TWI726483B - 用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體 - Google Patents

用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體 Download PDF

Info

Publication number
TWI726483B
TWI726483B TW108141115A TW108141115A TWI726483B TW I726483 B TWI726483 B TW I726483B TW 108141115 A TW108141115 A TW 108141115A TW 108141115 A TW108141115 A TW 108141115A TW I726483 B TWI726483 B TW I726483B
Authority
TW
Taiwan
Prior art keywords
data
substrate
yield
metrology
measurement
Prior art date
Application number
TW108141115A
Other languages
English (en)
Other versions
TW202028882A (zh
Inventor
林晨希
希拉 艾米爾 塔伯里
哈奇 爾金 希可利
賽門 飛利浦 史賓斯 海斯汀思
伯瑞斯 曼徹奇可夫
鄒毅
程亞娜
麥辛姆 飛利浦 費德里科 杰尼
陳子超
戴維特 哈魯云嚴
幼平 張
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202028882A publication Critical patent/TW202028882A/zh
Application granted granted Critical
Publication of TWI726483B publication Critical patent/TWI726483B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32193Ann, neural base quality management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32368Quality control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers

Abstract

本發明描述一種用於判定影響用於在一基板上製造裝置之一程序中的良率之一根本原因之方法,該方法包含:獲得良率分佈資料,其包含在該基板或其部分上之一良率參數的分佈;獲得度量衡資料的集合,每一集合包含對應於該基板之一不同層之該基板或其部分上方的一程序參數之一空間變化;基於一相似性度量比較該良率分佈資料與度量衡資料,該相似性度量描述該良率分佈資料與該度量衡資料之該等集合中的一個別集合之間的一空間相似性;及自度量衡資料之該等集合判定度量衡資料之一第一相似集合,就對應層的處理次序而言,該第一相似集合為度量衡資料之該第一集合,其經判定為與該良率分佈資料相似。

Description

用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體
本發明係關於半導體製造程序,尤其係關於影響經歷該程序之基板之良率的根本原因之方法。
微影設備為經建構以將所要圖案施加至基板上之機器。微影設備可用於例如積體電路(IC)之製造中。微影設備可例如將圖案化裝置(例如光罩)處之圖案(通常亦稱作「設計佈局」或「設計」)投影至設置於基板(例如晶圓)上之輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影設備可使用電磁輻射。此輻射之波長決定可形成於基板上的特徵之最小大小。當前在使用中之典型波長為365nm(i線)、248nm、193nm及13.5nm。相比於使用例如波長為193nm之輻射的微影設備,使用具有介於4nm至20nm之範圍內的波長(例如6.7nm或13.5nm)之極紫外線(EUV)輻射的微影設備可用以在基板上形成較小特徵。
低k1微影可用以處理尺寸小於微影設備之典型解析度限度 的特徵。在此類程序中,可將解析度公式表達為CD=k1×λ/NA,其中λ為所使用輻射之波長,NA為微影設備中之投影光學件之數值孔徑,CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此情況下為半間距)且k1為經驗解析度因數。一般而言,k1愈小,則愈難以在基板上再生與由電路設計者規劃以便達成特定電功能性及效能之形狀及尺寸類似的圖案。為了克服此等困難,可將複雜微調步驟應用於微影投影設備及/或設計佈局。此等步驟包括例如但不限於:NA之最佳化、自訂照明方案、使用相移圖案化裝置、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常經界定為「解析度增強技術」(RET)之其他方法。替代地,用於控制微影設備之穩定性之嚴格控制環路(tight control loop)可用以改良在低k1下之圖案的再生。
此等嚴格控制環路通常係基於使用度量衡工具而獲得之度量衡資料,該度量衡工具量測經施加圖案的特性或表示經施加圖案之度量衡目標的特性。一般而言,度量衡工具係基於圖案及/或目標之位置及/或尺寸的光學量測。本質上假定此等光學量測表示製造積體電路的程序之品質。
除基於光學量測進行控制外,可執行基於電子束之量測;在該等基於電子束之量測中,可利用使用電子束工具(如藉由HMI提供)的所謂低電壓量測。此低電壓對比量測指示施加至基板之層之間的電接觸之品質。
通常,在所有程序步驟已完成之後,基板上之每一晶粒應適合於產生功能半導體裝置(IC)。原則上,在IC之進一步封裝應實行之前,每一晶粒使用各種技術經歷電測試,其中經歷電探測。電探測通常在 橫越晶粒之多個部位處進行,從而量測多個電屬性(例如電壓、電阻、頻率,將每一參數稱作具體頻率組碼(bin code))。頻率組碼之值為IC之品質的良好指示符;舉例而言,當經量測電阻極高時,此可指示未達成組件之間的電接觸,且因此IC將發揮功能的機率極低。若基板之電屬性之測試傳達大量非功能IC,則可假定製造程序具有低良率。
在IC生產之最終階段處的測試之缺點為,僅在實行全部程序步驟及層之後才可判定關於傳送功能IC與非功能IC之最小所要比率之程序的良率是否符合某些準則,且可對非功能IC之根本原因進行調查。
本發明人之目標為解決目前先進技術之所提及缺點。
在本發明之第一態樣中,提供一種用於判定影響用於製造一基板之一製造程序中之良率的一根本原因之方法,該方法包含:獲得良率分佈資料,其包含在該基板或其部分上方之一良率參數的分佈;獲得度量衡資料之複數個集合,其包含該基板或其部分上方的一程序參數之一空間變化,該度量衡資料之每一集合對應於該基板之一不同層;比較該良率分佈資料與度量衡資料,其中該比較包含判定一相似性度量,該相似性度量描述該良率分佈資料與對來自該度量衡資料之複數個集合中的集合的至少一選擇之間的一空間相似性;及自度量衡資料的集合之該選擇判定度量衡資料之第一相似集合,就對應層的處理次序而言,該第一相似集合為該度量衡資料之第一集合,其經判定為與該良率分佈資料相似。
在本發明之第二態樣中,提供一種用於監測用於製造一基板之一製造程序的方法,該方法包含:獲得關於良率分佈資料及度量衡資 料之一經訓練模型,該經訓練模型藉由比較度量衡資料之訓練集合及訓練對應於該製造程序的良率分佈資料來進行訓練;獲得生產度量衡資料之集合,每一集合包含對應於該基板或其部分之一不同層的一程序參數的一空間變化;使用該經訓練模型以判定生產度量衡資料之該等集合中之每一者與包含一特定良率失效圖案之歷史良率分佈資料中的一或多個失效圖案之一相似性度量;及在該相似性度量超出一臨限值的情況下標記一潛在問題。
400:映射指紋
410:掃描器度量衡指紋
420:晶圓內容脈絡資料
430:第一步驟
440:第二步驟
450:步驟
500:分類映射指紋
505:陰影圓
510a:掃描器度量衡指紋
510b:掃描器度量衡指紋
510c:掃描器度量衡指紋
515:陰影區
B:輻射光束
BD:光束遞送系統
BK:烘烤板
C:目標部分
CH:冷卻板
CL:電腦系統
DE:顯影器
IF:位置感測器
IL:照明系統/照明器
I/O1:輸入/輸出埠
I/O2:輸入/輸出埠
LA:微影設備
LACU:微影控制單元
LB:裝載匣
M1:光罩對準標記
M2:光罩對準標記
MA:圖案化裝置
MT:支撐結構/度量衡工具
P1:基板對準標記
P2:基板對準標記
PM:第一定位器
PS:投影系統
PW:第二定位器
RO:機器人
SC:旋塗器
SCS:監督控制系統
SC1:第一標度
SC2:第二標度
SC3:第三標度
SO:輻射源
TCU:塗佈顯影系統控制單元
W:基板
WT:基板台
XY:平面
現在將參看隨附示意性圖式,僅藉助於實例來描述本發明之實施例,在該等隨附示意性圖式中:圖1描繪微影設備之示意性概圖;圖2描繪微影製造單元之示意性概圖;圖3描繪整體微影之示意性表示,其表示用以最佳化半導體製造之三種關鍵技術之間的合作;圖4為根據本發明之實施例之根本原因分析方法流程;及圖5為掃描器指紋與對應於同一晶圓之電探測資料之間的圖案識別及相似性排序之示意性說明。
在本發明文獻中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如波長為365nm、248nm、193nm、157nm或126nm)及極紫外線輻射(EUV,例如具有介於約5nm至100nm之範圍內之波長)。
如本文中所使用之術語「倍縮光罩」、「光罩」或「圖案化 裝置」可經廣泛地解釋為係指可用以對入射輻射光束賦予經圖案化橫截面的通用圖案化裝置,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容脈絡中。除了經典光罩(透射或反射;二元、相移、混合式等)以外,其他此等圖案化裝置之實例亦包括:
-可程式化鏡面陣列。關於此等鏡面陣列之更多資訊在美國專利第5,296,891號及第5,523,193號中給出,該等美國專利以引用之方式併入本文中。
-可程式化LCD陣列。此建構之實例在美國專利第5,229,872號中給出,該美國專利以引用之方式併入本文中。
圖1示意性地描繪微影設備LA。微影設備LA包括:照明系統(亦稱作照明器)IL,其經組態以調節輻射光束B(例如UV輻射、DUV輻射或EUV輻射);支撐結構(例如光罩台)MT,其經建構以支撐圖案化裝置(例如光罩)MA且連接至第一定位器PM,該第一定位器PM經組態以根據某些參數準確地定位圖案化裝置MA;基板台(例如晶圓台)WT,其經建構以固持基板(例如塗佈抗蝕劑之晶圓-晶圓及基板為同義的且將在整個發明中可互換地使用)W且連接至第二定位器PW,該第二定位器PW經組態以根據某些參數準確地定位基板;以及投影系統(例如折射投影透鏡系統)PS,其經組態以將由圖案化裝置MA向輻射光束B所賦予之圖案投影至基板W之目標部分C(例如包含一或多個晶粒)上。
在操作中,照明器IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於引導、塑形或控制輻射之各種類型的光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件或其任何組合。照明器IL可用以調節輻射光束B,以在圖案化裝置 MA之平面處在其橫截面中具有所要空間分佈及角強度分佈。
本文中所使用之術語「投影系統」PS應經廣泛地解釋為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及靜電光學系統或其任何組合。可將本文中對術語「投影透鏡」之任何使用視為與更一般術語「投影系統」PS同義。
微影設備可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統與基板之間的空間,其亦稱作浸潤微影。關於浸潤技術之更多資訊在美國專利第6,952,253號及PCT公開案第WO99-49504號中給出,其以引用之方式併入本文中。
微影設備LA亦可屬於具有兩個(雙載物台)或更多個基板台WT及例如兩個或更多個支撐結構MT(圖中未展示)之類型。在此等「多載物台」機器中,可並行地使用額外台/結構,或可對一或多個台進行預備步驟,同時將一或多個其他台用於使圖案化裝置MA之設計佈局曝光至基板W上。
在操作中,輻射光束B入射於固持在支撐結構(例如光罩台MT)上之圖案化裝置(例如光罩MA)上且由該圖案化裝置MA進行圖案化。在橫穿光罩MA之後,輻射光束B穿過投影系統PS,該投影系統將該光束聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置感測器IF(例如干涉裝置、線性編碼器、2-D編碼器或電容式感測器),可準確地移動基板台WT,例如以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM且可能地另一位置感測器(其未在圖1中明確地描繪)可 用以相對於輻射光束B的路徑來準確地定位光罩MA。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準光罩MA及基板W。儘管所說明之基板對準標記佔據專用目標部分,但該等標記可位於目標部分之間的空間中(將此等標記稱為切割道對準標記)。
如圖2中所展示,微影設備LA可形成微影製造單元LC(有時亦稱作微影單元或(微影)叢集)之部分,微影製造單元通常亦包括對基板W執行曝光前程序及曝光後程序之設備。習知地,此等設備包括用以沈積抗蝕劑層之旋塗器SC、用以使經曝光之抗蝕劑顯影的顯影器DE、例如用於調節基板W之溫度(例如用於調節抗蝕劑層中之溶劑)的冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同處理設備之間移動基板W且將基板W遞送至微影設備LA之裝載匣LB。微影單元中通常亦統稱為塗佈顯影系統之裝置通常處於塗佈顯影系統控制單元TCU之控制下,該塗佈顯影系統控制單元自身可受監督控制系統SCS控制,該監督控制系統SCS亦可例如經由微影控制單元LACU來控制微影設備LA。
為了正確且一致地曝光由微影設備LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。出於此目的,可在微影單元LC中包括檢測工具(未展示)。若偵測到誤差,則可例如對後續基板之曝光或對將對基板W執行的其他處理步驟進行調整,尤其係在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可稱作度量衡設備之檢測設備用以判定基板W之屬性,且特定地判定不同基板W的屬性如何變化或與同一基板W之不同層相關聯 之屬性在不同層間如何變化。檢測設備可替代地經建構以識別基板W上之缺陷,且可例如為微影單元LC之部分,或可整合至微影設備LA中,或甚至可為獨立式裝置。檢測設備可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之經曝光部分或未經曝光部分已被移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
通常,微影設備LA中之圖案化程序為在處理中之最關鍵步驟中的一者,其需要基板W上之結構之尺寸標定及置放的高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境(如圖3中示意性地描繪的)中。此等系統中之一者為微影設備LA,其(實際上)連接至度量衡工具MT(第二系統)且連接至電腦系統CL(第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的合作以增強總體程序窗且提供嚴格控制環路,從而確保由微影裝置LA執行之圖案化保持在程序窗內。程序窗界定程序參數(例如劑量、焦點、疊對)之範圍,在該範圍內,具體製造程序產生所界定之結果(例如功能半導體裝置)-通常在該範圍內允許微影程序或圖案化程序中之程序參數變化。
電腦系統CL可使用待圖案化之設計佈局(之部分)以預測要使用哪些解析度增強技術且執行運算微影模擬及計算,以判定哪些光罩佈局及微影設備設定實現圖案化程序之最大總體程序窗(在圖3中由第一標度SC1中之雙白色箭頭描繪)。通常,解析度增強技術經配置以匹配微影設備LA之圖案化可能性。電腦系統CL亦可用於偵測在程序窗內微影設備LA目前正在何處操作(例如使用來自度量衡工具MT之輸入),以便預測缺陷 是否可歸因於例如次佳處理而存在(在圖3中由第二標度SC2中之指向「0」的箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影設備LA以識別例如微影設備LA之校準狀態下的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
微影設備LA經組態以將圖案準確地再生至基板上。所施加之特徵之位置及尺寸需要在某些容許度內。位置誤差可能歸因於疊對誤差(通常稱作「疊對」)而出現。疊對為相對於第二曝光期間之第二特徵在第一曝光期間置放第一特徵時的誤差。微影設備藉由在圖案化之前將每一晶圓與參考準確地對準來使疊對誤差最小化。此係藉由使用對準感測器量測基板上之對準標記之位置來完成。關於對準程序之更多資訊可見於美國專利申請公開案第US20100214550號,其以引用之方式併入本文中。圖案尺寸標定(例如CD)誤差可例如在基板相對於微影設備之焦平面並未正確地定位時出現。此等焦點位置誤差可與基板表面之非平整度相關聯。微影設備藉由在圖案化之前使用位階感測器量測基板表面構形而使此等焦點位置誤差最小化。在後續圖案化期間應用基板高度校正以確保圖案化裝置至基板上之正確成像(聚焦)。關於位階感測器系統之更多資訊可見於美國專利申請公開案第US20070085991號中,其以引用之方式併入本文中。
除微影設備LA及度量衡設備MT以外,在IC生產期間亦可使用其他處理設備。蝕刻站(圖中未展示)在圖案曝光至抗蝕劑中之後處理基板。蝕刻站將圖案自抗蝕劑轉印至抗蝕劑層下方之一或多個層中。通常,蝕刻係基於施加電漿介質。局部蝕刻特性可例如使用基板之溫度控制或使用電壓控制環引導電漿介質來控制。關於蝕刻控制之更多資訊可見於 國際專利申請公開案第WO2011081645號及美國專利申請公開案第US 20060016561號中,該等專利申請公開案以引用之方式併入本文中。
在IC之製造期間,極為重要的係使用處理設備(諸如微影設備或蝕刻站)處理基板的程序條件保持穩定以使得特徵之屬性保持在某些控制限度內。程序之穩定性對於IC之功能部分之特徵(亦即,產品特徵)尤其重要。為了保證穩定處理,程序控制能力需要就位。程序控制涉及監測處理資料及實施用於程序校正之構件,例如基於處理資料之特性控制處理設備。程序控制可基於藉由度量衡設備MT進行之週期性量測,通常稱作「進階程序控制」(亦進一步稱作APC)。關於APC之更多資訊可見於美國專利申請公開案第US20120008127號中,其以引用之方式併入本文中。典型APC實施涉及對基板上之度量衡特徵之週期性量測,從而監測及校正與一或多個處理設備相關聯之漂移。度量衡特徵反映了對產品特徵之程序變化的回應。與產品特徵之敏感度相比,度量衡特徵對程序變化之敏感度可為不同的。在彼情況下,可判定所謂的「度量衡對裝置」偏移(進一步亦稱作MTD)。為模仿產品特徵之行為,度量衡目標可併入分段特徵、輔助特徵或具有特定幾何形狀及/或尺寸之特徵。經謹慎設計之度量衡目標應以與產品特徵類似之方式對程序變化作出回應。關於度量衡目標設計之更多資訊可見於國際專利申請公開案第WO 2015101458號中,其以引用之方式併入本文中。
橫越基板及/或圖案化裝置的度量衡目標存在及/或經量測的部位之分佈通常稱作「取樣方案」。通常,基於相關程序參數之預期指紋來選擇取樣方案;在基板上之預期到程序參數會波動的區域相比於預期到程序參數相對穩定之區域通常更密集地經取樣。然而,基於度量衡量測 對微影程序之產出率之可允許的影響,可執行的度量衡量測之數目存在實際限制。經謹慎選擇之取樣方案對於準確地控制微影程序而不影響產出率(或至少不過多影響產出率)及/或不將倍縮光罩或基板上之過大面積分配至度量衡特徵為至關重要的。與最佳定位及/或量測度量衡目標相關之技術通常稱作「方案最佳化」。關於方案最佳化之更多資訊可見於國際專利申請公開案第WO 2015110191號及歐洲專利申請案申請號EP16193903.8中,其以引用之方式併入本文中。
術語指紋可指經量測信號之主要(系統性)貢獻因素(「潛在因數」),且尤其係指與基板上之效能影響有關係或與先前處理步驟有關係的貢獻因素。此指紋可指基板(柵格)圖案(例如來自對準、位階量測、疊對、焦點、CD)、場圖案(例如來自場內對準、位階量測、疊對、焦點、CD)、基板區帶圖案(例如晶圓量測之最外半徑)或甚至與晶圓曝光相關之掃描器量測中之圖案(例如來自倍縮光罩對準量測、溫度/壓力/伺服量變曲線等之批次間加熱訊跡)。指紋可包含於指紋類集內,且可在其中經均勻或非均勻地編碼。
除了度量衡量測資料以外,內容脈絡資料亦可用於程序控制。內容脈絡資料可包含與以下各者中之一或多者相關的資料:選定處理工具(在處理設備之集區當中)、處理設備之具體特性、處理設備之設定、電路圖案之設計,及與處理條件相關的量測資料(例如晶圓幾何形狀)。出於程序控制目的而使用內容脈絡資料之實例可可見於歐洲專利申請案第EP16156361.4號及國際專利申請案第PCT/EP2016/072363號中,其以引用之方式併入本文中。可使用內容脈絡資料而以前饋方式控制或預測處理,其中內容脈絡資料與在當前控制之程序步驟之前執行的程序步驟有 關。內容脈絡資料通常與產品特徵屬性在統計上相關。鑒於達成最佳的產品特徵屬性,此實現處理設備之內容脈絡驅動控制。內容脈絡資料及度量衡資料亦可經組合以例如將稀疏度量衡資料富集至更詳細(密集)之資料變為可用的程度,此更適用於控制及/或診斷目的。關於組合內容脈絡資料及度量衡資料之更多資訊可見於美國專利臨時案申請第62/382,764號,其以引用之方式併入本文中。
如上所述,監測程序係基於獲取與程序相關之資料。所需資料取樣率(每批次或每基板)及取樣密度取決於圖案再生之所需程度之準確度。針對低k1微影程序,即使小的基板間程序變化亦可為顯著的。內容脈絡資料及/或度量衡資料接著應足以以每基板為基礎實現程序控制。另外,當程序變化導致橫越基板之特性變化時,內容脈絡資料及/或度量衡資料之密度應橫越基板充分分佈。然而,鑒於程序之所需產出率,可用於度量衡(量測)之時間受到限制。由於此限制,度量衡工具可僅對選定基板及/或橫越基板之選定部位進行量測。判定基板需要進行量測之策略進一步描述於歐洲專利申請案EP16195047.2及EP16195049.8中,其以引用之方式併入本文中。
實務上,通常有必要自與程序參數(橫越一基板或複數個基板)相關之量測值之稀疏集合導出值的較密集映射。通常,量測值之此密集映射可自與同程序參數之預期指紋相關聯的模型結合之稀疏量測資料導出。關於模型化量測資料之更多資訊可見於國際專利申請公開案第WO 2013092106號中,其以引用之方式併入本文中。因為半導體製造程序涉及多個處理設備(微影設備、蝕刻站等),故整體上最佳化程序可為有益的;例如考慮與個別處理設備相關聯之具體校正能力。此導致以下觀點: 第一處理設備之控制可(部分地)基於第二處理設備之已知控制屬性。此策略通常被稱作共同最佳化。此策略之實例包括微影設備與圖案化裝置之密度量變曲線的聯合最佳化及微影設備與蝕刻站之聯合最佳化。關於共同最佳化之更多資訊可見於國際專利申請案申請號PCT/EP2016/072852及美國專利臨時申請案第62/298,882號中,其以引用之方式併入本文中。
在一些程序控制情形下,控制目標可為例如「符合規格的晶粒之數目」。此描述旨在獲得每批量經處理基板的最大數目個功能產品之良率驅動之程序控制參數。通常產品與基板上之晶粒相關聯,因而,基於良率之程序控制被稱作係基於「符合規格晶粒」準則。此旨在最大化符合規格的晶粒之數目,而非應用橫越基板之經平均化最佳化(例如基於橫越基板之與最佳焦點之焦點差的最小平方最小化之最小平方最佳化)。因而,「符合規格晶粒」最佳化可在最佳化程序參數時使用產品之先前知識(晶粒佈局)。最小平方最佳化通常同樣地處理每一部位,而不考量晶粒佈局。因而,最小平方最佳化相比於具有不合格之七個部位,但僅影響兩個晶粒(例如一個晶粒中有四個缺陷,另一晶粒中有三個缺陷)之校正,可偏好「僅」具有不合格的四個部位但每一部位在不同晶粒中之校正。然而,由於單一缺陷將趨向於將晶粒呈現為有缺陷的,故最大化無缺陷晶粒(亦即符合規格晶粒)之數目相比於僅最小化每基板缺陷之數目最終係更重要的。符合規格晶粒最佳化可包含每晶粒最大絕對值(max abs)最佳化。此最大絕對值最佳化可最小化來效能參數與控制目標之最大偏差。可替代地使用用於最大絕對值函數之可微分近似值,使得成本函數更易於求解。為了使此最大絕對值最佳化有效,應將諸如晶圓映射之細節用於最佳化中。為了獲得良好的基於良率之程序控制,用於度量衡量測之取樣方案可受益 於在被預期對良率最具決定性的及/或可對於判定良率是否受影響在統計上最相關的部位處、部位上或附近執行之量測。除量測產品特徵之屬性以外,亦可量測缺陷之出現以進一步輔助為了最佳良率的最佳化程序(參考缺陷檢測)。關於基於良率之控制之更多資訊可見於PCT專利申請案WO2018077651中,其以引用之方式併入本文中。
除了對預界定部位及基板執行度量衡量測以外,亦存在動態地分配需要選擇以用於量測之部位及基板之趨勢。動態選擇用於量測之基板之實例描述於PCT專利申請案WO2018072962中,其以引用之方式併入本文中。關於量測部位(例如取樣方案)之動態選擇之更多資訊可見於PCT專利申請案WO2017140532中,其以引用之方式併入本文中。
相對較新技術領域為機器學習之域。關於此技術之方法如今用以基於存在於所獲取資料(量測及內容脈絡資料)內之圖案之辨識來改良程序參數之預測。另外,機器學習技術可用以在選擇出於程序控制之目的而最為有用的資料方面指導使用者。
通常在處理基板之後獲得電量測資料。通常,當執行電度量衡以獲得電量測資料時,使用探測器來量測基板上之所有晶粒,該探測器與在處理期間形成之電路接觸(接近)。可執行各種類型之量測:例如電壓、電流、電阻、電容及電感量測。可在不同條件(例如頻率、電壓、電流)下且在橫越晶粒之複數個部位處執行此等量測。電量測可包含特定結構/特徵或裝置是否為發揮功能(例如符合規格)的評估。替代地或另外,電量測可根據「頻率組碼」予以分類。在某一條件下與某一經量測參數(電流、電壓、電阻、電容、電感)相關聯之電量測通常被稱作單獨「頻率組碼」。因此,橫越晶粒之典型電量測可由複數個曲線圖表示,每一曲線圖 表示與一特定頻率組碼相關聯的值之空間分佈。貫穿本文,使「頻率組碼」及「電特性」同義地使用以使得與基板相關聯的頻率組碼之值被稱作基板之電特性的值。電量測資料亦可包含不對稱性資料或任何其他良率參數。
需要執行電量測之量測部位的分佈可並不恆定,但亦可取決於基板上之晶粒之相對位置。基板之邊緣處之晶粒更可能具有電缺陷,因此,相比於較接近於基板中心之晶粒,可對此等晶粒更密集地進行取樣。類似地,諸如與功能邏輯結構相關聯之彼等區的關鍵區可存在於晶粒內,而較少關鍵區可存在於例如晶粒的周邊處。有利的係在晶粒之決定性區處比在要求較不高之區處提供更密集電量測樣本方案。
所量測電特性之性質(最小值、最大值、變數或其他統計量測)為與晶粒上之某電路將為功能的機率相關的重要指示符。因此,在電特性與程序之良率之間存在很強的關係。因此,為了良率控制,電特性量測為必不可少的。然而,電特性量測亦為費時的,且僅在半導體製造程序之結束階段處(例如在校正非功能電路之選項幾乎不存在時)執行。
為向半導體製造程序提供較佳良率校正能力,提議基於在處理期間已經得到的資料來預測基板之良率。在基板之處理期間,沈積、圖案化且蝕刻多個層。重要的係設置於基板上之圖案(特徵)具有明確界定之屬性以便產生功能裝置。舉例而言,特徵應在校正焦點位置處成像,具有校正臨界尺寸(CD)、校正邊緣置放(亦即,最小之邊緣置放誤差EPE)且具有良好疊對(亦即,每一層同與底層相關聯之特徵準確地對準)。如先前所述,微影設備(例如對準系統、位階量測系統)及度量衡設備(例如散射計或電子束工具)在量測此等參數(在一些情況下針對批次內之所有基板) 方面發揮重要作用。
當良率損失出現時,識別根本原因,亦即,引起良率損失問題之程序故障(例如[程序,設備]對)係至關重要的。大多數製造良率問題本身表現為晶圓分類映射(自在鋸切及封裝晶圓之前執行之電測試生成的良率分佈映射)中之空間訊跡或指紋。習知的根本原因分析通常將在晶圓分類映射指紋與程序歷史資訊(亦即,描述基板路由之內容脈絡資料)之間執行共同性/相關性分析,以便識別對系統性良率偏移(systematic yield excursion)負責的程序步驟/工具/工具屬性。
上文所描述之習知根本原因分析流程之主要問題為:
●存在大量待分析之內容脈絡資訊。基板通常在其達至線端分類測試之前經歷數百個不同程序步驟。對於此等程序步驟中之每一者,可存在數十量級之可用於晶圓處理的可能工具/腔室。此外,即使對於同一工具/腔室,工具屬性亦可隨時間推移而改變及漂移。
●一些內容脈絡變量(例如歸因於不完全隨機之晶圓路由)之間可存在潛在相關性。此可降低根本原因分析之準確度且增加見解(insight)時間,此係由於需要基於域知識對不相關的程序步驟進行人工監督/篩選。
一旦已藉由程序工程師識別及確認根本原因,即可建構資料庫以將系統性晶圓分類映射指紋與相關聯的程序根本原因一起儲存。當處理及探測新晶圓時,可經由時間計算及監測資料庫中的每一指紋之啟動/呈現,以便在晶圓分類映射變為可用之限制條件下偵測程序問題的再現。因此,基於上文所描述之習知方法之程序失效再現監測系統的主要缺陷為其在晶圓分類映射資料變為可用之前不能實現程序偏移(process excursion)之偵測。在此偵測可在數週之後,此期間程序問題可持續。在 此時間段內(亦即,在藉由問題性/離群值工具在特定步驟處處理晶圓時與在探測晶圓時之間的時間)處理之所有晶圓將經歷良率偏移。
為了解決此問題,提出將晶圓度量衡且尤其係在掃描器(微影設備或曝光工具)上執行之晶圓度量衡引入至根本原因分析流程中,且亦視情況地引入至偏移再現監測系統中。此種掃描器度量衡可包含例如來自位階量測感測器及對準感測器之所量測晶圓映射。此掃描器度量衡之優勢為其在每一單次曝光步驟處針對每一單個晶圓執行且可用。另外或替代地,晶圓度量衡可包含經導出之晶圓映射。此類經導出之晶圓映射可例如自掃描器度量衡導出。經導出之晶圓映射的實例包括:
●諸如晶圓高度量測之位階量測資訊。此資訊可提供對晶圓焦點漂移之見解,而其在XY平面中之空間梯度可指示疊對問題。
●使用不同彩色/波長之對準量測結果可用以導出多個指紋,該多個指紋中之每一者對不同程序步驟具有不同靈敏度。
●對準標記強度晶圓映射亦可有助於顯露某些程序步驟(諸如沈積或蝕刻)之本質。
要注意之另一重要事物為某些掃描器度量衡資料(諸如對準資料)之空間解析度通常比晶粒級低得多,該晶粒級為晶圓分類/探測映射之空間解析度。因此,可靠且準確的內插演算法可用以根據稀疏的如所量測之掃描器度量衡資料來重建構密集的晶粒級掃描器度量衡指紋。此晶粒級度量衡內插技術描述於例如WO2018/202361及美國臨時申請案62/624,537中。此等文獻以引用之方式併入本文中。
圖4說明在經改良的根本原因分析方法中之根據程序學習的方法。展示了一或多個分類映射指紋(亦即,良率分佈資料)400、貫穿 堆疊掃描器度量衡(through-stack scanner metrology)指紋(亦即,用於多個且較佳地為所有程序層之掃描器度量衡)410及晶圓內容脈絡資料420。此等內容經由第一步驟430及第二步驟440連結。藉助於對比,用步驟450說明本方法,該步驟450包含將晶圓分類映射指紋直接地連結至程序歷史資訊。更具體而言,步驟450表示晶圓級,基於指紋之共同性分析(CA),其中晶圓基於其共同分類/測試映射指紋經自動分類/相似性排序,隨後人類專家交互地選擇感興趣之指紋類別,且系統對與所選擇指紋最佳相關之程序步驟進行檢索。
步驟430、440描述根本原因分析或「程序學習」階段之二步驟方式。在步驟430中,針對所有曝光層在晶圓分類映射指紋400與掃描器度量衡指紋410(例如貫穿堆疊原始掃描器度量衡指紋及其導數)之間執行相關性分析。在步驟440處,掃描器度量衡指紋410連結至晶圓內容脈絡資料420或處理歷史(例如使用現有資料採礦(data mining)技術)。
在實施例中,相關性分析可藉由基於資訊性語義特徵向量(例如編碼)自每一個別層量測最終晶圓分類映射指紋400與掃描器度量衡指紋410之間的空間相似性(例如指紋匹配)來執行。此等語義特徵向量可藉由預先經訓練之機器學習模型(諸如神經網路、更具體而言深迴旋神經網路DCNN)來提取。建構或獲得能夠對指紋進行分類及偵測指紋(分佈圖案)之機器學習模型。隨後使用訓練資料來訓練此模型,該訓練資料包含晶圓分類映射之經標記資料集,其中標記可藉由人類工程師註解(例如監督學習)來提供。
一旦已計算相似性記分,系統將能夠識別與最終晶圓分類映射類似之掃描器度量衡晶圓映射中之每一者。此程序通常稱作「影像擷 取」或「圖案檢索」;適用於執行此步驟之實例系統可見於例如出版物「Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets」IEEE Transactions on Semiconductor Manufacturing(2015年2月,第1期,第28卷),其特此以引用之方式併入本文中。
若此晶圓映射「指紋擷取」系統自特定層返回掃描器度量衡指紋(亦即,識別為相似),則此指示掃描器感測器可識別與在線端晶圓分類映射中所觀測到的相同的非隨機空間失效圖案。因此,有可能的係,在此特定曝光步驟之前的程序步驟極有可能係導致良率偏移之原因。此外,在層序列資訊(就處理次序而言)為可用之情況下,此可與指紋相似性記分組合以進一步縮減程序步驟之清單。具體而言,若來自層i之掃描器度量衡未展示與晶圓分類映射指紋之相似性,但來自層i+1之掃描器度量衡展示與晶圓分類映射指紋之相似性,則程序問題極有可能在此兩個曝光步驟(i與i+1)之間出現。
因而,考慮到具有「感興趣的」觀測到之空間訊跡/指紋(例如具有顯著失效率之失效圖案)的目標良率晶圓映射或分類映射及用於同一晶圓的貫穿堆疊掃描器度量衡晶圓映射,此方法提出根據其與感興趣之目標良率晶圓映射的相似程度來對掃描器度量衡晶圓映射進行排序。視情況,若所有層之序列資訊為已知的,則有可能識別程序問題在何處開始。
圖5為影像擷取概念之示意性說明。圖式展示分類映射指紋500,其中陰影圓505指示不合規格探測量測。亦展示三個掃描器度量衡指紋510a、510b、510c,其各自對應於構成作為分類映射指紋500之主 體的晶圓之三個連續層。陰影區515為程序參數之值由掃描器度量衡指紋510a、510b、510c表徵的區,其中掃描器度量衡指紋510a、510b、510c展示相對於晶圓之剩餘部分的顯著偏差。影像擷取將認識到度量衡指紋510c與分類映射指紋500具有較高相似性,且因而將最高相似性度量歸因於此指紋510c。由於緊接在層510b之前的指紋之圖案與分類映射指紋500大不相同,故不合規格探測量測505之根本原因問題有可能係在處理對應於指紋510c之層期間導致的。因而應調查此層的內容脈絡。
在如所描述之逐晶圓的基礎上進行指紋匹配/擷取之補償方式為:使用任何合適技術(例如經由諸如主組份分析(PCA)之組份分析技術)提取晶圓間掃描器度量衡變化指紋,及使逐晶圓之此等指紋的啟動/記分與晶圓間晶圓分類映射變化指紋之晶圓級良率記分(生產晶粒之百分比)及/或啟動/記分相關。此可使得更易於識別問題(issue/problem)出現在何處及/或問題性工具或程序。
應注意,上文所描述之方法不僅適用於對如所描述之場間指紋的分析,且亦適用於場內指紋。在此種實施例中,場內指紋可藉由在晶圓分類映射及掃描器度量衡晶圓映射上方執行場平均值來提取。
返回至圖4,步驟440包含以與基於良率之內容脈絡連結(context linking)相似之方式在掃描器度量衡指紋與內容脈絡資料之間執行內容脈絡連結,且根據步驟/工具/工具參數識別最終根本原因。
除了所描述之二階段流程以外,另一潛在用例為使用晶圓分類映射與掃描器度量衡指紋之間的相似性來驗證來自先前在晶圓分類映射指紋與內容脈絡資訊之間執行的直接連結之根本原因發現。
一旦完成訓練/設置,基於預先經訓練深度學習的指紋偵測 及分類系統可用以即時地(例如在量測問題性層時)報告最新曝光之晶圓之掃描器度量衡中的指紋啟動/呈現。此可用以監測是否存在先前所識別之程序問題的任何再現,此將最終導致晶圓完成及電測試之前的良率偏移事件。
因而,何處描述了問題,僅需要對掃描器度量衡可拾取系統性良率損失之感興趣層之前的程序步驟進行分析,而無需嘗試自所有程序步驟貫穿堆疊尋找根本原因。另外,針對晶圓級分組技術研發之當前內容脈絡連結方法應仍適用於本文中之方法。晶圓級分組技術描述於例如WO2018/072962中,其以引用之方式併入本文中。探測指紋庫及知識資料庫可經擴展以包括較高相關性之掃描器度量衡指紋(指紋顯現之第一層),且隨後使用來自該層之掃描器感測器量測來設置程序監測。可設置單獨的趨勢圖表以基於指紋呈現記分(例如指示指紋類型或特定圖案的呈現之相似性記分)監測每一失效類型的指紋呈現。失效類型可包括(僅例如)圓環形狀(例如由圖5之510b所指示)、邊緣環、包括中心分組或邊緣分組之任何局部分組、鞍形狀、「擦痕」形狀。
使用本文中所描述之技術的根本原因分析期望較快的周轉時間。相較於晶圓分類映射指紋與晶圓內容脈絡之間的直接連結,僅需要檢查掃描器度量衡晶圓映射偵測及拾取程序偏移的曝光層之前的程序歷史之部分,且可潛在地尤其係在程序堆疊中早期出現偏移之情況下大大地減少候選根本原因的數目。當與晶圓分類映射指紋與晶圓內容脈絡之間的直接連結進行比較時,亦期望增加之準確度。應觀測歸因於迴旋/非隨機晶圓製造路線之少得多的潛在誤報根本原因發現。
對於程序問題再現監測,可潛在地在晶圓分類資料變為可 用之前較早地偵測程序問題再現。相較於習知監測技術(例如逐晶圓之單個KPI),基於指紋之監測方式為程序問題提供了較豐富的見解。
使用掃描器度量衡指紋及其導數之價值為,與晶圓分類映射資訊相似,掃描器度量衡資訊可在每一單次曝光步驟處用於每一單個晶圓。亦有可能(在本發明之範疇內)基於其他經取樣之度量衡(例如散射計或掃描電子顯微鏡度量衡)(諸如焦點、CD及疊對量測中之任一者或多者)執行本文所描述的指紋匹配/擷取方法。然而,此類型之度量衡資訊並不總是可用於每一單個晶圓,其限制根本原因分析之準確度及程序問題再現監測系統之有效度。
本文中所描述之深度學習方式之價值為其為顯著地減少工程時間或用以處理見解之時間的完全自動化程序。該方式為純粹地資料驅動方式,不需要特徵工程,此亦意謂不需要製造程序問題之電腦視覺專項知識及先前知識。然而,其他方式為可能的且在本發明之範疇內。一個此種方式包含晶圓分類映射及相關聯之貫穿堆疊掃描器度量衡晶圓映射之手動視覺檢測。然而,此方式將為極其勞力密集且費時的。另一選項包含基於電腦視覺及/或域知識驅動特徵提取使用相似性排序系統。然而,此要求電腦專項知識專項知識(訣竅)及fab程序問題之先前知識。
在以下經編號條項之清單中揭示本發明之其他實施例:
1.一種用於判定影響用於製造一基板之一製造程序中的良率之一根本原因的方法,該方法包含:獲得良率分佈資料,其包含在該基板或其部分上方之一良率參數的分佈;獲得度量衡資料,其對應於該良率分佈資料且包含該基板其部分上 方之一程序參數的一空間變化;比較該良率分佈資料與度量衡資料;及基於該比較判定該根本原因。
2.如條項1之方法,其中該比較判定一相似性度量,其描述該良率分佈資料與該度量衡資料之不同集合中的每一者之間的一空間相似性,每一集合對應於該基板之一不同層。
3.如條項2之方法,其中該比較包含基於編碼成資訊性語義特徵向量,執行該良率分佈資料與度量衡資料之間的一相關性分析。
4.如條項2或3之方法,其中該度量衡資料包含該製造程序之每一層的度量衡資料的一集合。
5.如條項2至4中任一項之方法,其包含根據該相似性度量對度量衡資料之該等集合進行排序。
6.如條項2至5中任一項之方法,其包含自度量衡資料之該等集合判定度量衡資料之一第一相似集合,就對應層的處理次序而言,該第一相似集合為度量衡資料之該第一集合,其經判定為與該良率分佈資料相似。
7.如條項6之方法,其中該判定度量衡資料之一第一相似集合包含判定超出一臨限值的該第一相似性度量及/或在該相似性臨限值的一跳躍(jump)之後立即判定一第一相似性度量。
8.如條項6或7之方法,其包含標記與對應於度量衡資料的該第一相似集合之該層相關的內容脈絡以用以進一步根本原因分析。
9.如條項6至8中任一項之方法,其包含對與對應於度量衡資料之該第一相似集合的該層之後的所有層相關之內容脈絡賦予較小或零加權。
10.如任一前述條項之方法,其中該良率分佈資料包含一特定良率 失效圖案。
11.如任一前述條項之方法,其包含執行一組份分析以自該度量衡資料提取一或多個基板間度量衡資料變化分佈;及使逐基板的此等基板間度量衡資料變化分佈之啟動及/或記分與以下中之任一者相關:一基板級良率記分,或用於基板間良率分佈資料變化分佈之對應啟動及/或記分。
12.如任一前述條項之方法,其中該良率分佈資料及度量衡資料各自包含場間分佈資料。
13.如條項1至11中任一項之方法,其中該良率分佈資料及度量衡資料各自包含場內分佈資料,該場內分佈資料已藉由對該對應量測之場間分佈資料執行一場平均來提取。
14.如任一前述條項之方法,其中該比較步驟為使用經訓練成對分佈圖案進行分類及/或偵測分佈圖案之一模型。
15.如條項14之方法,其中該模型為已對包含經標記的良率分佈資料之訓練資料進行訓練的一機器學習模型。
16.如條項15之方法,其中該機器學習模型包含一迴旋神經網路模型。
17.如條項15或16之方法,其進一步包含在監測用於製造一基板之一製造程序的一監測步驟中使用該模型,該步驟包含使用該模型以基於生產度量衡資料標記一潛在問題。
18.如條項17之方法,其中該生產度量衡資料包含生產度量衡資料之集合,每一集合對應於該基板的一不同層,且該監測步驟包含使用該模 型以判定生產度量衡資料之每一集合與先前在歷史良率分佈資料中觀測到的一或多個失效圖案的一相似性。
19.一種用於監測用於製造一基板之一製造程序的方法,該方法包含:獲得關於良率分佈資料及度量衡資料的一經訓練模型,該經訓練模型係藉由比較度量衡資料之訓練集合及訓練對應於該製造程序之良率分佈資料來進行訓練的;獲得生產度量衡資料之集合,每一集合包含對應於該基板或其部分之一不同層之一程序參數的一空間變化;使用該經訓練模型來判定生產度量衡資料之該等集合中之每一者與包含一特定良率失效圖案的該歷史良率分佈資料中之一或多個失效圖案的一相似性度量;及在該相似性度量超出一臨限值之情況下標記一潛在問題。
20.如任一前述條項之方法,其中該度量衡資料中之任一者與由一微影設備作為曝光一層之前的一預備步驟的部分而執行的度量衡相關。
21.如條項20之方法,其中該度量衡資料包含藉由一對準感測器執行之對準資料及/或藉由該微影設備之一位階感測器執行的位階量測資料,及/或自該對準資料及/或位階量測資料導出的度量衡資料。
22.如任一前述條項之方法,其中該良率分佈資料中之任一者包含電分類測試資料。
23.一種電腦程式,其包含可操作以在一合適設備上運行時執行如條項1至22中任一項之方法的程式指令。
24.一種非暫時性電腦程式載體,其包含如條項23之電腦程式。
25.一種處理系統,其包含一處理器及如條項23之電腦程式。
26.一種微影製造設備,其包含如條項25之處理系統。
儘管可在本文中具體地參考在製造IC中對微影設備的使用,但應理解,本文中所描述之微影設備可具有其他應用。可能之其他應用包括製造整合式光學系統、用於磁域記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中具體地參考在微影設備之內容脈絡中的本發明之實施例,但本發明之實施例可用於其他設備中。本發明之實施例可形成光罩檢測設備、度量衡設備,或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化裝置)之物件之任何設備的部件。此等設備可一般稱作微影工具。此種微影工具可使用真空條件或環境(非真空)條件。
儘管上文可具體地參考在光學微影之內容脈絡中對本發明之實施例的使用,但應瞭解,本發明在內容脈絡允許之情況下不限於光學微影且可用於其他應用(例如壓印微影)中。
雖然上文已描述本發明之具體實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。以上描述意欲為說明性的,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對如所描述之本發明進行修改。
400:映射指紋
410:掃描器度量衡指紋
420:晶圓內容脈絡資料
430:第一步驟
440:第二步驟
450:步驟

Claims (15)

  1. 一種用於判定影響用於在一基板上製造裝置之一程序中的良率(yield)的一根本原因(root cause)之方法,該方法包含;獲得良率分佈資料,其包含在該基板或其部分上之一良率參數的分佈;獲得度量衡資料的集合,每一集合包含對應於該基板之一不同層之該基板或其部分上方的一程序參數之一空間變化(spatial variation);基於一相似性度量(similarity metric)比較該良率分佈資料與度量衡資料,該相似性度量描述該良率分佈資料與該度量衡資料之該等集合中的一個別集合之間的一空間相似性;及自度量衡資料之該等集合判定度量衡資料之一第一相似集合,就對應層的處理次序而言,該第一相似集合為度量衡資料之該第一集合,其經判定為與該良率分佈資料相似。
  2. 如請求項1之方法,其中該比較包含基於編碼成資訊性語義特徵向量,執行該良率分佈資料與度量衡資料之間的一相關性分析。
  3. 如請求項1之方法,其包含根據該相似性度量對度量衡資料之該等集合進行排序。
  4. 如請求項1之方法,其中該判定度量衡資料之一第一相似集合包含:判定超出一臨限值的該第一相似性度量;及/或在該相似性臨限值的一跳 躍之後立即判定一第一相似性度量。
  5. 如請求項1之方法,其包含標記與對應於度量衡資料的該第一相似集合之該層相關的內容脈絡以用於進一步根本原因分析。
  6. 如請求項5之方法,其包含對與對應於度量衡資料之該第一相似集合的該層之後的所有層相關之內容脈絡賦予較小或零加權。
  7. 如請求項1之方法,其包含執行一組份分析以自該度量衡資料提取一或多個基板間度量衡資料變化分佈;及使每一基板的此等基板間度量衡資料變化分佈之啟動及/或記分與一基板級良率記分或用於基板間良率分佈資料變化分佈之對應啟動及/或記分中的任一者相關。
  8. 如請求項1之方法,其中該比較使用經訓練成對分佈圖案進行分類及/或偵測分佈圖案之一模型。
  9. 如請求項8之方法,其中該模型為已對包含經標記的良率分佈資料之訓練資料進行訓練的一機器學習模型。
  10. 如請求項9之方法,其中該機器學習模型包含一迴旋神經網路模型。
  11. 如請求項8之方法,其進一步包含在監測用於製造一基板的一製造程 序的一監測步驟中使用該模型,該步驟包含使用該模型以基於生產度量衡資料標記一潛在問題。
  12. 如請求項1之方法,其中該等度量衡資料集合與度量衡相關,該度量衡藉由一微影設備執行作為在曝光一層之前的一預備步驟之部分。
  13. 如請求項1之方法,其中該良率分佈資料包含電分類測試資料。
  14. 一種電腦程式,其包含可操作以在一合適設備上運行時執行如請求項1之方法的程式指令。
  15. 一種非暫時性電腦程式載體,其包含如請求項14之電腦程式。
TW108141115A 2018-12-07 2019-11-13 用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體 TWI726483B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862776568P 2018-12-07 2018-12-07
US62/776,568 2018-12-07

Publications (2)

Publication Number Publication Date
TW202028882A TW202028882A (zh) 2020-08-01
TWI726483B true TWI726483B (zh) 2021-05-01

Family

ID=68468729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141115A TWI726483B (zh) 2018-12-07 2019-11-13 用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體

Country Status (6)

Country Link
US (1) US11803127B2 (zh)
EP (1) EP3891559A1 (zh)
KR (1) KR102603071B1 (zh)
CN (1) CN113168116B (zh)
TW (1) TWI726483B (zh)
WO (1) WO2020114692A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945548A1 (en) * 2020-07-30 2022-02-02 ASML Netherlands B.V. Method for classifying semiconductor wafers
CN114065687A (zh) * 2020-08-07 2022-02-18 奥特斯奥地利科技与系统技术有限公司 基于人工智能确定用于制造部件承载件的行动规划
US11853042B2 (en) * 2021-02-17 2023-12-26 Applied Materials, Inc. Part, sensor, and metrology data integration
CN117540281B (zh) * 2024-01-09 2024-03-22 深圳市宇辉光学科技有限公司 一种应用于光学薄膜的数据优化分析系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336239A (zh) * 2013-06-03 2013-10-02 上海宏力半导体制造有限公司 晶圆测试的方法
WO2018092718A1 (ja) * 2016-11-15 2018-05-24 ヤンマー株式会社 収量分布算出装置及び収量分布算出方法
US20180275189A1 (en) * 2017-03-23 2018-09-27 Kla-Tencor Corporation Methods and Systems for Inline Parts Average Testing and Latent Reliability Defect Detection
EP3382606A1 (en) * 2017-03-27 2018-10-03 ASML Netherlands B.V. Optimizing an apparatus for multi-stage processing of product units

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
DE59105735D1 (de) 1990-05-02 1995-07-20 Fraunhofer Ges Forschung Belichtungsvorrichtung.
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
JP3639636B2 (ja) * 1995-04-25 2005-04-20 株式会社ルネサステクノロジ 半導体ウェハの不良解析装置及び不良解析方法
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US6303394B1 (en) * 1998-11-03 2001-10-16 Advanced Micro Devices, Inc. Global cluster pre-classification methodology
JP2000353729A (ja) 1999-06-10 2000-12-19 Matsushita Electronics Industry Corp 歩留り阻害要因推定方法および歩留り阻害要因推定装置
TW538251B (en) * 2000-03-03 2003-06-21 Promos Technologies Inc Method for finding the root cause of the failure of a faulty chip
JP3977324B2 (ja) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
KR100610010B1 (ko) 2004-07-20 2006-08-08 삼성전자주식회사 반도체 식각 장치
US7239371B2 (en) 2005-10-18 2007-07-03 International Business Machines Corporation Density-aware dynamic leveling in scanning exposure systems
NL1036351A1 (nl) 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
KR101841378B1 (ko) 2009-12-15 2018-03-22 램 리써치 코포레이션 Cd 균일성을 향상시키기 위한 기판 온도의 조절
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
NL2009853A (en) 2011-12-23 2013-06-26 Asml Netherlands Bv Methods and apparatus for measuring a property of a substrate.
US8607169B2 (en) * 2011-12-28 2013-12-10 Elitetech Technology Co., Ltd. Intelligent defect diagnosis method
WO2015101458A1 (en) 2013-12-30 2015-07-09 Asml Netherlands B.V. Method and apparatus for design of a metrology target
NL2013677A (en) 2014-01-24 2015-07-29 Asml Netherlands Bv Method of determining a measurement subset of metrology points on a substrate, associated apparatus and computer program.
CN104809730B (zh) * 2015-05-05 2017-10-03 上海联影医疗科技有限公司 从胸部ct图像提取气管的方法和装置
CN108369412B (zh) 2015-10-08 2020-10-16 Asml荷兰有限公司 用于控制工业过程的方法和设备
US11036146B2 (en) 2015-10-19 2021-06-15 Asml Netherlands B. V. Method and apparatus to reduce effects of nonlinear behavior
JP6630839B2 (ja) 2016-02-18 2020-01-15 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、デバイス製造方法ならびに関連データ処理装置およびコンピュータプログラム製品
KR102350572B1 (ko) 2016-02-22 2022-01-11 에이에스엠엘 네델란즈 비.브이. 계측 데이터에 대한 기여도들의 분리
KR102439450B1 (ko) 2016-02-23 2022-09-01 에이에스엠엘 네델란즈 비.브이. 패터닝 프로세스 제어 방법, 리소그래피 장치, 계측 장치 리소그래피 셀 및 연관된 컴퓨터 프로그램
EP3309617A1 (en) 2016-10-14 2018-04-18 ASML Netherlands B.V. Selecting a set of locations associated with a measurement or feature on a substrate
EP3312672A1 (en) 2016-10-21 2018-04-25 ASML Netherlands B.V. Methods of determining corrections for a patterning process, device manufacturing method, control system for a lithographic apparatus and lithographic apparatus
EP3312693A1 (en) 2016-10-21 2018-04-25 ASML Netherlands B.V. Methods & apparatus for controlling an industrial process
CN109891324B (zh) 2016-10-26 2021-05-25 Asml荷兰有限公司 用于光刻过程的优化的方法
KR102411813B1 (ko) 2017-05-05 2022-06-22 에이에스엠엘 네델란즈 비.브이. 디바이스 제조 프로세스의 수율의 예측 방법
IL254078A0 (en) * 2017-08-21 2017-09-28 Advanced Vision Tech A V T Ltd Method and system for creating images for testing
CN111670445B (zh) 2018-01-31 2024-03-22 Asml荷兰有限公司 基于过程参数的衬底标记方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336239A (zh) * 2013-06-03 2013-10-02 上海宏力半导体制造有限公司 晶圆测试的方法
WO2018092718A1 (ja) * 2016-11-15 2018-05-24 ヤンマー株式会社 収量分布算出装置及び収量分布算出方法
US20180275189A1 (en) * 2017-03-23 2018-09-27 Kla-Tencor Corporation Methods and Systems for Inline Parts Average Testing and Latent Reliability Defect Detection
EP3382606A1 (en) * 2017-03-27 2018-10-03 ASML Netherlands B.V. Optimizing an apparatus for multi-stage processing of product units

Also Published As

Publication number Publication date
KR102603071B1 (ko) 2023-11-15
TW202028882A (zh) 2020-08-01
CN113168116B (zh) 2024-04-16
WO2020114692A1 (en) 2020-06-11
CN113168116A (zh) 2021-07-23
EP3891559A1 (en) 2021-10-13
KR20210078559A (ko) 2021-06-28
US11803127B2 (en) 2023-10-31
US20210389677A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
TWI683189B (zh) 用以預測器件製造製程之良率的方法
CN113406865B (zh) 确定图案化过程的校正的方法
TWI721645B (zh) 預測半導體製程良率之方法
TWI726483B (zh) 用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體
TWI725707B (zh) 用於將經受半導體製程的基板歸類及建構相關的決定模型之方法、及相關的電腦程式及非暫時性電腦程式載體
TW201940988A (zh) 基於製程參數來標示基板之方法
TWI779700B (zh) 用於分類半導體晶圓之方法及設備
TWI746019B (zh) 用於判定特徵對效能的貢獻的方法及設備
KR20220147672A (ko) 반도체 제조 프로세스에서 기판들의 그룹에 대한 검사 전략을 결정하기 위한 방법
CN113168111B (zh) 用于预测半导体制造过程的产率的方法
KR20230038264A (ko) 반도체 팹 내의 오염을 식별하기 위한 방법 및 장치
TW202036167A (zh) 用以根據來自處理站之個別貢獻來特徵化後處理資料的方法