technique,RET)之其他方法。替代地,用於控制微影設備之穩定性之嚴格控制迴路可用以改良在低k1下之圖案之再生。
此等嚴格控制迴路通常係基於使用度量衡工具而獲得之度量衡資料,該度量衡工具量測經施加圖案或表示經施加圖案之度量衡目標的特性。一般而言,度量衡工具係基於圖案及/或目標之位置及/或尺寸的光學量測。本質上假定此等光學量測表示積體電路之製造製程的品質。
除了基於光學量測進行控制以外,亦可執行電子束類量測;在該等電子束類量測中,可利用使用電子束工具(如藉由HMI給予)的所謂的低電壓量測。此低電壓對比量測指示施加至基板之層之間的電接點之品質。
通常,在所有處理製程步驟已完成之後,基板上之每一晶粒應適合於產生功能半導體裝置(IC)。原理上,在IC之進一步封裝應實行之後,每一晶粒使用各種技術經受電探測之外的各種測試。電探測通常係在橫越晶粒之多個部位處進行,從而量測多個電性質(例如電壓、電阻、頻率,每一參數被稱作特定頻率組碼)。頻率組碼之值為IC之品質之良好指示符;舉例而言,當經量測電阻極高時,此可指示並未達成組件之間的電接點且因此IC將為功能性的機會極低。若基板之電性質之測試傳達大量非功能IC,則可假定製造製程具有低良率。
在IC生產之最後階段進行測試的缺點為:僅在執行所有製程步驟之後才可判定關於遞送功能IC對非功能IC之最小所要比率的製程之良率是否符合某一準則。
發明人之一目標為解決目前先進技術之所提及缺點。 在本發明之一第一態樣中,提供一種用於預測與在一基板上製造半導體裝置之一製程相關之良率的方法,該方法包含:獲得一經訓練之第一模型,該經訓練之第一模型將模型化參數轉譯為一良率參數,該等模型化參數包含:a)與以下各者中之一或多者相關聯的幾何參數:藉由該製程製造之一裝置元件的一幾何特性、尺寸或位置,及b)經訓練之自由參數;獲得製程參數資料,該製程參數資料包含特性化該製程的製程參數;將該製程參數資料轉換為該等幾何參數的值;及使用該經訓練之第一模型及該等幾何參數的該等值來預測該良率參數。
在本發明之一第二態樣中,提供一種用於建構用於基於製程參數資料預測一良率參數之一第一模型的方法,該方法包含:判定藉由一製造製程製造之一裝置之複數個裝置元件的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將一或多個模型化參數轉譯成針對其對應裝置元件的一良率機率;該等模型化參數包含幾何參數及經訓練之自由參數;及將該第一模型建構為針對該等裝置元件中之每一者的該等良率機率模型的一組合。
在本發明之文獻中,術語「輻射」及「束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如具有為365 nm、248 nm、193 nm、157 nm或126 nm之波長)及極紫外線輻射(EUV,例如具有在約5 nm至100 nm之範圍內之波長)。
如本文所使用之術語「主光罩」、「遮罩」或「圖案化裝置」可被廣泛地解譯為係指可用以向入射輻射束賦予經圖案化橫截面之通用圖案化裝置,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除了經典遮罩(透射或反射;二元、相移、混合式等等)以外,其他此等圖案化裝置之實例亦包括: -可程式化鏡面陣列。關於此等鏡面陣列之更多資訊在美國專利第5,296,891號及第5,523,193號中給出,其以引用之方式併入本文中。 -可程式化LCD陣列。以引用之方式併入本文中的美國專利第5,229,872號中給出此構造的一實例。
圖1示意性地描繪微影設備LA。該微影設備LA包括:照明系統(亦被稱作照明器) IL,其經組態以調節輻射束B (例如UV輻射、DUV輻射或EUV輻射);支撐結構(例如遮罩台) MT,其經建構以支撐圖案化裝置(例如遮罩) MA且連接至經組態以根據某些參數來準確地定位該圖案化裝置MA之第一定位器PM;基板台(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化裝置MA賦予至輻射束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。
在操作中,照明器IL例如經由射束遞送系統BD自輻射源SO接收輻射束。照明系統IL可包括用於導向、塑形或控制輻射之各種類型之光學組件,諸如,折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。照明器IL可用來調節輻射束B,以在圖案化裝置MA之平面處在其橫截面中具有期望的空間及角強度分佈。
本文中所使用之術語「投影系統」PS應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用均與更一般術語「投影系統」PS同義。
微影設備可屬於如下類型:其中基板之至少一部分可由具有相對高折射率之液體(例如,水)覆蓋以便填充投影系統與基板之間的空間,其亦被稱作浸潤微影。以引用之方式併入本文中的美國專利第6,952,253號及PCT公開案第WO99-49504號中給出關於浸潤技術之更多資訊。
微影設備LA亦可屬於具有兩個(雙載物台)或多於兩個基板台WT及例如兩個或多於兩個支撐結構MT (圖中未繪示)之類型。在此等「多載物台」機器中,可並行地使用額外台/結構,或可對一或多個台進行預備步驟,同時將一或多個其他台用於將圖案化裝置MA之設計佈局曝光至基板W上。
在操作中,輻射束B入射於被固持於支撐結構(例如遮罩台MT)上之圖案化裝置(例如遮罩MA)上,且係由該圖案化裝置MA圖案化。在已橫穿遮罩MA的情況下,輻射束B傳遞通過投影系統PS,投影系統PS將該束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF (例如,干涉裝置、線性編碼器、2-D編碼器或電容性感測器),可準確地移動基板台WT,例如,以便將不同目標部分C定位於輻射束B之路徑中。相似地,第一定位器PM且有可能另一位置感測器(其未在圖1中明確地描繪)可用以相對於輻射束B之路徑來準確地定位遮罩MA。可使用遮罩對準標記M1、M2及基板對準標記P1、P2來對準遮罩MA及基板W。儘管所繪示之基板對準標記佔據專用目標部分,但該等標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。
如圖2中所展示,微影設備LA可形成微影製造單元LC之部分,微影設備LA有時亦被稱作微影製造單元(lithocell)或(微影)叢集,其常常亦包括對基板W執行曝光前及曝光後製程之設備。習知地,此等包括沈積抗蝕劑層之旋塗器SC、顯影曝光之抗蝕劑的顯影器DE、冷卻板CH及烘烤板BK,例如,用於調節基板W之溫度,例如,用於調節抗蝕劑層中之溶劑。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同製程設備之間移動基板W且將基板W遞送至微影設備LA之裝載匣LB。微影製造單元中通常亦統稱為塗佈顯影系統之裝置通常處於塗佈顯影系統控制單元TCU之控制下,該塗佈顯影系統控制單元自身可藉由監督控制系統SCS控制,該監督控制系統亦可例如經由微影控制單元LACU控制微影設備LA。
為了正確且一致地曝光由微影設備LA曝光之基板W,需要檢驗基板以量測經圖案化結構之性質,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等等。出於此目的,可在微影製造單元LC中包括檢測工具(圖中未繪示)。若偵測到誤差,則可對後續基板之曝光或對待對基板W執行之其他處理步驟進行例如調整,尤其是在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可被稱作度量衡設備之檢測設備用於判定基板W之性質,且尤其判定不同基板W之性質如何變化或與同一基板W之不同層相關聯之性質在不同層間如何變化。檢測設備可替代地經建構以識別基板W上之缺陷,且可例如為微影製造單元LC之部分,或可整合至微影設備LA中,或可甚至為單機裝置。檢測設備可量測潛影(曝光之後在抗蝕劑層中之影像)上,或半潛影(在曝光後烘烤步驟PEB之後抗蝕劑層中之影像)上,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已被移除)上,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上。
通常,微影設備LA中之圖案化製程係在處理中之最關鍵步驟中的一者,其需要基板W上之結構之尺寸標定及置放的高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境中,如圖3示意性地所描繪。此等系統中之一者係微影設備LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的合作以增強總體製程窗且提供嚴格控制迴路,從而確保由微影設備LA執行之圖案化保持在製程窗內。製程窗定義特定製造製程產生經定義結果(例如功能性半導體裝置)內--通常允許微影製程或圖案化製程中之製程參數變化內--的一系列製程參數(例如劑量、焦點、疊對)。
電腦系統CL可使用待圖案化之設計佈局(之一部分)以預測使用哪些解析度增強技術且執行運算微影模擬及計算,以判定哪些遮罩佈局及微影設備設定達成圖案化製程之最大總體製程窗(在圖3中由第一標度SC1中之雙白色箭頭描繪)。通常,解析度增強技術經配置以匹配微影設備LA之圖案化可能性。電腦系統CL亦可用於偵測微影設備LA當前正在製程窗內何處操作(例如,使用來自度量衡工具MT之輸入),以便預測由於例如次佳處理而是否可存在缺陷(在圖3中由第二標度SC2中之指向「0」的箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影設備LA以識別例如微影設備LA之校準狀態中的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
微影設備LA經組態以將圖案準確地再生至基板上。所施加之特徵之位置及尺寸需要在某些容許度內。位置誤差可歸因於疊對誤差(常常被稱作「疊對」)而出現。疊對為在第一曝光期間置放第一特徵相對於在第二曝光期間置放第二特徵時之誤差。微影設備藉由在圖案化之前將每一晶圓與參考準確地對準而使疊對誤差最小化。此係藉由使用對準感測器量測基板上之對準標記之位置來完成。可在以引用之方式併入本文中的美國專利申請公開案第US20100214550號中找到關於對準程序之更多資訊。圖案尺寸設定(例如CD)誤差可例如在基板相對於微影設備之焦平面並未正確地定位時出現。此等焦點位置誤差可與基板表面之非平坦度相關聯。微影設備藉由在圖案化之前使用位階感測器量測基板表面構形而使此等焦點位置誤差最小化。在後續圖案化期間應用基板高度校正以確保圖案化裝置至基板上之正確成像(聚焦)。可在以引用之方式併入本文中的美國專利申請公開案第US20070085991號中找到關於位階感測器系統之更多資訊。
除了微影設備LA及度量衡設備MT以外,在IC生產期間亦可使用其他處理設備。蝕刻站(圖中未繪示)在圖案曝光至抗蝕劑中之後處理基板。蝕刻站將圖案自抗蝕劑轉印至抗蝕劑層下方之一或多個層中。通常,蝕刻係基於施加電漿介質。局部蝕刻特性可例如使用基板之溫度控制或使用電壓控制環引導電漿介質來控制。可在以引用之方式併入本文中的國際專利申請公開案第WO2011081645號及美國專利申請公開案第US 20060016561號中找到關於蝕刻控制之更多資訊。
在IC之製造期間,極為重要的是,用於使用處理設備(諸如微影設備或蝕刻站)處理基板的製程條件保持穩定,使得特徵之性質保持在某些控制限度內。製程之穩定性對於IC之功能部分之特徵(亦即,產品特徵)尤其重要。為了保證穩定處理,製程控制能力需要就位。製程控制涉及監控處理資料及用於製程校正之構件之實施,例如基於處理資料之特性控制處理設備。製程控制可基於藉由度量衡設備MT進行之週期性量測,經常被稱作「進階製程控制」(另外亦被稱作APC)。可在以引用之方式併入本文中的美國專利申請公開案第US20120008127號中找到關於APC之更多資訊。典型APC實施涉及對基板上之度量衡特徵進行週期性量測以監控及校正與一或多個處理設備相關聯之漂移。度量衡特徵反映了對產品特徵之製程變化之回應。與產品特徵之敏感度相比,度量衡特徵對製程變化之敏感度可不同。在彼情況下,可判定所謂的「度量衡對裝置」偏移(另外亦被稱作MTD)。為模仿產品特徵之行為,度量衡目標可併有分段特徵、輔助特徵或具有特定幾何形狀及/或尺寸之特徵。謹慎設計之度量衡目標應以與產品特徵類似之方式對製程變化作出回應。可在以引用之方式併入本文中的國際專利申請公開案第WO 2015101458號中找到關於度量衡目標設計之更多資訊。
橫越基板及/或圖案化裝置的度量衡目標存在及/或經量測的部位之分佈經常被稱作「取樣方案」。通常,取樣方案基於相關製程參數之預期指紋來選擇;基板上之預期製程參數會波動的區域相比於預期製程參數相對穩定之區域通常經更密集地取樣。然而,基於度量衡量測對微影製程之產出率之可允許的影響,可執行之度量衡量測之數目存在實際限制。謹慎選擇之取樣方案對於準確地控制微影製程而不影響產出率(或至少不過多影響產出率)及/或不將主光罩或基板上之過大面積分配至度量衡特徵為至關重要的。與最佳定位及/或量測度量衡目標相關之技術常常被稱作「方案最佳化」。可在以引用之方式併入本文中的國際專利申請公開案第WO 2015110191號及歐洲專利申請案第EP16193903.8號中找到關於方案最佳化之更多資訊。
術語指紋可指經量測信號之主要(系統性)貢獻因素(「潛在因數」),且尤其係指與對晶圓之效能影響有關或與先前處理步驟有關的貢獻因素。此指紋可指基板(柵格)圖案(例如,來自對準、位階量測、疊對、焦點、CD)、場圖案(例如,來自場內對準、位階量測、疊對、焦點、CD)、基板區帶圖案(例如,晶圓量測之最外半徑)或甚至與晶圓曝光有關之掃描儀量測中之圖案(例如,來自主光罩對準量測、溫度/壓力/伺服剖面等之批次間加熱訊跡)。指紋可包含於指紋集合內,且可在指紋集合內經均勻或非均勻地編碼。
除了度量衡量測資料以外,內容脈絡資料亦可用於製程控制。內容脈絡資料可包含與以下各者中之一或多者相關的資料:選定處理工具(在處理設備之集區當中)、處理設備之特定特性、處理設備之設定、電路圖案之設計,及與處理條件相關的量測資料(例如,晶圓幾何形狀)。出於製程控制目的而使用內容脈絡資料之實例可在以引用之方式併入本文中的歐洲專利申請案第EP16156361.4號及國際專利申請案第PCT/EP2016/072363號中找到。可使用內容脈絡資料而以前饋方式控制或預測處理,其中內容脈絡資料係與在當前控制之製程步驟之前執行的製程步驟有關。內容脈絡資料經常與產品特徵性質在統計上相關。鑒於達成最佳的產品特徵性質,此實現處理設備之內容脈絡驅動控制。內容脈絡資料及度量衡資料亦可經組合以例如將稀疏度量衡資料富集至更詳細(密集)之資料變為可用的程度,此更適用於控制及/或診斷目的。關於組合內容脈絡資料及度量衡資料之更多資訊可見於以引用之方式併入本文中的美國專利臨時案申請號62/382,764中。
如上所述,監控製程係基於獲取與製程相關之資料。所需資料取樣率(每批次或每基板)及取樣密度取決於圖案再生之準確度的所需位準。針對低k1微影製程,即使小的基板間製程變化亦可為顯著的。內容脈絡資料及/或度量衡資料接著應足以以每基板為基礎實現製程控制。另外,當製程變化導致橫越基板之特性變化時,內容脈絡及/或度量衡資料之密度應橫越基板充分地分佈。然而,鑒於製程之所需產出率,可用於度量衡(量測)之時間受到限制。由於此限制,度量衡工具可僅對經選擇基板及/或橫越基板之經選擇部位進行量測。判定哪些基板需要進行量測之策略進一步描述於以引用之方式併入本文中的歐洲專利申請案EP16195047.2及EP16195049.8中。
實務上,經常有必要自關於製程參數(橫越一基板或複數個基板)之量測值之稀疏集合導出值之較密集映像。通常,量測值之此密集映像可自稀疏量測資料結合與製程參數之預期指紋相關聯的模型導出。可在以引用之方式併入本文中的國際專利申請公開案第WO 2013092106號中找到關於模型化量測資料之更多資訊。因為半導體製造製程涉及多個處理設備(微影設備、蝕刻站等),所以整體上最佳化製程可為有益的;例如考慮與個別處理設備相關之特定校正能力。此導致以下觀點:第一處理設備之控制可(部分地)基於第二處理設備之已知控制性質。此策略通常被稱作共同最佳化。此策略之實例包括微影設備與圖案化裝置之密度剖面的聯合最佳化及微影設備與蝕刻站之聯合最佳化。關於共同最佳化之更多資訊可見於國際專利申請案申請號PCT/EP2016/072852及美國專利臨時申請案第62/298,882號中,其以引用之方式併入本文中。
在一些製程控制情形下,控制目標可為例如「符合規範之晶粒之數目」。此描述旨在獲得每批量經處理基板的最大數目個功能產品之良率驅動之製程控制參數。通常產品係與基板上之晶粒相關聯,且因而,以良率為基礎之製程控制被稱作係基於「符合規範之晶粒」準則。此旨在最大化符合規範的晶粒之數目,而非應用橫越基板之經平均化最佳化(例如基於橫越基板之與最佳焦點之焦點差的最小平方最小化之最小平方最佳化)。因而,「符合規範之晶粒」最佳化可在最佳化製程參數時使用產品之先前知識(晶粒佈局)。最小平方最佳化通常同樣地處理每一部位,而不考量晶粒佈局。因而,最小平方最佳化相比於具有不合規範的七個部位,但僅影響兩個晶粒(例如,一個晶粒中有四個缺陷,另一晶片中有三個缺陷)之校正,可偏好「僅」具有不合規範之四個部位但各自在不同晶粒中之校正。然而,因為單一缺陷將趨向於將晶粒呈現為有缺陷的,所以最大化無缺陷晶粒(亦即,符合規範晶粒)之數目相比於僅最小化每基板缺陷之數目最終係更重要的。符合規範晶粒最佳化可包含每晶粒最大絕對值(max abs)最佳化。此最大絕對值最佳化可最小化效能參數自控制目標之最大偏差。可替代地使用用於最大絕對值函數之可微分近似值,使得成本函數更易於求解。為了使此最大絕對值最佳化有效,應將諸如晶圓圖之細節用於最佳化中。為獲得良好的基於良率之製程控制,用於度量衡量測之取樣方案可受益於在預期為對產量最具決定性的及/或可對於判定產量是否受影響在統計上最相關的部位處、部位上或部位附近執行之量測。除了量測產品特徵之性質以外,亦可量測缺陷之發生以進一步輔助為了最佳化良率而最佳化製程(參考缺陷檢測)。關於基於良率之控制之更多資訊可見於PCT專利申請案WO2018077651中,其以引用之方式併入本文中。
除了對預界定部位及基板執行度量衡量測以外,亦存在動態地分配需要選擇以用於量測之部位及基板之趨勢。動態選擇用於量測之基板之實例描述於以引用之方式併入本文中的PCT專利申請案WO2018072962中。關於量測部位(例如,取樣方案)之動態選擇之更多資訊可見於以引用之方式併入本文中的PCT專利申請案WO2017140532中。
相對較新技術領域為機器學習之域。關於此技術之方法如今用以基於存在於所獲取資料(量測及內容脈絡資料)內之圖案之辨識而改良製程參數之預測。另外,機器學習技術可用以在選擇出於製程控制之目的而最有用之資料方面指導使用者。
通常在處理基板之後獲得電量測資料。通常,當執行電度量衡以獲得電量測資料時,使用探測器來量測基板上之所有晶粒,該等探測器與在處理期間形成之電路接觸。可執行各種類型之量測:例如電壓、電流、電阻、電容及/或電感量測。可在不同條件(例如頻率、電壓、電流)下且在橫越晶粒之複數個部位處執行此等量測。電量測可包含特定結構/特徵或裝置是否為功能(例如,在規範內)的評估。替代地或另外,電量測可根據「頻率組碼」予以分類。在某一條件下與某一經量測參數(電流、電壓、電阻、電容、電感)相關聯的電量測通常被稱作單獨「頻率組碼」。因此,橫越晶粒之典型電量測可由複數個曲線圖表示,每一曲線圖表示與一特定頻率組碼相關聯的值之空間分佈。貫穿本文,使「頻率組碼」及「電特性」同義地使用使得與基板相關聯的頻率組碼之值被稱作基板之電特性之值。電量測資料亦可包含位元不對稱性資料或任何其他良率參數。
需要執行電量測之量測部位的分佈可並不恆定,但亦可取決於基板上之晶粒之相對位置。基板之邊緣處之晶粒更可能具有電缺陷,因此,相比於較接近於基板中心之晶粒,可對此等晶粒更密集地進行取樣。類似地,諸如與功能邏輯結構相關聯之彼等區的關鍵區可存在於晶粒內,而較少關鍵區可存在於例如晶粒的周邊處。有利的是在晶粒之關鍵區處比在要求較低之區處提供更密集電量測樣本方案。
經量測電特性之性質(最小值、最大值、變數或其他統計量測)為與晶粒上之某電路將為功能的機率相關的重要指示符。因此,在電特性與製程之良率之間存在強的關係。因此,為了良率控制,電特性量測係必不可少的。然而,電特性量測亦為費時的,且僅在半導體製造製程之結束階段處(例如,在校正非功能電路之選項幾乎不存在時)執行。
為向半導體製造製程提供較佳良率校正能力,提議基於在處理期間已經得到之資料來預測基板之良率。在基板之處理期間,沈積、圖案化且蝕刻多個層。重要的是,基板上所提供之圖案(特徵)具有定義明確的性質以便產生功能裝置。舉例而言,特徵應在校正之聚焦位置處成像,具有正確的臨界尺寸(CD)、正確的邊緣置放(亦即,最小之邊緣置放誤差EPE)且具有良好之疊對(亦即,各層與相關聯於底層之特徵準確地對準)。如先前所述,微影設備(例如,對準系統、位階量測系統)及度量衡設備(例如,散射計或電子束工具)在量測此等參數(在一些情況下用於一批次內之所有基板)中起重要作用。
吾人預期到,度量衡量測之結果(度量衡資料)將表示製程之某一特性,製程之該特性又被預期與將在探測測試期間所量測之電特性密切相關。圖4為經量測製程特性與電探測資料之間的關係之判定的示意性說明。該圖展示製程特性之製程指紋400,其展示在製程特性顯著不合規範時之陰影區405。作為特定實例,製程特性可為焦點且指紋可為如自位階感測器資料(例如自微影設備/掃描儀)獲得之與基板相關聯的聚焦誤差指紋。在此類實例中,陰影區展示與大位階量測誤差相關聯之區域。又所展示為對應電探測資料410。此處,陰影圓415指示在規範探測量測值外。因而,圖4示意性地示範製程指紋400通常與電探測資料410相關。亦展示所提議之資料分析步驟420。資料分析步驟420將製程指紋400映射至電探測資料410。
應瞭解,焦點/位階量測資料僅為製程特性資料之一個實例。製程特性可包含影響良率之任何可量測特性。可使用例如微影設備、另一度量衡設備或另一處理設備來量測製程特性。舉例而言,當使用諸如散射計之度量衡裝置來量測疊對指紋時,吾人預期到基板上之具有大疊對誤差之部位將與偏離(不合規範)電特性量測(例如歸因於基板上之層之次佳電接點)強烈相關且因此與非功能裝置強烈相關。引起此特定疊對指紋的基礎製程特性可例如為在兩個層之圖案化之間執行的退火步驟。除了使基板變形(藉此引起疊對誤差)以外,材料之電導率在退火步驟期間亦可能受到影響,從而導致對電特性量測之預期影響的額外貢獻。
可使用指紋分解技術來進一步判定製程特性。當量測疊對指紋時,可有益的是將指紋分解成例如預定義形狀。可基於處理步驟及/或處理工具之某些特性之先驗知識來選擇預定義形狀。用以分解指紋之常見技術使用主成份分析(PCA)或特徵值分解方法。代替利用所關注參數(例如疊對)之經直接量測之指紋,考慮指紋之單獨成份。PCA(及獨立成份分析(ICA))方法在此內容脈絡中描述於以引用之方式併入本文中的WO2015049087中。
因此,已提議基於使良率最大化而非使製程參數誤差最小化來將在處理基板之任何階段期間獲得的度量衡資料用於製程控制。基於對製程參數誤差之最小化的控制以一成本出現;其對製程參數之自零的極端偏差強加重的權重,從而聚焦於使彼等大的誤差最小化。同時,若許多晶粒具有小的但非零製程參數誤差,則將起作用的是潛在地以一個晶粒之較大誤差為代價改良所有此等小誤差(此等誤差中之任一者實際上皆不具有良率影響),藉此導致該晶粒之無真實益處的損失。最終,良率尤其為應經最佳化的重要量度。
迄今為止,無可信賴之可預測良率模型已為可用的。在電子設計自動化(EDA)中,電性質之模型的確存在,但其通常經理想化且並不恰當地鏡像真實製程條件。目標為開發一種良率預測模型,該良率預測模型可轉譯度量衡及控制動作為可用於控制的經預測良率。已提議組合裝置電性質、製程變化及製程控制動作、來自製造廠(fab)及機器學習的大型資料的模型化,以開發在預測良率上足夠好以用於製程控制的模型。
現將描述良率預測系統,該良率預測系統使用良率判定設計及度量衡輸入以驅動製程製造控制件(例如,微影設備/掃描儀、刻蝕器、度量衡裝置及/或用於IC製造製程中的任何其他製造設備)以便達成最佳良率並使系統良率損耗最小化。
良率預測系統可使用輸入或訓練資料來開發,該輸入或訓練資料包含:˙ 設計資訊;例如貫穿堆疊的設計資訊。此設計資訊可包括主光罩設計資訊及/或所使用之模型(例如,微影及/或製程模型);˙ 度量衡控制樹,例如,疊對控制樹及對準樹;˙ 沿線度量衡資料,諸如散射量測資料、電子束或SEM資料。˙ 最終電量測(電測試)資料,諸如晶粒位準探測、位元不對稱性。
輸出可包含經校準良率預測系統,該良率預測系統能夠使用沿線度量衡資料及微影(或其他製造設備)控制動作預測電測試結果。輸出亦可包含用於驗證控制迴路中所應用校正之有效性的度量衡(例如,疊對、CD、EPE、焦點等)的預期製程窗。
圖5為描述用於根據以上內容開發第一模型或準白盒模型之方法的流程圖。此模型描述為準白盒模型,此是由於模型包含裝置物理學層級,該層級僅是基於幾何資訊。缺失物理學藉由訓練幾何模型之一或多個自由參數來解決。
在步驟500處,對於每一主光罩層,識別關鍵或弱的圖案。此可藉由執行模擬,例如諸如LMC(微影可製造性檢查)之全晶片模擬來達成以識別「熱點」,該等熱點對於諸如劑量、焦點、疊對等之一或多個製程參數的製程變化為特別敏感的(例如,針對此等製程參數中一或多個具有相對小/狹窄的製程窗)。LMC為已知全晶片驗證方法。LMC應用一組模型(例如,用於光學近接校正(OPC)中之模型)以越過場來預測CD(基板上)。其主要目的為在光罩階數發送至遮罩車間之前強調場中的關鍵圖案。此外,其使得能夠拉出對於製程條件變化敏感的設計區。LMC基本上包含經模擬全晶片抗蝕劑輪廓線相對於設計目標的比較。應注意,OPC模型(因此,LMC模型)通常針對一個特定製程,針對一個特定光學條件(掃描儀)建構。
在步驟510處,對於在步驟500處識別為關鍵圖案或熱點之每一圖案,初始模型或幾何模型經建製,該初始模型或幾何模型將經量測製程參數(例如,焦點/劑量/疊對)轉譯成經模型化參數。模型化參數可包含與良率直接相關之參數,例如幾何特性及諸如CD之尺寸、輪廓,及諸如疊對之層間關係;且進一步包含一或多個自由參數。自由參數可包含使經量測製程/效能參數與良率相關參數相關的參數,諸如幾何特性及尺寸。舉例而言,焦點可經由具有一或多個係數作為自由參數的二次模型轉譯為CD。
在步驟520處,裝置位準良率機率模型針對在步驟500處識別出之每一圖案建製。此類良率機率模型可使用幾何公式來建製,該幾何公式將在前一步驟中判定之模型化參數(例如,幾何尺寸:CD,輪廓(諸如關注特徵的側壁角)、諸如兩個或兩個以上層之間的疊對之層間關係)轉譯為良率參數(例如,良率機率)。良率機率模型可包含簡單連接性模型,該簡單連接性模型將幾何資訊轉譯為具有可調諧自由參數的電良率機率,例如,電「斷開」及「短路連接」機率。此模型可判定包含「斷開」及/或「短路連接」之特定圖案或區域的機率。藉助於特定體實例,金屬及通路重疊區域可藉由模型轉譯為具有關聯(例如,高斯)機率函數的「斷開」。在此步驟中,自由參數可包含該/每一(例如,高斯)機率函數的平均及/或標準偏差。此類機率函數一旦經校準便可例如藉由判定合成資料且將此合成資料用於用以檢查校準之有效性的製程之模擬控制而用以計算產品製程窗。
在步驟530處,晶粒良率預測模型(亦即,準白盒模型)基於在步驟520處判定之個別裝置良率機率來建製。藉助於實例,簡單模型可包含判定晶粒將僅在(例如,關鍵或模型化)裝置圖案的x%將產生情況下產生,其中x為可調諧參數。
在步驟540處,準白盒模型藉由基於訓練資料(輸入資料)訓練自由參數來訓練,使得模型可基於其他輸入資料(例如,設計資訊、疊對控制樹/對準樹及沿線度量衡資料)來預測最終電量測(電測試)資料。
在步驟550處,經訓練之準白盒模型用以基於製程參數值自沿線度量衡(例如,疊對及焦點/劑量量測)及/或運算度量衡來預測良率。首先,此等製程參數值被轉譯成幾何參數的值(例如,使用在步驟510處開發或以其他方式開發的幾何模型)。準白盒模型在對應自由參數現經訓練情況下將基於導出之幾何參數而預測良率(及/或其他電特性)。在實施例中,此步驟包含使用控制模型或陰影模式控制模擬模型來合併不同控制動作的效應。陰影模式控制模擬模型預測製程參數(例如,劑量/焦點/疊對等)中之一或多者,此是由於不同控制動作經應用/發生變化,且準白盒模型基於陰影模式控制模擬模型之輸出來預測該等控制動作的良率(例如,經由導出之幾何參數)。
應注意,準白盒模型可經增強以超出斷開/短路連接判定以便包括其他電特性或電量測參數,例如電機及時序性質,諸如電容、電阻及電導率(例如,根據頻率組碼予以分類)。
在實施例中,在步驟560處,第一模型(準白盒模型)可用以產生合成資料以對第二模型(例如,黑盒模型)強加約束。黑盒模型可包含神經網路(例如,回旋神經網路(CNN))或類似者)。存在用於訓練中間準白盒模型而非簡單地訓練黑盒或直接來自輸入資料之CNN模型的兩個原因。首先,CNN模型不含有物理性質,且因此需要大量資料來約束CNN模型的行為。通常,可用度量衡資料不足以達成此情形。所提議之準白盒模型並不含有物理性質,且因此可產生大量(例如,合成)資料以將黑盒模型之參數空間約束於物理性質限制域內。第二,詳言之在取樣方面存在某些度量衡限制。常常不可能量測某些部位中的某些結構。藉由使用準白盒模型,有可能提供此類缺失之度量衡。當訓練黑盒模型時,相較於藉由準白盒模型產生之訓練資料,對實際度量衡資料給予較大加權。應瞭解,準白盒模型將具有準確度限制,訓練程序應慮及該等準確度限制且該等準確度限制不適用於實際量測資料。在進行此操作的機器學習域中存在多種公認技術,如對於熟習此項技術者將顯而易見。
所提議之第一模型及/或第二模型可用以按設計對晶粒層級良率進行沿線預測。此等預測又可用以驅動微影或製程控制以達成更好良率。
已提及,輸入資料可包含度量衡控制樹,諸如對準樹及/或疊對樹。對準樹為微影製程控制配方的一部分,該微影製程控制配方對於新的層判定哪些先前層之對準標記應用以將圖案應用於新層中。常常可在多於一個層中找到潛在合適的對準標記。在基板上存在對準標記之選項之處且在存在對準感測器之設定選項之處,此等選項通常界定於對準配方中。因此,對準配方界定如何量測對準標記之位置,以及量測哪些標記。所有層之對準配方之集合形成對準樹。
在施加圖案至給定層之前以與存在界定對準之量測的對準樹相同的方式,因此存在疊對樹,從而在已圖案化該層之後在量測製程之效能時界定待進行的疊對量測。運用疊對樹,與對準樹形成對比,應瞭解,層選項亦為至關重要的。對準目標可在層之間再使用,但疊對目標不可再使用。在一實例中,對於至少實驗基板,可提議此等目標中之每一者以各種類型提供,該等類型中之一者在一組情形下可最佳且另一類型在另一組情形下可最佳。因此,可存在用於量測彼等兩個層之間的疊對的兩個疊對目標之選擇。此等目標可由不同類型組成,且經執行以判定該等類型之實驗在真實製程中提供較好量測。
疊對樹及對準樹在多重圖案化且用於現代邏輯及記憶體IC裝置中的複雜多層裝置情況下潛在地為非常複雜的。在此情形下,複雜性帶來許多額外遮罩,特定而言在四重圖案化時代下。在諸如自對準雙倍圖案化之技術中,經建構之結構本身用以又建置形成裝置的更多結構,從而使疊對問題進一步複雜。此情形此外為使光學疊對度量衡複雜的數個問題,諸如介接層及吸收層。因此,針對相較於先前所使用製程複雜得多之製程的最佳化對準及疊對樹的設計花費愈來愈長的時間。
疊對控制為良率之關鍵驅動器。開發並最佳化對準及疊對樹可花費長的時間,且可能並不產生最佳疊對控制。更快速且準確的疊對控制在IC製程開發中為強烈需要的。然而,對任何給定層對之最準確疊對控制件的控制不必導致在真實裝置存在情況下使良率潛能最大化的疊對及/或對準樹,從而需要在度量衡之準確度、度量衡之精度與裝置之電要求之間的折衷。此經進一步複雜化,此是由於裝置之電敏感度可涉及多個層之間的互動,藉此強制進一步折衷。此類折衷因為其複雜性難以達成,且因為解決問題之專門知識通常並不被單人擁有,而是通常需要具有極其不同技能集合之人員的團隊。本文中描述一種使用統計學、機器學習及陰影模式模擬來使此製程自動化。
開發並最佳化對準樹及疊對樹可花費長的時間,且可能並不產生最佳疊對控制。當前方法常常涉及基於裝置之電特性來選擇關鍵層,且接著檢查確認是否有可能對所有此類層做出限定標記。在此類目標歸因於疊對限制不可用的情況下,嘗試替代性策略,諸如對準疊對目標至其他層或其他方法。
圖6(a)說明當前疊對對準樹界定策略之實例,其中層B及層C兩者各自與層A對準。在所提議方法中,針對不同疊對及/或對準策略之良率敏感度可經模擬,且良率基於替代性疊對及/或對準樹來預測。藉助於繪示在圖6(b)處之特定實例,層B可包含經模擬之虛擬疊對及/或對準層。層C及層B之疊對OV CB 等於針對層C及A之疊對OVCA 及針對層B及A之疊對OVBA 之間的差;亦即:OVCB =OVCA -OVBA
基於經由機器學習模型之良率分析,可判定此疊對對準樹相較於當前疊對對準樹是否可改良良率;亦即,在特定實例中,可評估層C是否應與層B而非層A對準以改良良率。
因此,藉由圖5描述之方法亦可訓練準白盒模型以預測良率,從而考慮度量衡控制樹(對準樹及/或疊對樹);例如基於輸入度量衡控制樹。此情形使得模型能夠亦使度量衡控制樹最佳化。在此實施例中,獲得描述度量衡控制樹之變化對製程參數資料之效應的經模擬及/或經量測製程參數資料(控制樹資料)。此控制樹資料可接著用作用於訓練準白盒模型以評估度量衡控制樹對良率之效應的訓練資料之部分。作為替代方案,黑盒模型可直接經訓練以預測良率,從而將度量衡控制樹考慮在內。
另外實施例可包含對於良率預測之信號可偵測性的模擬,使得輸出導致針對每一度量衡控制樹的良率預測連同對應信號可偵測性得分,自該信號可偵測性得分可判定度量衡控制樹在其量測可偵測性以及良率方面是否可行。此模擬可使用準白盒模型及/或黑盒模型並行地執行以推斷良率機率及/或其他電參數。替代地,信號可偵測性模擬可併入至實際準白盒模型及/或黑盒模型中。舉例而言,信號可偵測性模擬可用以將某些樹標記為非可行的(簡單狀況),或在準確度/精度方面標記為疊對/對準的可靠性(複雜狀況),從而在白盒或黑盒模型化期間被考慮。藉助於更特定實例,若疊對具有高雜訊,則此在預測最終良率時應予以考慮。此可既用以排除不良目標/層又用以增強最終良率預測的準確度。
在單獨實施例中,亦有可能基於專用機器學習良率模型來產生虛擬疊對及/或對準樹。此等虛擬疊對及/或對準樹可直接用以判定特定製程之最佳疊對及/或對準配方,其視需要亦考慮目標可偵測性。在實施例中,各種虛擬疊對及/或對準樹接著可用以基於經模擬資料或者經模擬資料與經量測資料之組合(例如,在陰影模式中)產生疊對資料(或其他效能資料)。良率接著可使用圖5之黑盒模型或準白盒模型來推斷;經模擬以具有最佳良率的模型可經選擇為最佳疊對及/或對準樹。
因此提議基於機器學習良率機率函數來產生最佳虛擬度量衡控制樹。此類方法可使用映射製程窗的習得良率函數來使良率最佳化。在此實施例中,製程窗及良率函數經習得而非藉由代理伺服器來假定或量測。不同虛擬控制樹導致不同良率函數及不同最終裝置良率。良率最佳化可針對所有層執行,使得例如良率函數注意到,在較早層上丟失之晶粒不具有產生機會,且將因此願意在其他層中犧牲掉此等晶粒以節省在稍後步驟中仍可產生的其他晶粒。同樣,具有低產生機會或中等產生機會的晶粒將使其要求相對於較早位準效能平衡,且在平均效能提前已知情況下潛在地亦使將來位準效能平衡。以此方式,有可能在如上文所描述之事實之後使用間接判定之疊對及陰影模式在真實良率資料情況下使度量衡控制樹最佳化。
良率機率函數基本上為依據製程窗參數以運算方式判定的良率;例如,依據針對一或多個參數之製程窗內的位置描述良率。良率機率函數可為參數或非參數的。製程窗參數不限於關於任何給定長度尺度的製程參數,而是可經擴展以包括任何數目個特徵。理念為如所描述判定可使良率最佳化的替代性疊對及對準樹,其自良率機率函數計算或量測。
另外,有可能模擬度量衡控制樹最佳化上的信號可偵測性,使得所提議之樹運用經保證之對準及疊對目標偵測將導致良率。以此方式,不僅有可能使用間接疊對與陰影模式及真實良率資料在上述事實之後針對產品使疊對及/或對準樹最佳化,而且有可能自所提議之裝置觀點模擬疊對及/或對準樹及可偵測性,從而允許在其經列印之前針對裝置的初始最佳化疊對及/或對準樹,或在裝置已經設計之後使不同疊對/對準樹最佳化。
本文所描述之方法可在製程控制策略中使用。此類製程控制典型地藉由為運算裝置之控制器結合參與半導體製程之設備中的一或多者(蝕刻裝置、掃描儀等)來協調。替代地,控制器為建置於設備或度量衡工具中之一者中的模組。製程控制件可判定校正及/或基於良率預測使製造製程及/或任何製造設備之控制件的任何態樣發生變化,及/或使用所描述模型中之任一者(例如,結合度量衡資料)以判定使良率最佳化的任何控制策略(同時視需要考量諸如信號可偵測性的其他因素)。
在以下經編號條項之清單中揭示本發明之其他實施例: 1.     一種用於預測與一製造製程相關之一良率參數的方法,該方法包含:獲得一經訓練之第一模型,該經訓練之第一模型將模型化參數轉譯為該良率參數,該等模型化參數包含幾何參數及經訓練之自由參數; 獲得製程參數資料,該製程參數資料與該製程的一或多個製程參數相關;及 基於該製程參數資料及經訓練之第一模型來預測該良率參數。 2.     如條項1之方法,其中該良率參數描述藉由該製造製程製造之一裝置或其元件將起作用的機率之一度量。 3.     如條項1或2之方法,其中該良率參數描述與藉由該製造製程製造之一裝置或其元件之一電阻、電感或電容相關聯的一電特性。 4.     如任一前述條項之方法,該方法包含在預測該良率參數之前使用一或多個幾何模型將該製程參數資料轉換為該等幾何參數。 5.     如任一前述條項之方法,其中該製程參數資料與使用沿線度量衡可量測的一或多個製程參數相關。 6.     如任一前述條項之方法,其中該一或多個製程參數包含以下各者中之一或多者:疊對、對準、位階量測、焦點或劑量。 7.     如任一前述條項之方法,其中該製程參數資料與一度量衡控制樹中之變化相關,使得該良率參數取決於該度量控制樹。 8.     如條項7之方法,其中該度量衡控制樹可包含一疊對樹及/或一對準樹。 9.     如條項7之方法,該方法包含執行與藉由該度量衡控制樹描述之一度量衡動作相關的一信號可偵測性模擬以判定對應於該良率參數之信號可偵測性的一度量。 10.   如任一前述條項之方法,其中該經訓練之第一模型與藉由該製造製程製造之一裝置的一或多個裝置元件相關,該一或多個裝置元件被識別為對於製程為相對敏感的。 11.   如任一前述條項之方法,該方法包含在該第一模型經訓練以獲得該經訓練之第一模型之前建構該第一模型的初始步驟,該初始步驟包含: 判定藉由該製造製程製造之一裝置之一或多個裝置元件中每一者的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將該等模型化參數轉譯為其對應裝置元件的一良率機率。 12.   如條項11之方法,其中該一或多個裝置元件包含已識別為對於製程為相對敏感的彼等裝置元件。 13.   如條項12之方法,該方法包含判定對於製程為相對敏感之該等裝置元件的一步驟。 14.   如條項11至13中任一項之方法,其中每一良率機率模型包含與機率函數之統計參數相關的自由參數。 15.   如條項14之方法,其中該機率函數之該等統計參數與該機率函數之一平均值及/或一標準偏差相關。 16.   如條項11至15中任一項之方法,該方法包含建構一或多個幾何模型,該一或多個幾何模型在判定該一或多個良率機率模型之前將該等製程參數轉譯為該等模型參數。 17.   如條項11至16中任一項之方法,該方法包含基於該一或多個裝置元件中每一者的該良率機率模型而建構該第一模型。 18.   如條項17之方法,其中該第一模型包含描述該裝置之一良率機率之該等良率機率模型的一組合。 19.   如條項18之方法,其中該等良率機率模型之該組合包含基於該等良率機率模型之比例來判定該良率參數,該良率機率針對該等良率機率模型判定為將正產生。 20.   如條項19之方法,其中該比例為一可調諧參數。 21.   如條項11至20中任一項之方法,該方法包含使用第一訓練資料訓練該第一模型的一另一步驟,該第一訓練資料包含電量測資料及以下各者中之一或多者:經量測及/或模擬之製程參數資料、度量衡控制樹及設計資訊。 22.   如條項21之方法,其中該等度量衡控制樹包含描述疊對樹及/或至少描述分別在一疊對或對準製程中量測之該等目標的對準樹,該方法包含獲得描述度量衡控制樹之變化對該製程參數資料之效應的經模擬及/或經量測控制樹資料,且該第一訓練資料包含用於訓練該第一模型來評估一度量衡控制樹對該良率參數之該效應的該控制樹資料。 23.   如任一前述條項之方法,該方法包含使用一控制模型結合該經訓練之第一模型,該控制模型預測一或多個控制動作之變化對該等製程參數中之一或多者的效應,該控制模型之輸出被輸入至該經訓練之第一模型從而預測該良率參數。 24.   如任一前述條項之方法,該方法包含使用該經訓練之第一模型來預測關於一生產基板的該良率參數。 25.   如條項1至23中任一項之方法,其包含使用該第一模型來產生用於訓練一第二模型之第二訓練資料,該第二訓練資料包含基於各種製程參數資料的預測良率參數。 26.   如條項25之方法,其中該第二模型包含一黑盒模型,諸如一神經網路。 27.   如條項25或26之方法,該方法包含使用該第二模型來預測關於一生產基板的該良率參數。 28.   如任一前述條項之方法,該方法包含基於該經預測良率參數來執行針對該製造製程之控制的一控制動作。 29.   如任一前述條項之方法,其中該等模型化參數包含僅幾何參數及經訓練之自由參數。 30.   一種用於建構用於基於製程參數資料預測一良率參數之一第一模型的方法,其包含: 判定藉由一製造製程製造之一裝置之複數個裝置元件的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將一或多個模型化參數轉譯成針對其對應裝置元件的一良率機率;該等模型化參數包含幾何參數及經訓練之自由參數;及 將該第一模型建構為針對該等裝置元件中之每一者的該等良率機率模型的一組合。 31.   如條項30之方法,其中該等模型化參數包含僅幾何參數及經訓練之自由參數。 32.   如條項31之方法,其中該一或多個裝置元件包含已識別為對於製程為相對敏感的裝置元件。 33.   如條項32之方法,該方法包含判定對於製程為相對敏感之該等裝置元件的一步驟。 34.   如條項31至33中任一項之方法,其中每一良率機率模型包含與機率函數之統計參數相關的自由參數。 35.   如條項34之方法,其中該機率函數之該等統計參數與該機率函數之一平均值及/或一標準偏差相關。 36.   如條項31至35中任一項之方法,該方法包含建構一或多個幾何模型,該一或多個幾何模型在判定該一或多個良率機率模型之前將該等製程參數轉譯為該等模型化參數。 37.   如條項30至36中任一項之方法,其中該等良率機率模型之該組合包含基於該等良率機率模型之比例來判定該良率參數,該良率機率針對該等良率機率模型判定為正在產生。 38.   如條項37之方法,其中該比例為一可調諧參數。 39.   如條項30至38中任一項之方法,該方法包含使用第一訓練資料訓練該第一模型的一另一步驟,該第一訓練資料包含電量測資料及以下各者中之一或多者:經量測及/或模擬之製程參數資料、度量衡控制樹及設計資訊。 40.   如條項39之方法,其中該等度量衡控制樹包含描述疊對樹及/或至少描述分別在一疊對或對準製程中量測之該等目標的對準樹,該方法包含獲得描述度量衡控制樹之變化對該製程參數資料之效應的經模擬及/或經量測控制樹資料,且該第一訓練資料包含用於訓練該第一模型來評估一度量衡控制樹對該良率參數之該效應的該控制樹資料。 41.   一種包含程式指令之電腦程式,該等程式指令用以在執行於一合適設備上時執行如條項1至40中任一項之方法。 42.   一種非暫時性電腦程式載體,其包含如條項41之電腦程式。 43.   一種處理系統,其包含一處理器及如條項41之電腦程式。 44.   一種度量衡系統,其包含: 用於一基板之一基板固持器; 一照射源,其用於運用輻射來照射該基板上之一結構; 一感測器,其用於感測來自該結構的經散射照射;及 如條項43之處理系統,該處理系統用以: 自該感測到之經散射照射導出一或多個製程參數的一或多個值;及 基於該一或多個製程參數之該導出的一或多個值預測一良率參數。 45.   一種微影製造單元,其包含如條項44之度量衡系統及一或多個整合式製造設備,該微影製造單元可用以基於該經預測良率參數而判定並應用針對一製造製程的一控制動作。 46.   如條項45之微影製造單元,其中該控制動作用以使經預測良率最佳化。 47.   一種用於預測與在一基板上製造半導體裝置之一製程相關之良率的方法,該方法包含: 獲得一經訓練之第一模型,該經訓練之第一模型將模型化參數轉譯為一良率參數,該等模型化參數包含:a)與以下各者中之一或多者相關聯的幾何參數:藉由該製程製造之一裝置元件的一幾何特性、尺寸或位置,及b)經訓練之自由參數; 獲得製程參數資料,該製程參數資料包含特性化該製程的製程參數; 將該製程參數資料轉換為該等幾何參數的值;及 使用該經訓練之第一模型及該等幾何參數的該等值來預測該良率參數。 48.   如條項47之方法,其中該良率參數為藉由該製程製造之一裝置或其元件將起作用的機率之一度量。 49.   如條項47或48之方法,其中該等幾何參數包含以下各者中之一或多者:臨界尺寸(CD)、疊對、側壁角或與該裝置元件之一幾何輪廓相關聯的任何參數。 50.   如條項47、48或49之方法,其中該等製程參數與如下各者中之一或多者相關:疊對、對準、位階量測、焦點或劑量。 51.   如條項47至50中任一項之方法,其中該製程參數資料與一對準及/或疊對樹中之變化相關,使得該良率參數取決於該疊對樹及/或對準樹。 52.   如條項47至51中任一項之方法,其中該經訓練之第一模型與藉由該製程製造之一裝置的一或多個裝置元件相關,該等裝置元件被識別為對於製程變化為敏感的。 53.   如條項47至52中任一項之方法,其進一步包含在該第一模型經訓練以獲得該經訓練之第一模型之前建構該第一模型的一初始步驟,該初始步驟包含: 判定藉由該製程製造之一裝置之一或多個裝置元件的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將該等模型化參數轉譯為其對應裝置元件的一良率機率。 54.   如條項53之方法,其中每一良率機率模型包含與機率函數之統計參數相關的自由參數。 55.   如條項47至54中任一項之方法,其進一步包含使用該第一模型來產生用於訓練一第二模型之第二訓練資料,該第二訓練資料包含基於先前製程參數資料的經預測良率參數。 56.   如條項55之方法,其中該第二模型包含一神經網路。 57.   如條項47至56中任一項之方法,其進一步包含基於該經預測良率參數來執行針對該製程之控制的一控制動作。 58.   一種用於建構用於基於製程參數資料預測一良率參數之一第一模型的方法,其包含: 判定藉由一製造製程製造之一裝置之複數個裝置元件的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將一或多個模型化參數轉譯成針對其對應裝置元件的一良率機率,該等模型化參數包含幾何參數及經訓練之自由參數;及 將該第一模型建構為針對該等裝置元件中之每一者的該等良率機率模型的一組合。 59.   如條項58之方法,其中每一良率機率模型包含與機率函數之統計參數相關的自由參數。 60.   一種電腦程式,其包含用以在一合適設備上執行時執行如條項47至59中任一項之方法的程式指令。 61.   一種非暫時性電腦程式載體,其包含如條項60之電腦程式。
儘管可在本文中特定地參考微影設備在IC製造中之使用,但應理解,本文中所描述之微影設備可具有其他應用。可能的其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影設備之內容背景中的本發明之實施例,但本發明之實施例可用於其他設備中。本發明之實施例可形成遮罩檢測設備、度量衡設備或者量測或處理諸如晶圓(或其他基板)或遮罩(或其他圖案化裝置)之物件之任何設備的部分。此等設備可一般被稱為微影工具。此微影工具可使用真空條件或環境(非真空)條件。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例的使用,但應瞭解,本發明在內容背景允許之情況下不限於光學微影且可用於其他應用(例如壓印微影)中。
雖然上文已描述了本發明之特定實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見的是,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
400:製程特性之製程指紋 405:陰影區 410:電探測資料 415:陰影圓 420:資料分析步驟 500:步驟 510:步驟 520:步驟 530:步驟 540:步驟 550:步驟 560:步驟 B:輻射束 BD:射束遞送系統 BK:烘烤板 C:目標部分 CH:冷卻板 CL:電腦系統 DE:顯影器 IF:位置感測器 IL:照明系統/照明器 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 LA:微影設備 LACU:微影控制單元 LB:裝載匣 LC:微影製造單元 M1:對準標記 M2:對準標記 MT:支撐結構/遮罩台 MA:圖案化裝置/遮罩 PW:第二定位器 PS:投影系統/折射投影透鏡系統 P1:基板對準標記 P2:基板對準標記 PW:第二定位器 PM:第一定位器 RO:基板處置器或機器人 SC:旋塗器 SC1:第一標度 SC2:第一標度 SC3:第三標度 SCS:監督控制系統 SO:輻射源 TCU:塗佈顯影系統控制單元 WT:基板台/晶圓台) W:基板/抗蝕劑塗佈晶圓
現將參看隨附示意性圖式僅藉助於實例來描述本發明之實施例,在隨附示意性圖式中: 圖1描繪微影設備之示意圖綜述; 圖2描繪微影製造單元之示意圖綜述; 圖3描繪整體微影之示意性表示,從而表示用以最佳化半導體製造之三種關鍵技術之間的合作; 圖4為經量測製程特性與電探測資料之間的關係之判定的示意性說明; 圖5為根據本發明之第一實施例之方法的流程圖;且 圖6說明使所有後續層與第一層A對準之疊對樹方法(a),及使層C與層B而非層A對準的替代疊對樹(b)。
500:步驟
510:步驟
520:步驟
530:步驟
540:步驟
550:步驟
560:步驟

Claims (15)

  1. 一種用於預測與在一基板上製造半導體裝置之一製程相關之良率的方法,該方法包含: 獲得一經訓練之第一模型,該經訓練之第一模型將模型化參數轉譯為一良率參數,該等模型化參數包含:a)與以下各者中之一或多者相關聯的幾何參數:藉由該製程製造之一裝置元件的一幾何特性、尺寸或位置,及b)經訓練之自由參數; 獲得製程參數資料,該製程參數資料包含特性化該製程的製程參數; 將該製程參數資料轉換為該等幾何參數的值;及 使用該經訓練之第一模型及該等幾何參數的該等值來預測該良率參數。
  2. 如請求項1之方法,其中該良率參數為藉由該製程製造之一裝置或其元件將起作用的機率之一度量。
  3. 如請求項1之方法,其中該等幾何參數包含以下各者中之一或多者:臨界尺寸(CD)、疊對、側壁角或與該裝置元件之一幾何輪廓相關聯的任何其他參數。
  4. 如請求項1之方法,其中該等製程參數與如下各者中之一或多者相關:疊對、對準、位階量測、焦點或劑量。
  5. 如請求項1之方法,其中該製程參數資料與一對準及/或疊對樹中之變化相關,使得該良率參數取決於該疊對樹及/或對準樹。
  6. 如請求項1之方法,其中該經訓練之第一模型與藉由該製程製造之一裝置的一或多個裝置元件相關,該等裝置元件被識別為對於製程變化為敏感的。
  7. 如請求項1之方法,其進一步包含在該第一模型經訓練以獲得該經訓練之第一模型之前建構該第一模型的一初始步驟,該初始步驟包含: 判定藉由該製程製造之一裝置之一或多個裝置元件的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將該等模型化參數轉譯為其對應裝置元件的一良率機率。
  8. 如請求項7之方法,其中每一良率機率模型包含與機率函數之統計參數相關的自由參數。
  9. 如請求項1之方法,其進一步包含使用該第一模型來產生用於訓練一第二模型之第二訓練資料,該第二訓練資料包含基於先前製程參數資料的經預測良率參數。
  10. 如請求項9之方法,其中該第二模型包含一神經網路。
  11. 如請求項1之方法,其進一步包含基於該經預測良率參數執行針對該製程之控制的一控制動作。
  12. 一種用於建構用於基於製程參數資料預測一良率參數之一第一模型的方法,其包含: 判定藉由一製造製程製造之一裝置之複數個裝置元件的一良率機率模型,每一良率機率模型包含一幾何公式,該幾何公式將一或多個模型化參數轉譯成針對其對應裝置元件的一良率機率,該等模型化參數包含幾何參數及經訓練之自由參數;及 將該第一模型建構為針對該等裝置元件中之每一者的該等良率機率模型的一組合。
  13. 如請求項12之方法,其中每一良率機率模型包含與機率函數之統計參數相關的自由參數。
  14. 一種包含程式指令之電腦程式,該等程式指令用以在一合適設備上執行時執行如請求項1之方法。
  15. 一種非暫時性電腦程式載體,其包含如請求項14之電腦程式。
TW108141334A 2018-12-03 2019-11-14 預測半導體製程良率之方法 TWI721645B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862774488P 2018-12-03 2018-12-03
US62/774,488 2018-12-03

Publications (2)

Publication Number Publication Date
TW202030652A true TW202030652A (zh) 2020-08-16
TWI721645B TWI721645B (zh) 2021-03-11

Family

ID=68468683

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141334A TWI721645B (zh) 2018-12-03 2019-11-14 預測半導體製程良率之方法

Country Status (6)

Country Link
US (1) US20220011728A1 (zh)
EP (1) EP3891558A1 (zh)
KR (1) KR102649158B1 (zh)
CN (1) CN113168111B (zh)
TW (1) TWI721645B (zh)
WO (1) WO2020114686A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769829B (zh) * 2021-05-21 2022-07-01 崛智科技有限公司 積體電路輔助設計裝置與方法以及電性效能梯度模型建構方法
TWI818241B (zh) * 2021-01-15 2023-10-11 台灣積體電路製造股份有限公司 薄膜沈積系統及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083560A1 (en) * 2017-10-23 2019-05-02 Kla-Tencor Corporation REDUCTION OR ELIMINATION OF PATTERN PLACEMENT ERROR IN METROLOGY MEASUREMENTS
KR20220132624A (ko) * 2020-02-12 2022-09-30 에이에스엠엘 네델란즈 비.브이. 제조 프로세스를 제어하기 위한 방법 및 연관된 장치
EP3944020A1 (en) * 2020-07-20 2022-01-26 ASML Netherlands B.V. Method for adjusting a patterning process
JP2023533491A (ja) * 2020-07-09 2023-08-03 エーエスエムエル ネザーランズ ビー.ブイ. パターニングプロセスの調整方法
CN112100753B (zh) * 2020-08-03 2024-03-22 中铝材料应用研究院有限公司 一种大数据的自冲铆接头关键几何参数的预测系统及方法
EP4050328A1 (en) * 2021-02-25 2022-08-31 ASML Netherlands B.V. Method to predict metrology offset of a semiconductor manufacturing process
US11586160B2 (en) * 2021-06-28 2023-02-21 Applied Materials, Inc. Reducing substrate surface scratching using machine learning
CN114564884B (zh) * 2022-02-16 2024-04-19 昆明贵金属研究所 一种同时优化电接触材料的多种电接触性能的设计方法
WO2023198381A1 (en) * 2022-04-14 2023-10-19 Asml Netherlands B.V. Methods of metrology and associated devices
CN114701135A (zh) * 2022-05-20 2022-07-05 深圳市信润富联数字科技有限公司 基于虚拟量测模型的注塑工件尺寸预测方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5296891A (en) 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US6622059B1 (en) * 2000-04-13 2003-09-16 Advanced Micro Devices, Inc. Automated process monitoring and analysis system for semiconductor processing
CN100470367C (zh) 2002-11-12 2009-03-18 Asml荷兰有限公司 光刻装置和器件制造方法
KR100610010B1 (ko) 2004-07-20 2006-08-08 삼성전자주식회사 반도체 식각 장치
US7443486B2 (en) * 2005-02-25 2008-10-28 Asml Netherlands B.V. Method for predicting a critical dimension of a feature imaged by a lithographic apparatus
US7239371B2 (en) 2005-10-18 2007-07-03 International Business Machines Corporation Density-aware dynamic leveling in scanning exposure systems
US7526749B2 (en) * 2005-10-31 2009-04-28 Kla-Tencor Technologies Corporation Methods and apparatus for designing and using micro-targets in overlay metrology
US20080319568A1 (en) 2007-06-22 2008-12-25 International Business Machines Corporation Method and system for creating array defect paretos using electrical overlay of bitfail maps, photo limited yield, yield, and auto pattern recognition code data
NL1036351A1 (nl) 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
KR101841378B1 (ko) 2009-12-15 2018-03-22 램 리써치 코포레이션 Cd 균일성을 향상시키기 위한 기판 온도의 조절
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
NL2009853A (en) 2011-12-23 2013-06-26 Asml Netherlands Bv Methods and apparatus for measuring a property of a substrate.
US10242142B2 (en) * 2013-03-14 2019-03-26 Coventor, Inc. Predictive 3-D virtual fabrication system and method
US9946165B2 (en) 2013-10-02 2018-04-17 Asml Netherlands B.V. Methods and apparatus for obtaining diagnostic information relating to an industrial process
JP6312834B2 (ja) 2013-12-30 2018-04-18 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジーターゲットの設計のための方法及び装置
NL2013677A (en) 2014-01-24 2015-07-29 Asml Netherlands Bv Method of determining a measurement subset of metrology points on a substrate, associated apparatus and computer program.
KR102353145B1 (ko) * 2015-04-10 2022-01-18 에이에스엠엘 네델란즈 비.브이. 검사와 계측을 위한 방법 및 장치
US10754256B2 (en) * 2015-10-08 2020-08-25 Asml Netherlands B.V. Method and apparatus for pattern correction and verification
CN108885414B (zh) 2016-02-18 2021-07-06 Asml荷兰有限公司 光刻装置、器件制造方法以及相关的数据处理装置和计算机程序产品
US10811323B2 (en) * 2016-03-01 2020-10-20 Asml Netherlands B.V. Method and apparatus to determine a patterning process parameter
US10281263B2 (en) * 2016-05-02 2019-05-07 Kla-Tencor Corporation Critical dimension measurements with gaseous adsorption
US10490462B2 (en) * 2016-10-13 2019-11-26 Kla Tencor Corporation Metrology systems and methods for process control
EP3312693A1 (en) 2016-10-21 2018-04-25 ASML Netherlands B.V. Methods & apparatus for controlling an industrial process
KR102224672B1 (ko) 2016-10-26 2021-03-08 에이에스엠엘 네델란즈 비.브이. 리소그래피 프로세스의 최적화 방법
CN115220311A (zh) * 2017-05-05 2022-10-21 Asml荷兰有限公司 用于预测器件制造工艺的良率的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818241B (zh) * 2021-01-15 2023-10-11 台灣積體電路製造股份有限公司 薄膜沈積系統及方法
TWI769829B (zh) * 2021-05-21 2022-07-01 崛智科技有限公司 積體電路輔助設計裝置與方法以及電性效能梯度模型建構方法
US11880643B2 (en) 2021-05-21 2024-01-23 Digwise Technology Corporation, Ltd Device and method for integrated circuit assistance design, and method for constructing electrical performance gradient model

Also Published As

Publication number Publication date
CN113168111B (zh) 2024-05-03
EP3891558A1 (en) 2021-10-13
CN113168111A (zh) 2021-07-23
KR102649158B1 (ko) 2024-03-20
WO2020114686A1 (en) 2020-06-11
US20220011728A1 (en) 2022-01-13
TWI721645B (zh) 2021-03-11
KR20210083348A (ko) 2021-07-06

Similar Documents

Publication Publication Date Title
TWI721645B (zh) 預測半導體製程良率之方法
TWI683189B (zh) 用以預測器件製造製程之良率的方法
US11966166B2 (en) Measurement apparatus and a method for determining a substrate grid
TWI726483B (zh) 用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體
TWI722699B (zh) 用於判定與半導體製程的效能度量有關之校正之方法、獲得用於判定與微影程序之效能度量有關的校正之至少一個經訓練模型的方法、電腦程式、及相關聯之非暫時性電腦程式載體及處理裝置
TWI681479B (zh) 用於分析半導體晶圓之處理的方法及裝置
TWI746019B (zh) 用於判定特徵對效能的貢獻的方法及設備
TWI778304B (zh) 用於監測微影裝置之方法
TW202119135A (zh) 用於控制微影設備之方法
TW202125110A (zh) 決定微影匹配性能
TWI803186B (zh) 預測半導體製程之度量衡偏移之方法及電腦程式
KR20230156063A (ko) 반도체 제조 프로세스를 특성화하기 위한 방법 및 장치
TW202143084A (zh) 插補模型組態