TW202028720A - 粒子計數器 - Google Patents

粒子計數器 Download PDF

Info

Publication number
TW202028720A
TW202028720A TW109102227A TW109102227A TW202028720A TW 202028720 A TW202028720 A TW 202028720A TW 109102227 A TW109102227 A TW 109102227A TW 109102227 A TW109102227 A TW 109102227A TW 202028720 A TW202028720 A TW 202028720A
Authority
TW
Taiwan
Prior art keywords
flow cell
flow path
light
flow
optical axis
Prior art date
Application number
TW109102227A
Other languages
English (en)
Other versions
TWI829855B (zh
Inventor
松田朋信
水上敬
阪上大輔
篠﨑大將
Original Assignee
日商理音股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商理音股份有限公司 filed Critical 日商理音股份有限公司
Publication of TW202028720A publication Critical patent/TW202028720A/zh
Application granted granted Critical
Publication of TWI829855B publication Critical patent/TWI829855B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • G01N15/149
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/13Moving of cuvettes or solid samples to or from the investigating station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • G01N2015/1022
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0357Sets of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment

Abstract

本發明提供粒子計數器,具備:多流動池,具有在第一方向上排列的多個流路,所述流路具有包括以照射光照射流路時形成的粒子的檢測區域的區間;受光光學系統,接受通過所述檢測區域且在所述流路內流動的試樣流體所含的粒子產生的放出光;光軸移動部,使所述照射光的光軸和所述放出光的光軸在所述第一方向上移動;以及計數器,基於放出光的強度,針對每個粒徑對所述粒子進行計數。

Description

粒子計數器
本申請以2019年01月24日向日本專利局提交的日本專利申請2019-009879為基礎,享受該申請的優先權。本申請通過參照該申請而包括該申請的全部內容。
本發明涉及粒子計數器。
以往,用於連續地測定多個試樣液體的具備多個流動池的測定裝置(粒子計數器)已被公眾所知(例如,參照日本專利公開公報特開2002-243632號)。在所述測定裝置中,照射光學系統和受光光學系統固定在規定的位置。另一方面,在水平方向上排列的多個流動池設置成能夠作為整體移動。通過以將測定對象的流動池排列在照射光學系統的光路上的方式,使多個流動池整體在水平方向上移動,實施定位。之後,進行試樣液體的測定。此外,試樣液體的出入口設置在各流動池的上下。試樣液體從流動池的下部流入,從上部排出。
粒子計數器具備:光源,射出照射光;照射光學系統,向光軸上的規定位置照射所述照射光;多流動池,包括多個流路(13),多個所述流路(13)由位於相對於主體(2)固定的位置的透明體構成,且在第一方向上排列,多個所述流路(13)具有用於檢測在所述流路(13)中流動的試樣流體所含的粒子的檢測區域(A),所述檢測區域(A)形成在由來自外部的所述照射光照射的所述流路(13)中的所述光軸上的規定位置;受光光學系統,以與所述第一方向正交的第二方向為光軸接受從通過所述檢測區域的所述粒子產生的放出光;光軸移動部,使向所述流路內入射的所述照射光的光軸以及所述受光光學系統接受的所述放出光的光軸沿著多個所述流路的排列在所述第一方向上移動;以及計數部,基於由所述受光光學系統接受的放出光的強度,針對每個粒徑對所述粒子進行計數。
在下面的詳細說明中,出於說明的目的,為了提供對所發明的實施方式的徹底的理解,提出了許多具體的細節。然而,顯然可以在沒有這些具體細節的前提下實施一個或更多的實施方式。在其它的情況下,為了簡化製圖,示意性地示出了公知的結構和裝置。
在日本專利公開公報特開2002-243632號的現有技術中,伴隨著流動池的移動,與各流動池連接的配管也移動。因此,在持續測定的期間,容易產生配管與流動池的連接部的鬆弛或者配管的彎曲部位處的因負載的蓄積而引起的龜裂,由於這些原因,試樣液體有可能漏出。此外,由於使用試樣液體從下向上流動的結構,所以用於流入試樣液體的配管以及用於排出試樣液體的配管分別與各流動池的下部和上部連接。因此,配管的走線需要大量的空間。因此,難以避免裝置大型化。
因此,本發明的一個目的在於提供在粒子計數器中防止試樣流體的漏出的技術,並且提供使這種粒子計數器小型化的技術。
本發明的一個方式提供以下的粒子計數器。另外,以下的括號中的語句僅是示例性的,本發明的方式並不限定於此。
即,本發明的一個方式的粒子計數器(本粒子計數器),具備:光源,射出照射光;照射光學系統,向光軸上的規定位置照射照射光;多流動池,包括在一定方向上排列的流路,所述流路具有形成在由照射光照射的流路中的規定位置的粒子的檢測區域;受光光學系統,接受從通過檢測區域的粒子產生的放出光;光軸移動部,使向流路內入射的照射光的光軸以及受光光學系統接受的放出光的光軸沿著多個流路的排列移動;以及計數部,基於由受光光學系統接受的放出光的強度,針對每個粒徑對粒子進行計數。
本粒子計數器例如使用向流路內照射的照射光對在設置於主體的流路內流動的試樣流體所含的粒子進行計數。
多流動池由位於相對於主體固定的位置的透明體構成,且在內部具有多個流路。此外,在多流動池中,以多個形成有粒子的檢測區域的區間在第一方向(例如,本粒子計數器的寬度方向)上排列的方式,形成多個流路的排列。受光光學系統將與第一方向正交的第二方向(例如,計數裝置的進深方向)作為光軸接受從粒子產生的放出光。並且,光軸移動部使向流路內入射的照射光的光軸以及受光光學系統接受的放出光的光軸在第一方向上移動。
在該方式的本粒子計數器中,通過切換多流動池所具有的多個流路中形成檢測區域的流路(作為照射光的聚光目的地的流路),能夠進行其他的檢測。在切換流路時,向流路內入射的照射光的光軸以及受光光學系統接受的放出光的光軸在第一方向上移動。與此相對,多流動池不移動。因而,在該方式的本粒子計數器中,與多流動池連接的配管不移動。因此,難以產生因配管的移動而引起的鬆弛和龜裂等。其結果是,能夠抑制試樣流體的漏出。
優選為,本粒子計數器還具備在第二方向上調整受光光學系統的焦點的焦點調整部。
在該方式的本粒子計數器中,伴隨著形成檢測區域的流路的切換,在第二方向上調整受光光學系統的焦點。此外,焦點的位置在第二方向上移動。但是,多流動池仍然不移動。因而,在該方式的本粒子計數器中,與多流動池連接的配管也不移動。因此,能夠抑制因配管的移動而引起的試樣流體的漏出。
更優選為,在本粒子計數器中,焦點調整部包括致動器,該致動器通過使支承受光光學系統的載台在第二方向上移動,在第二方向上調整焦點。此外,光軸移動部包括其他的致動器,該其他的致動器通過使支承致動器的載台與照射光學系統一起在第一方向上移動,使各光軸在第一方向上移動。
在該方式的本粒子計數器中,焦點調整部和光軸移動部分別具有致動器。焦點調整部通過使用自身所具有的致動器,使受光光學系統在第二方向上移動。另一方面,光軸移動部使用自身所具有的致動器,使照射光學系統和焦點調整部所具有的致動器一併在第一方向上移動。因此,上述方式的本粒子計數器能夠一併進行與能夠調整的要素(向流路內入射的照射光的光軸、受光光學系統接受的放出光的光軸、受光光學系統的焦點)相關的各結構(照射光學系統、受光光學系統)向同一方向的移動。由此,無需使各結構單獨向第一方向或第二方向移動。因此,能夠高效地進行伴隨著流路的切換的光軸的移動以及焦點的調整。
更優選為,本粒子計數器還具備存儲部,該存儲部對於形成於多流動池的內部的多個流路,至少預先存儲與各個流路的位置對應地由光軸移動部移動的各光軸的第一方向上的位置,光軸移動部構成為,與要形成檢測區域的流路對應地使各光軸移動至預先存儲於存儲部的各光軸的位置。
此外,在該方式的本粒子計數器中,存儲部除了各光軸的位置之外,還預先存儲與各個流路的位置對應地由焦點調整部調整的第二方向上的焦點的位置,焦點調整部構成為,與要形成檢測區域的流路對應地將焦點調整到預先存儲於存儲部的焦點的位置。
在上述方式的本粒子計數器中,在製造階段中,能夠精密地調整與各流路的位置對應的、第一方向上的各光軸的位置(例如,寬度方向上的坐標、X坐標)以及第二方向上的焦點的位置(例如,進深方向上的坐標、Y坐標)。基於調整結果決定的與各流路對應的兩個方向上的位置(與各流路對應的X坐標和Y坐標)預先存儲於存儲部。
因而,該方式的本粒子計數器伴隨著流路的切換,能夠通過使各光軸和焦點自動地移動與該流路對應地預先存儲的位置所相應的距離,使向流路內入射的照射光的光軸和受光光學系統接受的放出光的光軸、以及受光光學系統的焦點移動到最適於該流路的位置。由此,能夠高精度地進行粒子的檢測和粒子的計數。
此外,優選為,在本粒子計數器中,多流動池通過排列多個分別在內部具有流路的透明體的流動池而構成,各個流動池在與成為以多流動池整體觀察時的第一方向和第二方向的位置的基準的部位密接的狀態下被固定。
根據該方式的本粒子計數器,在多流動池的內部,在意圖的準確位置牢固地固定各流動池。因此,能夠將因各流動池的位置偏移而引起的粒子的檢測和粒子的計數的精度降低防患於未然。
更優選為,在本粒子計數器中,流動池為大致長方體形狀,包括形成於其相同側面的流入試樣流體的流入口以及排出所述試樣流體的排出口。進而,流動池具有如下的流路:包括從流入口沿著第二方向延伸的第一流路、從排出口沿著第二方向延伸的第三流路、以及沿著與第一方向和第二方向均正交的第三方向延伸並與第一流路和第三流路連接的第二流路,形成一條流道。
在排列試樣流體的流入口和排出口形成於不同的面的多個流動池(例如,具有大致形成一條直線狀的流路的流動池)而構成多流動池的情況下,與各面對應地確保配管用的空間。因此,無法避免粒子計數器的大型化。與此相對,在上述方式的本粒子計數器中,試樣流體的流入口和排出口形成於流動池的相同面。因此,在多流動池中,與其內部所具備的流動池連接的配管排列於多流動池的相同面。因而,根據上述方式的本粒子計數器,確保配管用的空間只要1個面即可。因而,能夠使本粒子計數器小型化。
此外,在排列試樣流體的流入口和排出口形成於不同面的多個流動池而構成多流動池的情況下,配管與不同的面連接。因此,根據配管的伸出方向,配管有可能與從流動池射出的照射光發生干涉。或者,由於配管與其他構成部接觸而撓曲,有可能從配管的內壁等產生細小粒子。這些有可能成為雜訊源而致使檢測精度有降低。與此相對,根據上述方式的本粒子計數器,難以產生配管與照射光或其他構成部的干涉。因此,能夠抑制因配管而引起的雜訊的產生。其結果是,能夠高精度地進行粒子的檢測和粒子的計數。
進一步優選為,在本粒子計數器中,放出光為散射光或螢光。根據上述方式的本粒子計數器,能夠選擇散射光或者螢光中根據試樣流體所含的粒子的性質而更容易接受的光,作為受光對象。因而,能夠提高粒子的檢測和粒子的計數的精度。
如上所述,根據本粒子計數器,能夠抑制試樣流體的漏出,並且能夠使粒子計數器小型化。
以下,參照附圖對本發明的實施方式進行說明。另外,以下的實施方式為優選的示例,本發明的技術並不限定於所述示例。
(粒子計數器的結構)
圖1是簡要地表示一實施方式的粒子計數器1的立體圖。為了容易理解實施方式,在圖1中,省略了一部分的構成部的圖示。另外,粒子計數器1為粒子計數裝置的一個方式。
粒子計數器1包括光源20、反射鏡30、照明用透鏡40、多個流動池10和受光單元50等。這些粒子計數器1的各構成部利用未圖示的夾具等直接或間接地支承於傳感器基座2。在傳感器基座2的底面設置有多個腳部3。腳部3由能夠吸收振動的防振橡膠等的彈性部件形成。由此,能夠抑制在周圍產生的振動向各構成部傳遞。此外,粒子計數器1收納於省略圖示的框體。因而,傳感器基座2以及未圖示的框體等在結構上成為粒子計數器1的主體部分(計數器主體、主體)。
在粒子計數器1的設置狀態或使用狀態下,在將傳感器基座2的長邊方向設為計數器主體的寬度方向、將與其正交的方向設為前後(進深)方向的情況下,多個流動池10在寬度方向上排列。各流動池10在其正面側具有試樣流體的入口和出口。在各入口和各出口分別連接有配管。各流動池10固定於在圖1中省略圖示的流動池保持架6(參照圖6)的內部。上述多個流動池10作為一體而包含在流動池單元(多流動池)80(參照圖2A和圖2B)中。流動池保持架6(參照圖6)安裝於流動池基座5(參照圖2A和圖2B),由傳感器基座2間接地支承。
另外,在本實施方式中,10個流動池10在寬度方向上排列。但是,流動池10的個數並不限定於此。參照其他附圖在後面詳細敘述流動池單元的內部結構。此外,在以下的說明中,將第一方向亦即多個流動池10所排列的方向(計數器主體的寬度方向)稱為“X方向”,將沿著X方向延伸的軸稱為“X軸”。
光源20固定於傳感器基座2。光源20將規定的波長的照射光La(例如雷射)以能夠視為平行的範圍的擴展角向X方向射出。傳感器基座2兼作光源20的散熱片,將從光源20發出的熱量高效地散熱。反射鏡30將從光源20射出的照射光La朝向流動池10內的檢測區域反射。此外,在由反射鏡30反射後的照射光La的光路上設置有照明用透鏡40。照射光La通過照明用透鏡40。能夠利用該照明用透鏡40使照射光La聚光(縮小)。由此,能夠將具有高能量密度的照射光La聚光到流動池10的檢測區域。
在流動池10的背後設置有受光單元50。受光單元50具備多個受光用透鏡、受光元件、放大器以及A/D轉換器等。為了抑制背景雜訊的受光,多個受光用透鏡收納於圓筒形狀的受光筒52。在入射照射光La的流動池10中,當試樣流體所含的粒子通過檢測區域時,從粒子產生散射光(放出光的一例)。該散射光由多個受光用透鏡聚光,由受光元件(例如光電二極體)受光,轉換為電信號。該電信號最終轉換為與散射光的強度對應的大小的輸出信號。該輸出信號被發送至控制單元90(參照圖10)。基於由輸出信號表示的散射光的強度,針對每個粒徑進行粒子的計數。在粒子中含有螢光物質的情況下,根據照射光的波長的設定,從粒子產生螢光(放出光的一例)。通過在受光用透鏡追加用於選擇波長的光學濾波器,接受從粒子放出的螢光,能夠與散射光的情況同樣地實施計數。
另外,參照附圖在後面敘述控制單元90的結構。此外,在以下的說明中,將受光用透鏡的中心軸(以下稱為“受光軸”)稱為“Y軸”,將第二方向亦即Y軸所延伸的方向(計數器主體的前後方向)稱為“Y方向”。在將鉛垂方向設為“Z方向”的情況下,X方向、Y方向與Z方向均相互垂直。
此外,粒子計數器1具備用於使幾個構成部沿著X方向移動的X軸載台60以及用於使幾個構成部沿著Y方向移動的Y軸載台70。其中,X軸載台60設置在沿著X方向延伸的X軸致動器62的滑塊上。Y軸載台70設置在沿著Y方向延伸的Y軸致動器72的滑塊上。此外,Y軸致動器72的滑塊設置在X軸載台60上。
X軸致動器62和Y軸致動器72例如是線性致動器。X軸致動器62和Y軸致動器72將內置的馬達作為驅動源,使設置在自身的滑塊上載台沿著該線性導向件滑動。
X軸致動器62固定於傳感器基座2,將X軸馬達作為驅動源,使X軸載台60沿著X方向滑動。
Y軸致動器72固定於X軸載台60,將Y軸馬達作為驅動源,使Y軸載台70沿著Y方向滑動。在X軸載台60沿著X方向滑動時,與此相伴,由X軸載台60支承的部整體沿著X方向移動。此外,在Y軸載台70沿著Y方向滑動時,與此相伴,由Y軸載台70支承的部整體沿著Y方向移動。另外,這些部的移動在固定了以傳感器基座2為代表的計數器主體的狀態下進行。
上述的粒子計數器1的構成部中的反射鏡30和照明用透鏡40經由鉛垂支架65和保持架66固定在X軸載台60的前端。Y軸載台70經由Y軸致動器72的滑塊間接地支承於X軸載台60。此外,受光單元50固定於Y軸載台70。因而,伴隨著X軸載台60的滑動,反射鏡30、照明用透鏡40、受光單元50沿著X方向移動。伴隨著Y軸載台70的滑動,受光單元50沿著Y方向移動。
另外,X軸致動器62和Y軸致動器72各自的驅動源亦即X軸馬達和Y軸馬達並不是一定要內置於X軸致動器62和Y軸致動器72,也可以設置在X軸致動器62和Y軸致動器72的外部。在該情況下,Y軸馬達可以不支承於X軸載台60。
接下來,參照圖2A和圖2B具體說明向X方向和Y方向的移動方式。
圖2A是表示一實施方式的粒子計數器1的主視圖。流動池單元80包括多個流動池10。在流動池單元80中,多個流動池10收納於流動池保持架6(參照圖6)而一體化。流動池單元80經由流動池基座5固定於傳感器基座2。在圖示的狀態下,從光源20射出的照射光La由反射鏡30反射,通過照明用透鏡40,以向從正面側觀察時位於最右側的流動池10的檢測區域入射的方式縮小。
反射鏡30和照明用透鏡40固定在最適合以入射到位於流動池10的背後的受光單元50的受光軸上的方式縮小照射光La,使檢測區域的中心對準該受光軸上的位置。此外,與各流動池10所對應的受光軸(受光單元50)的X方向的位置對應的X軸載台60的位置(以下,稱為“X坐標”)基於製造階段的調整結果決定,並預先存儲於控制單元90。
當通過控制單元90選擇計數對象的通道時,內置於X軸致動器62的X軸馬達被驅動,X軸載台60滑動至與計數對象的通道的流動池10對應的X坐標。然後,伴隨著X軸載台60的滑動,由X軸載台60間接地支承的、反射鏡30、照明用透鏡40和受光單元50沿著X方向移動。另外,圖中灰染色所示的部分表示能夠沿著X方向移動的構成部。此外,圖中的雙點劃線表示X軸載台60滑動至與從正面側觀察時左數第三個流動池10對應的X坐標的情況下的構成部的位置。
圖2B是表示一實施方式的粒子計數器1的側視圖。從經由流動池基座5固定於傳感器基座2的流動池單元80起,與各流動池10連接的配管8從設置於框體4的正面側的配管用窗向框體4的外側延伸。在圖示的狀態下,受光筒52(受光單元50)設置在實線所示的位置。因而,受光筒52與流動池單元80之間的Y方向上的距離是恆定的。但是,由於製造階段的微米(μm)等級的加工誤差,在各流動池10的尺寸產生少許的個體差。因此,受光筒52與各流動池10的檢測區域之間的Y方向上的距離並不是恆定的。
因此,優選通過使受光單元50朝與各流動池10對應的Y方向的位置移動來修正受光筒52與各流動池10的檢測區域之間的Y方向的距離,由此高精度地調整收納於受光筒52的多個受光用透鏡的焦點的位置。通過進行這樣的調整,能夠使從奈米(nm)等級的細小粒子產生的散射光相對於受光元件精密地聚光。與各流動池10所對應的受光單元50的Y方向的位置對應的Y軸載台70的位置(以下,稱為“Y坐標”)也基於製造階段的調整結果決定,並預先存儲於控制單元90。
當通過控制單元90指定計數對象的通道時,首先,如上所述,X軸載台60滑動至與計數對象的通道的流動池10對應的X坐標。與此相伴,反射鏡30、照明用透鏡40和受光單元50沿著X方向移動。在此基礎上,內置於Y軸致動器72的Y軸馬達驅動,此次,Y軸載台70滑動至與計數對象的通道的流動池10對應的Y坐標。與此相伴,受光單元50沿著Y方向移動。另外,圖中灰染色所示的部分表示能夠沿著Y方向移動的構成部。此外,圖中的雙點劃線表示Y軸載台70滑動至相比實線所示的位置靠背面側的情況下的構成部的位置。
這樣,粒子計數器1的用戶僅通過選擇計數對象的通道,就能夠使X軸載台60和Y軸載台70滑動至與該通道的流動池10對應的坐標,即,能夠將反射鏡30、照明用透鏡40和受光單元50移動到最佳位置。由此,能夠根據所選擇的通道,高精度地調整照射光學系統的光軸、以及受光光學系統的光軸和焦點的位置。
(流動池的結構)
圖3是從側面側觀察一實施方式的流動池10的立體圖。
流動池10使用石英和藍寶石等透明材料形成為大致長方體形狀,在其內部具有大致コ字型的流路。具體而言,流動池10具有第一流路13、第二流路14和第三流路15。第一流路13從形成於正面下部的流入口11沿著Y方向延伸。第三流路15從形成於正面上部的排出口12沿著Y方向(第二方向)延伸。第二流路14與第一流路13和第三流路15的各端部相通(所謂“連通”),沿著Z方向(第三方向)延伸,形成一個流道。此外,在位於第一流路13的延長線上的位置的第二流路14的背面側的部位,設置有形成為凹形狀的凹面部18。進而,在位於該延長線上的位置的流動池10的背面側的部位,設置有形成凸形狀的聚光透鏡19。
試樣流體從流入口11流入第一流路13,經由第二流路14和第三流路15,從排出口12向外部排出。此外,照射光La從形成流動池10的底面的入射面16向流動池10入射,從形成流動池10的上表面的透過面17射出到外部。射出到流動池的外部的照射光La由未圖示的捕集器在透過面17的上方吸收。
圖4是從正面側觀察一實施方式的流動池10的垂直截面圖(沿著圖3中的IV-IV切斷線的截面圖)。
第一流路13具有矩形的截面。在第1流路13中,在照射光La入射(照射)(聚光)其中心(規定位置)的區間,形成試樣流體所含的粒子(懸浮物質)的檢測區域A。
照射光La以從正面側觀察時相對於Z方向傾斜的角度從入射面16入射到流動池10。更具體而言,照射光La相對於入射面16形成在通過檢測區域A的同時不與第三流路15干涉的規定的角度,從入射面16入射到流動池10。然後,照射光La入射到第一流路13,在通過(形成)檢測區域A後,通過從第三流路15偏離的位置,從透過面17射出到外部。
此處,之所以將第一流路13的截面設為矩形是因為,在照射光La所通過的、劃分第一流路13的上下的兩個壁面使用以奈米等級進行了鏡面加工的平面。由此,能夠儘量抑制在照射光La通過形成於第一流路13的內部的檢測區域A的前後,可能會在第一流路13的壁面與試樣流體的界面產生的雜訊(多餘的光的散射和反射)。因而,在第一流路13中,只要至少照射光La所通過部位的壁面由平面形成即可。此外,在本實施方式中,第三流路15的截面形狀為圓形。但是,第三流路15的截面形狀並不限定於此。各流路13、14和15的截面積也可以根據需要適當設定。
圖5是從側面側觀察一實施方式的流動池10的垂直截面圖(沿著圖3中的V-V切斷線的截面圖)。
通過照射光La以從側面側觀察時相對於Z方向平行的狀態從入射面16向流動池10入射,由此在第一流路13形成檢測區域A。檢測區域A的中心存在於位於流動池的背後的受光單元50的受光軸上。此外,凹面部18和聚光透鏡19配置成其中心軸與受光單元50的受光軸一致。此處,為了抑制因試樣流體的折射率與流動池的折射率的不同而光被內壁面折射,使用凹面部18。通過這樣的配置,聚光透鏡19以及位於其後方的受光單元50所具備的多個受光用透鏡能夠作為一體發揮其聚光能力。
當試樣流體所含的粒子P通過檢測區域A時,通過粒子P與照射光La的相互作用,從粒子P產生作為散射光的側方散射光Ls。該側方散射光Ls經由凹面部18被聚光透鏡19以及受光單元50內的多個受光用透鏡聚光。另外,圖5中的虛線表示側方散射光Ls的散射的範圍,不表示聚光後的側方散射光Ls。此外,為了最大限度地利用聚光透鏡19的聚光角,將第二流路14的內壁的位置設定在不妨礙光向聚光透鏡19入射的位置。
通過第一流路13後的照射光La,通過既從第二流路14又從第三流路15偏離的位置,從透過面17射出到流動池10的外部。這樣,形成在流動池10的內部的3個流路13、14和15中照射光La所通過的流路僅為第一流路13。照射光La實質上不與第二流路14和第三流路15發生干涉。通過將照射光La的光路設定在這樣的位置,能夠抑制因照射光La與第二流路14或第三流路15發生干涉而引起雜訊的產生。由此,容易僅檢測從試樣流體所含的奈米(nm)等級的細小粒子產生的固有的散射光。其結果是,能夠提高粒子的檢測精度以及粒子的計數精度。
(流動池單元的內部結構)
圖6是從背面側觀察一實施方式的流動池單元80的分解立體圖。流動池單元80是包括多個流動池10的多流動池,所述多個流動池10通過固定在流動池保持架6的內部而一體化。流動池單元80包括流動池保持架6、流動池10、加壓襯套86和背板89等。
在流動池保持架6的內部形成有與流動池10的個數對應數量的收納室81(都僅對一部分標注附圖標記)。多個流動池10在單獨收納於統一劃分的上述收納室81的狀態下,由加壓襯套86朝向收納室81的內壁壓入。進而,該狀態的流動池保持架6的背面由背板89覆蓋。在背板89上穿設有孔89a以及緊固用的孔89b、89c等。孔89a是為了避免設置在流動池10的背面的聚光透鏡19與背板89的干涉(避免該干涉,使聚光透鏡19露出)而設置的。背板89通過螺釘等的緊固部件緊固於流動池保持架6。
另外,在流動池保持架6的上部,在與各收納室81的上方接觸的位置穿設有未圖示的開口。該開口是為了使透過各流動池10後的照射光逃逸而設置的。此外,在開口的上方設置有未圖示的吸收逃逸的照射光的捕集器。捕集器可以跨越流動池保持架6的上部的整體設置,也可以設置在一個流動池10的上部。在後者的情況下,根據作為檢測對象的通道的變更,該捕集器可以與受光光學系統的光軸一起沿著X方向移動,以便設置在計數對象的通道的流動池10上部。
接下來,參照圖7A和圖7B說明加壓襯套86的形狀和作用。
圖7A是表示一個實施方式的加壓襯套86的立體圖。加壓襯套86包括形成為大致四角柱狀的下部分86a、以及上部分86b。上部分86b在形成下部分86a的一個角的延長上連續地形成,具有大致三角柱狀。其中,上部分86b在下部分86a的角的延長上具有棱,在與該棱對置的位置具有對置面87。此外,在下部分86a沿著前後方向貫通地穿設有緊固孔88。緊固孔88是為了供將加壓襯套86整體緊固於流動池保持架6的緊固部件穿過而設置的。另外,加壓襯套86的材料由樹脂等的具有彈性的材料(例如,鐵氟龍(註冊商標))形成。
圖7B是放大表示流動池保持架6的一部分的立體圖。圖7B表示流動池10和加壓襯套86收納於流動池保持架6的狀態。此處,為了容易理解本實施方式,省略了流動池保持架6的上框(形成收納室81的上壁的部位)的圖示。
在流動池保持架6的內部,除了收納室81以外,還形成有用於載置加壓襯套86的載置台85。收納室81的寬度(X方向的尺寸)設定成比流動池10的寬度稍大,以便能夠順暢地存取流動池10。此外,在載置台85的上方形成有對置壁84。對置壁84以朝外的角度與收納室81的內壁設置。加壓襯套86在使對置面87與對置壁84密接的狀態下載置於載置台85。
收納於收納室81的流動池10的一個側面的整體與第一基準面82對置。與此相對,流動池10的另一側面的一部分與加壓襯套86的側面對置。載置於載置台85的加壓襯套86從另一側面朝X方向按壓流動池10而使其與第一基準面82密接。此處,第一基準面82是在決定流動池保持架6的內部的各流動池10的X方向上的位置時作為基準的面。通過加壓襯套86按壓流動池10而使其與第一基準面82密接,流動池10被固定在預先決定的準確的X方向的位置。另外,流動池保持架6的內部的各流動池10的Y方向上的位置,以形成流動池保持架6的背面的一部分的第二基準面83為基準來決定。
圖8A、圖8B和圖8C是在表示流動池單元80的組裝階段的同時說明各流動池10相對於流動池保持架6的固定方式的圖。在圖8A、圖8B和圖8C中,也省略了流動池保持架6的上框(形成收納室81的上壁的部位)的圖示。
圖8A表示流動池10收納於收納室81的階段。在該階段,由於沒有使流動池10與第一基準面82密接的要素,所以在流動池10與第一基準面82之間有可能存在微小的間隙(有時也不存在)。
圖8B表示加壓襯套86載置於載置台85的階段。在該階段,伴隨著加壓襯套86的對置面87與對置壁84密接,流動池10被加壓襯套86朝X方向按壓而與第一基準面82密接。由此,從流動池10與第一基準面82之間排除了間隙。此時,加壓襯套86相比第二基準面83的位置朝背面側稍微突出。該突出作為之後被緊固的背板89的壓入量發揮功能。
圖8C表示背板89緊固於流動池保持架6的階段。在該階段,背板89將在圖8B的階段朝背面側稍微突出的加壓襯套86朝Y方向壓入而使其與第二基準面83密接。此時,加壓襯套86被推壓到對置壁84上,被對置壁84推回。由此,在加壓襯套86產生將流動池10朝X方向壓入的力。由此,能夠使流動池10相對於第一基準面82更加牢固地密接。
另外,在正面側,圖8A~圖8C中省略圖示的配管8(參照圖9B)經由接頭與流動池10連接。該接頭具有防止試樣流體的漏出的結構。當流動池10處於收納於流動池保持架6的狀態時,該接頭被朝Y方向壓入。此時,流動池10被朝Y方向壓入,其背面與背板89密接。進而,流動池10的Y方向上的位置與第二基準面83一致。因而,流動池10在Y方向上也被固定在預先決定的準確位置。
通過形成以上的結構,能夠準確地進行與流動池保持架6(流動池單元80)的內部的各流動池10的X方向和Y方向的位置相關的定位。由此,能夠將各流動池10牢固地固定在所期望的位置。
圖9A和圖9B是流動池單元80的立體圖。其中,圖9A是將流動池單元80作為單體而從背面側觀察的立體圖。圖9B是從正面側觀察流動池單元80安裝於流動池基座5的狀態的立體圖。
在流動池單元80的背面側,能夠從穿設在緊固於流動池保持架6的背板89的孔89a目視確認設置在收納於內部的流動池10的背面的聚光透鏡19。此外,在流動池單元80的正面側,經由接頭與收納在內部的流動池10連接的配管8以排列成上下2層的狀態伸出。配管8例如是由PFA樹脂形成的具有可塑性的管。配管8實質上不與粒子計數器1的其他構成部發生干涉,從設置於框體4的正面的配管用窗引出到框體4的外側。並且,在框體4的外側,排列在下層的配管8與試樣流體的供給源的送出口連接,排列在上層的配管8與成為試樣流體的排出目的地的排出口連接。
在本實施方式的流動持10中,如上所述,流路形成為在縱型時具有大致コ字形狀。進而,試樣流體的流入口和排出口均設置成在正面的上下方向排列。因此,在各流動池10各連接兩個的配管8全部排列在流動池單元80的正面側。此外,流動池單元80經由流動池基座5固定於傳感器基座2。因此,即使計數對象的通道變更,配管8也不移動。只要沒有施加任何外在因素,配管8就停留在大致一定的位置。因而,難以產生因配管8的移動或撓曲而引起的鬆弛和龜裂等的與配管8相關的不良情況,因此無需擔心試樣流體漏出。
此處,為了與本實施方式進行比較,對排列形成為流路具有大致一條直線狀或者大致L字型的形狀的多個流動池的情況進行研究。在這些流動池中,試樣流體的流入口和排出口設置於不同的兩個面。因此,在與這兩個面對置的位置確保配管用的空間。因此,必然會招致裝置整體大型化。此外,根據配管的伸出方向,存在配管與從流動池射出的照射光干涉的可能性。或者,因伸出的配管與其他構成部接觸,配管移動或撓曲,有可能從配管的內壁等產生細小粒子。上述情況會導致光學或電雜訊的產生。這種雜訊會降低粒子的檢測精度。
與此相對,在本實施方式中,全部的配管8都排列在正面側。因此,確保配管用的空間僅為1面(正面側)即可。因而,能夠使裝置整體緊湊地彙集。此外,相對於流動池10,照射光La從底面(入射面16)入射,從上表面(透過面17)射出。因此,配管8實質上不與照射光La干涉。進而,在流動池單元80的正面側排列的全部配管8直接朝正面側延伸,向框體4的外部伸出。因此,配管8實質上不與粒子計數器1的其他構成部干涉。因此,在本實施方式中,能夠抑制因配管8而引起的雜訊。其結果是,能夠高精度地檢測粒子。
(粒子計數器的功能)
圖10是表示一實施方式的粒子計數器1的結構的功能方塊圖。
粒子計數器1除了用於粒子的檢測的上述各構成部以外,還具備對粒子的檢測和粒子的計數進行控制的控制單元90。控制單元90例如具有操作輸入部91、存儲部92、位置調整部93、檢測管理部94、計數部95和數據輸出部96。
操作輸入部91向用戶提供操作畫面,並且經由操作畫面接受由用戶進行的操作。用戶能夠在操作畫面中進行指示計數對象的通道的選擇、檢測的開始和結束、以及計數結果的保存等的操作。操作輸入部91向其他功能部亦即位置調整部93、檢測管理部94和數據輸出部96輸出與所接受的操作內容對應的指示。進而,操作輸入部91根據從其他功能部亦即位置調整部93、檢測管理部94和數據輸出部96輸入的內容,進行操作畫面的切換等。
存儲部92是所謂的存儲區域,存儲與粒子的檢測和粒子的計數相關的信息。在存儲部92中預先存儲有與各通道的流動池10對應的X坐標和Y坐標。
即,存儲部92對於形成於流動池單元80的內部的多個流路13~15(流動池10),至少預先存儲與各個流動池10的位置對應地由X軸致動器62移動的各光軸的X方向上的位置。這些光軸包括向流路入射的照射光La的光軸以及受光單元50接受的放出光(散射光)的光軸。
進而,存儲部92除了上述各光軸的位置以外,還預先存儲與各個流動池10的位置對應地由Y軸致動器72調整的Y方向上的受光單元50所具備的受光用透鏡53的焦點的位置。
位置調整部93當由操作輸入部91指定特定的通道時,首先從存儲部92讀出與該通道的流動池10對應的X坐標和Y坐標。然後,位置調整部93使X軸致動器62工作而驅動X軸馬達64,使X軸載台60滑動至X坐標。
進而,位置調整部93使Y軸致動器72工作而驅動Y軸馬達74,使Y軸載台70滑動至Y坐標。當X軸馬達64和Y軸馬達74驅動結束時,即當X軸載台60和Y軸載台70的位置調整完畢時,成為能夠開始檢測的狀態。位置調整部93向操作輸入部91傳遞能夠開始檢測這一情況。
檢測管理部94當由操作輸入部91進行針對特定的通道的檢測開始的指示時,將光源20和受光單元50切換至工作狀態。此外,檢測管理部94當由操作輸入部91進行針對特定的通道的檢測結束指示時,將光源20和受光單元50切換至非工作狀態。當光源20和受光單元50切換至非工作狀態時,成為能夠變更計數對象的通道的狀態。檢測管理部94向操作輸入部91傳遞能夠變更通道這一情況。
另外,可以在每次檢測的開始和結束時進行光源20的工作狀態的切換。或者,也可以在粒子計數器1啟動的期間,光源20維持工作狀態不變。此外,粒子計數器1也可以構成為,不經由操作輸入部91(用戶的操作)而進行檢測的開始和結束。例如,可以以位置調整部93對載台60和70的位置調整完畢為契機,自動地開始檢測,在從檢測開始起進過規定時間後,自動地結束檢測。
當通過檢測管理部94使光源20和受光單元50工作時,從光源20射出的照射光La在被反射鏡30反射後,通過照明用透鏡40而被縮小,在該狀態下向流動池10入射。由此,照射光La在試樣流體的流路內形成檢測區域A。當試樣流體所含的粒子P通過檢測區域A時,從粒子產生P散射光亦即側方散射光Ls。該側方散射光Ls由受光用透鏡53聚光,向受光元件54入射而被接受。由受光元件54接受的側方散射光Ls轉換為與其強度相應的電信號。該電信號在由放大器55以規定的增益放大後,由A/D轉換器56轉換為數位信號。然後,受光單元50將最終得到的數位信號向計數部95輸出。
計數部95基於由受光單元50輸出的數位信號的大小、即側方散射光Ls的強度,判斷檢測到的粒子的粒徑,針對每個粒徑對粒子進行計數。計數部95將計數的結果向數據輸出部96輸出。
數據輸出部96基於由計數部95輸出的計數結果輸出數據。數據的輸出方式可以是在顯示畫面的顯示、向影印機的輸出以及經由網絡向其他設備的發送。當伴隨著檢測的結束,計數結果的最終數據完備時,成為能夠保存最終數據的狀態。數據輸出部96向操作輸入部91傳遞能夠保存最終數據這一情況。
另外,控制單元90可以一體地設置在粒子計數器1的內部。或者,控制單元90也可以分體地設置在粒子計數器1的外部。在後者的情況下,控制單元90經由電纜或者網絡等與粒子計數器1連接。
(其他實施方式的粒子計數器的結構)
圖11是簡要地表示其他實施方式的粒子計數器101的立體圖。為了容易理解發明,在圖1中省略了一部分的構成部的圖示。
在粒子計數器101中,作為照射光La的光源使用光纖雷射器。該光源120配置在框體4的外部(未圖示)。在從光源120伸出的光纖的前端設置有光纖頭122。該光纖頭122固定於保持架166。因而,光纖頭122根據所選擇的通道,與X軸載台60連動地在X方向上移動。照射光La從光纖頭122朝向流動池10的流路射出。與上述的實施方式不同,無需使從光源射出的照射光La朝向流動池10的流路反射。因此,在本實施方式中,不設置反射鏡。此外,在使用光纖雷射器的情況下,能夠將光源配置在框體4的外部。因此,實質上無需散熱對策。通過使用這種光源,能夠使粒子計數器101進一步小型化。
(上述實施方式的優越性)
如上所述,根據上述的實施方式,能夠得到以下的效果。
(1)流動池單元80經由流動池基座5固定於傳感器基座2。即便在計數對象的通道變更而照射光學系統和受光光學系統移動的情況下,流動池10也不移動。因此,在與流動池10連接的配管8難以產生鬆弛和龜裂等的不良情況。因而,根據上述的實施方式,能夠防止試樣流體的漏出。
(2)流動池10的流路形成為大致コ字型。由此,與多個流動池10連接的全部配管8排列在一個面上。因此,為了配置配管8而確保的空間只要一個面即可。因而,根據上述的實施方式,能夠使粒子計數器1小型化。
(3)粒子計數器1的用戶僅通過選擇計數對象的通道,就能夠使反射鏡30、照明用透鏡40和受光單元50移動到與該通道對應的最佳位置。因而,能夠根據所選擇的通道,高精度地調整照射光學系統的光軸以及受光光學系統的光軸和焦點的位置。
(4)流動池單元80具有能夠準確進行所收納的各流動池10的X方向和Y方向的定位的內部結構。由此,能夠將各流動池10牢固地固定在準確的位置。
(5)照射光La以通過第一流路13但不接觸第二流路14和第三流路15的角度向流動池10入射。因此,能夠抑制雜訊的產生。其結果是,從粒子產生的散射光的檢測變得容易。
上述(3)~(5)的效果都有助於試樣流體所含的奈米等級的細小粒子的高精度的檢測。因而,根據上述的實施方式,能夠提高粒子的檢測和粒子的計數的精度。
本發明的方式並不限定於上述的實施方式,能夠進行各種變形並實施。
在上述實施方式的流動池單元80中,多個流動池10在一個方向尚排列,在各流動池10的內部形成有一個大致コ字型的流路。也可以代替這種流動池單元80,轉而將包括在一個方向上排列的多個大致コ字型的流路的一體型的流動池(在內部形成有多個大致コ字型的流路的一個流動池)作為多流動池使用。
在上述的實施方式中,受光單元50設置成伴隨著X軸載台60和Y軸載台70的滑動而能夠在X方向和Y方向上移動。也可以取而代之,在流動池單元80的背後另行設置伴隨著X軸載台60和Y軸載台70的滑動而能夠在X方向和Y方向上移動的反射鏡。在該情況下,受光單元50也可以不移動。例如,X軸載台60也可以不支承受光單元50。此外,從試樣流體所含的粒子產生的光也可以經由反射鏡向受光單元50入射。在這樣的結構中,另行設置的反射鏡根據計數對象的通道在X方向和Y方向上移動。由此,能夠將經由反射鏡向受光單元50入射的來自粒子的光的焦點沿著其光軸高精度地調整。
在上述的實施方式中,作為受光元件54使用光電二極體。也可以取而代之,作為受光元件54使用多分割受光元件。通過使用多分割受光元件,能夠進一步提高SN比。其結果是,能夠更高精度地進行粒子的檢測和粒子的計數。
在上述的實施方式中,與流動池10連接的配管8具有足夠延伸到框體4的外側的長度。在配管8中的從設置於框體4的配管用窗向外側突出的前端部分,連接試樣流體的流入口和排出口。但是,配管8的連接方式並不限定於此。例如,也可以將配管8固定於配管用窗,在此處連接試樣流體的流入口和排出口。
在上述的實施方式中,控制單元90(檢測管理部94)切換光源20的工作狀態。也可以取而代之,另行設置能夠堵塞光源20的射出口而切斷照射光的光閘。在該情況下,由控制單元90切換光閘的開閉(遮光的有無)。
此外,作為粒子計數器1的各構成部的例子而舉出的材料和數值等僅為示例。當然能夠在實施本發明的技術時對它們進行適當變形。
出於示例和說明的目的已經給出了所述詳細的說明。根據上面的教導,許多變形和改變都是可能的。所述的詳細說明並非沒有遺漏或者旨在限制在這裡說明的主題。儘管已經通過文字以特有的結構特徵和/或方法過程對所述主題進行了說明,但應當理解的是,申請專利範圍中所限定的主題不是必須限於所述的具體特徵或者具體過程。更確切地說,將所述的具體特徵和具體過程作為實施申請專利範圍的示例進行了說明。
1、101:粒子計數器 2:傳感器基座 3:腳部 4:框體 5:流動池基座 6:保持架 8:配管 10:流動池 11:流入口 12:排出口 13:第一流路 14:第二流路 15:第三流路 16:入射面 17:透過面 18:凹面部 19:聚光透鏡 20、120:光源 122:光纖頭 30:反射鏡 40:照明用透鏡 50:受光單元 52:受光筒 53:受光用透鏡 54:受光元件 55:放大器 56:A/D轉換器 60:X軸載台 62:X軸致動器 64:X軸馬達 65:鉛垂支架 66、166:保持架 70:Y軸載台 72:Y軸致動器 74:Y軸馬達 80:流動池單元 81:收納室 82:第一基準面 83:第二基準面 84:對置壁 85:載置台 86:加壓襯套 86a:下部分 86b:上部分 87:對置面 88:緊固孔 89:背板 89a、89b、89c:孔 90:控制單元 91:操作輸入部 92:存儲部 93:位置調整部 94:檢測管理部 95:計數部 96:數據輸出部 La:照射光 Ls:側方散射光 A:檢測區域 P:粒子
圖1是簡要地表示一實施方式的粒子計數器的立體圖。 圖2A是表示一實施方式的粒子計數器的主視圖,圖2B是表示所述粒子計數器的側視圖。 圖3是表示一實施方式的流動池的立體圖。 圖4是表示一實施方式的流動池的垂直截面圖(沿著圖3中的IV-IV切斷線的截面圖)。 圖5是表示一實施方式的流動池的垂直截面圖(沿著圖3中的V-V切斷線的截面圖)。 圖6是一實施方式的流動池單元的分解立體圖。 圖7A和圖7B是表示一實施方式的加壓襯套的立體圖。 圖8A、圖8B和圖8C是用於階段性說明各流動池的固定方式的圖。 圖9A和圖9B是一實施方式的流動池單元的立體圖。 圖10是表示一實施方式的粒子計數器的結構功能方塊圖。 圖11是簡要地表示另一實施方式的粒子計數器的立體圖。
1:粒子計數器
2:傳感器基座
5:流動池基座
10:流動池
20:光源
30:反射鏡
40:照明用透鏡
50:受光單元
60:X軸載台
62:X軸致動器
72:Y軸致動器
80:流動池單元
La:照射光

Claims (9)

  1. 一種粒子計數器(1),其特徵在於,具備:光源(20),射出照射光(La);照射光學系統(30、40),向光軸上的規定位置照射所述照射光;多流動池,包括多個流路(13),多個所述流路(13)由位於相對於主體(2)固定的位置的透明體構成,且在第一方向上排列,多個所述流路(13)具有用於檢測在所述流路(13)中流動的試樣流體所含的粒子的檢測區域(A),所述檢測區域(A)形成在由來自外部的所述照射光照射的所述流路(13)中的所述光軸上的規定位置;受光光學系統(50),以與所述第一方向正交的第二方向為光軸接受從通過所述檢測區域的所述粒子產生的放出光;光軸移動部(60、62),使向所述流路內入射的所述照射光的光軸以及所述受光光學系統接受的所述放出光的光軸沿著多個所述流路的排列在所述第一方向上移動;以及計數部(95),基於由所述受光光學系統接受的放出光的強度,針對每個粒徑對所述粒子進行計數。
  2. 根據請求項1所述的粒子計數器,還具備焦點調整部(70、72),所述焦點調整部(70、72)在所述第二方向上調整所述受光光學系統的焦點。
  3. 根據請求項2所述的粒子計數器,其中,所述焦點調整部包括致動器(72),所述致動器(72)通過使支承所述受光光學系統的載台(70)在所述第二方向上移動,在所述第二方向上調整所述焦點,所述光軸移動部包括其他的致動器(62),所述其他的致動器(62)通過使支承所述致動器(72)的載台(60)與所述照射光學系統一起在所述第一方向上移動,使所述各光軸在所述第一方向上移動。
  4. 根據請求項1至3中任一項所述的粒子計數器,還具備存儲部(92),所述存儲部(92)對於形成於所述多流動池的內部的多個所述流路,至少預先存儲與各個所述流路的位置對應地由所述光軸移動部移動的所述各光軸的所述第一方向上的位置,所述光軸移動部構成為,與要形成所述檢測區域的所述流路對應地使所述各光軸移動至預先存儲於所述存儲部的所述各光軸的位置。
  5. 根據請求項2或3所述的粒子計數器,還具備存儲部(92),所述存儲部(92)對於形成於所述多流動池的內部的多個所述流路,至少預先存儲與各個所述流路的位置對應地由所述光軸移動部移動的所述各光軸的所述第一方向上的位置,所述光軸移動部構成為,與要形成所述檢測區域的所述流路對應地使所述各光軸移動至預先存儲於所述存儲部的所述各光軸的位置,所述存儲部除了所述各光軸的位置之外,還預先存儲與各個所述流路的位置對應地由所述焦點調整部調整的所述第二方向上的所述焦點的位置,所述焦點調整部構成為,與要形成所述檢測區域的所述流路對應地將所述焦點調整到預先存儲於所述存儲部的所述焦點的位置。
  6. 根據請求項1至3中任一項所述的粒子計數器,其中,所述多流動池通過排列多個分別在內部具有所述流路的透明體的流動池(10)而構成,各個所述流動池在與成為以所述多流動池整體觀察時的所述第一方向和所述第二方向的位置的基準的部位(82)密接的狀態下被固定。
  7. 根據請求項6所述的粒子計數器,其中,所述流動池為大致長方體形狀,包括形成於其相同側面的流入所述試樣流體的流入口(11)以及排出所述試樣流體的排出口(12)。
  8. 根據請求項7所述的粒子計數器,其中,所述流動池具有如下的流路:包括從所述流入口沿著所述第二方向延伸的第一流路、從所述排出口沿著所述第二方向延伸的第三流路、以及沿著與所述第一方向和所述第二方向均正交的第三方向延伸並與所述第一流路和所述第三流路連接的第二流路,形成一條流道。
  9. 根據請求項1至3中任一項所述的粒子計數器,其中,所述放出光為散射光或螢光。
TW109102227A 2019-01-24 2020-01-21 粒子計數器 TWI829855B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019009879A JP7202904B2 (ja) 2019-01-24 2019-01-24 粒子計数器
JP2019-009879 2019-01-24

Publications (2)

Publication Number Publication Date
TW202028720A true TW202028720A (zh) 2020-08-01
TWI829855B TWI829855B (zh) 2024-01-21

Family

ID=69185474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102227A TWI829855B (zh) 2019-01-24 2020-01-21 粒子計數器

Country Status (6)

Country Link
US (1) US11262284B2 (zh)
EP (1) EP3686573A3 (zh)
JP (1) JP7202904B2 (zh)
KR (1) KR20200092260A (zh)
CN (1) CN111474104A (zh)
TW (1) TWI829855B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458411B1 (ko) 2020-11-30 2022-10-26 에스팩 주식회사 입자 계수 장치 및 방법
JP2023096242A (ja) 2021-12-27 2023-07-07 リオン株式会社 粒子計数装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422069Y2 (zh) * 1978-01-11 1979-08-02
US4784486A (en) * 1987-10-06 1988-11-15 Albion Instruments Multi-channel molecular gas analysis by laser-activated Raman light scattering
US5009503A (en) * 1988-06-13 1991-04-23 Hipple Cancer Research Corporation Automated capillary scanning system
US5011286A (en) * 1989-08-03 1991-04-30 Met One, Inc. Multisensor particle counter utilizing a single energy source
JPH05240769A (ja) * 1992-02-29 1993-09-17 Horiba Ltd 粒子計数装置
CA2092373A1 (en) * 1992-04-24 1993-10-25 Klaus W. Berndt Methods and apparatus for detecting biological activities in a specimen
JPH07218417A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd 粒子分析方法
US6618144B1 (en) * 1999-10-15 2003-09-09 The Administrators Of The Tulane Educational Fund Device and method of simultaneously measuring the light scattering from multiple liquid samples containing polymers and/or colloids
JP3609029B2 (ja) 2001-02-20 2005-01-12 倉敷紡績株式会社 検出装置及び液体試料測定装置
DE60236967D1 (de) * 2002-09-27 2010-08-19 Rion Co Strömungszelle und teilchenmesseinrichtung damit
JP2006242916A (ja) * 2005-03-07 2006-09-14 Fuji Photo Film Co Ltd 全反射減衰を利用するセンサユニット及び測定方法
US20080174768A1 (en) * 2007-01-18 2008-07-24 Mathias Belz Self referencing LED detection system for spectroscopy applications
JP4525725B2 (ja) 2007-10-18 2010-08-18 ソニー株式会社 光学測定部、光学測定用部材、及びこれらを配設した微小粒子測定装置、並びに微小粒子の光学測定方法
CN101939632B (zh) * 2008-02-07 2013-05-01 三井造船株式会社 荧光检测装置和荧光检测方法
JP2012507008A (ja) * 2008-10-24 2012-03-22 ユニヴァーシティー オブ ノートル ダム デュ ラック 懸濁している粒子の情報を得る方法及び装置
WO2011097032A1 (en) * 2010-02-05 2011-08-11 Cytonome/St, Llc Multiple flow channel particle analysis system
CN105940292B (zh) * 2013-12-04 2020-12-08 艾瑞斯国际有限公司 流式细胞仪
JP6319193B2 (ja) * 2015-06-03 2018-05-09 東京エレクトロン株式会社 基板処理装置及び基板処理方法
ITUB20153920A1 (it) * 2015-09-28 2017-03-28 Milano Politecnico Dispositivo optofluidico.
JP6231709B1 (ja) * 2016-05-31 2017-11-15 シスメックス株式会社 蛍光画像分析装置および分析方法
CN107063943A (zh) * 2017-03-29 2017-08-18 河南省水产科学研究院 液体中颗粒物自动计数、图像采集及形态测量装置
JP6549747B2 (ja) * 2017-04-14 2019-07-24 リオン株式会社 粒子測定装置および粒子測定方法

Also Published As

Publication number Publication date
EP3686573A3 (en) 2020-08-05
CN111474104A (zh) 2020-07-31
US11262284B2 (en) 2022-03-01
KR20200092260A (ko) 2020-08-03
JP2020118549A (ja) 2020-08-06
EP3686573A2 (en) 2020-07-29
TWI829855B (zh) 2024-01-21
JP7202904B2 (ja) 2023-01-12
US20200240890A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
TW202032104A (zh) 流體中懸浮物質測定用流動池和粒子計數器
US10774371B2 (en) Laser line illuminator for high throughput sequencing
TWI829855B (zh) 粒子計數器
JP5072337B2 (ja) 光学式変位センサ及びその調整方法
JP2008544247A (ja) ガスセンサーのための光空洞
JP2002148018A (ja) 音響等による微小変位検出装置
KR102644216B1 (ko) 입자 센싱 장치
JP2017120239A (ja) 粒子検出センサ
WO2002065812A1 (fr) Detecteur de vibrations
CN114235711B (zh) 一种小型化便携式高灵敏气体测量系统
JP2002228582A (ja) ガス検出装置
US20230204488A1 (en) Particle counter
JP2010008292A (ja) 液体試料の比重測定装置
CN216386779U (zh) 拉曼光谱检测装置
JP5394718B2 (ja) 顕微観察装置
JP2009063311A (ja) ガス検知装置
RU2814440C2 (ru) Детектор рассеянного света и аспирационная система обнаружения пожара с детектором рассеянного света
JP3375319B2 (ja) 粒度分布測定装置及び粒度分布測定方法
JP2003279307A (ja) 表面変位測定器及びその測定器を用いた測定方法
CN116182704A (zh) 一种光束监测装置
JP2003042723A (ja) 光強度測定装置
JP2004109011A (ja) 散乱光測定装置
JP2004127544A (ja) 焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置
JP2004109010A (ja) 散乱光測定装置
JP2009068958A (ja) 光測定方法