JP2004127544A - 焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置 - Google Patents
焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置 Download PDFInfo
- Publication number
- JP2004127544A JP2004127544A JP2002286078A JP2002286078A JP2004127544A JP 2004127544 A JP2004127544 A JP 2004127544A JP 2002286078 A JP2002286078 A JP 2002286078A JP 2002286078 A JP2002286078 A JP 2002286078A JP 2004127544 A JP2004127544 A JP 2004127544A
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- particle beam
- sample
- light
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Abstract
【課題】Z位置検出感度が高く、対外乱に強く、メンテナンスしやすく、ユニット化でき、小型化できる焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置を提供する。
【解決手段】試料に荷電粒子線を照射する荷電粒子線照射装置における該試料のZ位置を検出する位置検出装置に用いる焦点プローブ光学系であって、位置検出装置における位置検出用の光を試料9に集光するための集光レンズ5aと、位置検出用の光を偏向して試料9に導くとともに、試料9で反射した光を偏向して位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材5bとを有し、荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸が、該荷電粒子線露光装置の荷電粒子線の軸と共軸となるように構成されている。
【選択図】 図4
【解決手段】試料に荷電粒子線を照射する荷電粒子線照射装置における該試料のZ位置を検出する位置検出装置に用いる焦点プローブ光学系であって、位置検出装置における位置検出用の光を試料9に集光するための集光レンズ5aと、位置検出用の光を偏向して試料9に導くとともに、試料9で反射した光を偏向して位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材5bとを有し、荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸が、該荷電粒子線露光装置の荷電粒子線の軸と共軸となるように構成されている。
【選択図】 図4
Description
【0001】
【発明の属する技術分野】
本発明は電子線やイオンビーム等の荷電粒子線を感応基板などの試料に照射する荷電粒子線照射装置において試料のZ位置を検出するための位置検出装置に用いる焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置に関する。
【0002】
【従来の技術】
半導体素子は、基板表面に微細化されたデバイスパターンが高集積化されて形成されている。このような半導体素子のデバイスパターンを形成したり、半導体素子の表面形状の計測や検査を行う手段として、近年荷電粒子線を用いた荷電粒子線照射装置が用いられている。
【0003】
図9は荷電粒子線照射装置の基本構成を示す概略図である。荷電粒子線光学装置は、荷電粒子線照射部51と、感応基板等の試料52を載置するXY方向に移動可能なステージ53と、ステージ53を真空状態に囲う真空チャンバ54とを備えて構成されている。荷電粒子線光学照射部51の鏡筒内には、電子銃55、電磁コンデンサレンズ56、電磁対物レンズ57、図示省略した荷電粒子線の軌道を制御する電磁プリズム等の偏向器を有してなる電子光学系が設けられている。そして、電子銃55から放出した荷電粒子線は、これらの電子光学系構成部材を経て、ステージ53に載置された試料52上の所定位置に結像するようになっている。
【0004】
このような荷電粒子線照射装置においては、試料の照射表面Z位置(高さ位置)は、載置するステージの精度、試料の厚さ、載置した試料の平行度、及び試料自体のうねり等の影響を受けて変動しやすい。
これに対し、電子光学系は、そのNAは十分小さく、十分な焦点深度を有しているものの、テレセントリックな構成ではない場合、試料のZ位置が変動すると露光パターン等の倍率に大きな影響を及ぼしてしまう。
このため、試料の荷電粒子線照射装置に対するZ位置の変化を計測し、そのZ位置の変化に応じて倍率の補正をする必要がある。
【0005】
Z位置の変化の計測には、試料上の所定位置に位置合わせ用のマークを設けておき、このマークからの位置ずれをZ位置検出装置で検出する方法がある。
しかるに、荷電粒子線照射装置における位置合わせ用のマークからの位置ずれを検出する方法としては、荷電粒子線を散乱する性質の高い物質からなるマークを試料上に設け、このマークに荷電粒子線を照射する方法がある。しかし、この方法によると、マークからの散乱光によって試料が露光されてしまうおそれがある。
そこで、Z位置の変化の計測には、荷電粒子線照射装置とは別に試料が露光しない波長の通常光による光学系を備えた位置検出装置を介して試料上のマークからの位置ずれを検出する方法が用いられている。
【0006】
通常光を用いた従来のZ位置検出放置としては、荷電粒子線照射部の両側に投光部と受光部とを設けた装置(例えば、特許文献1参照)や、荷電粒子線照射部の一方に投光部、他方に干渉計を設けた装置(例えば、非特許文献1参照)や、荷電粒子線照射装置における荷電粒子線の軸と所定距離離れた位置に位置検出用の光軸を設けた装置(例えば、特許文献2参照)などがある。
【0007】
【特許文献1】
特開2002−33068号公報(第6−7頁、図1、図2)
【非特許文献1】
東芝機械(株)平野亮一、東條徹、(株)トプコン渡邊真也、阿部和夫、斎藤晋、“光ヘテロダイン法を用いた電子ビーム描画装置用精密位置測定法(XYZセンサ)の開発”、1997年度精密光学会春季学術講演会講演論文集、p809−810
【特許文献2】
特開平11−224844号公報(第3頁、図1)
【0008】
図10は上記特許文献1に記載の従来の位置検出装置の要部を示す概略構成図である。
特許文献1に記載の位置検出装置は、図10に示すように、投光側光学系61と、受光側光学系62とを、荷電粒子線照射部51の両側に、荷電粒子線照射部51から所定距離離れた位置に配置し、ステージ53上の試料(標本)52に対し、投光側光学系61の光源63からの光をミラー64を介して試料52の面に対し浅い角度となるように照射し、試料52で反射した光を投光側光学系61とは反対側の受光光学系62内のミラー65を経て受光素子66で受光し、受光素子66による受光位置のずれにより試料のZ位置を検出するように構成されている。
【0009】
図11は上記非特許文献1に記載の従来の位置検出装置の概略構成図である。
非特許文献1に記載の位置検出装置は、投光部71側で2つの異なる角度の荷電粒子線を照射するようにするとともに、受光部72側に干渉計を備え、光ヘテロダイン法を用いて微妙に角度の異なる2つの干渉光の間に発生する位相差を測定することによりZ位置を計測するように構成されている。
【0010】
図12は上記特許文献2に記載の従来の位置検出装置の概略構成図である。
特許文献2に記載の位置検出装置81は、投光用光源と受光素子(いずれも図示省略)とを備えるとともに、荷電粒子照射部51の鏡筒内に荷電粒子線の軸に対し所定間隔ずらした位置に、非磁性の導電性材料で形成された位置検出用光路82を設けて、試料52面の荷電粒子線の軸から所定距離L離れた位置に、図示省略した投光用光源からの光を照射し、試料52での反射光を図示省略した受光素子で検出することにより、試料52のZ位置の変動を検出するように構成されている。
【0011】
【発明が解決しようとする課題】
特許文献1に記載の位置検出装置では、Z位置の位置ずれ量を試料を反射する光の方向からみたときのずれ量で検出している。しかし、入射光及び反射光が試料面に対し浅い斜めの角度をなしており、Z位置の位置ずれ量を試料を反射する光の方向からみたときのずれ量で検出した場合には、Z位置の変位に対する変位拡大率を大きくとることができず、位置検出感度を高くすることができない。また、荷電粒子線照射部51の両側に、投光側光学系61と、受光側光学系62とを配置したのでは、部材点数が多くなり、装置全体が大型化し、コスト高となってしまう。また、試料に対し浅い角度で位置検出用の光を入射させるのでは、位置検出装置による測定点と荷電粒子線照射装置による荷電粒子線の照射点とを一致させることが難しい。しかも、投光側光学系61と、受光側光学系62とが離れて配置されるので、組立て時の位置調整が難しく、いずれか一方の光学系における微妙な位置ずれが他方の光学系に大きく影響してしまい、外乱にも弱い。さらには、一方の側の光学系をユニット化して交換することや、メンテナンスすることも困難となる。
【0012】
非特許文献1の干渉計を用いた位置検出装置では、Z位置の変動に対する位相差の変化量は非常に小さく拡大率は高くない。しかし、非常に高感度な検出方式である光干渉法を用いることにより、これを補い総合的にはZ位置検出感度を十分に高くとることができる。
しかし、高感度な干渉計を用いた装置は、空気のゆらぎや振動等の外乱に非常に弱い。また、複雑、高感度な光学系を必要としコストが非常に高くなる。また、装置が大型化、複雑化し、メンテナンスやユニット化が困難である。
【0013】
特許文献2に記載の位置検出装置は、小型化が可能であり、コスト的にも上記2つの従来例より有利である。しかし、荷電粒子線照射部51からの荷電粒子線を照射位置とZ位置検出装置81からのZ位置検出光照射位置とが一定の距離があり、荷電粒子線の照射位置における試料52のZ位置を検出するものではない。このため、試料のうねりやかたむきを原因とした荷電粒子線の照射位置と位置検出光の照射位置とにおける試料のZ位置に差が大きく生じた場合には測定値に大きな誤差を含むことになる。また、試料の大きさが、荷電粒子線の照射位置から位置検出光の照射位置までの距離よりも小さい場合には、位置検出光による試料の照射と荷電粒子線による試料の照射とを同時に行うことが出来ない。さらに、試料全域にわたって荷電粒子線による照射を行うことが出来なくなる。
【0014】
本発明は上記問題点に鑑みてなされたものであり、Z位置検出感度が高く、対外乱に強く、メンテナンスしやすく、ユニット化でき、小型化できる焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明による焦点プローブ光学系は、試料に荷電粒子線を照射する荷電粒子線照射装置における該試料のZ位置を検出する位置検出装置に用いる焦点プローブ光学系であって、前記位置検出装置における位置検出用の光を前記試料に集光するための集光レンズと、前記位置検出用の光を偏向して前記試料に導くとともに、前記試料で反射した光を偏向して前記位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材とを有し、前記荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸が、該荷電粒子線露光装置の荷電粒子線の軸と共軸となるようにしたことを特徴としている。
【0016】
また、本発明による焦点プローブ光学系は、前記偏向部材が、前記位置検出装置における位置検出用の光を前記試料に導くように、前記荷電粒子線の軸の周囲に設けられ、前記集光レンズが、孔部を有して形成され、該孔部を前記荷電粒子線が通過し、前記偏向部材で偏向された光を該孔部の周囲のレンズ面で集光して前記試料に導くように、前記偏向部材と前記試料との間に配置されていることを特徴としている。
【0017】
また、本発明による焦点プローブ光学系は、前記偏向部材が、前記集光レンズで集光された光を偏向して前記試料に導くように、前記荷電粒子線の軸の周囲に設けられていることを特徴としている。
【0018】
また、本発明による焦点プローブ光学系は、前記偏向部材及び前記集光レンズが、導電性かつ非磁性を有する部材で前記荷電粒子線の飛来領域から遮断されるように囲われていることを特徴としている。
【0019】
また、本発明による焦点プローブ光学系は、前記偏向部材及び前記集光レンズが、その表面を導電性かつ非磁性を有する膜でコーティングされていることを特徴としている。
【0020】
また、本発明による位置検出装置は、点光源と、位置検出手段と、上記本発明の焦点プローブ光学系とを備えている。
【0021】
また、本発明による荷電粒子線照射装置は、上記本発明の位置検出装置を備えている。
【0022】
【発明の実施の形態】
本発明の焦点プローブ光学系のように構成すると、試料への入射光の入射角度を比較的小さくすることが可能であり、測定ポイントを荷電粒子線照射装置の照射エリアに一致させやすくすることができるので、Z位置を高精度に検出することができる。また、荷電粒子線照射装置に用いる場合、荷電粒子線照射部の片側に投光部と受光部とを兼ね備えた位置検出装置を配置すれば足りるので、外乱に強く、部材点数を少なくでき、装置を小型化し、コストも低減することができる。また、焦点プロープ光学系をユニット化させることができ、メンテナンス性も向上する。
以下、本発明の実施形態を図面を用いて詳しく説明する。
【0023】
図1は本発明による焦点プローブ光学系を備えた位置検出装置の一実施形態を示す図であり、(a)は全体の概略構成図、(b)は光源及び信号処理系部の概略構成を示す説明図、(c)は光源部の構成図、図2(a),(b),(c),(d)は信号処理部の構成例を示す回路図である。
本実施形態の位置検出装置は、光源部1と位置検出素子2とを有する光源及び信号処理系3と、ミラー4と、焦点プロープ光学系5とで構成されている。なお、図中、6は内部に電子光学系を備えた荷電粒子線照射装置、7は真空チャンバ、8は光源及び信号処理系とミラー4との間の光を通すための窓部、9は感応性樹脂(レジスト)がコーティングされた半導体ウエハーやマスク基板などの試料(標本)、10は試料を載置するXY方向に移動可能なステージである。
光源部1は、LDやSLD等の高輝度光源、例えば半導体レーザ1aとコレクタレンズ1bとを備えている。コレクタレンズ1bは、高輝度光源1aで出射した光の径が位置検出素子2において最小のスポットを形成するように矢印方向に移動可能に構成されている。
位置検出素子2は、2分割フォトダイオードやPSD,CCD等で構成されている。また、信号処理系3は、図2(a)、(b)又は(c)に示すような回路を介して、例えば2分割された位置検出素子2の夫々で受光した光量の差からZ位置を検出するように構成されている。
焦点プローブ光学系5は、荷電粒子線照射装置6と試料9との間に配置可能な大きさを有しており、荷電粒子線照射装置6の鏡筒の荷電粒子線が通る部位に設けられている。
【0024】
図3(a),(b)は本実施形態の焦点プローブ光学系を構成する光学部材の鏡筒内部における典型的な配置例を示す説明図である。
焦点プローブ光学系5は、図3(a)に示すように、位置検出装置における位置検出用の光を試料9(のレジスト)に集光するための集光レンズ5aと、位置検出用の光を偏向して試料9に導くとともに、試料9で反射した光を偏向して位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材であるミラー5bとを有して構成されている。そして、荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸は、荷電粒子線露光装置における荷電粒子線の軸と共軸となっている。すなわち、集光レンズ5aの光軸と一致している。
ミラー5bは、荷電粒子線の軸が通る部位に孔部5b’が形成されており、位置検出装置における位置検出用の光を孔部5b’の周囲の面で偏向して試料9に導くように配置されている。集光レンズ5aは、1枚の非球面レンズなどの正のパワーを有するレンズで構成され、荷電粒子線が通る部位に孔部5a’が形成されており、ミラー5bで偏向された光を孔部5a’の周囲の面で集光して試料9に導くようにミラー5bと試料9との間に配置されている。
なお、焦点プローブ光学系5は、図3(b)に示すように構成してもよい。図3(b)の例では、集光レンズ5aは荷電粒子線の軸と交差する位置検出装置における位置検出光路上に配置されており、位置検出用の光を試料9に集光するように構成されている。ミラー5bは、荷電粒子線の軸が通る部位に孔部5b’が形成されており、集光レンズ5aで集光された光を孔部5b’の周囲の面で偏向して試料9に導くように配置されている。これも互いに共軸の配置となる。
【0025】
図4は本実施形態の図3(a)に示すタイプの焦点プローブ光学系についてのより詳細な構成を示す説明図であり、(a)は位置検出装置側からみた断面図、(b)は正面からみた断面図、(c)は上面図である。図5は図4に示す焦点プローブ光学系の鏡筒内部の光学部材の斜視図である。
焦点プローブ光学系の集光レンズ5a及びミラー5bは、それらの孔部5a’,5b’に筒状部材5dを通した状態で鏡筒5cの内部に固定されている。
鏡筒5cの上部には、荷電粒子線が通る部位に孔部5c’が形成されており、孔部5c’には筒状部材5dが通された状態で固定されている。鏡筒5cの側方には、図1に示した光源1から試料9へ向う位置検出用の光を通す窓部5f及び試料9から位置検出素子2へ向う位置検出用の光を通す窓部5gが設けられている。また、鏡筒5cの下方には、例えばガラスやプラスチックなどの材料で円板状に形成された透明部材5eが、板バネ5iを介して位置を固定された状態に設けられている。透明部材5eの荷電粒子線が通る部位には、孔部5e’が形成されており、孔部5e’に筒状部材5dが通されている。
【0026】
また、鏡筒5c、筒状部材5d、板バネ5iは、導電性かつ非磁性を有する部材で構成されるか、あるいは、それらの表面に導電性かつ非磁性を有する膜がコーティングされ(図示省略)、窓部5f,5g、及び透明部材5eにも、ITO膜などの透明で導電性かつ非磁性を有する膜がコーティングされており(図示省略)、これらが荷電粒子線照射装置と導通してGND電位に固定されるようになっている。
すなわち、集光レンズ5a及びミラー5bは、導電性かつ非磁性を有する部材で荷電粒子線の飛来領域から遮断されるように囲われており、荷電粒子線による帯電を防止し、荷電粒子線の軌道を乱すことがないようになっている。
【0027】
このように構成された焦点プローブ光学系5を備えた位置検出装置では、図1に示す光源部1より出射した光は、ミラー4を経て、図4(c)に示す焦点プローブ光学系5の窓部5fを通って鏡筒5cの内部に入り、図4(b)に示すミラー5bで偏向され、集光レンズ5aで集光され、透明部材5eを経て試料9に点状に照射される。試料9で反射した光は、図4(a)に示すように、位置検出用の光の経路を逆向きに辿る。すなわち、透明部材5e、集光レンズ5aを通り、ミラー5bで偏向され、窓部5gを通って、鏡筒5cの外部に出てミラー4に入射し、ミラー4で偏向され、位置検出素子2で受光される。
位置検出素子2では、受光位置のずれによる光強度のずれを感知する。感知した光強度のずれは、図2(a)〜(c)のいずれかに示すような回路を介してZ方向の変位として検出される。
【0028】
このとき、本実施形態の焦点プローブ光学系では、光軸が荷電粒子線の軸と共軸となっているため、Z位置の変動に対する変位拡大率を大きくとることができる。
この点に関し、従来例と比較しながら、以下に説明する。
【0029】
図10に示した、位置検出用の光を試料に対して斜めから所定の角度をなすようにして照射するタイプの従来の位置検出装置の場合、Z方向の変位は、図13に示すように、試料9の照射位置から遠く離れた側方(B方向)から観察したときの変位量で検出するようになっている。
例えば、試料9とのなす角θで位置検出用の光が入射するものとし、試料9が上下にΔZの全幅で移動するものとすると、
仮に、試料が光を散乱・回折させる特性があり、試料の真上(A方向)から観察できるのであれば、ΔZに相当する変位量ΔXaは、
Xa=ΔZ/tanθ
で観測され、表1に示すように、角度θが浅くなればなるほど、変位拡大率は大きくなる。
しかしながら、多くの試料は表面が散乱をおこさせることなく正反射方向(B方向)からしか光を検出できない。たとえ散乱光がありA方向から検出できたとしても電子レンズとの機械的干渉で実際には検出機器を配置することができない。
B方向から観察されるΔZに相当する変位量Xbは、
となり、表2に示すように、位置検出用の光と試料とのなす角θが十分に小さければ、2×ΔZに近づく。
即ち、位置検出用の光と試料とのなす角θが小さくなるにつれて、変位拡大率は増加ずるが、その値は“2”に限りなく近づき“2”を超えることはない。
【0030】
しかし、拡大変位率が“2”程度では、高精度の位置検出をするのに十分に大きな値とはいえず、位置検出感度を高くすることが出来ない。例えば、Z方向の変位量ΔZの測定値に0.1μmレベルでの安定性を求めるには、B方向の遠方(数百mm以上離れたところ)から観察したときの変位量Xbの測定値に0.2μmレベルでの高い安定性が必要となる。これは、望遠鏡の距離から顕微鏡レベルの分解能を求めるようなことになり、実現が非常に困難である。
また、上記のような試料に対し浅い角度でもって位置検出用の光を入射させる方式では、位置検出用光線のわずかな変化で標本上の照射位置が変化し、位置検出装置による測定点と荷電粒子線照射装置による照射点とを一致させることが極めて難しい。
【0031】
これに対し、本実施形態の焦点プローブ光学系によれば、焦点プローブ光学系光軸を荷電粒子線の軸と共軸となるようにしたので、図6に示すような、従来既知のAF(オートフォーカス)方式と同様に、Z方向の変位を試料から反射してくる光線の傾きに置き換えることができる。
図6において集光レンズの焦点距離をf、集光レンズの入射NAをNA=sinθ、試料のZ方向移動量をΔZとする。
試料のZ方向の移動による位置検出用の光のビームスポットの移動を本来の焦点位置におけるスポットの移動Δdに置き換えて考えると、
Δd=2×ΔZ×tanθ
となる。
反射光の振れ角をΔΦとおくと、
Δd=f×ΔΦ
となる。
したがって、
ΔΦ=2×ΔZ×tanθ/f
となる。
この振れ角ΔΦを距離L離れた位置検出素子2上で受光されるスポット光の移動量ΔXに置き換えると、その移動量ΔXは、
となる。
すなわち、Z方向の移動量の検出感度は、集光レンズ5aの
及び位置検出素子2までの距離Lに比例し、集光レンズ5aの焦点距離fに反比例する。
すなわち、本実施形態の焦点プローブ光学系を用いた位置検出装置では、Z方向の微小な変化を短い焦点距離のレンズを介して振れ角の変化に置き換え、光てこの原理で拡大増幅しているものといえる。
【0032】
しかるに、本実施形態によるZ方向の変位量ΔXを示した上記式に、荷電粒子線照射装置に実際に用いることが可能な焦点プローブ光学系としての具体的な数値を代入してみる。
荷電粒子線照射装置に用いる位置検出装置として、NA0.4〜0.5の範囲の光線を使用するものとすると、
NA=0.45(26.7°)
集光レンズの焦点距離fが5〜10mm程度、試料と位置検出素子との距離Lが250mm〜350mm程度であるとすると、
Z方向変位量に対応する光スポットの変位量ΔXは、
2×tan26.7×250×ΔZ/10≦ΔX≦2×tan26.7×350×ΔZ/5
となる。
すなわち、本実施形態の焦点プローブ光学系を用いた位置検出装置では、上記具体的数値を入れた場合において、試料のZ方向の変位に対し、約25〜70倍の変位拡大作用を実現していることになる。
他方、位置検出素子2としては、2分割素子やPSDを使用してスポット移動量の測定を行うが、位置検出素子2でのスポット径は約1mm以下と予測され、この場合経験上1μm程度の分解能は得られることがわかっている。
これらのことから、本実施形態の焦点プローブ光学系を用いた位置検出装置に標本面に換算して、1μm÷(25〜70)=0.04〜0.014μm程度の分解能が得られ、図10に示した従来の位置検出装置に比べて約10倍以上の光学的変位拡大を図ることができる。
【0033】
また、本実施形態の焦点プローブ光学系によれば、焦点プローブ光学系の光軸が、荷電粒子線照射装置の荷電粒子線の軸と共軸となるように構成したことにより、試料への照射光をほぼ荷電粒子線と同じ入射角で試料に入射させることができ、測定ポイントを荷電粒子線照射装置の照射エリアに一致させやすくすることができる。そして、荷電粒子線照射装置の照射位置に測定ポイントを置くことができるため、試料にうねり等がある場合や、小さな試料であっても試料のZ位置を高精度に検出することができる。
さらに、試料の全面にわたってZ測定しながら荷電粒子線を照射することが可能となり、標本に無駄なスペースを要求することがない。
【0034】
また、本実施形態の焦点プローブ光学系によれば、位置検出装置における点光源からの試料へ照射するための位置検出用の光が、試料で反射して位置検出装置の位置検出素子へ向かうので、焦点プローブ光学系を調整するだけで、投光と受光の両方の光路の向きを調整できる。このため、本実施形態の焦点プローブ光学系によれば、位置検出光学系から独立したユニットとして構成することができ、メンテナンス、システム変更がしやすくなる。
【0035】
また、本実施形態の焦点プローブ光学系によれば、荷電粒子線照射装置に対して片側のみに位置検出装置を配置する構成で足りる。
このため、投光部と受光部の光路において共通の光学部材(例えば図1に示すミラー4)を介在させることができ、外乱が生じたとしても投光経路と受光経路とにおいて、ミラー4が平等に外乱の影響を受けることによって、外乱の影響を相殺させることができる。また、部品点数を少なくすることができ、装置の小型化、低コスト化を達成することができる。
【0036】
なお、図4に示す実施形態のプローブ光学系では、集光レンズ5aの下部に、ITO膜などの透明で導電性かつ非磁性を有する膜がコーティングされた透明部材5eを配置しているが、図7(a)に示すように、透明部材5eを設けずに、集光レンズ5aの表面に直接ITO膜などの透明で導電性かつ非磁性を有する膜をコーティングして鏡筒5cと導通させるようにしてもよい。あるいは、透明部材5eの代わりに、図7(b)に示すように、位置検出用の光が通過する箇所にのみ孔部5h’,5h’が形成された導電性かつ非磁性を有する円板状部材5hを用いてもよい。また、その場合においても、荷電粒子線の軌道に影響が生じないよう必要に応じて、孔部5h’,5h’にITO膜などの透明で導電性かつ非磁性を有する膜がコーティングされた透明部材(図示省略)を設けるとよい。あるいは、筒状部材5dを設けないで、図7(c)に示すように、集光レンズ5a、ミラー5bの表面をITO膜などの導電性かつ非磁性を有する膜でコーティングし、焦点プローブ光学系の光軸が該荷電粒子線露光装置の荷電粒子線の軸と共軸となるように孔部5a’,5b’の位置を合わせた状態で、集光レンズ5a、ミラー5bを鏡筒5cと導通するように固定してもよい。
【0037】
また、本実施形態の焦点プローブ光学系において、集光レンズ5aは、試料面にスポット光を集光することができれば、面形状はどのような形状であってもよい。また、数枚のレンズで構成してもよく、あるいは、接合レンズで構成してもよい。さらには、シリンドリカルレンズで構成してもよい。
また、ミラー5bは、孔部5b’を備えた1枚構成でなくでもよく、孔部を備えていない2枚のミラーを、位置検出用の光を偏向して試料に導くとともに、試料で反射した光を偏向して位置検出装置における位置検出用の光の経路を逆向きに辿らせることができるように、荷電粒子線が通る部位の周囲に配置して構成してもよい。
【0038】
また、本実施形態による焦点プローブ光学系は、図8に示すように、図4に示す構成において、焦点プローブ光学系5のレーザ光が入射する窓部5fにレーザ絞り板5sを設け、位置検出装置の光源部よりこのレーザ絞り板5sの開口穴の径よりも大きなレーザ光を入射させるようにしてもよい。
図8に示す焦点プローブ光学系では、レーザ絞り板5sの開口穴の径よりも大きなビーム径のレーザ光は、レーザ絞り板5sによってそのビーム径が絞られる。必然的に、試料9で反射したレーザ光はレーザ絞り板5sの開口穴の径と同じビーム径で窓部5gよりミラー4、窓部8を経て光源及び信号処理系3で検出されることになる。
【0039】
ここで、レーザ絞り板5sの大きさは次のようにして決定される。
レーザ光は直進性の強い光であるが、伝播距離が長くなるほど、またビーム径が小さいほど伝播するにしたがってビーム径が大きくなっていく性質がある。しかし、焦点プローブ光学系5から戻ってくるレーザ光は、信号処理部の2分割素子やPSDなどの光位置検出素子の受光面のサイズよりも小さいことが要求される。したがって、レーザ絞り板5sの大きさは、焦点プローブ光学系5から光源及び信号処理系3への戻りのビームの伝播距離と信号処理部の2分割素子やPSDの受光面のサイズを勘案して決定される。
【0040】
また、レーザ絞り板5sをレーザ光が入射する窓部5f側に設置したのは次の理由による。
光源及び信号処理系3、ミラー4に対して、焦点プローブ光学系5のアライメント作業をする場合には、焦点プローブ光学系5の窓部5fの中心にレーザ光を入射させる必要がある。
しかし、レーザ絞り板5sよりも大きな径のレーザ光を入射させれば、窓部5fを十分照射する程度のアライメント作業で良いということになる。
このことは、装置を組み立てる場合にその組み付け作業が容易になるばかりでなく、焦点プローブ光学系5の故障等によるメンテナンス作業も容易になるという大きなメリットになる。また、装置の振動等の外乱により焦点プローブ光学系5へ入射するレーザ光の位置が多少振動したとしても、光源及び信号処理系3による検出信号への影響が緩和されるという効果も発生する。
なお、図8に示す実施形態では、レーザ絞り板5sを窓部5fと別体に設けたが、窓部5fをレーザ絞り板5sとして機能させても同様の効果が得られる。いずれにしても、レーザ絞り板5sよりも大きな径のレーザ光を入射させれば良い。
【0041】
【発明の効果】
本発明の焦点プローブ光学系によれば、荷電粒子線照射装置に用いたときに、試料への照射光をほぼ荷電粒子線と同じ入射角で試料に入射させることができ、Z位置の変位量に対する変位拡大量を大きくとることができ、しかも測定ポイントを荷電粒子線照射装置の照射エリアに一致させやすくすることができるので、Z位置検出感度を高精度にすることができる。また、荷電粒子線照射部の片側に投光部と受光部とを兼ね備えた位置検出装置を配置すれば足りるので、外乱に強く、部材点数を少なくでき、装置を小型化し、コストも低減することができる。また、焦点プロープ光学系をユニット化させることができ、メンテナンス性も向上する。
【図面の簡単な説明】
【図1】本発明による焦点プローブ光学系を備えた位置検出装置の一実施形態を示す図であり、(a)は全体の概略構成図、(b)は光源及び信号処理系部の概略構成を示す説明図、(c)は光源部の構成図である。
【図2】図2(a),(b),(c)は信号処理部の構成例を示す回路図である。
【図3】(a),(b)は本実施形態の焦点プローブ光学系を構成する光学部材の鏡筒内部における典型的な配置例を示す説明図である。
【図4】本実施形態の図3(a)に示すタイプの焦点プローブ光学系についてのより詳細な構成を示す説明図であり、(a)は位置検出装置側からみた断面図、(b)は正面からみた断面図、(c)は上面図である。
【図5】図4に示す焦点プローブ光学系の鏡筒内部の光学部材の斜視図である。
【図6】本発明の位置検出装置におけるZ方向の変位に対する拡大変位量の検出方式についての原理説明図である。
【図7】図4に示す本実施形態の焦点プローブ光学系の変形例を示す説明図である。
【図8】図4の本実施形態の焦点プローブ光学系にレーザ絞り板を設けた変形例を示す説明図であり、(a)は位置検出装置側からみた断面図、(b)は正面からみた断面図、(c)は上面図である。
【図9】荷電粒子線照射装置の基本構成を示す概略図である。
【図10】上記特許文献1に記載の従来の位置検出装置の要部を示す概略構成図である。
【図11】上記非特許文献1に記載の従来の位置検出装置の概略構成図である。
【図12】上記特許文献2に記載の従来の位置検出装置の概略構成図である。
【図13】図10に示した、位置検出用の光を試料に対して斜めから浅い角度をなすようにして照射するタイプの従来の位置検出装置におけるZ方向の変位に対する拡大変位量の検出方式についての原理説明図である。
【符号の説明】
1 光源部
1a 半導体レーザ
1b コレクタレンズ
2 位置検出素子
3 光源及び信号処理系
4 ミラー
5 焦点プローブ光学系
5a 集光レンズ
5a’,5b’,5c’,5e’,5h’ 孔部
5b ミラー
5c 鏡筒
5d 筒状部材
5e 透明部材
5f,5g 窓部
5i 板バネ
5h 円板状部材
5s レーザ絞り板
6 荷電粒子線照射装置
7 真空チャンバ
8 窓部
9 試料
10 ステージ
51 荷電粒子線照射部
52 試料
53 ステージ
54 真空チャンバ
55 電子銃
56 電磁コンデンサレンズ
57 電磁対物レンズ
61 投光側光学系
62 受光側光学系
63 光源
64,65 ミラー
66 受光素子
71 投光部
72 受光部
81 位置検出装置
82 位置検出用光路
【発明の属する技術分野】
本発明は電子線やイオンビーム等の荷電粒子線を感応基板などの試料に照射する荷電粒子線照射装置において試料のZ位置を検出するための位置検出装置に用いる焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置に関する。
【0002】
【従来の技術】
半導体素子は、基板表面に微細化されたデバイスパターンが高集積化されて形成されている。このような半導体素子のデバイスパターンを形成したり、半導体素子の表面形状の計測や検査を行う手段として、近年荷電粒子線を用いた荷電粒子線照射装置が用いられている。
【0003】
図9は荷電粒子線照射装置の基本構成を示す概略図である。荷電粒子線光学装置は、荷電粒子線照射部51と、感応基板等の試料52を載置するXY方向に移動可能なステージ53と、ステージ53を真空状態に囲う真空チャンバ54とを備えて構成されている。荷電粒子線光学照射部51の鏡筒内には、電子銃55、電磁コンデンサレンズ56、電磁対物レンズ57、図示省略した荷電粒子線の軌道を制御する電磁プリズム等の偏向器を有してなる電子光学系が設けられている。そして、電子銃55から放出した荷電粒子線は、これらの電子光学系構成部材を経て、ステージ53に載置された試料52上の所定位置に結像するようになっている。
【0004】
このような荷電粒子線照射装置においては、試料の照射表面Z位置(高さ位置)は、載置するステージの精度、試料の厚さ、載置した試料の平行度、及び試料自体のうねり等の影響を受けて変動しやすい。
これに対し、電子光学系は、そのNAは十分小さく、十分な焦点深度を有しているものの、テレセントリックな構成ではない場合、試料のZ位置が変動すると露光パターン等の倍率に大きな影響を及ぼしてしまう。
このため、試料の荷電粒子線照射装置に対するZ位置の変化を計測し、そのZ位置の変化に応じて倍率の補正をする必要がある。
【0005】
Z位置の変化の計測には、試料上の所定位置に位置合わせ用のマークを設けておき、このマークからの位置ずれをZ位置検出装置で検出する方法がある。
しかるに、荷電粒子線照射装置における位置合わせ用のマークからの位置ずれを検出する方法としては、荷電粒子線を散乱する性質の高い物質からなるマークを試料上に設け、このマークに荷電粒子線を照射する方法がある。しかし、この方法によると、マークからの散乱光によって試料が露光されてしまうおそれがある。
そこで、Z位置の変化の計測には、荷電粒子線照射装置とは別に試料が露光しない波長の通常光による光学系を備えた位置検出装置を介して試料上のマークからの位置ずれを検出する方法が用いられている。
【0006】
通常光を用いた従来のZ位置検出放置としては、荷電粒子線照射部の両側に投光部と受光部とを設けた装置(例えば、特許文献1参照)や、荷電粒子線照射部の一方に投光部、他方に干渉計を設けた装置(例えば、非特許文献1参照)や、荷電粒子線照射装置における荷電粒子線の軸と所定距離離れた位置に位置検出用の光軸を設けた装置(例えば、特許文献2参照)などがある。
【0007】
【特許文献1】
特開2002−33068号公報(第6−7頁、図1、図2)
【非特許文献1】
東芝機械(株)平野亮一、東條徹、(株)トプコン渡邊真也、阿部和夫、斎藤晋、“光ヘテロダイン法を用いた電子ビーム描画装置用精密位置測定法(XYZセンサ)の開発”、1997年度精密光学会春季学術講演会講演論文集、p809−810
【特許文献2】
特開平11−224844号公報(第3頁、図1)
【0008】
図10は上記特許文献1に記載の従来の位置検出装置の要部を示す概略構成図である。
特許文献1に記載の位置検出装置は、図10に示すように、投光側光学系61と、受光側光学系62とを、荷電粒子線照射部51の両側に、荷電粒子線照射部51から所定距離離れた位置に配置し、ステージ53上の試料(標本)52に対し、投光側光学系61の光源63からの光をミラー64を介して試料52の面に対し浅い角度となるように照射し、試料52で反射した光を投光側光学系61とは反対側の受光光学系62内のミラー65を経て受光素子66で受光し、受光素子66による受光位置のずれにより試料のZ位置を検出するように構成されている。
【0009】
図11は上記非特許文献1に記載の従来の位置検出装置の概略構成図である。
非特許文献1に記載の位置検出装置は、投光部71側で2つの異なる角度の荷電粒子線を照射するようにするとともに、受光部72側に干渉計を備え、光ヘテロダイン法を用いて微妙に角度の異なる2つの干渉光の間に発生する位相差を測定することによりZ位置を計測するように構成されている。
【0010】
図12は上記特許文献2に記載の従来の位置検出装置の概略構成図である。
特許文献2に記載の位置検出装置81は、投光用光源と受光素子(いずれも図示省略)とを備えるとともに、荷電粒子照射部51の鏡筒内に荷電粒子線の軸に対し所定間隔ずらした位置に、非磁性の導電性材料で形成された位置検出用光路82を設けて、試料52面の荷電粒子線の軸から所定距離L離れた位置に、図示省略した投光用光源からの光を照射し、試料52での反射光を図示省略した受光素子で検出することにより、試料52のZ位置の変動を検出するように構成されている。
【0011】
【発明が解決しようとする課題】
特許文献1に記載の位置検出装置では、Z位置の位置ずれ量を試料を反射する光の方向からみたときのずれ量で検出している。しかし、入射光及び反射光が試料面に対し浅い斜めの角度をなしており、Z位置の位置ずれ量を試料を反射する光の方向からみたときのずれ量で検出した場合には、Z位置の変位に対する変位拡大率を大きくとることができず、位置検出感度を高くすることができない。また、荷電粒子線照射部51の両側に、投光側光学系61と、受光側光学系62とを配置したのでは、部材点数が多くなり、装置全体が大型化し、コスト高となってしまう。また、試料に対し浅い角度で位置検出用の光を入射させるのでは、位置検出装置による測定点と荷電粒子線照射装置による荷電粒子線の照射点とを一致させることが難しい。しかも、投光側光学系61と、受光側光学系62とが離れて配置されるので、組立て時の位置調整が難しく、いずれか一方の光学系における微妙な位置ずれが他方の光学系に大きく影響してしまい、外乱にも弱い。さらには、一方の側の光学系をユニット化して交換することや、メンテナンスすることも困難となる。
【0012】
非特許文献1の干渉計を用いた位置検出装置では、Z位置の変動に対する位相差の変化量は非常に小さく拡大率は高くない。しかし、非常に高感度な検出方式である光干渉法を用いることにより、これを補い総合的にはZ位置検出感度を十分に高くとることができる。
しかし、高感度な干渉計を用いた装置は、空気のゆらぎや振動等の外乱に非常に弱い。また、複雑、高感度な光学系を必要としコストが非常に高くなる。また、装置が大型化、複雑化し、メンテナンスやユニット化が困難である。
【0013】
特許文献2に記載の位置検出装置は、小型化が可能であり、コスト的にも上記2つの従来例より有利である。しかし、荷電粒子線照射部51からの荷電粒子線を照射位置とZ位置検出装置81からのZ位置検出光照射位置とが一定の距離があり、荷電粒子線の照射位置における試料52のZ位置を検出するものではない。このため、試料のうねりやかたむきを原因とした荷電粒子線の照射位置と位置検出光の照射位置とにおける試料のZ位置に差が大きく生じた場合には測定値に大きな誤差を含むことになる。また、試料の大きさが、荷電粒子線の照射位置から位置検出光の照射位置までの距離よりも小さい場合には、位置検出光による試料の照射と荷電粒子線による試料の照射とを同時に行うことが出来ない。さらに、試料全域にわたって荷電粒子線による照射を行うことが出来なくなる。
【0014】
本発明は上記問題点に鑑みてなされたものであり、Z位置検出感度が高く、対外乱に強く、メンテナンスしやすく、ユニット化でき、小型化できる焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明による焦点プローブ光学系は、試料に荷電粒子線を照射する荷電粒子線照射装置における該試料のZ位置を検出する位置検出装置に用いる焦点プローブ光学系であって、前記位置検出装置における位置検出用の光を前記試料に集光するための集光レンズと、前記位置検出用の光を偏向して前記試料に導くとともに、前記試料で反射した光を偏向して前記位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材とを有し、前記荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸が、該荷電粒子線露光装置の荷電粒子線の軸と共軸となるようにしたことを特徴としている。
【0016】
また、本発明による焦点プローブ光学系は、前記偏向部材が、前記位置検出装置における位置検出用の光を前記試料に導くように、前記荷電粒子線の軸の周囲に設けられ、前記集光レンズが、孔部を有して形成され、該孔部を前記荷電粒子線が通過し、前記偏向部材で偏向された光を該孔部の周囲のレンズ面で集光して前記試料に導くように、前記偏向部材と前記試料との間に配置されていることを特徴としている。
【0017】
また、本発明による焦点プローブ光学系は、前記偏向部材が、前記集光レンズで集光された光を偏向して前記試料に導くように、前記荷電粒子線の軸の周囲に設けられていることを特徴としている。
【0018】
また、本発明による焦点プローブ光学系は、前記偏向部材及び前記集光レンズが、導電性かつ非磁性を有する部材で前記荷電粒子線の飛来領域から遮断されるように囲われていることを特徴としている。
【0019】
また、本発明による焦点プローブ光学系は、前記偏向部材及び前記集光レンズが、その表面を導電性かつ非磁性を有する膜でコーティングされていることを特徴としている。
【0020】
また、本発明による位置検出装置は、点光源と、位置検出手段と、上記本発明の焦点プローブ光学系とを備えている。
【0021】
また、本発明による荷電粒子線照射装置は、上記本発明の位置検出装置を備えている。
【0022】
【発明の実施の形態】
本発明の焦点プローブ光学系のように構成すると、試料への入射光の入射角度を比較的小さくすることが可能であり、測定ポイントを荷電粒子線照射装置の照射エリアに一致させやすくすることができるので、Z位置を高精度に検出することができる。また、荷電粒子線照射装置に用いる場合、荷電粒子線照射部の片側に投光部と受光部とを兼ね備えた位置検出装置を配置すれば足りるので、外乱に強く、部材点数を少なくでき、装置を小型化し、コストも低減することができる。また、焦点プロープ光学系をユニット化させることができ、メンテナンス性も向上する。
以下、本発明の実施形態を図面を用いて詳しく説明する。
【0023】
図1は本発明による焦点プローブ光学系を備えた位置検出装置の一実施形態を示す図であり、(a)は全体の概略構成図、(b)は光源及び信号処理系部の概略構成を示す説明図、(c)は光源部の構成図、図2(a),(b),(c),(d)は信号処理部の構成例を示す回路図である。
本実施形態の位置検出装置は、光源部1と位置検出素子2とを有する光源及び信号処理系3と、ミラー4と、焦点プロープ光学系5とで構成されている。なお、図中、6は内部に電子光学系を備えた荷電粒子線照射装置、7は真空チャンバ、8は光源及び信号処理系とミラー4との間の光を通すための窓部、9は感応性樹脂(レジスト)がコーティングされた半導体ウエハーやマスク基板などの試料(標本)、10は試料を載置するXY方向に移動可能なステージである。
光源部1は、LDやSLD等の高輝度光源、例えば半導体レーザ1aとコレクタレンズ1bとを備えている。コレクタレンズ1bは、高輝度光源1aで出射した光の径が位置検出素子2において最小のスポットを形成するように矢印方向に移動可能に構成されている。
位置検出素子2は、2分割フォトダイオードやPSD,CCD等で構成されている。また、信号処理系3は、図2(a)、(b)又は(c)に示すような回路を介して、例えば2分割された位置検出素子2の夫々で受光した光量の差からZ位置を検出するように構成されている。
焦点プローブ光学系5は、荷電粒子線照射装置6と試料9との間に配置可能な大きさを有しており、荷電粒子線照射装置6の鏡筒の荷電粒子線が通る部位に設けられている。
【0024】
図3(a),(b)は本実施形態の焦点プローブ光学系を構成する光学部材の鏡筒内部における典型的な配置例を示す説明図である。
焦点プローブ光学系5は、図3(a)に示すように、位置検出装置における位置検出用の光を試料9(のレジスト)に集光するための集光レンズ5aと、位置検出用の光を偏向して試料9に導くとともに、試料9で反射した光を偏向して位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材であるミラー5bとを有して構成されている。そして、荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸は、荷電粒子線露光装置における荷電粒子線の軸と共軸となっている。すなわち、集光レンズ5aの光軸と一致している。
ミラー5bは、荷電粒子線の軸が通る部位に孔部5b’が形成されており、位置検出装置における位置検出用の光を孔部5b’の周囲の面で偏向して試料9に導くように配置されている。集光レンズ5aは、1枚の非球面レンズなどの正のパワーを有するレンズで構成され、荷電粒子線が通る部位に孔部5a’が形成されており、ミラー5bで偏向された光を孔部5a’の周囲の面で集光して試料9に導くようにミラー5bと試料9との間に配置されている。
なお、焦点プローブ光学系5は、図3(b)に示すように構成してもよい。図3(b)の例では、集光レンズ5aは荷電粒子線の軸と交差する位置検出装置における位置検出光路上に配置されており、位置検出用の光を試料9に集光するように構成されている。ミラー5bは、荷電粒子線の軸が通る部位に孔部5b’が形成されており、集光レンズ5aで集光された光を孔部5b’の周囲の面で偏向して試料9に導くように配置されている。これも互いに共軸の配置となる。
【0025】
図4は本実施形態の図3(a)に示すタイプの焦点プローブ光学系についてのより詳細な構成を示す説明図であり、(a)は位置検出装置側からみた断面図、(b)は正面からみた断面図、(c)は上面図である。図5は図4に示す焦点プローブ光学系の鏡筒内部の光学部材の斜視図である。
焦点プローブ光学系の集光レンズ5a及びミラー5bは、それらの孔部5a’,5b’に筒状部材5dを通した状態で鏡筒5cの内部に固定されている。
鏡筒5cの上部には、荷電粒子線が通る部位に孔部5c’が形成されており、孔部5c’には筒状部材5dが通された状態で固定されている。鏡筒5cの側方には、図1に示した光源1から試料9へ向う位置検出用の光を通す窓部5f及び試料9から位置検出素子2へ向う位置検出用の光を通す窓部5gが設けられている。また、鏡筒5cの下方には、例えばガラスやプラスチックなどの材料で円板状に形成された透明部材5eが、板バネ5iを介して位置を固定された状態に設けられている。透明部材5eの荷電粒子線が通る部位には、孔部5e’が形成されており、孔部5e’に筒状部材5dが通されている。
【0026】
また、鏡筒5c、筒状部材5d、板バネ5iは、導電性かつ非磁性を有する部材で構成されるか、あるいは、それらの表面に導電性かつ非磁性を有する膜がコーティングされ(図示省略)、窓部5f,5g、及び透明部材5eにも、ITO膜などの透明で導電性かつ非磁性を有する膜がコーティングされており(図示省略)、これらが荷電粒子線照射装置と導通してGND電位に固定されるようになっている。
すなわち、集光レンズ5a及びミラー5bは、導電性かつ非磁性を有する部材で荷電粒子線の飛来領域から遮断されるように囲われており、荷電粒子線による帯電を防止し、荷電粒子線の軌道を乱すことがないようになっている。
【0027】
このように構成された焦点プローブ光学系5を備えた位置検出装置では、図1に示す光源部1より出射した光は、ミラー4を経て、図4(c)に示す焦点プローブ光学系5の窓部5fを通って鏡筒5cの内部に入り、図4(b)に示すミラー5bで偏向され、集光レンズ5aで集光され、透明部材5eを経て試料9に点状に照射される。試料9で反射した光は、図4(a)に示すように、位置検出用の光の経路を逆向きに辿る。すなわち、透明部材5e、集光レンズ5aを通り、ミラー5bで偏向され、窓部5gを通って、鏡筒5cの外部に出てミラー4に入射し、ミラー4で偏向され、位置検出素子2で受光される。
位置検出素子2では、受光位置のずれによる光強度のずれを感知する。感知した光強度のずれは、図2(a)〜(c)のいずれかに示すような回路を介してZ方向の変位として検出される。
【0028】
このとき、本実施形態の焦点プローブ光学系では、光軸が荷電粒子線の軸と共軸となっているため、Z位置の変動に対する変位拡大率を大きくとることができる。
この点に関し、従来例と比較しながら、以下に説明する。
【0029】
図10に示した、位置検出用の光を試料に対して斜めから所定の角度をなすようにして照射するタイプの従来の位置検出装置の場合、Z方向の変位は、図13に示すように、試料9の照射位置から遠く離れた側方(B方向)から観察したときの変位量で検出するようになっている。
例えば、試料9とのなす角θで位置検出用の光が入射するものとし、試料9が上下にΔZの全幅で移動するものとすると、
仮に、試料が光を散乱・回折させる特性があり、試料の真上(A方向)から観察できるのであれば、ΔZに相当する変位量ΔXaは、
Xa=ΔZ/tanθ
で観測され、表1に示すように、角度θが浅くなればなるほど、変位拡大率は大きくなる。
しかしながら、多くの試料は表面が散乱をおこさせることなく正反射方向(B方向)からしか光を検出できない。たとえ散乱光がありA方向から検出できたとしても電子レンズとの機械的干渉で実際には検出機器を配置することができない。
B方向から観察されるΔZに相当する変位量Xbは、
となり、表2に示すように、位置検出用の光と試料とのなす角θが十分に小さければ、2×ΔZに近づく。
即ち、位置検出用の光と試料とのなす角θが小さくなるにつれて、変位拡大率は増加ずるが、その値は“2”に限りなく近づき“2”を超えることはない。
【0030】
しかし、拡大変位率が“2”程度では、高精度の位置検出をするのに十分に大きな値とはいえず、位置検出感度を高くすることが出来ない。例えば、Z方向の変位量ΔZの測定値に0.1μmレベルでの安定性を求めるには、B方向の遠方(数百mm以上離れたところ)から観察したときの変位量Xbの測定値に0.2μmレベルでの高い安定性が必要となる。これは、望遠鏡の距離から顕微鏡レベルの分解能を求めるようなことになり、実現が非常に困難である。
また、上記のような試料に対し浅い角度でもって位置検出用の光を入射させる方式では、位置検出用光線のわずかな変化で標本上の照射位置が変化し、位置検出装置による測定点と荷電粒子線照射装置による照射点とを一致させることが極めて難しい。
【0031】
これに対し、本実施形態の焦点プローブ光学系によれば、焦点プローブ光学系光軸を荷電粒子線の軸と共軸となるようにしたので、図6に示すような、従来既知のAF(オートフォーカス)方式と同様に、Z方向の変位を試料から反射してくる光線の傾きに置き換えることができる。
図6において集光レンズの焦点距離をf、集光レンズの入射NAをNA=sinθ、試料のZ方向移動量をΔZとする。
試料のZ方向の移動による位置検出用の光のビームスポットの移動を本来の焦点位置におけるスポットの移動Δdに置き換えて考えると、
Δd=2×ΔZ×tanθ
となる。
反射光の振れ角をΔΦとおくと、
Δd=f×ΔΦ
となる。
したがって、
ΔΦ=2×ΔZ×tanθ/f
となる。
この振れ角ΔΦを距離L離れた位置検出素子2上で受光されるスポット光の移動量ΔXに置き換えると、その移動量ΔXは、
となる。
すなわち、Z方向の移動量の検出感度は、集光レンズ5aの
及び位置検出素子2までの距離Lに比例し、集光レンズ5aの焦点距離fに反比例する。
すなわち、本実施形態の焦点プローブ光学系を用いた位置検出装置では、Z方向の微小な変化を短い焦点距離のレンズを介して振れ角の変化に置き換え、光てこの原理で拡大増幅しているものといえる。
【0032】
しかるに、本実施形態によるZ方向の変位量ΔXを示した上記式に、荷電粒子線照射装置に実際に用いることが可能な焦点プローブ光学系としての具体的な数値を代入してみる。
荷電粒子線照射装置に用いる位置検出装置として、NA0.4〜0.5の範囲の光線を使用するものとすると、
NA=0.45(26.7°)
集光レンズの焦点距離fが5〜10mm程度、試料と位置検出素子との距離Lが250mm〜350mm程度であるとすると、
Z方向変位量に対応する光スポットの変位量ΔXは、
2×tan26.7×250×ΔZ/10≦ΔX≦2×tan26.7×350×ΔZ/5
となる。
すなわち、本実施形態の焦点プローブ光学系を用いた位置検出装置では、上記具体的数値を入れた場合において、試料のZ方向の変位に対し、約25〜70倍の変位拡大作用を実現していることになる。
他方、位置検出素子2としては、2分割素子やPSDを使用してスポット移動量の測定を行うが、位置検出素子2でのスポット径は約1mm以下と予測され、この場合経験上1μm程度の分解能は得られることがわかっている。
これらのことから、本実施形態の焦点プローブ光学系を用いた位置検出装置に標本面に換算して、1μm÷(25〜70)=0.04〜0.014μm程度の分解能が得られ、図10に示した従来の位置検出装置に比べて約10倍以上の光学的変位拡大を図ることができる。
【0033】
また、本実施形態の焦点プローブ光学系によれば、焦点プローブ光学系の光軸が、荷電粒子線照射装置の荷電粒子線の軸と共軸となるように構成したことにより、試料への照射光をほぼ荷電粒子線と同じ入射角で試料に入射させることができ、測定ポイントを荷電粒子線照射装置の照射エリアに一致させやすくすることができる。そして、荷電粒子線照射装置の照射位置に測定ポイントを置くことができるため、試料にうねり等がある場合や、小さな試料であっても試料のZ位置を高精度に検出することができる。
さらに、試料の全面にわたってZ測定しながら荷電粒子線を照射することが可能となり、標本に無駄なスペースを要求することがない。
【0034】
また、本実施形態の焦点プローブ光学系によれば、位置検出装置における点光源からの試料へ照射するための位置検出用の光が、試料で反射して位置検出装置の位置検出素子へ向かうので、焦点プローブ光学系を調整するだけで、投光と受光の両方の光路の向きを調整できる。このため、本実施形態の焦点プローブ光学系によれば、位置検出光学系から独立したユニットとして構成することができ、メンテナンス、システム変更がしやすくなる。
【0035】
また、本実施形態の焦点プローブ光学系によれば、荷電粒子線照射装置に対して片側のみに位置検出装置を配置する構成で足りる。
このため、投光部と受光部の光路において共通の光学部材(例えば図1に示すミラー4)を介在させることができ、外乱が生じたとしても投光経路と受光経路とにおいて、ミラー4が平等に外乱の影響を受けることによって、外乱の影響を相殺させることができる。また、部品点数を少なくすることができ、装置の小型化、低コスト化を達成することができる。
【0036】
なお、図4に示す実施形態のプローブ光学系では、集光レンズ5aの下部に、ITO膜などの透明で導電性かつ非磁性を有する膜がコーティングされた透明部材5eを配置しているが、図7(a)に示すように、透明部材5eを設けずに、集光レンズ5aの表面に直接ITO膜などの透明で導電性かつ非磁性を有する膜をコーティングして鏡筒5cと導通させるようにしてもよい。あるいは、透明部材5eの代わりに、図7(b)に示すように、位置検出用の光が通過する箇所にのみ孔部5h’,5h’が形成された導電性かつ非磁性を有する円板状部材5hを用いてもよい。また、その場合においても、荷電粒子線の軌道に影響が生じないよう必要に応じて、孔部5h’,5h’にITO膜などの透明で導電性かつ非磁性を有する膜がコーティングされた透明部材(図示省略)を設けるとよい。あるいは、筒状部材5dを設けないで、図7(c)に示すように、集光レンズ5a、ミラー5bの表面をITO膜などの導電性かつ非磁性を有する膜でコーティングし、焦点プローブ光学系の光軸が該荷電粒子線露光装置の荷電粒子線の軸と共軸となるように孔部5a’,5b’の位置を合わせた状態で、集光レンズ5a、ミラー5bを鏡筒5cと導通するように固定してもよい。
【0037】
また、本実施形態の焦点プローブ光学系において、集光レンズ5aは、試料面にスポット光を集光することができれば、面形状はどのような形状であってもよい。また、数枚のレンズで構成してもよく、あるいは、接合レンズで構成してもよい。さらには、シリンドリカルレンズで構成してもよい。
また、ミラー5bは、孔部5b’を備えた1枚構成でなくでもよく、孔部を備えていない2枚のミラーを、位置検出用の光を偏向して試料に導くとともに、試料で反射した光を偏向して位置検出装置における位置検出用の光の経路を逆向きに辿らせることができるように、荷電粒子線が通る部位の周囲に配置して構成してもよい。
【0038】
また、本実施形態による焦点プローブ光学系は、図8に示すように、図4に示す構成において、焦点プローブ光学系5のレーザ光が入射する窓部5fにレーザ絞り板5sを設け、位置検出装置の光源部よりこのレーザ絞り板5sの開口穴の径よりも大きなレーザ光を入射させるようにしてもよい。
図8に示す焦点プローブ光学系では、レーザ絞り板5sの開口穴の径よりも大きなビーム径のレーザ光は、レーザ絞り板5sによってそのビーム径が絞られる。必然的に、試料9で反射したレーザ光はレーザ絞り板5sの開口穴の径と同じビーム径で窓部5gよりミラー4、窓部8を経て光源及び信号処理系3で検出されることになる。
【0039】
ここで、レーザ絞り板5sの大きさは次のようにして決定される。
レーザ光は直進性の強い光であるが、伝播距離が長くなるほど、またビーム径が小さいほど伝播するにしたがってビーム径が大きくなっていく性質がある。しかし、焦点プローブ光学系5から戻ってくるレーザ光は、信号処理部の2分割素子やPSDなどの光位置検出素子の受光面のサイズよりも小さいことが要求される。したがって、レーザ絞り板5sの大きさは、焦点プローブ光学系5から光源及び信号処理系3への戻りのビームの伝播距離と信号処理部の2分割素子やPSDの受光面のサイズを勘案して決定される。
【0040】
また、レーザ絞り板5sをレーザ光が入射する窓部5f側に設置したのは次の理由による。
光源及び信号処理系3、ミラー4に対して、焦点プローブ光学系5のアライメント作業をする場合には、焦点プローブ光学系5の窓部5fの中心にレーザ光を入射させる必要がある。
しかし、レーザ絞り板5sよりも大きな径のレーザ光を入射させれば、窓部5fを十分照射する程度のアライメント作業で良いということになる。
このことは、装置を組み立てる場合にその組み付け作業が容易になるばかりでなく、焦点プローブ光学系5の故障等によるメンテナンス作業も容易になるという大きなメリットになる。また、装置の振動等の外乱により焦点プローブ光学系5へ入射するレーザ光の位置が多少振動したとしても、光源及び信号処理系3による検出信号への影響が緩和されるという効果も発生する。
なお、図8に示す実施形態では、レーザ絞り板5sを窓部5fと別体に設けたが、窓部5fをレーザ絞り板5sとして機能させても同様の効果が得られる。いずれにしても、レーザ絞り板5sよりも大きな径のレーザ光を入射させれば良い。
【0041】
【発明の効果】
本発明の焦点プローブ光学系によれば、荷電粒子線照射装置に用いたときに、試料への照射光をほぼ荷電粒子線と同じ入射角で試料に入射させることができ、Z位置の変位量に対する変位拡大量を大きくとることができ、しかも測定ポイントを荷電粒子線照射装置の照射エリアに一致させやすくすることができるので、Z位置検出感度を高精度にすることができる。また、荷電粒子線照射部の片側に投光部と受光部とを兼ね備えた位置検出装置を配置すれば足りるので、外乱に強く、部材点数を少なくでき、装置を小型化し、コストも低減することができる。また、焦点プロープ光学系をユニット化させることができ、メンテナンス性も向上する。
【図面の簡単な説明】
【図1】本発明による焦点プローブ光学系を備えた位置検出装置の一実施形態を示す図であり、(a)は全体の概略構成図、(b)は光源及び信号処理系部の概略構成を示す説明図、(c)は光源部の構成図である。
【図2】図2(a),(b),(c)は信号処理部の構成例を示す回路図である。
【図3】(a),(b)は本実施形態の焦点プローブ光学系を構成する光学部材の鏡筒内部における典型的な配置例を示す説明図である。
【図4】本実施形態の図3(a)に示すタイプの焦点プローブ光学系についてのより詳細な構成を示す説明図であり、(a)は位置検出装置側からみた断面図、(b)は正面からみた断面図、(c)は上面図である。
【図5】図4に示す焦点プローブ光学系の鏡筒内部の光学部材の斜視図である。
【図6】本発明の位置検出装置におけるZ方向の変位に対する拡大変位量の検出方式についての原理説明図である。
【図7】図4に示す本実施形態の焦点プローブ光学系の変形例を示す説明図である。
【図8】図4の本実施形態の焦点プローブ光学系にレーザ絞り板を設けた変形例を示す説明図であり、(a)は位置検出装置側からみた断面図、(b)は正面からみた断面図、(c)は上面図である。
【図9】荷電粒子線照射装置の基本構成を示す概略図である。
【図10】上記特許文献1に記載の従来の位置検出装置の要部を示す概略構成図である。
【図11】上記非特許文献1に記載の従来の位置検出装置の概略構成図である。
【図12】上記特許文献2に記載の従来の位置検出装置の概略構成図である。
【図13】図10に示した、位置検出用の光を試料に対して斜めから浅い角度をなすようにして照射するタイプの従来の位置検出装置におけるZ方向の変位に対する拡大変位量の検出方式についての原理説明図である。
【符号の説明】
1 光源部
1a 半導体レーザ
1b コレクタレンズ
2 位置検出素子
3 光源及び信号処理系
4 ミラー
5 焦点プローブ光学系
5a 集光レンズ
5a’,5b’,5c’,5e’,5h’ 孔部
5b ミラー
5c 鏡筒
5d 筒状部材
5e 透明部材
5f,5g 窓部
5i 板バネ
5h 円板状部材
5s レーザ絞り板
6 荷電粒子線照射装置
7 真空チャンバ
8 窓部
9 試料
10 ステージ
51 荷電粒子線照射部
52 試料
53 ステージ
54 真空チャンバ
55 電子銃
56 電磁コンデンサレンズ
57 電磁対物レンズ
61 投光側光学系
62 受光側光学系
63 光源
64,65 ミラー
66 受光素子
71 投光部
72 受光部
81 位置検出装置
82 位置検出用光路
Claims (7)
- 試料に荷電粒子線を照射する荷電粒子線照射装置における該試料のZ位置を検出する位置検出装置に用いる焦点プローブ光学系であって、
前記位置検出装置における位置検出用の光を前記試料に集光するための集光レンズと、
前記位置検出用の光を偏向して前記試料に導くとともに、前記試料で反射した光を偏向して前記位置検出装置における位置検出用の光の経路を逆向きに辿らせるための偏向部材とを有し、
前記荷電粒子線照射装置に用いた状態において、焦点プローブ光学系の光軸が、該荷電粒子線露光装置の荷電粒子線の軸と共軸となるようにしたことを特徴とする焦点プローブ光学系。 - 前記偏向部材が、前記位置検出装置における位置検出用の光を前記試料に導くように、前記荷電粒子線の軸の周囲に設けられ、
前記集光レンズが、孔部を有して形成され、該孔部を前記荷電粒子線が通過し、前記偏向部材で偏向された光を該孔部の周囲のレンズ面で集光して前記試料に導くように、前記偏向部材と前記試料との間に配置されていることを特徴とする請求項1に記載の焦点プローブ光学系。 - 前記偏向部材が、前記集光レンズで集光された光を偏向して前記試料に導くように、前記荷電粒子線の軸の周囲に設けられていることを特徴とする請求項1に記載の焦点プローブ光学系。
- 前記偏向部材及び前記集光レンズが、導電性かつ非磁性を有する部材で前記荷電粒子線の飛来領域から遮断されるように囲われていることを特徴とする請求項1〜3のいずれかに記載の焦点プローブ光学系。
- 前記偏向部材及び前記集光レンズが、その表面を導電性かつ非磁性を有する膜でコーティングされていることを特徴とする請求項1〜3のいずれかに記載の焦点プローブ光学系。
- 点光源と、位置検出手段と、請求項1〜5のいずれかに記載の焦点プローブ光学系とを備えた位置検出装置。
- 請求項6に記載の位置検出装置を備えた荷電粒子線照射装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002286078A JP2004127544A (ja) | 2002-09-30 | 2002-09-30 | 焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002286078A JP2004127544A (ja) | 2002-09-30 | 2002-09-30 | 焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004127544A true JP2004127544A (ja) | 2004-04-22 |
Family
ID=32279219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002286078A Withdrawn JP2004127544A (ja) | 2002-09-30 | 2002-09-30 | 焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004127544A (ja) |
-
2002
- 2002-09-30 JP JP2002286078A patent/JP2004127544A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5164424B2 (ja) | 光学的変位測定装置 | |
TWI499754B (zh) | 位移偵測裝置 | |
JP6219320B2 (ja) | ウェーハなどのターゲットを処理するためのリソグラフィシステム及び方法 | |
US5929983A (en) | Optical apparatus for determining the height and tilt of a sample surface | |
JP2020005005A (ja) | アライメントセンサーとビーム測定センサーを備えている荷電粒子リソグラフィシステム | |
JP5072337B2 (ja) | 光学式変位センサ及びその調整方法 | |
US20120268724A1 (en) | Lithography system for processing a target, such as a wafer, a method for operating a lithography system for processing a target, such as a wafer and a substrate for use in such a lithography system | |
JP2002148018A (ja) | 音響等による微小変位検出装置 | |
JPWO2002048646A1 (ja) | 光学式距離センサ | |
US6124934A (en) | High-accuracy high-stability method and apparatus for measuring distance from surface to reference plane | |
JP2019190903A (ja) | 高さ検出装置および荷電粒子線装置 | |
JP2756331B2 (ja) | 間隔測定装置 | |
CN103365103A (zh) | 一种调焦调平装置及调焦调平方法 | |
JP2004127544A (ja) | 焦点プローブ光学系、その焦点プローブ光学系を備えた位置検出装置、及びその位置検出装置を備えた荷電粒子線照射装置 | |
CN113767336B (zh) | 使用机械滤波器的量测装置和方法 | |
US8988752B2 (en) | Beam control apparatus for an illumination beam and metrology system comprising an optical system containing such a beam control apparatus | |
JP2012052870A (ja) | マスクブランク検査装置およびその光学調整方法 | |
KR980010412A (ko) | 이물질 검사 장치 | |
JP3861904B2 (ja) | 電子ビ−ム描画装置 | |
TWI853016B (zh) | 使用機械濾光器之度量衡裝置及方法 | |
JP3722110B2 (ja) | 電子ビ−ム描画装置 | |
JP5670664B2 (ja) | 変位検出装置 | |
JP3417133B2 (ja) | 電子ビ−ム描画装置 | |
RU2279151C1 (ru) | Способ регистрации отклонения консоли зонда сканирующего микроскопа с оптическим объективом | |
JP2003279307A (ja) | 表面変位測定器及びその測定器を用いた測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060110 |