TW202027799A - 用於表現因子ix的組成物及方法 - Google Patents

用於表現因子ix的組成物及方法 Download PDF

Info

Publication number
TW202027799A
TW202027799A TW108137786A TW108137786A TW202027799A TW 202027799 A TW202027799 A TW 202027799A TW 108137786 A TW108137786 A TW 108137786A TW 108137786 A TW108137786 A TW 108137786A TW 202027799 A TW202027799 A TW 202027799A
Authority
TW
Taiwan
Prior art keywords
sequence
factor
nucleic acid
seq
specific examples
Prior art date
Application number
TW108137786A
Other languages
English (en)
Inventor
約翰 芬
漢任 黃
莫伊特利 羅伊
克迪 賴
瑞秋 薩特勒
克里斯托斯 奇拉喬斯
成 王
Original Assignee
美商英特利亞醫療公司
美商再生元醫藥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英特利亞醫療公司, 美商再生元醫藥公司 filed Critical 美商英特利亞醫療公司
Publication of TW202027799A publication Critical patent/TW202027799A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/644Coagulation factor IXa (3.4.21.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21022Coagulation factor IXa (3.4.21.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本發明提供用於在宿主細胞或宿主細胞群中表現因子IX的組成物及方法。亦提供經工程改造之表現因子IX之宿主細胞。

Description

用於表現因子IX的組成物及方法
出血病症係由不當血凝導致。此不足可能由先天性凝血病症、後天性凝血病症或創傷誘發之出血性病況導致。出血為疾病之最嚴重且明顯之表現中之一者,且可能從局部部位出現或為全身性的。局部化出血可能與病變相關且可能因缺陷性止血機制而進一步複雜。凝血因子中之任一者之先天性或後天性不足可能與出血性傾向相關。出血病症之經典實例包括諸如由因子VIII不足造成之A型血友病或由因子IX不足造成之B型血友病(克氏病(Christmas Disease))之血友病。血友病發生於所有種族及族群群體中,且在美國及全世界影響許多人。
針對出血病症之傳統療法包括諸如因子VII、因子VIII或因子IX之不足的凝血因子之非經腸置換。舉例而言,針對B型血友病之現行治療依賴於經純化之重組因子IX之慢性、重複靜脈內輸注。然而,彼等治療受多個缺點影響,該等缺點包括對重複靜脈內輸注之需求,此與抑制因子形成相關且一般更具預防性而非治癒性。參見例如Petrini 2001,Hemophilia 7:99;Fischer等人 2002,Blood 99 (7):2337。
涉及將遺漏性或缺陷性基因之複本引入患者中之基因療法提供將因子IX引入患者中達更長持續時間之一種可能性方法。然而,需要提供經改善之長期因子IX表現之額外組成物及方法。
本文之揭示內容提供適用於在宿主細胞或宿主細胞群中(試管內或活體內)表現因子IX及適用於治療血友病(例如B型血友病)之組成物及方法。本文提供用於將編碼因子IX之序列靶向插入人類基因組基因座中之引導RNA,該人類基因組基因座例如為安全港位點,諸如白蛋白安全港位點。亦提供用於靶向插入諸如白蛋白安全港位點之內含子1之安全港位點中之包含編碼因子IX之序列的供體構築體(例如雙向構築體)。在一些具體實例中,本文所揭示之引導RNA可與RNA引導性DNA結合劑(例如Cas核酸酶)及包含因子IX轉殖基因之供體構築體(例如雙向構築體)組合使用。在一些具體實例中,該供體構築體(例如雙向構築體)可與基因編輯系統(例如CRISPR/Cas系統;鋅指核酸酶(ZFN)系統;類轉錄活化子效應核酸酶(TALEN)系統)一起使用。在一些具體實例中,本文所揭示之引導RNA可與RNA引導性DNA結合劑(例如Cas核酸酶)及包含因子IX轉殖基因之供體構築體(例如雙向構築體)組合使用。提供以下具體實例。
在一些方面,本文提供將因子IX核酸引入細胞或細胞群中之方法,其包含投予:i)包含因子IX蛋白編碼序列之核酸構築體;ii)RNA引導性DNA結合劑;及iii)包含一序列之引導RNA(guide RNA;gRNA)。在一些具體實例中,該引導RNA包含與選自由SEQ ID No: 2、8、13、19、28、29、31、32、33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之序列之序列。在一些具體實例中,該引導RNA包含為與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 34-97組成之群之序列。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 98-119組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 98-119組成之群之序列之至少17、18、19或20個連續核苷酸之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 120-163組成之群之序列之序列。
在一些方面,本文提供在細胞或細胞群中表現因子IX之方法,其包含投予:i)包含因子IX蛋白編碼序列之核酸構築體;ii)RNA引導性DNA結合劑;及iii)包含一序列之引導RNA(gRNA)。在一些具體實例中,該引導RNA包含與選自由SEQ ID No: 2、8、13、19、28、29、31、32、33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之序列。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 34-97組成之群之序列。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 98-119組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含為選自由SEQ ID NO: 98-119組成之群之序列之至少17、18、19或20個連續核苷酸之序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 120-163組成之群之序列。
在一些方面,本文提供在細胞或細胞群中引入或表現因子IX之方法,其包含投予:i)包含因子IX蛋白編碼序列之核酸構築體;ii)RNA引導性DNA結合劑;及iii)包含一序列之引導RNA(gRNA),其中投予係試管內。
在一些具體實例中,該引導RNA包含與選自由SEQ ID No: 2、8、13、19、28、29、31、32、33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之序列。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 34-97組成之群之序列。
在一些具體實例中,該核酸構築體係在核酸載體及/或脂質奈米粒子中投予。在一些具體實例中,該RNA引導性DNA結合劑及/或gRNA係在核酸載體及/或脂質奈米粒子中投予。在一些具體實例中,該核酸載體為病毒載體。在一些具體實例中,該病毒載體係選自由以下組成之群:腺相關病毒(AAV)載體、腺病毒載體、反轉錄病毒載體、及慢病毒載體。在一些具體實例中,該AAV載體係選自由以下組成之群:AAV1、AAV3、AAV4、AAV5、AAV6、AAV8、AAV-DJ、及AAV2/8。
在一些具體實例中,該核酸構築體、RNA引導性DNA結合劑、及gRNA係按任何次序及/或以任何組合依序投予。在一些具體實例中,其中該核酸構築體、RNA引導性DNA結合劑、及gRNA係個別地同時投予或以任何組合同時投予。在一些具體實例中,該RNA引導性DNA結合劑或RNA引導性DNA結合劑與gRNA的組合係在投予該核酸構築體之前投予。在一些具體實例中,該核酸構築體係在投予該gRNA及/或RNA引導性DNA結合劑之前投予。
在一些具體實例中,該RNA引導性DNA結合劑為Cas核酸酶。在一些具體實例中,該Cas核酸酶為第2類Cas核酸酶。在一些具體實例中,該Cas核酸酶為Cas9。在一些具體實例中,該Cas核酸酶為釀膿鏈球菌Cas9核酸酶。在一些具體實例中,該Cas核酸酶為切口酶(nickase)。
在一些具體實例中,該核酸構築體為雙向核酸構築體。在一些具體實例中,該核酸構築體為單股的或雙股的。在一些具體實例中,該核酸構築體為單股DNA或雙股DNA。在一些具體實例中,該雙向構築體不包含驅動因子IX蛋白表現之啟動子。在一些具體實例中,該細胞或細胞群用諸如白蛋白信號肽之異源肽表現因子IX。
在一些具體實例中,該細胞或細胞群包括肝臟的細胞(liver cell)。在一些具體實例中,該肝臟的細胞為肝細胞(hepatocyte)。
在一些具體實例中,該核酸編碼野生型因子IX蛋白。在一些具體實例中,該核酸編碼突變型因子IX蛋白。在一些具體實例中,該核酸編碼具有突變R338L之因子IX蛋白。
在一些方面,本文提供將因子IX核酸引入細胞或細胞群中之方法,其包含向該細胞或細胞群投予包含因子IX蛋白編碼序列之雙向核酸構築體,從而在該細胞或細胞群中表現因子IX。本文提供在細胞或細胞群中表現因子IX之方法,其包含向該細胞或細胞群投予包含因子IX蛋白編碼序列之雙向核酸構築體,從而在該細胞或細胞群中表現因子IX表現。
在一些具體實例中,該雙向核酸構築體包含:a)包含針對因子IX之編碼序列之第一區段;及b)包含因子IX之編碼序列之反向互補物之第二區段,其中該構築體不包含驅動因子IX表現之啟動子。在一些具體實例中,該雙向核酸構築體包含:a)包含針對因子IX之編碼序列之第一區段;及b)包含第二多肽之編碼序列之反向互補物之第二區段,其中該構築體不包含驅動該多肽之表現之啟動子。
在一些具體實例中,將因子IX核酸引入細胞或細胞群中之方法進一步包含投予RNA引導性DNA結合劑。在一些具體實例中,該方法進一步包含投予gRNA。在一些具體實例中,該雙向核酸構築體係在核酸載體及/或脂質奈米粒子中投予。在一些具體實例中,該RNA引導性DNA結合劑係在核酸載體及/或脂質奈米粒子中投予。在一些具體實例中,該gRNA係在核酸載體及/或脂質奈米粒子中投予。在一些具體實例中,該核酸載體為病毒載體。在一些具體實例中,該病毒載體係選自由以下組成之群:腺相關病毒(AAV)載體、腺病毒載體、反轉錄病毒載體、及慢病毒載體。在一些具體實例中,該AAV載體係選自由以下組成之群:AAV1、AAV3、AAV4、AAV5、AAV6、AAV8、AAV-DJ、及AAV2/8。
在一些具體實例中,該雙向核酸構築體、RNA引導性DNA結合劑、及gRNA係按任何次序及/或以任何組合依序投予。在一些具體實例中,該雙向核酸構築體、RNA引導性DNA結合劑、及gRNA係以任何組合同時投予。在一些具體實例中,該RNA引導性DNA結合劑或RNA引導性DNA結合劑與gRNA的組合係在投予該雙向核酸構築體之前投予。在一些具體實例中,該雙向核酸構築體係在投予該gRNA及/或RNA引導性DNA結合劑之前投予。
在一些具體實例中,該RNA引導性DNA結合劑為Cas核酸酶。在一些具體實例中,該Cas核酸酶為第2類Cas核酸酶。在一些具體實例中,該Cas核酸酶係選自由以下組成之群:釀膿鏈球菌核酸酶、金黃色葡萄球菌(S. aureus )核酸酶、空腸曲桿菌(C. jejuni )核酸酶、嗜熱鏈球菌(S. thermophilus )核酸酶、腦膜炎雙球菌(N. meningitidis )核酸酶、及其等之變異體。在一些具體實例中,該Cas核酸酶為Cas9。在一些具體實例中,該Cas核酸酶為切口酶。
在一些具體實例中,該雙向構築體不包含驅動因子IX蛋白表現之啟動子。在一些具體實例中,該雙向構築體為單股的或雙股的。在一些具體實例中,該核酸構築體為單股DNA或雙股DNA。在一些具體實例中,該gRNA包含選自由SEQ ID NO: 2-33組成之群之序列或與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列之至少17、18、19或20個連續核苷酸。
在一些方面,本文提供用於在細胞中表現因子IX之組成物,其中該組成物包含:i)包含因子IX蛋白編碼序列之核酸構築體;ii)RNA引導性DNA結合劑;及iii)包含引導物之引導RNA(gRNA),該引導物選自由以下組成之群:SEQ ID NO: 2-33之序列或與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。本文提供用於在細胞或細胞群中表現因子IX之組成物,其中該組成物包含有包含因子IX蛋白編碼序列之雙向核酸構築體。在一些具體實例中,宿主細胞係藉由前述具體實例中任一個所述之方法製得。
在一些具體實例中,該宿主細胞為肝臟的細胞。在一些具體實例中,該宿主細胞為非分裂細胞類型。在一些具體實例中,該宿主細胞表現由雙向構築體編碼之因子IX多肽。在一些具體實例中,該宿主細胞為肝細胞。
在任何上文方法之方法、構築體或宿主細胞之一些具體實例中,gRNA包含SEQ ID NO: 401。
現將詳細參考本發明之某些具體實例,其實例在附圖中加以說明。儘管本發明結合所說明之具體實例加以描述,但應理解其不意欲將本發明限於彼等具體實例。相反地,本發明意欲覆蓋所有替代方案、修改及等效方案,其可如所附申請專利範圍所界定包括在本發明內。
在詳細描述本發明教示內容之前,應理解,本發明不限於特定組成物或方法步驟,因而可加以改變。應注意,除非上下文另外清楚地指示,否則如本說明書及所附具體實例中所使用之單數形式「一」及「該」包括複數個提及物。因此,舉例而言,對「一種結合物」之提及包括複數個結合物,且對「一種細胞」之提及包括複數個細胞或細胞群及其等之類似物。如本文所使用之術語「包括」及其語法變型意欲為非限制性的,以使得清單中之項目之列舉不排除可取代或添加至所列項目之其他類似項目。
數值範圍包括界定該範圍之數值。考慮到有效數位及與量測結果相關之誤差,所量測及可量測之值應理解為近似的。此外,「包含」、「含有」、「包括」之使用並不意欲為限制性的。應理解,前述一般描述及詳細描述兩者僅為例示性及解釋性的,且並不限制教示內容。
除非本說明書中具體指出,否則本說明書中列舉「包含」各種組分之具體實例亦考慮為「由所列舉組分組成」或「基本上由所列舉組分組成」;本說明書中列舉「由各種組分組成」之具體實例亦考慮為「包含」所列舉組分或「基本上由所列舉組分組成」;且本說明書中列舉「基本上由各種組分組成」之具體實例亦考慮為「由所列舉組分組成」或「包含」所列舉組分(此互換性並不適用於此等術語在申請專利範圍中之使用)。除非上下文另外明確指示,否則術語「或」以包括性意義使用,亦即等效於「及/或」。術語「約」在清單之前使用時修飾該清單之各成員。術語「約」意謂如由所屬技術領域中具有通常知識者所測定之特定值之可接受誤差,其部分視如何量測或測定該值而定。
術語「約」在清單之前使用時修飾該清單之各成員。術語「約」意謂如由所屬技術領域中具有通常知識者所測定之特定值之可接受誤差,其部分視如何量測或測定該值而定。
本文所使用之部分標題僅出於組織目的且不應解釋為以任何方式限制所需標題。在以引用之方式併入之任何材料與本說明書中所定義之任何術語或本說明書之任何其他表述內容相矛盾之情況下,以本說明書為準。    I.    定義
除非另外陳述,否則如本文所使用之以下術語及片語意欲具有以下含義:
「多核苷酸」及「核酸」在本文中用於指包含具有沿骨架連接在一起之含氮雜環鹼基或鹼基類似物之核苷或核苷類似物之多聚化合物,其包括習知RNA、DNA、混合RNA-DNA及作為其類似物之聚合物。核酸「骨架」可由各種鍵構成,該等鍵包括糖-磷酸二酯鍵、肽-核酸鍵(「肽核酸(PNA)」;PCT第WO 95/32305號)、硫代磷酸酯鍵、膦酸甲酯鍵或其組合中之一或多者。核酸之糖部分可為核糖、去氧核糖或具有取代(例如2'甲氧基或2'鹵基取代)之類似化合物。含氮鹼基可為習知鹼基(A、G、C、T、U)、其類似物(例如經修飾之尿苷,諸如5-甲氧基尿苷、假尿苷或N1-甲基假尿苷或其他經修飾之尿苷)、肌核苷、嘌呤或嘧啶之衍生物(例如N4 -甲基去氧鳥苷、去氮嘌呤或氮雜嘌呤、去氮嘧啶或氮雜嘧啶、在5位或6位處具有取代基之嘧啶鹼基(例如5-甲基胞嘧啶)、在2位、6位或8位處具有取代基之嘌呤鹼基、2-胺基-6-甲胺基嘌呤、O6 -甲基鳥嘌呤、4-硫基-嘧啶、4-胺基-嘧啶、4-二甲基肼-嘧啶及O4 -烷基-嘧啶;美國專利第5,378,825號及PCT第WO 93/13121號)。對於一般論述,參見The Biochemistry of the Nucleic Acids 5-36, Adams等人編, 第11版, 1992。核酸可包括一或多個「無鹼基」殘基,其中骨架不包括針對聚合物位置之含氮鹼基(美國專利第5,585,481號)。核酸可僅包含習知RNA或DNA糖、鹼及鍵,或可包括習知組分及取代兩者(例如具有2'甲氧基鍵之習知鹼基,或含有習知鹼基及一或多個鹼基類似物兩者之聚合物)。核酸包括「鎖定核酸(locked nucleic acid;LNA)」、含有一或多個LNA核苷酸單體之類似物,該一或多個LNA核苷酸單體具有模擬糖構形之鎖定於RNA中之雙環呋喃醣單元,增強針對互補RNA及DNA序列之雜交親和力(Vester及Wengel, 2004,Biochemistry 43(42):13233-41)。RNA及DNA具有不同糖部分且可藉由在RNA中存在尿嘧啶或其類似物及在DNA中存在胸腺嘧啶或其類似物而有所不同。
「引導RNA(guide RNA)」、「gRNA」及簡稱「引導物(guide)」可在本文中互換地用於指包含引導序列之引導物,例如crRNA(亦稱為CRISPR RNA)或crRNA與trRNA之組合(亦稱為tracrRNA)。crRNA及trRNA可以單一RNA分子(單引導RNA,sgRNA)或例如以兩個單獨RNA分子(雙引導RNA,dgRNA)形式締合。「引導RNA(gRNA)」係指各類型。trRNA可為天然存在之序列或與天然存在之序列相比具有修飾或變化之trRNA序列。諸如sgRNA或dgRNA之引導RNA可包括如本文所描述之經修飾之RNA。
如本文所使用之「引導序列(guide sequence)」係指與目標序列互補且用以藉由RNA引導性DNA結合劑將引導RNA導引至目標序列以用於結合或修飾(例如裂解)之引導RNA內的序列。「引導序列」亦可稱為「目標序列(targeting sequence)」或「間隔序列(spacer sequence)」。引導序列之長度可為20個鹼基對,例如在釀膿鏈球菌(亦即Spy Cas9)及相關Cas9同源物/異種同源物之情況下如此。較短或較長序列亦可用作例如長度為15、16、17、18、19、21、22、23、24或25個核苷酸之引導物。舉例而言,在一些具體實例中,引導序列包含選自SEQ ID NO: 2-33之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,目標序列處於例如基因中或染色體上,且與引導序列互補。在一些具體實例中,引導序列與其對應目標序列之間之互補性或一致性之程度可為約75%、80%、85%、90%、95%、96%、97%、98%、99%或100%。舉例而言,在一些具體實例中,引導序列包含與選自SEQ ID NO: 2-33之序列之至少15、16、17、18、19或20個連續核苷酸具有約75%、80%、85%、90%、95%、96%、97%、98%、99%或100%一致性之序列。在一些具體實例中,引導序列與目標區域可具有100%互補性或一致性。在其他具體實例中,引導序列與目標區域可含有至少一個錯配。舉例而言,引導序列及目標序列可含有1、2、3或4個錯配,其中目標序列之總長度為至少15、16、17、18、19、20個或更多個鹼基對。在一些具體實例中,引導序列及目標區域可含有1-4個錯配,其中引導序列包含至少15、16、17、18、19、20個或更多個核苷酸。在一些具體實例中,引導序列及目標區域可含有1、2、3或4個錯配,其中引導序列包含20個核苷酸。
針對RNA引導性DNA結合劑之目標序列包括基因組DNA之正股及負股兩者(亦即給定序列及序列之反向互補物),此係因為RNA引導性DNA結合劑之核酸受質為雙股核酸。因此,在引導序列稱為「與目標序列互補」之情況下,應理解,引導序列可導引引導RNA以結合至目標序列之反向互補物。因此,在一些具體實例中,在引導序列結合目標序列之反向互補物之情況下,引導序列與目標序列(例如不包括PAM之目標序列)之某些核苷酸具有一致性,不同之處在於在引導序列中U取代T。
如本文所使用之「RNA引導性DNA結合劑」意謂具有RNA及DNA結合活性之多肽或多肽複合物或此類複合物之DNA結合次單元,其中DNA結合活性具有序列特異性且視RNA之序列而定。術語RNA引導性DNA結合劑亦包括編碼該等多肽之核酸。例示性RNA引導性DNA結合劑包括Cas裂解酶(cleavase)/切口酶。舉例而言,若例示性RNA引導性DNA結合劑例如經由與FokI裂解酶域融合進行修飾以准許DNA裂解,則彼等藥劑可包括其不活化形式(「dCas DNA結合劑」)。如本文所使用之「Cas核酸酶」涵蓋Cas裂解酶及Cas切口酶。Cas裂解酶及Cas切口酶包括第III型CRISPR系統之Csm或Cmr複合物、其Cas10、Csm1或Cmr2次單元、第I型CRISPR系統之級聯複合物、其Cas3次單元及第2類Cas核酸酶。如本文所使用之「第2類Cas核酸酶」為具有RNA引導性DNA結合活性之單鏈多肽。第2類Cas核酸酶包括第2類Cas裂解酶/切口酶(例如H840A、D10A或N863A變異體),其進一步具有RNA引導性DNA裂解酶或切口酶活性;及第2類dCas DNA結合劑,其中裂解酶/切口酶活性未活化,此係在彼等藥劑經修飾以准許DNA裂解之情況下如此。第2類Cas核酸酶包括例如Cas9、Cpf1、C2c1、C2c2、C2c3、HF Cas9(例如N497A、R661A、Q695A、Q926A變異體)、HypaCas9(例如N692A、M694A、Q695A、H698A變異體)、eSPCas9(1.0)(例如K810A、K1003A、R1060A變異體)及eSPCas9(1.1)(例如K848A、K1003A、R1060A變異體)蛋白及其等之變體。Cpf1蛋白(Zetsche等人,Cell , 163: 1-13 (2015))亦含有類RuvC核酸酶域。Zetsche之Cpf1序列以全文引用之方式併入。參見例如Zetsche, 表S1及S3。參見例如Makarova等人,Nat Rev Microbiol , 13(11): 722-36 (2015);Shmakov等人,Molecular Cell, 60:385-397 (2015)。如本文所使用之RNA引導性DNA結合劑(例如Cas核酸酶、Cas9核酸酶或釀膿鏈球菌Cas9核酸酶)之遞送包括多肽或mRNA之遞送。
如本文所使用之「核糖核蛋白(RNP)」或「RNP複合物」係指引導RNA以及諸如Cas核酸酶(例如Cas裂解酶、Cas切口酶或dCas DNA結合劑(例如Cas9))之RNA引導性DNA結合劑。在一些具體實例中,該引導RNA將諸如Cas9之RNA引導性DNA結合劑引導至目標序列,且引導RNA與目標序列雜交且該藥劑結合至目標序列;在藥劑為裂解酶或切口酶之情況下,結合之後可為裂解或切口。
如本文所使用,若第一序列與第二序列之比對表明整個第二序列之X%或更多之位置與第一序列匹配,則第一序列被認為「包含與第二序列具有至少X%一致性之序列」。舉例而言,序列AAGA包含與序列AAG具有100%一致性之序列,此係因為由於第二序列之全部三個位置均存在匹配,因此比對將給予100%一致性。RNA與DNA之間之差異(一般而言,尿苷交換為胸苷,或反之亦然)及諸如經修飾之尿苷之核苷類似物的存在不造成多核苷酸之間之一致性或互補性的差異,只要相關核苷酸(諸如胸苷、尿苷或經修飾之尿苷)具有相同互補物(例如對於胸苷、尿苷或經修飾之尿苷全體而言,為腺苷;另一實例為胞嘧啶及5-甲基胞嘧啶,兩者均具有作為互補物之鳥苷或經修飾之鳥苷)。因此,舉例而言,序列5'-AXG(其中X為任何經修飾之尿苷,諸如假尿苷、N1-甲基假尿苷或5-甲氧基尿苷)被認為與AUG具有100%一致性,此係因為兩者均與同一序列(5'-CAU)完美互補。例示性比對演算法為在所屬技術領域中眾所周知之Smith-Waterman及Needleman-Wunsch演算法。所屬技術領域中具有通常知識者應理解何種演算法選擇及參數設定適合於給定之待比對之序列對;對於具有一般類似長度及針對胺基酸之>50%預期一致性或針對核苷酸之>75%預期一致性的序列而言,由EBI於www.ebi.ac.uk網站伺服器提供之Needleman-Wunsch演算法介面之具有默認設定之Needleman-Wunsch演算法一般為適當的。
如本文所使用,若第一序列之X%鹼基與第二序列鹼基配對,則第一序列被認為「與第二序列具有X%互補性」。舉例而言,第一序列5'AAGA3'與第二序列3'TTCT5'具有100%互補性,且第二序列與第一序列具有100%互補性。在一些具體實例中,第一序列5'AAGA3'與第二序列3'TTCTGTGA5'具有100%互補性,然而第二序列與第一序列具有50%互補性。
如本文所使用之「mRNA」在本文中用於指完全或主要為RNA或經修飾之RNA且包含可轉譯成多肽之開放閱讀框架(亦即可充當用於藉由核糖體及胺基醯化tRNA進行之轉譯之受質)之多核苷酸。mRNA可包含包括核糖殘基或例如2'-甲氧基核糖殘基之其類似物之磷酸酯-糖骨架。在一些具體實例中,mRNA磷酸酯-糖骨架之糖基本上由核糖殘基、2'-甲氧基核糖殘基或其組合組成。
適用於本文所描述之引導RNA組成物及方法中之引導序列在整個申請中示於表1中。
如本文所使用之「插入缺失(indel)」係指由在目標核酸中之雙股斷裂(double-stranded break;DSB)位點處插入或缺失之多種核苷酸組成之插入/缺失突變。
如本文所使用之「因子IX」可與「FIX」或「F9」互換使用,且亦稱為克氏因子。人類野生型因子IX蛋白序列可以NCBI NP_000124獲得;基因序列可以NCBI NM_000133獲得。本文描述因子IX蛋白序列之實例(例如SEQ ID NO: 700、701及/或SEQ ID NO: 702)。如本文所使用之因子IX亦涵蓋因子IX之變異體,例如相較於野生型因子IX而言具有增加之凝血活性之變異體。因子IX之高度活躍變異體可包含R338取代。此類變異因子IX之實例包含相對於SEQ ID NO: 701而言之突變R338L。術語高度活躍及功能亢進可在本文中互換使用。變異因子IX之另外實例包含選自丙胺酸、白胺酸、纈胺酸、異白胺酸、苯丙胺酸、色胺酸、甲硫胺酸、絲胺酸及蘇胺酸之殘基338處之胺基酸。另外之因子IX變異體包含選自白胺酸、半胱胺酸、天冬胺酸、麩胺酸、組胺酸、離胺酸、天冬醯胺酸、麩醯胺酸或酪胺酸之殘基338處之胺基酸。如本文所使用之因子IX亦涵蓋與SEQ ID NO: 700具有80%、85%、90%、93%、95%、97%、99%一致性、相較於野生型因子IX而言具有至少60%、70%、80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性之變異體。如本文所使用之因子IX亦涵蓋與SEQ ID NO: 700具有80%、85%、90%、93%、95%、97%、99%一致性、相較於SEQ ID NO: 701或SEQ ID NO: 702而言具有至少60%、70%、80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性之變異體。如本文所使用之因子IX亦涵蓋相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性之片段。在一些具體實例中,因子IX變異體可為高度活躍因子IX變異體。在某些情況下,相較於野生型因子IX而言,因子IX變異體具有介於約80%與約100%、120%、140%、160%、180%或200%之間之活性。因子IX變異體之比活性可用於計算其功能上標準化活性,例如如實施例13中所描述。例如R338L之因子IX變異體之比活性在文獻中已知且可使用已知方法來計算。功能亢進因子IX變異體之比活性可為對應野生型因子IX蛋白之比活性之約1.2、1.5、2、3、4、5、6、8、10、12或15倍。在一個具體實例中,功能亢進因子IX之比活性可為對應野生型因子IX蛋白之比活性之約8-12倍。在另一具體實例中,功能亢進因子IX之比活性可為對應野生型因子IX蛋白之比活性之1.2-5倍。例示性序列在所屬技術領域中已知,且包括例如美國專利第4,770,999號、第4,994,371號、第5,521,070號、第6,046,380號、第6,531,298號及第8,383,388號中之序列。
如本文所使用之「目標序列」係指與gRNA之引導序列具有互補性之目標基因中之核酸序列。目標序列與引導序列之相互作用導引RNA引導性DNA結合劑結合,且在目標序列內潛在地鏈裂或裂解(視藥劑活性而定)。
如本文所使用之「血友病」係指由遺漏性或缺陷性因子IX基因或多肽導致之病症。病症包括遺傳性及/或後天性(例如由自發基因突變導致)病況,且包括B型血友病。在一些具體實例中,缺陷性因子IX基因或多肽導致血漿中之因子IX水平降低及/或因子IX之凝血活性降低。如本文所使用,血友病包括輕度、中度及嚴重血友病。舉例而言,具有少於約1%活性因子之個體分類為患有嚴重血友病,具有約1-5%活性因子之個體患有中度血友病,且患有輕度血友病之個體具有介於正常水平之約5-40%之間之活性凝血因子。
如本文所使用之「正常」或「健康」個體包括具有介於正常合併血漿含量之50%與160%之間之因子IX活性及抗原水平之個體。基於其從人類血漿進行之純化,正常成人中之因子IX之濃度(因子IX之正常合併血漿水平)為約300-400 μg/mL血漿。在一些具體實例中,例如循環因子IX之因子IX之水平可藉由凝血及/或例如夾心免疫分析、ELISA(參見例如實施例13)、MSD(參見例如實施例14)之免疫分析來量測。因子IX促凝血活性係藉由患者血漿矯正因子IX不足之血漿之凝血時間之能力來測定。
如本文所使用之「治療」係指用於個體之疾病或病症之治療劑之任何投予或施用,且包括抑制疾病、遏制其發展、緩解疾病之一或多種症狀、治癒疾病或預防疾病之一或多種症狀之復發。舉例而言,血友病治療可包含減輕血友病之症狀。
如本文所使用之「雙向核酸構築體」(在本文中可互換地稱為「雙向構築體」)包含至少兩個核酸區段,其中一個區段(第一區段)包含編碼所關注之多肽之編碼序列(該編碼序列在本文中可稱為「轉殖基因」或第一轉殖基因),而另一區段(第二區段)包含其中序列之互補物編碼所關注之多肽之序列或第二轉殖基因。亦即至少兩個區段可編碼一致或不同多肽。當兩個區段編碼一致多肽時,第一區段之編碼序列不必與第二區段之序列之互補物具有一致性。在一些具體實例中,第二區段之序列為第一區段之編碼序列之反向互補物。雙向構築體可為單股的或雙股的。本文所揭示之雙向構築體涵蓋能夠表現任何所關注之多肽之構築體。
在一些具體實例中,該雙向核酸構築體包含有包含編碼第一多肽之編碼序列(第一轉殖基因)之第一區段及包含其中序列之互補物編碼第二多肽之序列(第二轉殖基因)之第二區段。在一些具體實例中,第一多肽及第二多肽具有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致性。在一些具體實例中,第一多肽及第二多肽包含例如在50、100、200、500、1000或更多個胺基酸殘基上具有至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致性之胺基酸序列。
如本文所使用之「反向互補物」係指作為參考序列之互補序列,其中該互補序列在反向位向書寫。舉例而言,對於假想序列5'CTGGACCGA3'(SEQ ID NO: 500),「完美」互補序列為3'GACCTGGCT5'(SEQ ID NO: 501),且「完美」反向互補物書寫為5'TCGGTCCAG3'(SEQ ID NO: 502)。反向互補序列不必為「完美」的,且仍可編碼與參考序列相同之多肽或類似之多肽。由於密碼子用法(codon usage)冗餘,反向互補物可不同於編碼相同多肽之參考序列。如本文所使用之「反向互補物」亦包括例如與參考序列之反向互補序列具有30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致性之序列。
如本文所使用之「多肽」係指野生型蛋白或變異蛋白(例如突變體、片段、融合體或其組合)。變異多肽可具有野生型多肽之至少或約5%、10%、15%、20%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%功能活性。在一些具體實例中,變異體與野生型多肽之序列具有至少70%、75%、80%、85%、90%、92%、93%、94%、95%、96%、97%、98%或99%一致性。在一些具體實例中,變異多肽可為高度活躍變異體。在某些情況下,變異體具有野生型多肽之介於約80%與約120%、140%、160%、180%、200%、300%、400%、500%或更多之間之功能活性。
如本文所使用之「異源基因」係指已作為外源性來源引入宿主細胞基因組內之位點中(例如在諸如安全港基因座(包括白蛋白內含子1位點)之基因組基因座處)的基因。亦即,所引入之基因相對於其插入位點為異源的。從該異源基因表現之多肽稱為「異源多肽」。異源基因可為天然存在的或經工程改造的,且可為野生型或變異體。異源基因可包括除編碼異源多肽之序列(例如內部核糖體進入位點)以外之核苷酸序列。異源基因可為呈野生型或變異體(例如突變體)形式之天然存在於宿主基因組中之基因。舉例而言,儘管宿主細胞含有所關注之基因(呈野生型形式或呈變異體形式),但相同基因或其變異體可作為外源性來源引入以用於例如在基因座處表現,該表現為高度表現。異源基因亦可為不天然存在於宿主基因組中或表現不天然存在於宿主基因組中之異源多肽之基因。「異源基因」、「外源基因」及「轉殖基因」可互換使用。在一些具體實例中,異源基因或轉殖基因包括外源性核酸序列,例如對於受體細胞並非內源性之核酸序列。在一些具體實例中,異源基因或轉殖基因包括外源性核酸序列,例如不天然存在於受體細胞中之核酸序列。舉例而言,異源基因相對於其插入位點且相對於其受體細胞可為異源的。
「安全港(safe harbor)」基因座為其中可插入基因而相較於對照細胞而言對例如肝細胞之宿主細胞無顯著不利之影響,例如不造成細胞凋亡、壞死及/或老化,或不造成超過5%、10%、15%、20%、25%、30%或40%細胞凋亡、壞死及/或老化之基因組內的基因座。參見例如Hsin等人, 「Hepatocyte death in liver inflammation, fibrosis, and tumorigenesis」, 2017。在一些具體實例中,安全港基因座允許過度表現外源基因而相較於對照細胞而言對例如肝細胞之宿主細胞無顯著不利之影響,例如不造成細胞凋亡、壞死及/或老化,或不造成超過5%、10%、15%、20%、25%、30%或40%之細胞凋亡、壞死及/或老化。在一些具體實例中,所需安全港基因座可為其中所插入之基因序列之表現不受來自鄰近基因之通讀表現擾動之安全港基因座。安全港可處於諸如人類白蛋白基因之白蛋白基因內。安全港可處於例如人類白蛋白內含子1之白蛋白內含子1區內。安全港可為例如肝組織或肝細胞宿主細胞之人類安全港。在一些具體實例中,安全港允許過度表現外源性基因而相較於對照細胞或細胞群而言對諸如肝細胞或肝臟的細胞之宿主細胞或細胞群無顯著不利之影響,例如不造成細胞凋亡、壞死及/或老化,或不造成超過5%、10%、15%、20%、25%、30%或40%之細胞凋亡、壞死及/或老化。 II.   組成物  A.   包含引導RNA(gRNA)之組成物
本文提供適用於在宿主細胞或宿主細胞群之諸如安全港位點之基因組基因座內插入及表現因子IX基因之引導RNA組成物及方法。詳言之,如本文所例示,在白蛋白基因座處(例如在內含子1處)靶向及插入外源基因允許使用白蛋白之內源啟動子以驅動外源基因之穩健表現。本發明部分地基於對特異性地靶向白蛋白基因之內含子1內之位點且提供有效之因子IX基因插入及表現之引導RNA的識別。如實施例中所示且本文中所進一步描述,如經由插入缺失形成活性所量測之所識別之gRNA介導高水平的編輯之能力出乎意料地不一定與如經由例如轉殖基因之表現所量測之相同gRNA介導轉殖基因之有效插入之用途相關。亦即,能夠達成高水平的插入缺失形成之某些gRNA不一定能夠介導有效插入,且相反地,顯示達成低水平的插入缺失形成之一些gRNA可介導轉殖基因之有效插入及表現。
在一些具體實例中,本文提供適用於在宿主細胞之白蛋白基因座之區域(例如內含子1)內插入及表現因子IX基因之組成物及方法。在一些具體實例中,本文揭示適用於在宿主細胞之白蛋白基因座內引入或插入異源因子IX核酸之組成物,此係例如使用本文所揭示之引導RNA及RNA引導性DNA結合劑以及包含異源因子IX核酸(「因子IX轉殖基因」)之構築體(例如供體構築體或模板)來進行。在一些具體實例中,本文揭示適用於從宿主細胞之白蛋白基因座表現異源因子IX之組成物,此係例如使用本文所揭示之引導RNA及RNA引導性DNA結合劑以及包含異源因子IX核酸之構築體(例如供體)來進行。在一些具體實例中,本文揭示適用於從宿主細胞之白蛋白基因座表現異源因子IX之組成物,此係例如使用本文所揭示之引導RNA及RNA引導性DNA結合劑以及包含異源因子IX核酸之雙向構築體來進行。在一些具體實例中,本文揭示適用於在宿主細胞之血清白蛋白基因內誘導斷裂(例如雙股斷裂(double-stranded break;DSB)或單股斷裂(切口))之組成物,此係例如使用本文所揭示之引導RNA及RNA引導性DNA結合劑(例如CRISPR/Cas系統)來進行。組成物可在試管內或活體內用於例如治療血友病。
在一些具體實例中,本文所揭示之引導RNA包含在白蛋白基因座之內含子內結合或能夠結合之引導序列。在一些具體實例中,本文所揭示之引導RNA結合在人類白蛋白基因之內含子1(SEQ ID NO: 1)之區域內。應瞭解,並非引導序列之每一鹼基均必須結合在所列舉之區域內。舉例而言,在一些具體實例中,該引導RNA序列之15、16、17、18、19、20個或更多個鹼基與所列舉之區域結合。舉例而言,在一些具體實例中,該引導RNA序列之15、16、17、18、19、20個或更多個連續鹼基與所列舉之區域結合。
在一些具體實例中,本文所揭示之引導RNA介導在人類人類內含子1(SEQ ID NO: 1)內之位點處之藉由RNA引導性DNA結合劑(例如Cas核酸酶)進行之目標特異性切割。應瞭解,在一些具體實例中,該引導RNA包含結合至或能夠結合至該等區域之引導序列。
在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。
在一些具體實例中,本文所揭示之引導RNA包含具有選自由以下組成之群之序列之至少15、16、17、18、19或20個連續核苷酸之引導序列:與選自由SEQ ID No: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-97組成之群之引導序列。
在一些具體實例中,本文所揭示之引導RNA包含具有選自由以下組成之群之序列之至少15、16、17、18、19或20個連續核苷酸之引導序列:與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。
在一些具體實例中,本文所揭示之引導RNA介導目標特異性切割,引起雙股斷裂(DSB)。在一些具體實例中,本文所揭示之引導RNA介導目標特異性切割,引起單股斷裂(切口)。
在一些具體實例中,本文所揭示之引導RNA結合至原型間隔區相鄰基序(propospacer adjacent motif;PAM)上游之區域。如所屬技術領域中具有通常知識者所理解,PAM序列存在於與含有目標序列之股相對之股上。亦即,PAM序列處於目標股之互補股(含有與引導RNA結合之目標序列之股)上。在一些具體實例中,PAM係選自由以下組成之群:NGG、NNGRRT、NNGRR(N)、NNAGAAW、NNNNG(A/C)TT及NNNNRYAC。
在一些具體實例中,本文所提供之引導RNA序列與鄰近於PAM序列之序列互補。
在一些具體實例中,該引導RNA序列包含與根據人類參考基因組hg38中之座標之選自本文中各表之基因組區域內之序列互補的序列。在一些具體實例中,該引導RNA序列包含與包含來自選自本文中各表之基因組區域內之5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個連續核苷酸的序列互補之序列。在一些具體實例中,該引導RNA序列包含與包含跨越選自本文中各表之基因組區域之5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25個連續核苷酸的序列互補之序列。
本文所揭示之引導RNA介導目標特異性切割,引起雙股斷裂(DSB)。本文所揭示之引導RNA介導目標特異性切割,引起單股斷裂(single-stranded break;SSB或切口)。
在一些具體實例中,本文所揭示之引導RNA介導藉由RNA引導性DNA結合劑(例如如本文所揭示之Cas核酸酶)進行之目標特異性切割,引起在白蛋白基因之內含子1內插入異源因子IX核酸。在一些具體實例中,該引導RNA及/或切割引起介於30%與35%、35%與40%、40%與45%、45%與50%、50%與55%、55%與60%、60%與65%、65%與70%、70%與75%、75%與80%、80%與85%、85%與90%、90%與95%或95%與99%之間之異源因子IX基因插入率。在一些具體實例中,該引導RNA及/或切割引起至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%之異源因子IX核酸插入率。插入率可在試管內或活體內量測。舉例而言,在一些具體實例中,插入率可藉由偵測且量測細胞群內之所插入之因子IX核酸且計算含有所插入之因子IX核酸之群體之百分比來測定。量測插入率之方法在所屬技術領域中已知且可獲得。在一些具體實例中,該引導RNA允許介於5%與10%、10%與15%、15%與20%、20%與25%、25%與30%、30%與35%、35%與40%、40%與45%、45%與50%、50%與55%、55%與60%、60%與65%、65%與70%、70%與75%、75%與80%、80%與85%、85%與90%、90%與95%、95%與99%或更多之間之增加的異源因子IX基因表現。增加之異源因子IX基因表現可在試管內或活體內量測。舉例而言,在一些具體實例中,增加之表現可藉由偵測且量測因子IX多肽水平且比較該水平與例如治療細胞或向個體投予之前之因子IX多肽水平來測定。在一些具體實例中,該引導RNA允許介於5%與10%、10%與15%、15%與20%、20%與25%、25%與30%、30%與35%、35%與40%、40%與45%、45%與50%、50%與55%、55%與60%、60%與65%、65%與70%、70%與75%、75%與80%、80%與85%、85%與90%、90%與95%、95%與99%或更多之間之由異源因子IX基因表現引起的增加的活性。舉例而言,增加的活性可藉由偵測且量測凝血活性且比較該活性與例如治療細胞或向個體投予之前之凝血活性來測定。在一些具體實例中,增加的活性可使用藉由在aPTT分析中評估凝血功能及/或在TGA-EA分析中評估凝血酶生成來測定。該等方法在所屬技術領域中可獲得且已知(例如Simioni等人,NEJM 2009)。
在SEQ ID NO: 2-33處之表1中所示之引導序列中之各者可進一步包含額外核苷酸以形成crRNA及/或引導RNA,例如在其3'端處之引導序列後具有以下例示性核苷酸序列:在5'至3'位向之GUUUUAGAGCUAUGCUGUUUUG(SEQ ID NO: 400)。基因組座標係根據人類參考基因組hg38。在sgRNA之情況下,以上引導序列可進一步包含額外核苷酸以形成sgRNA,例如在引導序列之3'端後具有以下例示性核苷酸序列:在5'至3'位向之GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU(SEQ ID NO: 401)或GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO: 402)。
在SEQ ID NO: 2-5、10-17、21-27、及29-33處之表1中之引導序列中之各者可進一步包含額外核苷酸以形成crRNA,例如在其3'端處之引導序列後具有以下例示性核苷酸序列:在5'至3'位向之GUUUUAGAGCUAUGCUGUUUUG(SEQ ID NO: 400)。在sgRNA之情況下,以上引導序列可進一步包含額外核苷酸以形成sgRNA,例如在引導序列之3'端後具有以下例示性核苷酸序列:在5'至3'位向之GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU(SEQ ID NO: 401)或GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO: 402)。 1 :人類引導 RNA 序列及染色體座標
引導物ID 引導序列 人類 基因組座標 (hg38 SEQ ID NO:
G009844 GAGCAACCUCACUCUUGUCU chr4:73405113-73405133 2
G009851 AUGCAUUUGUUUCAAAAUAU chr4:73405000-73405020 3
G009852 UGCAUUUGUUUCAAAAUAUU chr4:73404999-73405019 4
G009857 AUUUAUGAGAUCAACAGCAC chr4:73404761-73404781 5
G009858 GAUCAACAGCACAGGUUUUG chr4:73404753-73404773 6
G009859 UUAAAUAAAGCAUAGUGCAA chr4:73404727-73404747 7
G009860 UAAAGCAUAGUGCAAUGGAU chr4:73404722-73404742 8
G009861 UAGUGCAAUGGAUAGGUCUU chr4:73404715-73404735 9
G009866 UACUAAAACUUUAUUUUACU chr4:73404452-73404472 10
G009867 AAAGUUGAACAAUAGAAAAA chr4:73404418-73404438 11
G009868 AAUGCAUAAUCUAAGUCAAA chr4:73405013-73405033 12
G009874 UAAUAAAAUUCAAACAUCCU chr4:73404561-73404581 13
G012747 GCAUCUUUAAAGAAUUAUUU chr4:73404478-73404498 14
G012748 UUUGGCAUUUAUUUCUAAAA chr4:73404496-73404516 15
G012749 UGUAUUUGUGAAGUCUUACA chr4:73404529-73404549 16
G012750 UCCUAGGUAAAAAAAAAAAA chr4:73404577-73404597 17
G012751 UAAUUUUCUUUUGCGCACUA chr4:73404620-73404640 18
G012752 UGACUGAAACUUCACAGAAU chr4:73404664-73404684 19
G012753 GACUGAAACUUCACAGAAUA chr4:73404665-73404685 20
G012754 UUCAUUUUAGUCUGUCUUCU chr4:73404803-73404823 21
G012755 AUUAUCUAAGUUUGAAUAUA chr4:73404859-73404879 22
G012756 AAUUUUUAAAAUAGUAUUCU chr4:73404897-73404917 23
G012757 UGAAUUAUUCUUCUGUUUAA chr4:73404924-73404944 24
G012758 AUCAUCCUGAGUUUUUCUGU chr4:73404965-73404985 25
G012759 UUACUAAAACUUUAUUUUAC chr4:73404453-73404473 26
G012760 ACCUUUUUUUUUUUUUACCU chr4:73404581-73404601 27
G012761 AGUGCAAUGGAUAGGUCUUU chr4:73404714-73404734 28
G012762 UGAUUCCUACAGAAAAACUC chr4:73404973-73404993 29
G012763 UGGGCAAGGGAAGAAAAAAA chr4:73405094-73405114 30
G012764 CCUCACUCUUGUCUGGGCAA chr4:73405107-73405127 31
G012765 ACCUCACUCUUGUCUGGGCA chr4:73405108-73405128 32
G012766 UGAGCAACCUCACUCUUGUC chr4:73405114-73405134 33
引導RNA可進一步包含trRNA。在本文所描述之各組成物及方法具體實例中,crRNA及trRNA可締合為單RNA(sgRNA)或可處於單獨RNA(dgRNA)上。在sgRNA之情形下,crRNA及trRNA組分可例如經由磷酸二酯鍵或其他共價鍵共價連接。在一些具體實例中,sgRNA在核苷酸之間包含不為磷酸二酯鍵之一或多個鍵。
在本文所描述之組成物、用途及方法具體實例中之各者中,引導RNA可包含呈「雙引導RNA」或「dgRNA」形式之兩個RNA分子。dgRNA包含有包含crRNA之第一RNA分子,該crRNA包含例如表1中所示之引導序列;及包含trRNA之第二RNA分子。第一RNA分子及第二RNA分子可不共價連接,但可經由crRNA與trRNA之部分之間之鹼基配對形成RNA雙螺旋體。
在本文所描述之組成物、用途及方法具體實例中之各者中,引導RNA可包含呈「單引導RNA」或「sgRNA」形式之單個RNA分子。sgRNA可包含與trRNA共價連接之包含表1中所示之引導序列之crRNA(或其部分)。sgRNA可包含表1中所示之引導序列之15、16、17、18、19或20個連續核苷酸。在一些具體實例中,crRNA與trRNA經由連接子共價連接。在一些具體實例中,sgRNA經由crRNA與trRNA之部分之間之鹼基配對形成主幹-環圈結構。在一些具體實例中,crRNA及trRNA經由不為磷酸二酯鍵之一或多個鍵共價連接。
在一些具體實例中,trRNA可包含來源於天然存在之CRISPR/Cas系統之trRNA序列之全部或一部分。在一些具體實例中,trRNA包含經截短或經修飾之野生型trRNA。trRNA之長度視所用CRISPR/Cas系統而定。在一些具體實例中,trRNA包含以下或由以下組成:5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、60、70、80、90、100或超過100個核苷酸。在一些具體實例中,trRNA可包含諸如一或多個髮夾結構或主幹-環圈結構或一或多個凸出結構之特定二級結構。
在一些具體實例中,人類白蛋白基因座之內含子1內之目標序列或區域(SEQ ID NO: 1)可與引導RNA之引導序列互補。在一些具體實例中,該引導RNA之引導序列與其對應目標序列之間之互補性或一致性之程度可為至少75%、80%、85%、90%、95%、96%、97%、98%、99%或100%。在一些具體實例中,該gRNA之目標序列與引導序列可具有100%互補性或一致性。在其他具體實例中,gRNA之目標序列及引導序列可含有至少一個錯配。舉例而言,gRNA之目標序列及引導序列可含有1、2、3、4或5個錯配,其中引導序列之總長度為約20或20。在一些具體實例中,該gRNA之目標序列及引導序列可含有1至4個錯配,其中引導序列為約20或20個核苷酸。
在一些具體實例中,本文所揭示之組成物或調配物包含有包含編碼諸如如本文所描述之Cas核酸酶之RNA引導性DNA結合劑之開放閱讀框架(open reading frame;ORF)的mRNA。在一些具體實例中,提供、使用或投予包含編碼諸如Cas核酸酶之RNA引導性DNA結合劑之ORF之mRNA。 B.   經修飾之gRNA及mRNA
在一些具體實例中,該gRNA經化學修飾。包含一或多個經修飾之核苷或核苷酸之gRNA稱為「經修飾之」gRNA或「經化學修飾之」gRNA,用於描述代替或外加典型A、G、C及U殘基使用之一或多種非天然及/或天然存在之組分或組態的存在。在一些具體實例中,經修飾之gRNA係用非典型核苷或核苷酸合成,此處稱為「經修飾的」。經修飾之核苷及核苷酸可包括以下中之一或多者:(i)磷酸二酯骨架鍵中之非連接磷酸氧中之一或兩者及/或連接磷酸氧中之一或多者之更改,例如置換(例示性骨架修飾);(ii)例如核糖上之2'羥基之核糖成分之更改,例如置換(例示性糖修飾);(iii)用「去磷酸」連接子進行之磷酸酯部分之批量置換(例示性骨架修飾);(iv)包括非典型核鹼基之天然存在之核鹼基之修飾或置換(例示性鹼基修飾);(v)核糖-磷酸酯骨架之置換或修飾(例示性骨架修飾);(vi)寡核苷酸之3'端或5'端之修飾,例如末端磷酸酯基團之移除、修飾或置換或部分、帽或連接子之結合(該等3'或5'帽修飾可包含糖及/或骨架修飾);及(vii)糖之修飾或置換(例示性糖修飾)。
可組合諸如上文所列之化學修飾之化學修飾以提供包含可具有兩個、三個、四個或更多個修飾之核苷及核苷酸(統稱為「殘基」)之經修飾之gRNA及/或mRNA。舉例而言,經修飾之殘基可具有經修飾之糖及經修飾之核鹼基。在一些具體實例中,該gRNA之每一鹼基經修飾,例如所有鹼基均具有諸如硫代磷酸酯基團之經修飾之磷酸酯基團。在某些具體實例中,gRNA分子之所有或實質上所有磷酸酯基團均經硫代磷酸酯基團置換。在一些具體實例中,經修飾之gRNA在RNA之5'端處或附近包含至少一個經修飾之殘基。在一些具體實例中,經修飾之gRNA在RNA之3'端處或附近包含至少一個經修飾之殘基。某些gRNA在RNA之5'端及3'端處或附近包含至少一個經修飾之殘基。
在一些具體實例中,該gRNA包含一個、兩個、三個或更多個經修飾之殘基。在一些具體實例中,經修飾之gRNA中之至少5% (例如至少5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或100%)位置為經修飾之核苷或核苷酸。
未經修飾之核酸可易於藉由例如胞內核酸酶或在血清中發現之核酸酶降解。舉例而言,核酸酶可水解核酸磷酸二酯鍵。因此,在一個方面,本文所描述之gRNA可含有一或多個經修飾之核苷或核苷酸,例如以引入針對胞內核酸酶或基於血清之核酸酶之穩定性。在一些具體實例中,本文所描述之經修飾之gRNA分子在活體內及活體外兩者引入細胞群中時可展現減弱之先天性免疫反應。術語「先天性免疫反應」包括針對包括單股核酸之外源性核酸之細胞反應,其涉及誘導細胞介素(特別地干擾素)表現及釋放以及細胞死亡。
在骨架修飾之一些具體實例中,經修飾之殘基之磷酸酯基團可藉由用不同取代基置換氧中之一或多個而加以修飾。此外,經修飾之殘基(例如存在於經修飾之核酸中之經修飾之殘基)可包括用如本文所描述之經修飾之磷酸酯基團批量置換未經修飾之磷酸酯部分。在一些具體實例中,磷酸酯骨架之骨架修飾可包括產生不帶電連接子或具有不對稱電荷分佈之帶電連接子之更改。
經修飾之磷酸酯基團之實例包括硫代磷酸酯、硒代磷酸酯、硼烷磷酸酯(borano phosphate/borano phosphate ester)、氫膦酸酯、胺基磷酸酯、膦酸烷酯或膦酸芳酯及磷酸三酯。未經修飾之磷酸酯基團中之磷原子為非手性的。然而,用以上原子或原子群中之一者置換非橋聯氧中之一者可使得磷原子為手性的。立體對稱磷原子可具有「R」組態(本文為Rp)或「S」組態(本文為Sp)。骨架亦可藉由用氮(橋聯胺基磷酸酯)、硫(橋聯硫代磷酸酯)及碳(橋聯亞甲基膦酸酯)替換橋聯氧(亦即連接磷酸酯與核苷之氧)而加以修飾。置換可發生在任一連接氧處或發生在兩個連接氧處。
磷酸酯基團可在某些骨架修飾中經非含磷連接基團置換。在一些具體實例中,帶電磷酸酯基團可經中性部分置換。可置換磷酸酯基團之部分之實例可包括但不限於例如膦酸甲酯、羥胺基、矽氧烷、碳酸酯、羧甲基、胺基甲酸酯、醯胺、硫醚、環氧乙烷連接子、磺酸酯、磺醯胺、硫代甲縮醛、甲縮醛、肟、亞甲基亞胺基、亞甲基甲基亞胺基、亞甲基肼、亞甲基二甲基肼及亞甲基氧基甲基亞胺基。
亦可構築可模擬核酸之骨架,其中磷酸酯連接子及核糖經耐核酸酶性核苷或核苷酸代替物置換。該等修飾可包含骨架修飾及糖修飾。在一些具體實例中,核鹼基可藉由替代骨架繫栓。實例可包括但不限於嗎啉基、環丁基、吡咯啶及肽核酸(PNA)核苷代替物。
經修飾之核苷及經修飾之核苷酸可包括針對糖基之一或多個修飾,亦即在糖修飾處如此。舉例而言,2'羥基(OH)可經修飾,例如經多個不同「氧基」或「去氧」取代基置換。在一些具體實例中,針對2'羥基之修飾可增強核酸之穩定性,此係因為羥基可不再經去質子化以形成2'-烷氧基離子。
2'羥基修飾之實例可包括烷氧基或芳氧基(OR,其中「R」可為例如烷基、環烷基、芳基、芳烷基、雜芳基或糖);聚乙二醇(polyethyleneglycol;PEG);O(CH2 CH2 O)n CH2 CH2 OR,其中R可為例如H或視情況經取代之烷基,且n可為0至20之整數(例如0至4、0至8、0至10、0至16、1至4、1至8、1至10、1至16、1至20、2至4、2至8、2至10、2至16、2至20、4至8、4至10、4至16及4至20)。在一些具體實例中,2'羥基修飾可為2'-O-Me。在一些具體實例中,2'羥基修飾可為2'-氟修飾,此用氟置換2'羥基。在一些具體實例中,2'羥基修飾可為2'-H,此用氫置換2'羥基。在一些具體實例中,2'羥基修飾可包括「鎖定」核酸(LNA),其中2'羥基可例如藉由C1-6 亞烷基或C1-6 亞雜烷基橋鍵連接至同一核糖之4'碳,其中例示性橋鍵可包括亞甲基、伸丙基、醚或胺基橋鍵;O-胺基(其中胺基可為例如NH2 ;烷胺基、二烷胺基、雜環基、芳胺基、二芳胺基、雜芳胺基或二雜芳基胺基、乙二胺或聚胺基)及胺基烷氧基、O(CH2 )n -胺基(其中胺基可為例如NH2 ;烷胺基、二烷胺基、雜環基、芳胺基、二芳胺基、雜芳胺基或二雜芳基胺基、乙二胺或聚胺基)。在一些具體實例中,2'羥基修飾可包括「未鎖定」核酸(unlocked nucleic acid;UNA),其中核糖環缺乏C2'-C3'鍵。在一些具體實例中,2'羥基修飾可包括甲氧基乙基(methoxyethyl group;MOE)(OCH2 CH2 OCH3 ,例如PEG衍生物)。
「去氧」2'修飾可包括氫(亦即去氧核糖,例如在部分dsRNA之突出部分處);鹵基(例如溴、氯、氟或碘基);胺基(其中胺基可為例如NH2 ;烷胺基、二烷基胺基、雜環基、芳胺基、二芳胺基、雜芳胺基、二雜芳胺基或胺基酸);NH(CH2 CH2 NH)n CH2CH2 -胺基(其中胺基可例如如本文所描述)、-NHC(O)R(其中R可為例如烷基、環烷基、芳基、芳烷基、雜芳基或糖)、氰基;巰基;烷基-硫基-烷基;硫代烷氧基;及可視情況經例如如本文所描述之胺基取代之烷基、環烷基、芳基、烯基及炔基。
糖修飾可包含亦可含有一或多個碳之糖基,其具有與核糖中之對應碳相反之立體化學組態。因此,經修飾之核酸可包括含有例如作為糖之阿拉伯糖之核苷酸。經修飾之核酸亦可包括無鹼基糖。此等無鹼基糖亦可進一步在成分糖原子中之一或多者處經修飾。經修飾之核酸亦可包括例如L-核苷之一或多個呈L形式之糖。
可併入經修飾之核酸中之本文所描述之經修飾之核苷及經修飾之核苷酸可包括亦稱為核鹼基之經修飾之鹼基。核鹼基之實例包括但不限於腺嘌呤(A)、鳥嘌呤(G)、胞嘧啶(C)及尿嘧啶(U)。此等核鹼基可經修飾或完全置換以提供可併入經修飾之核酸中之經修飾之殘基。核苷酸之核鹼基可獨立地選自嘌呤、嘧啶、嘌呤類似物或嘧啶類似物。在一些具體實例中,核鹼基可包括例如天然存在之鹼基衍生物及合成鹼基衍生物。
在採用雙引導RNA之具體實例中,crRNA及tracr RNA中之各者可含有修飾。該等修飾可處於crRNA及/或tracr RNA之一端或兩端處。在包含sgRNA之具體實例中,sgRNA之一端或兩端處之一或多個殘基可經化學修飾,且/或內部核苷可經修飾,且/或整個sgRNA可經化學修飾。某些具體實例包含5'端修飾。某些具體實例包含3'端修飾。
在一些具體實例中,本文所揭示之引導RNA包含2017年12月8日申請之標題為「Chemically Modified Guide RNAs」之WO2018/107028 A1中所揭示之修飾模式中之一者,該案之內容以全文引用之方式併入本文中。在一些具體實例中,本文所揭示之引導RNA包含US20170114334中所揭示之結構/修飾模式中之一者,該案之內容以全文引用之方式併入本文中。在一些具體實例中,本文所揭示之引導RNA包含WO2017/136794、WO2017004279、US2018187186、US2019048338中所揭示之結構/修飾模式中之一者,該案之內容以全文引用之方式併入本文中。
在一些具體實例中,本發明之sgRNA包含下表2中所示之修飾模式。表2中之「完全序列」係指針對表1中列舉之引導物中之各者之sgRNA序列。「經完全序列修飾」顯示針對各sgRNA之修飾模式。 2 :人類白蛋白引導序列之 sgRNA 及針對人類白蛋白引導序列之 sgRNA 修飾模式
引導物ID 完全序列 SEQ ID NO: 經完全序列修飾 SEQ ID NO:
G009844 GAGCAACCUCACUCUUGUCUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 34 mG*mA*mG*CAACCUCACUCUUGUCUGU UUUAGAmGmCmUmAmGmAmAmAmUm AmGmCAAGUUAAAAUAAGGCUAGUCC GUUAUCAmAmCmUmUmGmAmAmAmAm AmGmUmGmGmCmAmCmCmGmAmGmUm CmGmGmUmGmCmU*mU*mU*mU 66
G009851 AUGCAUUUGUUUCAAAAUAUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 35    mA*mU*mG*CAUUUGUUUCAAAAUAUG UUUUAGAmGmCmUmAmGmAmAmAmUm AmGmCAAGUUAAAAUAAGGCUAGUCCG UUAUCAmAmCmUmUmGmAmAmAmAmAm GmUmGmGmCmAmCmCmGmAmGmUmCm GmGmUmGmCmU*mU*mU*mU 67
G009852 UGCAUUUGUUUCAAAAUAUUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 36 mU*mG*mC*AUUUGUUUCAAAAUAUUGU UUUAGAmGmCmUmAmGmAmAmAmUmAm GmCAAGUUAAAAUAAGGCUAGUCCGUUA UCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 68
G009857 AUUUAUGAGAUCAACAGCACGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 37 mA*mU*mU*UAUGAGAUCAACAGCACGU UUUAGAmGmCmUmAmGmAmAmAmUmAm GmCAAGUUAAAAUAAGGCUAGUCCGUUA UCAmAmCmUmUmGmAmAmAmAmAmGm UmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 69
G009858 GAUCAACAGCACAGGUUUUGGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 38 mG*mA*mU*CAACAGCACAGGUUUUGGU UUUAGAmGmCmUmAmGmAmAmAmUmAm GmCAAGUUAAAAUAAGGCUAGUCCGUUA UCAmAmCmUmUmGmAmAmAmAmAmGm UmGmGmCmAmCmCmGmAmGmUmCmGm GmUmGmCmU*mU*mU*mU 70
G009859 UUAAAUAAAGCAUAGUGCAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 39 mU*mU*mA*AAUAAAGCAUAGUGCAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 71
G009860 UAAAGCAUAGUGCAAUGGAUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 40 mU*mA*mA*AGCAUAGUGCAAUGGAUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 72
G009861 UAGUGCAAUGGAUAGGUCUUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 41 mU*mA*mG*UGCAAUGGAUAGGUCUUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 73
G009866 UACUAAAACUUUAUUUUACUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 42 mU*mA*mC*UAAAACUUUAUUUUACUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 74
G009867 AAAGUUGAACAAUAGAAAAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 43 mA*mA*mA*GUUGAACAAUAGAAAAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 75
G009868 AAUGCAUAAUCUAAGUCAAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 44 mA*mA*mU*GCAUAAUCUAAGUCAAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 76
G009874 UAAUAAAAUUCAAACAUCCUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 45 mU*mA*mA*UAAAAUUCAAACAUCCUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 77
G012747 GCAUCUUUAAAGAAUUAUUUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 46 mG*mC*mA*UCUUUAAAGAAUUAUUUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 78
G012748 UUUGGCAUUUAUUUCUAAAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 47 mU*mU*mU*GGCAUUUAUUUCUAAAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 79
G012749 UGUAUUUGUGAAGUCUUACAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 48 mU*mG*mU*AUUUGUGAAGUCUUACAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 80
G012750 UCCUAGGUAAAAAAAAAAAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 49 mU*mC*mC*UAGGUAAAAAAAAAAAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 81
G012751 UAAUUUUCUUUUGCGCACUAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 50 mU*mA*mA*UUUUCUUUUGCGCACUAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 82
G012752 UGACUGAAACUUCACAGAAUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 51 mU*mG*mA*CUGAAACUUCACAGAAUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 83
G012753 GACUGAAACUUCACAGAAUAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 52 mG*mA*mC*UGAAACUUCACAGAAUAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 84
G012754 UUCAUUUUAGUCUGUCUUCUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 53 mU*mU*mC*AUUUUAGUCUGUCUUCUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 85
G012755 AUUAUCUAAGUUUGAAUAUAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 54 mA*mU*mU*AUCUAAGUUUGAAUAUAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 86
G012756 AAUUUUUAAAAUAGUAUUCUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 55 mA*mA*mU*UUUUAAAAUAGUAUUCUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 87
G012757 UGAAUUAUUCUUCUGUUUAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 56 mU*mG*mA*AUUAUUCUUCUGUUUAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 88
G012758 AUCAUCCUGAGUUUUUCUGUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 57 mA*mU*mC*AUCCUGAGUUUUUCUGUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 89
G012759 UUACUAAAACUUUAUUUUACGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 58 mU*mU*mA*CUAAAACUUUAUUUUACGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 90
G012760 ACCUUUUUUUUUUUUUACCUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 59 mA*mC*mC*UUUUUUUUUUUUUACCUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 91
G012761 AGUGCAAUGGAUAGGUCUUUGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 60 mA*mG*mU*GCAAUGGAUAGGUCUUUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 92
G012762 UGAUUCCUACAGAAAAACUCGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 61 mU*mG*mA*UUCCUACAGAAAAACUCGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 93
G012763 UGGGCAAGGGAAGAAAAAAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 62 mU*mG*mG*GCAAGGGAAGAAAAAAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 94
G012764 CCUCACUCUUGUCUGGGCAAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 63 mC*mC*mU*CACUCUUGUCUGGGCAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 95
G012765 ACCUCACUCUUGUCUGGGCAGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 64 mA*mC*mC*UCACUCUUGUCUGGGCAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 96
G012766 UGAGCAACCUCACUCUUGUCGUUUU AGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAA AAAGUGGCACCGAGUCGGUGCUUUU 65 mU*mG*mA*GCAACCUCACUCUUGUCGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 97
在一些具體實例中,經修飾之sgRNA包含以下序列:mN*mN*mN*NNNNNNNNNNNNNNNNNGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU(SEQ ID NO: 300),其中「N」可為任何天然或非天然核苷酸,且其中N全部均包含如表1中所描述之白蛋白內含子1引導序列。舉例而言,本文涵蓋SEQ ID NO: 300,其中N經本文在表1中所揭示之引導序列(SEQ ID No: 2-33)中之任一者置換。
舉例而言,本文涵蓋SEQ ID NO: 300,其中N經本文在表1中所揭示之引導序列(SEQ ID NO: 2-5、10-17、21-27、及29-33)中之任一者置換。
下文所描述之修飾中之任一者可存在於本文所描述之gRNA及mRNA中。
術語「mA」、「mC」、「mU」或「mG」可用於指代已經2'-O-Me修飾之核苷酸。
2'-O -甲基修飾可如下描繪:
Figure 02_image001
已顯示影響核苷酸糖環之另一化學修飾為鹵素取代。舉例而言,核苷酸糖環上之2'-氟(2'-F)取代可增加寡核苷酸結合親和力及核酸酶穩定性。
在本申請中,術語「fA」、「fC」、「fU」或「fG」可用於指代已經2'-F取代之核苷酸。
2'-F取代可如下描繪:
Figure 02_image003
硫代磷酸酯(phosphorothioate;PS)鍵(linkage/bond)係指其中硫取代磷酸二酯鍵,例如核苷酸鹼基之間之鍵中之一個非橋聯磷酸氧的鍵。當硫代磷酸酯用於生成寡核苷酸時,經修飾之寡核苷酸亦可稱為S-oligos。
「*」可用於描繪PS修飾。在本申請中,術語A*、C*、U*或G*可用於指代經PS鍵連接至下一(例如3')核苷酸之核苷酸。
在本申請中,術語「mA*」、「mC*」、「mU*」或「mG*」可用於指代已經2'-O-Me取代且經PS鍵連接至下一(例如3')核苷酸之核苷酸。
下圖顯示將S-取代為非橋聯磷酸氧,產生PS鍵來替代磷酸二酯鍵:
Figure 02_image005
無鹼基核苷酸係指缺乏含氮鹼基之核苷酸。下圖描繪具有缺乏鹼基之無鹼基(亦稱為缺嘌呤)位點之寡核苷酸:
Figure 02_image007
反轉鹼基係指具有從正常5'至3'鍵反轉之鍵(亦即5'至5'鍵或3'至3'鍵)之鹼基。舉例而言:
Figure 02_image009
無鹼基核苷酸可用反轉鍵連接。舉例而言,無鹼基核苷酸可經由5'至5'鍵連接至末端5'核苷酸,或無鹼基核苷酸可經由3'至3'鍵連接至末端3'核苷酸。末端5'或3'核苷酸處之反轉無鹼基核苷酸亦可稱為反轉無鹼基端帽。
在一些具體實例中,對5'端處之前三個、四個或五個核苷酸中之一或多者及3'端處之最後三個、四個或五個核苷酸中之一或多者進行修飾。在一些具體實例中,修飾為2'-O-Me、2'-F、反轉無鹼基核苷酸、PS鍵或所屬技術領域中熟知用以增加穩定性及/或效能之其他核苷酸修飾。
在一些具體實例中,5'端處之前四個核苷酸及3'端處之最後四個核苷酸與硫代磷酸酯(PS)鍵連接。
在一些具體實例中,5'端處之前三個核苷酸及3'端處之最後三個核苷酸包含經2'-O -甲基(2'-O-Me)修飾之核苷酸。在一些具體實例中,5'端處之前三個核苷酸及3'端處之最後三個核苷酸包含經2'-氟(2'-F)修飾之核苷酸。在一些具體實例中,5'端處之前三個核苷酸及3'端處之最後三個核苷酸包含反轉無鹼基核苷酸。
在一些具體實例中,該引導RNA包含經修飾之sgRNA。在一些具體實例中,sgRNA包含SEQ ID No: 300中所示之修飾模式,其中N為任何天然或非天然核苷酸,且其中全部N均包含將核酸酶導引至人類白蛋白內含子1中之目標序列之引導序列,例如如表1中所示。
在一些具體實例中,該引導RNA包含SEQ ID No: 34-97中之任一者中所示之sgRNA。在一些具體實例中,該引導RNA包含有包含SEQ ID No: 2-33引導序列、及300核苷酸中之任一者之sgRNA,其中SEQ ID No: 300核苷酸處於引導序列之3'端上,且其中sgRNA可例如如SEQ ID NO: 300中所示經修飾。
在一些具體實例中,該引導RNA包含SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97中之任一者中所示之sgRNA。在一些具體實例中,該引導RNA包含有包含SEQ ID NO: 2-5、10-17、21-27、及29-33引導序列及SEQ ID NO: 300核苷酸中之任一者之sgRNA,其中SEQ ID NO: 300核苷酸處於引導序列之3'端上,且其中sgRNA可例如如SEQ ID NO: 300中所示經修飾。
如上文所指出,在一些具體實例中,本文所揭示之組成物或調配物包含有包含編碼諸如如本文所描述之Cas核酸酶之RNA引導性DNA結合劑之開放閱讀框架(ORF)的mRNA。在一些具體實例中,提供、使用或投予包含編碼諸如Cas核酸酶之RNA引導性DNA結合劑之ORF之mRNA。如下文所描述,包含Cas核酸酶之mRNA可包含諸如具有裂解酶、切口酶及/或位點特異性DNA結合活性之釀膿鏈球菌Cas9核酸酶之Cas9核酸酶。在一些具體實例中,編碼RNA引導性DNA核酸酶之ORF為「經修飾之RNA引導性DNA結合劑ORF」或簡稱為「經修飾之ORF」,其以簡寫形式用於指示ORF經修飾。
本文提供且所屬技術領域中已知Cas9 ORF,包括經修飾之Cas9 ORF。作為一個實例,Cas9 ORF可經密碼子最佳化,以使得編碼序列包括用於一或多個胺基酸之一或多個替代密碼子。如本文所使用之「替代密碼子」係指針對給定胺基酸之密碼子用法中之變化形式,且可為或可不為針對給定表現系統之較佳或最佳化密碼子(經密碼子最佳化)。較佳密碼子用法或在給定表現系統中良好容許之密碼子在所屬技術領域中已知。WO2013/176772、WO2014/065596、WO2016/106121及WO2019/067910之Cas9編碼序列、Cas9 mRNA及Cas9蛋白序列以引用之方式併入本文中。詳言之,WO2019/067910之段落[0449]處之表之ORF及Cas9胺基酸序列以及WO2019/067910之段落[0214]-[0234]之Cas9 mRNA及ORF以引用之方式併入本文中。
在一些具體實例中,經修飾之ORF可包含至少在一個、複數個或所有尿苷位置處之經修飾之尿苷。在一些具體實例中,經修飾之尿苷為在5位處例如經鹵素、甲基或乙基修飾之尿苷。在一些具體實例中,經修飾之尿苷為在1位處例如經鹵素、甲基或乙基修飾之假尿苷。經修飾之尿苷可為例如假尿苷、N1-甲基-假尿苷、5-甲氧基尿苷、5-碘尿苷或其組合。在一些具體實例中,經修飾之尿苷為5-甲氧基尿苷。在一些具體實例中,經修飾之尿苷為5-碘尿苷。在一些具體實例中,經修飾之尿苷為假尿苷。在一些具體實例中,經修飾之尿苷為N1-甲基-假尿苷。在一些具體實例中,經修飾之尿苷為假尿苷與N1-甲基-假尿苷之組合。在一些具體實例中,經修飾之尿苷為假尿苷與5-甲氧基尿苷之組合。在一些具體實例中,經修飾之尿苷為N1-甲基假尿苷與5-甲氧基尿苷之組合。在一些具體實例中,經修飾之尿苷為5-碘尿苷與N1-甲基-假尿苷之組合。在一些具體實例中,經修飾之尿苷為假尿苷與5-碘尿苷之組合。在一些具體實例中,經修飾之尿苷為5-碘尿苷與5-甲氧基尿苷之組合。
在一些具體實例中,本文所揭示之mRNA包含諸如Cap0、Cap1或Cap2之5'帽。5'帽一般為經由5'-三磷酸連接至mRNA之5'至3'鏈之第一核苷酸之5'位之7-甲基鳥嘌呤核糖核苷酸(其可進一步修飾,如下文例如相對於ARCA所論述),亦即第一帽近端核苷酸。在Cap0中,mRNA之第一帽近端核苷酸之核糖及第二帽近端核苷酸之核糖兩者均包含2'-羥基。在Cap1中,mRNA之第一經轉錄之核苷酸之核糖及第二經轉錄之核苷酸之核糖分別包含2'-甲氧基及2'-羥基。在Cap2中,mRNA之第一帽近端核苷酸之核糖及第二帽近端核苷酸之核糖兩者均包含2'-甲氧基。參見例如Katibah等人(2014)Proc Natl Acad Sci USA 111(33):12025-30;Abbas等人(2017)Proc Natl Acad Sci USA 114(11):E2106-E2115。包括諸如人類mRNA之哺乳動物mRNA之大多數內源高等真核mRNA包含Cap1或Cap2。由於根據諸如IFIT-1及IFIT-5之先天性免疫系統之組分辨識為「非自體」,故Cap0及與Cap1及Cap2不同之其他帽結構在諸如人類之哺乳動物中可具免疫原性,此可引起包括第I型干擾素之細胞介素水平升高。諸如IFIT-1及IFIT-5之先天性免疫系統之組分亦可與eIF4E競爭結合具有除Cap1或Cap2外之帽之mRNA,潛在地抑制mRNA轉譯。
帽可以共轉錄方式包括在內。舉例而言,ARCA(抗反向帽類似物;Thermo Fisher Scientific目錄號AM8045)為包含連接至可在一開始時在試管內併入轉錄物中之鳥嘌呤核糖核苷酸之5'位之7-甲基鳥嘌呤3'-甲氧基-5'-三磷酸的帽類似物。ARCA產生Cap0帽,其中第一帽近端核苷酸之2'位為羥基。參見例如Stepinski等人(2001) 「Synthesis and properties of mRNAs containing the novel ‘anti-reverse’ cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl(3'deoxy)GpppG」,RNA 7: 1486-1495。ARCA結構顯示在下文中。
Figure 02_image011
CleanCapTM AG(m7G(5')ppp(5')(2'OMeA)pG;TriLink Biotechnologies目錄號N-7113)或CleanCapTM GG(m7G(5')ppp(5')(2'OMeG)pG;TriLink Biotechnologies目錄號N-7133)可用於以共轉錄方式提供Cap1結構。CleanCapTM AG及CleanCapTM GG之3'-O-甲基化型式亦可分別以目錄號N-7413及N-7433自TriLink Biotechnologies獲得。CleanCapTM AG結構顯示在下文中。
Figure 02_image013
可替代地,可以後轉錄方式將帽添加至RNA中。舉例而言,牛痘加帽酶為市售的(New England Biolabs目錄號M2080S),且具有由其D1次單元提供之RNA三磷酸酶及鳥苷酸轉移酶活性及由其D12次單元提供之鳥嘌呤甲基轉移酶。因此,在存在S-腺苷甲硫胺酸及GTP之情況下,其可將7-甲基鳥嘌呤添加至RNA中以便得到Cap0。參見例如Guo, P.及Moss, B. (1990)Proc. Natl. Acad. Sci.USA 87, 4023-4027;Mao, X.及Shuman, S. (1994)J. Biol. Chem . 269, 24472-24479。
在一些具體實例中,mRNA進一步包含聚腺苷酸化(poly-adenylated;poly-A)尾。在一些具體實例中,poly-A尾包含至少20、30、40、50、60、70、80、90或100個腺嘌呤,視情況至多300個腺嘌呤。在一些具體實例中,poly-A尾包含95、96、97、98、99或100個腺嘌呤核苷酸。 C.   供體構築體
本文所描述之組成物及方法包括使用包含待插入由本發明之引導RNA及RNA引導性DNA結合劑產生之切割位點中之編碼異源因子IX基因之序列的核酸構築體。如本文所使用,此類構築體有時稱為「供者構築體/模板」。在一些具體實例中,構築體為DNA構築體。設計及進行對供體構築體之各種功能/結構修飾之方法在所屬技術領域中已知。在一些具體實例中,構築體可包含聚腺苷酸化尾序列、聚腺苷酸化信號序列、剪接接受位或可選標記中之任一者或多者。在一些具體實例中,聚腺苷酸化尾序列在編碼序列之3'端處經編碼,例如作為「poly-A」伸長段。設計合適聚腺苷酸化尾序列及/或聚腺苷酸化信號序列之方法在所屬技術領域中眾所周知。舉例而言,聚腺苷酸化信號序列AAUAAA(SEQ ID NO: 800)常用於哺乳動物系統中,但已識別到諸如UAUAAA(SEQ ID NO: 801)或AU/GUAAA(SEQ ID NO: 802)之變異體。參見例如NJ Proudfoot, Genes & Dev. 25(17):1770-82, 2011。
在一些具體實例中,該供體構築體包含編碼因子IX之序列,其中因子IX序列為野生型因子IX,例如SEQ ID NO: 700。在一些具體實例中,該供體構築體包含編碼因子IX之序列,其中因子IX序列為野生型因子IX,例如SEQ ID NO: 701。在一些具體實例中,序列編碼因子IX之變異體。舉例而言,變異體可具有相比於野生型因子IX而言增加之凝血活性。舉例而言,相對於SEQ ID NO: 701而言,變異因子IX可包含一個或突變,諸如位置R338(例如R338L)中之胺基酸取代。在一些具體實例中,序列編碼與SEQ ID NO: 700、701或SEQ ID NO: 702具有80%、85%、90%、93%、95%、97%、99%一致性、相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性之因子IX變異體。在一些具體實例中,序列編碼因子IX之片段,其中該片段相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性。
在一些具體實例中,該供體構築體包含編碼因子IX變異體之序列,其中因子IX變異體在不存在其輔因子亦即因子VIII之情況下活化凝血。該等因子IX變異體可進一步維持野生型因子IX之活性。該等因子IX變異體可用於治療諸如B型血友病之血友病。舉例而言,相對於野生型因子IX而言(例如相對於SEQ ID NO: 701而言),此類因子IX變異體可包含位置L6、V181、K265、I383、E185處之胺基酸取代或其組合。舉例而言,相對於野生型因子IX而言(例如相對於SEQ ID NO: 701而言),此類因子IX變異體可包含L6F突變、V181I突變、K265A突變、I383V突變、E185D突變或其組合。
在一個實施例中,因子IX蛋白可包含位置L6及V181處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6及K265處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181及K265處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置K265及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181及K265處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、K265及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、I383及E186處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、K265及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、I383及E186處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置K265、I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181、K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181、I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、K265、I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、K265、I383及E185處之胺基酸取代。
在一特定實施例中,因子IX蛋白可包含位置V181、K265及I383處之胺基酸取代。在另一特定實施例中,因子IX蛋白可包含位置V181、K265、I383及E185處之胺基酸取代。在另一特定實施例中,因子IX蛋白可包含位置L6、V181、K265及I383處之胺基酸取代。
在一個實施例中,因子IX蛋白可包含L6F突變及V181I突變。在另一實施例中,因子IX蛋白可包含L6F突變及K265A突變。在另一實施例中,因子IX蛋白可包含L6F突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變及E185D突變。在另一實施例中,因子IX蛋白可包含V181I突變及K265A突變。在另一實施例中,因子IX蛋白可包含V181I突變及I383V突變。在另一實施例中,因子IX蛋白可包含V181I突變及E185D突變。在另一實施例中,因子IX蛋白可包含K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含K265A突變及E185D突變。在另一實施例中,因子IX蛋白可包含I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變及K265A突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變、K265A突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、I383V突變及E186D突變。在另一實施例中,因子IX蛋白可包含V181I突變、K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含V181I突變、K265A突變及E185D突變。在另一實施例中,因子IX蛋白可包含V181I突變、I383V突變及E186D突變。在另一實施例中,因子IX蛋白可包含K265A突變、I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變、K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變、I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、K265A突變、I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含V181I突變、K265A突變、I383V突變及E185D突變。
在一特定實施例中,因子IX蛋白可包含V181I突變、K265A突變及I383V突變。在另一特定實施例中,因子IX蛋白可包含V181I突變、K265A突變、I383V突變及E185D突變。在一些具體實例中,因子IX變異體與SEQ ID NO: 700具有80%、85%、90%、93%、95%、97%、99%一致性,相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性。在某些具體實例中,因子IX變異體與SEQ ID NO: 700具有至少80%、85%、90%、93%、95%、97%、99%一致性,相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性,且包含V181I突變、K265A突變、I383V突變及/或E185D突變。在另一特定實施例中,因子IX蛋白可包含L6F突變、V181I突變、K265A突變及I383V突變。在一些具體實例中,因子IX變異體與SEQ ID NO: 700具有至少80%、85%、90%、93%、95%、97%、99%一致性,相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性,且包含L6F突變、V181I突變、K265A突變及/或I383V突變。
構築體長度可視待插入之基因之尺寸而變化,且可為例如200個鹼基對(bp)至約5000個bp,諸如約200個bp至約2000個bp,諸如約500個bp至約1500個bp。在一些具體實例中,DNA供體模板之長度為約200個bp,或為約500個bp,或為約800個bp,或為約1000個鹼基對,或為約1500個鹼基對。在其他具體實例中,供體模板之長度為至少200個bp,或為至少500個bp,或為至少800個bp,或為至少1000個bp,或為至少1500個bp。在其他具體實例中,供體模板之長度為至少200個bp,或為至少500個bp,或為至少800個bp,或為至少1000個bp,或為至少1500個bp,或至少2000個bp,或至少2500個bp,或至少3000個bp,或至少3500個bp,或至少4000個bp,或至少4500個bp,或至少5000個bp。
構築體可為單股、雙股或部分單股及部分雙股之DNA或RNA,且可以線性或環狀(例如微型環)形式引入宿主細胞中。參見例如美國專利公開第2010/0047805號、第2011/0281361號、第2011/0207221號。若以線性形式引入,則可藉由所屬技術領域中具有通常知識者已知之方法使供體序列之末端受到保護(例如免受核酸外切降解)。舉例而言,將一或多個雙去氧核苷酸殘基添加至線性分子之3'端中,且/或使自我互補寡核苷酸與一端或兩端接合。參見例如Chang等人(1987)Proc. Natl. Acad. Sci. USA 84:4959-4963;Nehls等人(1996)Science 272:886-889。用於保護外源多核苷酸免受降解之額外方法包括但不限於添加末端胺基及使用諸如硫代磷酸酯、胺基磷酸酯及O-甲基核糖或去氧核糖殘基之經修飾之核苷酸間鍵。可將構築體以具有諸如複製起始序列、啟動子及編碼耐抗生素性之基因之額外序列之載體分子的部分形式引入細胞中。構築體可略去病毒元素。此外,供體構築體可以裸核酸形式、以與諸如脂質體或泊洛沙姆(poloxamer)之藥劑複合之核酸形式引入,或可藉由病毒(例如腺病毒、AAV、疱疹病毒、反轉錄病毒、慢病毒)來遞送。
在一些具體實例中,可插入構築體以使得其表現由插入位點處之內源啟動子(例如,當將供體整合至宿主細胞之白蛋白基因座中時,為內源白蛋白啟動子)驅動。在該等情況下,轉殖基因可能缺乏驅動其表現之控制元素(例如啟動子及/或增強子)(例如無啟動子構築體)。然而,顯然地,在其他情況下,構築體可包含在整合後驅動功能蛋白表現之啟動子及/或增強子,例如組成型啟動子或可誘導或組織特異性(例如肝特異性或血小板特異性)啟動子。構築體可包含處於編碼信號肽之信號序列之下游且與其可操作地連接的編碼異源因子IX蛋白之序列。在一些具體實例中,該核酸構築體在編碼因子IX蛋白之核酸之同源非依賴性插入中起作用。在一些具體實例中,該核酸構築體在例如其中NHEJ(非HR)為修復雙股DNA斷裂之初級機制之細胞的非分裂細胞中起作用。核酸可為同源非依賴性供體構築體。
一些包含異源因子IX核酸(因子IX轉殖基因)之供體構築體能夠藉由非同源末端接合插入針對基因編輯系統之目標DNA序列中之切割位點中(例如能夠插入諸如白蛋白基因座之安全港基因中)。在一些情況下,該等構築體不包含同源臂。舉例而言,該等構築體可在經如本文所揭示之基因編輯系統(例如CRISPR/Cas系統)裂解之後插入鈍端雙股斷裂中。在一特定實施例中,構築體可經由AAV來遞送,且可能夠藉由非同源末端接合進行插入(例如構築體可為不包含同源臂之構築體)。
在一特定實施例中,構築體可經由同源非依賴性靶向整合進行插入。舉例而言,構築體中之異源因子IX核酸可藉由針對基因編輯系統之靶位(例如與針對靶向插入之目標DNA序列中(例如安全港基因中)之靶位相同之靶位,及用於裂解針對靶向插入之目標DNA序列之相同基因編輯系統)側接於各側上。隨後,基因編輯系統可裂解側接異源因子IX核酸之靶位。在一特定實施例中,構築體經AAV介導之遞送來進行遞送,且側接異源因子IX核酸之靶位之裂解可移除AAV之反轉末端重複序列(inverted terminal repeat;ITR)。在一些方法中,若將異源因子IX核酸在恰當位向插入切割位點或目標DNA序列中,則針對靶向插入之目標DNA序列(例如安全港基因座中之目標DNA序列,例如包括側接原型間隔區相鄰基序之gRNA目標序列)不再存在,但若將異源因子IX核酸在相反位向插入切割位點或目標DNA序列中,則其得到重組。此可幫助確保在恰當位向插入異源因子IX核酸以進行表現。
本文亦描述允許經增強之因子IX基因插入及表現之雙向核酸構築體。簡言之,本文所揭示之各種雙向構築體包含至少兩個核酸區段,其中一個區段(第一區段)包含編碼因子IX之編碼序列(有時在本文中可互換地稱為「轉殖基因」),而另一區段(第二區段)包含其中序列之互補物編碼因子IX之序列。
在一個具體實例中,雙向構築體包含至少兩個順式核酸區段,其中一個區段(第一區段)包含編碼序列(有時在本文中可互換地稱為「轉殖基因」),而另一區段(第二區段)包含其中序列之互補物編碼轉殖基因之序列。第一轉殖基因及第二轉殖基因可相同或不同。雙向構築體可包含至少兩個順式核酸區段,其中一個區段(第一區段)包含在一個位向編碼異源基因之編碼序列,而另一區段(第二區段)包含其中其互補物在另一位向編碼異源基因之序列。亦即,第一區段為第二區段之互補物(不一定為完美互補物);第二區段之互補物為第一區段之反向互補物(不一定為完美反向互補物,但兩者均編碼同一異源蛋白)。雙向構築體可包含編碼與剪接受體連接之異源基因之第一編碼序列及其中互補物在另一位向編碼異源基因、亦與剪接受體連接之第二編碼序列。
當與如本文所描述之基因編輯系統(例如CRISPR/Cas系統;鋅指核酸酶(ZFN)系統;類轉錄活化子效應核酸酶(TALEN)系統)組合使用時,核酸構築體之雙向性允許將構築體在任一方向插入(不限於在一個方向插入)目標插入位點內,允許從以下表現因子IX:a)一個區段(例如圖1左上方ssAAV構築體之編碼「人類F9」之左區段)之編碼序列,或b)另一區段之互補物(例如圖1左上方ssAAV構築體中倒置之指定編碼「人類F9」之右區段之互補物),從而如本文所例示增強插入及表現效率。各種已知基因編輯系統可用於本發明之實踐中,該等基因編輯系統包括例如CRISPR/Cas系統;鋅指核酸酶(ZFN)系統;類轉錄活化子效應核酸酶(TALEN)系統。
本文所揭示之雙向構築體可經修飾以視任何特定用途及/或賦予一或多種所需功能需要而包括任何合適之結構特點。在一些具體實例中,本文所揭示之雙向核酸構築體不包含同源臂。在一些具體實例中,本文所揭示之雙向核酸構築體為同源非依賴性供體構築體。在一些具體實例中,部分由於核酸構築體之雙向功能,可將雙向構築體如本文所描述在任一方向插入基因組基因座中以允許有效地插入及/或表現所關注之多肽(例如因子IX)。
在一些具體實例中,該雙向核酸構築體不包含驅動因子IX表現之啟動子。舉例而言,因子IX表現係由宿主細胞之啟動子(例如當將轉殖基因整合至宿主細胞之白蛋白基因座中時為內源性白蛋白啟動子)驅動。
在一些具體實例中,該雙向核酸構築體包含有包含針對因子IX之編碼序列之第一區段及包含因子IX之編碼序列之反向互補物之第二區段。因此,第一區段中之編碼序列能夠表現因子IX,而第二區段中之反向互補物之互補物亦能夠表現因子IX。當提及包含反向互補物之第二區段時,如本文所使用之「編碼序列」係指第二區段之互補(編碼)股(亦即第二區段中之反向互補物之互補編碼序列)。
在一些具體實例中,第一區段中之編碼因子IX之編碼序列與亦編碼因子IX之編碼序列之反向互補物具有少於100%互補性。亦即,在一些具體實例中,第一區段包含針對因子IX之編碼序列(1),而第二區段為針對因子IX之編碼序列(2)之反向互補物,其中編碼序列(1)與編碼序列(2)不一致。舉例而言,編碼因子IX之編碼序列(1)及/或編碼序列(2)可經密碼子最佳化以使得編碼序列(1)與編碼序列(2)之反向互補物具有少於100%互補性。在一些具體實例中,第二區段之編碼序列使用針對由第一區段中之編碼序列編碼之相同因子IX(亦即相同胺基酸序列)之一或多個胺基酸之一或多個替代密碼子來編碼因子IX。如本文所使用之「替代密碼子」係指針對給定胺基酸之密碼子用法中之變化形式,且可為或可不為針對給定表現系統之較佳或最佳化密碼子(經密碼子最佳化)。較佳密碼子用法或在給定表現系統中良好容許之密碼子在所屬技術領域中已知。
在一些具體實例中,第二區段包含採用與第一區段之編碼序列之密碼子用法不同之密碼子用法的反向互補序列以便減少髮夾結構形成。此類反向互補物與少於第一區段中之編碼序列之全部核苷酸一起形成鹼基對,其又視情況編碼相同多肽。在該等情況下,第一區段之例如針對多肽A之編碼序列可與例如針對雙向構築體後半之多肽A之編碼序列具有同源性,但不具有一致性。在一些具體實例中,第二區段包含與第一區段中之編碼序列不實質上互補(例如不超過70%互補)之反向互補序列。在一些具體實例中,第二區段包含與第一區段中之編碼序列高度互補(例如至少90%互補)之反向互補序列。在一些具體實例中,第二區段包含與第一區段中之編碼序列具有至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約97%或約99%互補性之反向互補序列。
在一些具體實例中,第二區段包含與第一區段中之編碼序列具有100%互補性之反向互補序列。亦即,第二區段中之序列為第一區段中之編碼序列之完美反向互補物。舉例而言,第一區段包含假想序列5' CTGGACCGA 3'(SEQ ID NO: 500),而第二區段包含SEQ ID NO: 1之反向互補物-亦即5' TCGGTCCAG 3'(SEQ ID NO: 502)。
在一些具體實例中,該雙向核酸構築體包含有包含針對因子IX(第一多肽)之編碼序列之第一區段及包含(第二)多肽之編碼序列之反向互補物之第二區段。在一些具體實例中,第一區段及第二區段各自包含如上文所描述編碼相同多肽(例如因子IX)之編碼序列。在一些具體實例中,第一區段及第二區段各自包含編碼不同多肽之編碼序列。舉例而言,第一多肽為因子IX,而第二多肽為多肽B。作為另一實例,第一多肽為因子IX,而第二多肽為因子IX之變異體(例如片段、突變體、融合體)(例如具有本文所描述之R338L突變)。編碼多肽之編碼序列可視情況包含一或多個額外之連結至該多肽之序列,諸如編碼胺基端或羧基端胺基酸序列之序列,諸如信號序列、標記序列(例如HiBit)或異源功能序列(例如核定位序列(nuclear localization sequence;NLS)或自裂解肽)。編碼多肽之編碼序列可視情況包含編碼一或多個胺基端信號肽序列之序列。此等額外序列中之各者可在構築體之第一區段及第二區段中相同或不同。
在一些具體實例中,該雙向核酸構築體為線性的。舉例而言,第一區段及第二區段以線性方式經由連接子序列接合。在一些具體實例中,包含反向互補序列之第二區段之5'端與第一區段之3'端連結。在一些具體實例中,第一區段之5'端與包含反向互補序列之第二區段之3'端連接。在一些具體實例中,連接子序列之長度為約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、150、200、250、300、500、1000、1500、2000或更多個核苷酸。如所屬技術領域中具有通常知識者所瞭解,可在第一區段與第二區段之間插入除連接子序列之外或代替連接子序列之其他結構元素。
本文所揭示之雙向構築體可經修飾以視任何特定用途及/或賦予一或多種所需功能需要而包括任何合適之結構特點。在一些具體實例中,本文所揭示之雙向核酸構築體不包含同源臂。在一些具體實例中,部分由於核酸構築體之雙向功能,可將雙向構築體如本文所描述在任一方向(位向)插入基因組基因座中以允許有效地插入及/或表現所關注之多肽(例如異源因子IX)。
在一些具體實例中,第一區段及第二區段中之一者或兩者包含聚腺苷酸化尾序列。設計合適聚腺苷酸化尾序列之方法在所屬技術領域中眾所周知。
在一些具體實例中,第一區段及第二區段中之一者或兩者包含聚腺苷酸化尾序列及/或開放閱讀框架下游之聚腺苷酸化信號序列。在一些具體實例中,聚腺苷酸化尾序列在第一區段及/或第二區段之3'端處經編碼,例如作為「poly-A」伸長段。在一些具體實例中,由於在第一區段及/或第二區段之3'端處或附近經編碼之聚腺苷酸化信號序列,聚腺苷酸化尾序列以共轉錄方式提供。在一些具體實例中,poly-A尾包含至少20、30、40、50、60、70、80、90或100個腺嘌呤,視情況至多300個腺嘌呤。在一些具體實例中,poly-A尾包含95、96、97、98、99或100個腺嘌呤核苷酸。設計合適聚腺苷酸化尾序列及/或聚腺苷酸化信號序列之方法在所屬技術領域中眾所周知。本文揭示且例示包括小鼠白蛋白及人類FIX剪接接受位之合適之剪接受體序列。在一些具體實例中,聚腺苷酸化信號序列AAUAAA(SEQ ID NO: 800)常用於哺乳動物系統中,但已識別到諸如UAUAAA(SEQ ID NO: 801)或AU/GUAAA(SEQ ID NO: 802)之變異體。參見例如NJ Proudfoot, Genes & Dev. 25(17):1770-82, 2011。在一些具體實例中,包括polyA尾序列。
在一些具體實例中,本文所揭示之構築體可為單股、雙股或部分單股及部分雙股之DNA或RNA。舉例而言,構築體可為單股或雙股DNA。在一些具體實例中,該核酸可如本文所描述經修飾(例如使用核苷類似物)。
在一些具體實例中,本文所揭示之構築體包含處於構築體之任一端或兩端,例如第一區段及/或第二區段中之開放閱讀框架之5'或一個或兩個轉殖基因序列之5'上之剪接接受位。在一些具體實例中,剪接接受位包含NAG。在另外具體實例中,剪接接受位由NAG組成。在一些具體實例中,剪接受體為白蛋白剪接受體,例如用於將白蛋白之外顯子1及2剪接在一起之白蛋白剪接受體。在一些具體實例中,剪接受體來源於人類白蛋白基因。在一些具體實例中,剪接受體來源於小鼠白蛋白基因。在一些具體實例中,剪接受體為F9(或「FIX」)剪接受體,例如用於將F9之外顯子1及2剪接在一起之F9剪接受體。在一些具體實例中,剪接受體來源於人類F9基因。在一些具體實例中,剪接受體來源於小鼠F9基因。適用於真核生物中之包括人工剪接受體之額外合適剪接接受位為已知的且可來源於所屬技術領域。參見例如Shapiro, 等人, 1987, Nucleic Acids Res., 15, 7155-7174,Burset, 等人, 2001, Nucleic Acids Res., 29, 255-259。
在一些具體實例中,本文所揭示之雙向構築體可在任一端或兩端上經修飾以視需要包括一或多個合適結構特點,及/或以賦予一或多個功能效益。舉例而言,結構修飾可視用於將本文所揭示之構築體遞送至宿主細胞之方法-例如使用向脂質奈米粒子中之病毒載體遞送或封裝以進行遞送-而變化。該等修飾包括但不限於例如末端結構,諸如反轉末端重複序列(ITR)、髮夾結構、環及諸如螺環(toroid)之其他結構。在一些具體實例中,本文所揭示之構築體包含一個、兩個或三個ITR。在一些具體實例中,本文所揭示之構築體包含不超過兩個ITR。各種結構修飾方法在所屬技術領域中已知。
在一些具體實例中,可藉由所屬技術領域中已知之方法使構築體之一端或兩端受到保護(例如免受核酸外切降解)。舉例而言,將一或多個雙去氧核苷酸殘基添加至線性分子之3'端中,且/或使自我互補寡核苷酸與一端或兩端接合。參見例如Chang等人(1987)Proc. Natl. Acad. Sci. USA 84:4959-4963;Nehls等人(1996)Science 272:886-889。用於保護構築體免受降解之額外方法包括但不限於添加末端胺基及使用諸如硫代磷酸酯、胺基磷酸酯及O-甲基核糖或去氧核糖殘基之經修飾之核苷酸間鍵。
在一些具體實例中,可將本文所揭示之構築體引入細胞中作為具有諸如複製起始序列、啟動子及編碼耐抗生素性之基因之額外序列之載體的部分。在一些具體實例中,構築體可以裸核酸形式、以與諸如脂質體、聚合物或泊洛沙姆(poloxamer)之藥劑複合之核酸形式引入,或可藉由病毒載體(例如腺病毒、AAV、疱疹病毒、反轉錄病毒、慢病毒)來遞送。
在一些具體實例中,儘管不需要用於表現,但本文所揭示之構築體亦可包括例如啟動子、增強子、絕緣子、內部核糖體入口位點、編碼肽之序列及/或聚腺苷酸化信號之轉錄或轉譯調節序列。
在一些具體實例中,包含針對因子IX之編碼序列之構築體可包括以下修飾中之一或多者:密碼子優化(例如針對人類密碼子)及/或一或多個糖基化位點添加。參見例如McIntosh等人(2013)Blood (17):3335-44。 D.   基因編輯系統
各種已知基因編輯系統可在本發明之實踐中用於因子IX基因之靶向插入,該等基因編輯系統包括例如CRISPR/Cas系統;鋅指核酸酶(ZFN)系統;類轉錄活化子效應核酸酶(TALEN)系統。一般而言,基因編輯系統涉及使用經工程改造之裂解系統以誘導目標DNA序列中之雙股斷裂(DSB)或切口(例如單股斷裂或SSB)。裂解或鏈裂可經由使用諸如經工程改造之ZFN、TALEN之特異性核酸酶,或使用具有經工程改造之引導RNA之CRISPR/Cas系統以引導目標DNA序列之特異性裂解或鏈裂而發生。此外,基於阿爾古系統(Argonaute system)(例如來自T. thermophilus ,稱為『TtAgo』,參見Swarts等人(2014)Nature 507(7491): 258-261)發展靶向核酸酶,該阿爾古系統亦可具有用於基因組編輯及基因療法中之潛能。
應瞭解,對於使用本文所揭示之引導RNA之方法,該等方法包括使用CRISPR/Cas系統(及本文所揭示之包含編碼因子IX之序列之供體構築體中之任一者)。亦應瞭解,本發明涵蓋使用本文所揭示之雙向構築體靶向插入及表現因子IX之方法,該等方法可用或不用本文所揭示之引導RNA執行(例如使用ZFN系統以在目標DNA序列中造成斷裂,產生用於插入雙向構築體之位點)。
在一些具體實例中,CRISPR/Cas系統(例如引導RNA及RNA引導性DNA結合劑)可用於在宿主基因組內在所需基因座處產生插入位點,在該位點處可插入本文所揭示之包含編碼因子IX之序列之供體構築體(例如雙向構築體)以表現因子IX。因子IX可相對於如本文所描述之其插入位點或基因座(例如通常不表現因子IX之安全港基因座)為異源的。可替代地,在一些具體實例中,因子IX可相對於其插入位點(例如將野生型因子IX插入內源性基因座中以校正缺陷性因子IX基因)為非異源的。安全港可處於諸如人類白蛋白基因之白蛋白基因內。安全港可處於例如人類白蛋白內含子1之白蛋白內含子1區內。安全港可為例如肝組織或肝細胞宿主細胞之人類安全港。在一些具體實例中,本文所描述之引導RNA可根據本發明方法與RNA引導性DNA結合劑(例如Cas核酸酶)一起用於產生插入位點,在該位點處可插入包含編碼因子IX之序列之供體構築體(例如雙向構築體)以表現因子IX。本文例示且描述適用於將因子IX靶向插入人類白蛋白基因座之內含子1中之引導RNA(參見例如表1)。
使用各種RNA引導性DNA結合劑(例如核酸酶,諸如Cas核酸酶,例如Cas9)之方法亦在所屬技術領域中眾所周知。儘管本文例示雙向核酸及CRISPR/Cas系統之使用,但應瞭解亦可使用該系統之合適變異型。應瞭解,視上下文而定,RNA引導性DNA結合劑可以核酸(例如DNA或mRNA)形式或以蛋白質形式提供。在一些具體實例中,可在已包含及/或表現RNA引導性DNA結合劑之宿主細胞中實踐本發明方法。
在一些具體實例中,諸如Cas9核酸酶之RNA引導性DNA結合劑具有亦可稱為雙股核酸內切酶活性之裂解酶活性。在一些具體實例中,諸如Cas9核酸酶之RNA引導性DNA結合劑具有亦可稱為單股核酸內切酶活性之切口酶活性。在一些具體實例中,該RNA引導性DNA結合劑包含Cas核酸酶。Cas核酸酶之實例包括釀膿鏈球菌、金黃色葡萄球菌及其他原核生物(參見例如下一段落中之清單)之第II型CRISPR系統之Cas核酸酶及其等之變異型或突變型(例如經工程改造之、非天然存在之、天然存在之、或其他變異體)型式。參見例如US2016/0312198 A1;US 2016/0312199 A1。
可衍生Cas核酸酶之非限制性例示性物種包括釀膿鏈球菌、嗜熱鏈球菌、鏈球菌屬、金黃色葡萄球菌、英諾克李斯特菌(Listeria innocua )、加氏乳桿菌(Lactobacillus gasseri )、新兇手弗朗西斯氏菌(Francisella novicida )、產琥珀酸沃廉菌(Wolinella succinogenes )、華德薩特菌(Sutterella wadsworthensis )、伽馬變形菌(Gammaproteobacterium )、腦膜炎雙球菌、空腸曲桿菌、多殺巴斯德菌(Pasteurella multocida )、產琥珀酸纖維桿菌(Fibrobacter succinogene )、深紅紅螺菌(Rhodospirillum rubrum )、達松維爾擬諾卡氏菌(Nocardiopsis dassonvillei )、始旋鏈黴菌(Streptomyces pristinaespiralis )、產綠色鏈黴菌(Streptomyces viridochromogenes )、產綠色鏈黴菌、粉紅鏈孢囊菌(Streptosporangium roseum )、粉紅鏈孢囊菌、嗜酸熱脂環桿菌(Alicyclobacillus acidocaldarius )、假蕈狀芽孢桿菌(Bacillus pseudomycoides )、砷還原芽孢桿菌(Bacillus selenitireducens )、西伯利亞微小桿菌(Exiguobacterium sibiricum )、戴白氏乳桿菌(Lactobacillus delbrueckii )、唾液乳桿菌(Lactobacillus salivarius )、布氏乳桿菌(Lactobacillus buchneri )、齒垢密螺旋體(Treponema denticola )、海洋微顫菌(Microscilla marina )、伯克霍爾德氏細菌(Burkholderiales bacterium )、食萘極單胞菌(Polaromonas naphthalenivorans )、單胞菌屬(Polaromonas sp .)、瓦氏鱷球藻(Crocosphaera watsonii )、鱷球藻屬(Cyanothece sp. )、銅綠微囊藻(Microcystis aeruginosa )、聚球藻屬(Synechococcus sp .)、阿拉伯糖醋桿菌(Acetohalobium arabaticum )、根制氨菌(Ammonifex degensii )、熱解纖維素菌(Caldicelulosiruptor becscii )、金礦菌(Candidatus Desulforudis )、肉毒梭菌(Clostridium botulinum )、艱難梭菌(Clostridium difficile )、大芬戈爾德菌(Finegoldia magna )、嗜熱鹽鹼厭氧菌(Natranaerobius thermophilus )、嗜熱丙酸降解菌(Pelotomaculum thermopropionicum )、嗜酸性喜溫硫桿菌(Acidithiobacillus caldus )、嗜酸氧化亞鐵硫桿菌(Acidithiobacillus ferrooxidans )、酒色異著色菌(Allochromatium vinosum )、海桿菌屬(Marinobacter sp. )、嗜鹽亞硝化球菌(Nitrosococcus halophilus )、瓦氏亞硝化球菌(Nitrosococcus watsoni )、遊海假交替單胞菌(Pseudoalteromonas haloplanktis )、消旋纖線桿菌(Ktedonobacter racemifer )、變異念珠藻(Anabaena variabilis )、泡沫節球藻(Nodularia spumigena )、念珠藻屬(Nostoc sp .)、極大節旋藻(Arthrospira maxima )、鈍頂節旋藻(Arthrospira platensis )、節旋藻屬(Arthrospira sp. )、螺旋藻屬(Lyngbya sp .)、原型微鞘藻(Microcoleus chthonoplastes )、顫藻屬(Oscillatoria sp .)、運動石袍菌(Petrotoga mobilis )、非洲高熱桿菌(Thermosipho africanus )、巴氏鏈球菌(Streptococcus pasteurianus )、灰色奈瑟球菌(Neisseria cinerea )、紅嘴鷗彎曲桿菌(Campylobacter lari )、食清潔劑細小棒菌(Parvibaculum lavamentivorans )、白喉棒狀桿菌(Corynebacterium diphtheria )、胺基酸球菌屬(Acidaminococcus sp .)、毛螺科菌(Lachnospiraceae bacteriumND2006 及海洋無核氯菌(Acaryochloris marina )。
在一些具體實例中,該Cas核酸酶為來自釀膿鏈球菌之Cas9核酸酶。在一些具體實例中,該Cas核酸酶為來自嗜熱鏈球菌之Cas9核酸酶。在一些具體實例中,該Cas核酸酶為來自腦膜炎雙球菌之Cas9核酸酶。在一些具體實例中,該Cas核酸酶為來自金黃色葡萄球菌之Cas9核酸酶。在一些具體實例中,該Cas核酸酶為來自新兇手弗朗西斯氏菌之Cpf1核酸酶。在一些具體實例中,該Cas核酸酶為來自胺基酸球菌屬之Cpf1核酸酶。在一些具體實例中,該Cas核酸酶為來自毛螺科菌ND2006之Cpf1核酸酶。在另外具體實例中,Cas核酸酶為來自土拉文氏桿菌(Francisella tularensis )、毛螺科菌、瘤胃溶纖維丁酸弧菌(Butyrivibrio proteoclasticus )、佩氏細菌(Peregrinibacteria bacterium )、帕庫氏菌(Parcubacteria bacterium )、史密斯氏菌(Smithella )、胺基酸球菌屬、白蟻甲烷支原體菌候選種(Candidatus Methanoplasma termitum )、挑剔真桿菌(Eubacterium eligens )、牛眼莫拉菌(Moraxella bovoculi )、稻田鉤端螺旋體(Leptospira inadai )、狗口腔卟啉單胞菌(Porphyromonas crevioricanis )、解糖腖普雷沃菌(Prevotella disiens )或獼猴卟啉單胞菌(Porphyromonas macacae )之Cpf1核酸酶。在某些具體實例中,Cas核酸酶為來自胺基酸球菌屬或毛螺菌科之Cpf1核酸酶。
在一些具體實例中,該gRNA以及RNA引導性DNA結合劑稱為核糖核蛋白複合物(ribonucleoprotein complex;RNP)。在一些具體實例中,該RNA引導性DNA結合劑為Cas核酸酶。在一些具體實例中,該gRNA以及Cas核酸酶稱為Cas RNP。在一些具體實例中,RNP包含第I型、第II型或第III型組分。在一些具體實例中,該Cas核酸酶為來自第II型CRISPR/Cas系統之Cas9蛋白。在一些具體實例中,該gRNA以及Cas9稱為Cas9 RNP。
野生型Cas9具有兩個核酸酶域:RuvC及HNH。RuvC域裂解非目標DNA股,而HNH域裂解目標DNA股。在一些具體實例中,Cas9蛋白包含超過一個RuvC域及/或超過一個HNH域。在一些具體實例中,Cas9蛋白為野生型Cas9。在組成物、用途及方法具體實例中之各者中,Cas誘導目標DNA中之雙股斷裂。
在一些具體實例中,使用嵌合Cas核酸酶,其中該蛋白質之一個域或區經不同蛋白質之一部分置換。在一些具體實例中,該Cas核酸酶域可經來自諸如Fok1之不同核酸酶之域置換。在一些具體實例中,該Cas核酸酶可為經修飾之核酸酶。
在其他具體實例中,Cas核酸酶可來自第I型CRISPR/Cas系統。在一些具體實例中,該Cas核酸酶可為第I型CRISPR/Cas系統之級聯複合物之組分。在一些具體實例中,該Cas核酸酶可為Cas3蛋白。在一些具體實例中,該Cas核酸酶可來自第III型CRISPR/Cas系統。在一些具體實例中,該Cas核酸酶可具有RNA裂解活性。
在一些具體實例中,該RNA引導性DNA結合劑具有單股切口酶活性,亦即可切割一個DNA股以產生單股斷裂,該單股斷裂亦稱為「切口」。在一些具體實例中,該RNA引導性DNA結合劑包含Cas切口酶。切口酶為在dsDNA中產生切口,亦即切割DNA雙螺旋體之一個股但不切割另一股之酶。在一些具體實例中,Cas切口酶為其中例如藉由在催化域中作出一或多種更改(例如點突變)使核酸內切酶活性位點不活化之Cas核酸酶(例如上文所論述之Cas核酸酶)之型式。參見例如關於Cas切口酶及例示性催化域更改之論述之美國專利第8,889,356號。在一些具體實例中,諸如Cas9切口酶之Cas切口酶具有不活化之RuvC域或HNH域。
在一些具體實例中,該RNA引導性DNA結合劑經修飾以僅含有一個功能核酸酶域。舉例而言,藥劑蛋白可經修飾以使得核酸酶域中之一者經突變或完全或部分缺失以降低其核酸裂解活性。在一些具體實例中,使用具有有降低之活性之RuvC域之切口酶。在一些具體實例中,使用具有非活性RuvC域之切口酶。在一些具體實例中,使用具有有降低之活性之HNH域之切口酶。在一些具體實例中,使用具有非活性HNH域之切口酶。
在一些具體實例中,Cas蛋白核酸酶域內之保守胺基酸經取代以降低或更改核酸酶活性。在一些具體實例中,該Cas核酸酶可包含RuvC核酸酶域或類RuvC核酸酶域中之胺基酸取代。RuvC核酸酶域或類RuvC核酸酶域中之例示性胺基酸取代包括D10A(基於釀膿鏈球菌Cas9蛋白)。參見例如Zetsche等人(2015)Cell Oct 22:163(3): 759-771。在一些具體實例中,該Cas核酸酶可包含HNH核酸酶域或類HNH核酸酶域中之胺基酸取代。HNH核酸酶域或類HNH核酸酶域中之例示性胺基酸取代包括E762A、H840A、N863A、H983A及D986A(基於釀膿鏈球菌Cas9蛋白)。參見例如Zetsche等人(2015)。另外之例示性胺基酸取代包括D917A、E1006A及D1255A(基於新兇手弗朗西斯氏菌U112 Cpf1(FnCpf1)序列(UniProtKB - A0Q7Q2(CPF1_FRATN)))。
在一些具體實例中,以與分別與目標序列之有義股及反義股互補之一對引導RNA組合形式提供切口酶。在此具體實例中,引導RNA將切口酶導引至目標序列且藉由在目標序列之相對股上生成切口(亦即雙切口)來引入DSB。在一些具體實例中,使用切口酶以及靶向DNA之相對股之兩個單獨引導RNA以在目標DNA中產生雙切口。在一些具體實例中,使用切口酶以及經選擇以非常靠近之兩個單獨引導RNA以在目標DNA中產生雙切口。
在一些具體實例中,該RNA引導性DNA結合劑包含一或多個異源功能域(例如為或包含融合多肽)。
在一些具體實例中,異源功能域可促進將RNA引導性DNA結合劑轉運至細胞核中。舉例而言,異源功能域可為核定位信號(nuclear localization signal;NLS)。在一些具體實例中,該RNA引導性DNA結合劑可與1-10個NLS融合。在一些具體實例中,該RNA引導性DNA結合劑可與1-5個NLS融合。在一些具體實例中,該RNA引導性DNA結合劑可與一個NLS融合。在使用一個NLS之情況下,NLS可連接在RNA引導性DNA結合劑序列之N端或C端處。其亦可插入在RNA引導性DNA結合劑序列內。在其他具體實例中,RNA引導性DNA結合劑可與超過一個NLS融合。在一些具體實例中,該RNA引導性DNA結合劑可與2、3、4或5個NLS融合。在一些具體實例中,該RNA引導性DNA結合劑可與兩個NLS融合。在某些情況下,兩個NLS可相同(例如兩個SV40 NLS)或不同。在一些具體實例中,該RNA引導性DNA結合劑與連接在羧基端處之兩個SV40 NLS序列融合。在一些具體實例中,該RNA引導性DNA結合劑可與兩個NLS融合,一個NLS連接在N端處,且一個NLS連接在C端處。在一些具體實例中,該RNA引導性DNA結合劑可與3個NLS融合。在一些具體實例中,該RNA引導性DNA結合劑可不與NLS融合。在一些具體實例中,NLS可為諸如SV40 NLS、PKKKRKV(SEQ ID NO: 600)或PKKKRRV(SEQ ID NO: 601)之單聯(monopartite)序列。在一些具體實例中,NLS可為諸如核質蛋白之NLS、KRPAATKKAGQAKKKK(SEQ ID NO: 602)之雙聯序列。在一特定具體實例中,單一PKKKRKV(SEQ ID NO: 600)NLS可連接在RNA引導性DNA結合劑之C端處。一或多個連接子視情況包括在融合位點處。 III. 遞送方法
可使用可在所屬技術領域中獲得之各種已知且合適之方法將本文所揭示之引導RNA、RNA引導性DNA結合劑(例如Cas核酸酶)及核酸構築體(例如雙向構築體)活體內或活體外遞送至宿主細胞或宿主細胞群或個體。引導RNA、RNA引導性DNA結合劑及核酸構築體可在適當時使用相同或不同遞送方法單獨地或以任何組合形式一起遞送。
習知之基於病毒及非病毒之基因遞送方法可用於在細胞(例如哺乳動物細胞)及目標組織中引入本文所揭示之引導RNA以及RNA引導性DNA結合劑及供體構築體。如本文進一步所提供,非病毒載體遞送系統核酸諸如為非病毒載體、質體載體及例如裸核酸以及與諸如脂質體、脂質奈米粒子(lipid nanoparticle;LNP)或泊洛沙姆之遞送媒劑複合之核酸。病毒載體遞送系統包括DNA病毒及RNA病毒。
用於非病毒遞送核酸之方法及組成物包括電穿孔、脂質體轉染、顯微注射、基因槍、病毒顆粒、脂質體、免疫脂質體、LNP、聚陽離子或脂質:核酸接合物、裸核酸(例如裸DNA/RNA)、人工病毒粒子及經藥劑增強之DNA攝取。使用例如Sonitron 2000系統(Rich-Mar)進行之聲致穿孔亦可用於遞送核酸。
額外之例示性核酸遞送系統包括由AmaxaBiosystems(Cologne, Germany)、Maxcyte, Inc.(Rockville, Md.)、BTX Molecular Delivery Systems(Holliston, Ma.)及Copernicus Therapeutics Inc.提供之核酸遞送系統(參見例如美國專利第6,008,336號)。脂質體轉染描述於例如美國專利第5,049,386號;第4,946,787號;及第4,897,355號中,且脂質體轉染試劑為市售的(例如Transfectam™及Lipofectin™)。包括靶向脂質體(諸如免疫脂質複合物)之脂質:核酸複合物之製備在所屬技術領域中眾所周知且如本文所描述。
亦可將各種含有單獨或呈組合形式之引導RNA、RNA引導性DNA結合劑及供體構築體之遞送系統(例如載體、脂質體、LNP)投予至生物體以用於活體內遞送至細胞或活體外投予至細胞或細胞培養物。投予係藉由常用於引入分子以最終與血液、流體或細胞接觸之途徑中之任一者來進行,該等途徑包括但不限於注射、輸注、局部施用及電穿孔。投予該等核酸之合適方法為可獲得的且為所屬技術領域中具有通常知識者熟知。
在某些具體實例中,本發明提供編碼本文所揭示之組成物中之任一者之DNA或RNA載體-例如包含本文所描述之引導序列中之任一者或多者之引導RNA;或包含編碼因子IX之序列之構築體(例如雙向構築體)。在一些具體實例中,載體亦包含編碼RNA引導性DNA結合劑之序列。在某些具體實例中,本發明包含編碼本文所描述之組成物中之任一者或多者或任何組合之DNA或RNA載體。在一些具體實例中,載體進一步包含例如啟動子、增強子及調節序列。在一些具體實例中,包含有包含編碼因子IX之序列之雙向構築體之載體不包含驅動因子IX表現之啟動子。舉例而言,因子IX多肽表現係由宿主細胞之啟動子(例如當將轉殖基因整合至宿主細胞之白蛋白基因座中時為內源性白蛋白啟動子)驅動。在一些具體實例中,該雙向核酸構築體包括各自具有轉殖基因上游之剪接受體之第一區段及第二區段。在某些具體實例中,剪接受體與例如人類白蛋白基因之內含子1之剪接供體的宿主細胞之安全港位點之剪接供體序列相容。在一些具體實例中,包含有包含本文所描述之引導序列中之任何一或多者之引導RNA之載體亦包含一或多個編碼如本文所揭示之crRNA、trRNA或crRNA及trRNA的核苷酸序列。
在一些具體實例中,載體包含編碼本文所描述之引導RNA之核苷酸序列。在一些具體實例中,載體包含一個引導RNA之複本。在其他具體實例中,載體包含超過一個引導RNA之複本。在具有超過一個引導RNA之具體實例中,引導RNA可不一致以使得其靶向不同目標序列,或可一致以便其靶向相同目標序列。在其中載體包含超過一個引導RNA之一些具體實例中,各引導RNA可具有其他不同特性,諸如在諸如Cas RNP複合物之與RNA引導性DNA核酸酶之複合物內的活性或穩定性。在一些具體實例中,編碼引導RNA之核苷酸序列可與諸如啟動子、3' UTR或5' UTR之至少一個轉錄或轉譯控制序列可操作地連接。在一個具體實例中,啟動子可為例如tRNALys3 之tRNA啟動子或tRNA嵌合體。參見Mefferd等人,RNA . 2015 21:1683-9;Scherer等人,Nucleic Acids Res . 2007 35: 2620-2628。在一些具體實例中,啟動子可藉由RNA聚合酶III(Pol III)辨識。Pol III啟動子之非限制性實例包括U6及H1啟動子。在一些具體實例中,編碼引導RNA之核苷酸序列可與小鼠或人類U6啟動子可操作地連接。在其他具體實例中,編碼引導RNA之核苷酸序列可與小鼠或人類H1啟動子可操作地連接。在具有超過一個引導RNA之具體實例中,用於驅動表現之啟動子可相同或不同。在一些具體實例中,編碼引導RNA之crRNA之核苷酸及編碼引導RNA之trRNA之核苷酸可提供於相同載體上。在一些具體實例中,編碼crRNA之核苷酸及編碼trRNA之核苷酸可由同一啟動子驅動。在一些具體實例中,crRNA及trRNA可轉錄為單一轉錄物。舉例而言,crRNA及trRNA可由單一轉錄物進行處理以形成雙分子引導RNA。可替代地,crRNA及trRNA可轉錄為單分子引導RNA(sgRNA)。在其他具體實例中,crRNA及trRNA可在相同載體上由其對應啟動子驅動。在又其他具體實例中,crRNA及trRNA可由不同載體編碼。
在一些具體實例中,編碼引導RNA之核苷酸序列可位於包含編碼諸如Cas蛋白之RNA引導性DNA結合劑之核苷酸序列的相同載體上。在一些具體實例中,該引導RNA之表現及諸如Cas蛋白之RNA引導性DNA結合劑之表現可由其自身對應啟動子驅動。在一些具體實例中,該引導RNA之表現可由驅動諸如Cas蛋白之RNA引導性DNA結合劑之表現的相同啟動子驅動。在一些具體實例中,該引導RNA及諸如Cas蛋白之RNA引導性DNA結合劑轉錄物可含於單一轉錄物內。舉例而言,引導RNA可處於諸如Cas蛋白之RNA引導性DNA結合劑轉錄物之未轉譯區(untranslated region;UTR)內。在一些具體實例中,該引導RNA可處於轉錄物之5' UTR內。在其他具體實例中,引導RNA可處於轉錄物之3' UTR內。在一些具體實例中,轉錄物之胞內半衰期可藉由在其3' UTR內含有引導RNA且從而縮短其3' UTR之長度而縮短。在額外具體實例中,引導RNA可處於轉錄物之內含子內。在一些具體實例中,可在其內定位引導RNA之內含子處添加合適剪接位點以使得從轉錄物中適當地剪接掉引導RNA。在一些具體實例中,時間上緊鄰之從相同載體進行之諸如Cas蛋白之RNA引導性DNA結合劑及引導RNA的表現可促進更有效地形成CRISPR RNP複合物。
在一些具體實例中,編碼引導RNA及/或RNA引導性DNA結合劑之核苷酸序列可位於包含有包含因子IX基因之構築體之相同載體上。在一些具體實例中,相同載體上之包含因子IX基因之構築體及引導RNA(及/或RNA引導性DNA結合劑)之靠近可促進將構築體更有效地插入由引導RNA/RNA引導性DNA結合劑產生之插入位點中。
在一些具體實例中,載體包含一或多個編碼sgRNA之核苷酸序列及編碼RNA引導性DNA結合劑(其可為諸如Cas9或Cpf1之Cas蛋白)之mRNA。在一些具體實例中,載體包含一或多個編碼crRNA、trRNA之核苷酸序列及編碼RNA引導性DNA結合劑(其可為諸如Cas9或Cpf1之Cas蛋白)之mRNA。在一個具體實例中,Cas9係來自釀膿鏈球菌(亦即Spy Cas9)。在一些具體實例中,編碼crRNA、trRNA或crRNA及trRNA(其可為sgRNA)之核苷酸序列包含以下或由以下組成:藉由來自天然存在之CRISPR/Cas系統之重複序列之全部或一部分側接之引導序列。包含crRNA、trRNA或crRNA及trRNA或由其組成之核酸可進一步包含載體序列,其中載體序列包含以下或由以下組成:不與crRNA、trRNA或crRNA及trRNA一起天然發現之核酸。
在一些具體實例中,crRNA及trRNA係由一個載體內之非鄰接核酸編碼。在其他具體實例中,crRNA及trRNA可由鄰接核酸編碼。在一些具體實例中,crRNA及trRNA係由單一核酸之相對股編碼。在其他具體實例中,crRNA及trRNA係由單一核酸之相同股編碼。
在一些具體實例中,載體包含如本文所揭示之包含編碼因子IX之序列之供體構築體(例如雙向核酸構築體)。在一些具體實例中,除本文所揭示之供體構築體(例如雙向核酸構築體)之外,載體可進一步包含本文所描述之編碼引導RNA之核酸及/或編碼RNA引導性DNA結合劑(例如Cas核酸酶,諸如Cas9)之核酸。在一些具體實例中,編碼RNA引導性DNA結合劑之核酸各自或兩者處於與包含本文所揭示之供體構築體(例如雙向構築體)之載體分離之單獨載體上。在具體實例中之任一者中,載體可包括其他序列,該等序列包括但不限於如本文所描述之啟動子、增強子、調節序列。在一些具體實例中,啟動子不驅動供體構築體(例如雙向構築體)之因子IX之表現。在一些具體實例中,載體包含一或多個編碼crRNA、trRNA或crRNA及trRNA之核苷酸序列。在一些具體實例中,載體包含一或多個編碼sgRNA之核苷酸序列及編碼RNA引導性DNA核酸酶之mRNA,該RNA引導性DNA核酸酶可為Cas核酸酶(例如Cas9)。在一些具體實例中,載體包含一或多個編碼crRNA、trRNA之核苷酸序列及編碼RNA引導性DNA核酸酶之mRNA,該RNA引導性DNA核酸酶可為諸如Cas9之Cas核酸酶。在一些具體實例中,Cas9係來自釀膿鏈球菌(亦即Spy Cas9)。在一些具體實例中,編碼crRNA、trRNA或crRNA及trRNA(其可為sgRNA)之核苷酸序列包含以下或由以下組成:藉由來自天然存在之CRISPR/Cas系統之重複序列之全部或一部分側接之引導序列。包含crRNA、trRNA或crRNA及trRNA或由其組成之核酸可進一步包含載體序列,其中載體序列包含以下或由以下組成:不與crRNA、trRNA或crRNA及trRNA一起天然發現之核酸。
在一些具體實例中,載體可為環狀的。在其他具體實例中,載體可為線性的。在一些具體實例中,載體可包封於脂質奈米粒子、脂質體、非脂質奈米粒子或病毒衣殼中。非限制性例示性載體包括質體、噬質體、黏接質體、人工染色體、袖珍染色體、轉位子、病毒載體及表現載體。
在一些具體實例中,載體可為病毒載體。在一些具體實例中,該病毒載體可由其野生型對應體以基因方式修飾。舉例而言,病毒載體可包含一或多個核苷酸之插入、缺失或取代以促進選殖或以使得載體之一或多個特性發生變化。該等特性可包括封裝容量、轉導效率、免疫原性、基因組整合、複製、轉錄及轉譯。在一些具體實例中,可缺失病毒基因組之一部分以使得病毒能夠封裝具有較大尺寸之外源序列。在一些具體實例中,該病毒載體可具有經增強之轉導效率。在一些具體實例中,在宿主中由病毒誘導之免疫反應可能有所減少。在一些具體實例中,促進將病毒序列整合至宿主基因組中之病毒基因(諸如整合酶)可經突變以使得病毒變成非整合性的。在一些具體實例中,該病毒載體可為複製缺陷型的。在一些具體實例中,該病毒載體可包含外源性轉錄或轉譯控制序列以驅動載體上之編碼序列之表現。在一些具體實例中,病毒可為輔助病毒依賴型的。舉例而言,病毒可能需要一或多種輔助病毒來供應擴增載體且將載體封裝於病毒粒子中所需之病毒組分(諸如病毒蛋白)。在此類情況下,可將包括一或多種編碼病毒組分之載體之一或多種輔助病毒組分連同本文所描述之載體系統一起引入宿主細胞或宿主細胞群中。在其他具體實例中,病毒可不含輔助病毒。舉例而言,病毒可能夠在無輔助病毒之情況下擴增及封裝載體。在一些具體實例中,本文所描述之載體系統亦可編碼病毒擴增及封裝所需之病毒組分。
非限制性例示性病毒載體包括腺相關病毒(AAV)載體、慢病毒載體、腺病毒載體、輔助病毒依賴型腺病毒(helper dependent adenoviral;HDAd)載體、單純疱疹病毒(HSV-1)載體、噬菌體T4、桿狀病毒載體及反轉錄病毒載體。在一些具體實例中,該病毒載體可為AAV載體。在其他具體實例中,病毒載體可為慢病毒載體。
在一些具體實例中,「AAV」係指全部血清型、亞型及天然存在之AAV以及重組AAV。「AAV」可用於指病毒自身或其衍生物。術語「AAV」包括AAV1、AAV2、AAV3、AAV3B、AAV4、AAV5、AAV6、AAV6.2、AAV7、AAVrh.64R1、AAVhu.37、AAVrh.8、AAVrh.32.33、AAV8、AAV9、AAV-DJ、AAV2/8、AAVrh10、AAVLK03、AV10、AAV11、AAV12、rh10、及其等之雜合體、禽類AAV、牛AAV、犬AAV、馬AAV、靈長類動物AAV、非靈長類動物AAV及綿羊AAV。AAV之各種血清型之基因組序列以及天然末端重複序列(TR)、Rep蛋白及衣殼次單元之序列在所屬技術領域中已知。該等序列可在文獻中或在諸如GenBank之公共資料庫中找到。如本文所使用之「AAV載體」係指包含不具有AAV起始序列之異源序列(亦即與AAV異源之核酸序列),典型地包含編碼所關注之異源多肽之序列的AAV載體。構築體可包含AAV1、AAV2、AAV3、AAV3B、AAV4、AAV5、AAV6、AAV6.2、AAV7、AAVrh.64R1、AAVhu.37、AAVrh.8、AAVrh.32.33、AAV8、AAV9、AAV-DJ、AAV2/8、AAVrh10、AAVLK03、AV10、AAV11、AAV12、rh10、及其等之雜合體、禽類AAV、牛AAV、犬AAV、馬AAV、靈長類動物AAV、非靈長類動物AAV及綿羊AAV衣殼序列。一般而言,異源核酸序列(轉殖基因)係藉由至少一個且一般藉由兩個AAV反轉末端重複序列(ITR)來側接。AAV載體可為單股的(ssAAV)或自我互補的(scAAV)。
在一些具體實例中,慢病毒可為非整合性的。在一些具體實例中,該病毒載體可為腺病毒載體。在一些具體實例中,腺病毒可為高選殖容量或「無腸」腺病毒,其中除5'及3'反轉末端重複序列(ITR)及封裝信號(『I』)之外之所有病毒編碼區係從病毒中缺失以增加其封裝容量。在又其他具體實例中,病毒載體可為HSV-1載體。在一些具體實例中,基於HSV-1之載體為輔助病毒依賴型的,且在其他具體實例中,其為輔助病毒非依賴型的。舉例而言,僅保留封裝序列之擴增子載體需要具有結構性組分之輔助病毒以用於封裝,而移除非必需病毒功能之缺失30kb之HSV-1載體不需要輔助病毒。在額外具體實例中,病毒載體可為噬菌體T4。在一些具體實例中,當清空病毒頭時,噬菌體T4可能夠封裝任何線性或環狀DNA或RNA分子。在其他具體實例中,病毒載體可為桿狀病毒載體。在又其他具體實例中,病毒載體可為反轉錄病毒載體。在使用具有較小選殖容量之AAV或慢病毒載體之具體實例中,可能需要使用超過一個載體以遞送如本文所揭示之載體系統之全部組分。舉例而言,一個AAV載體可含有編碼諸如Cas蛋白(例如Cas9)之RNA引導性DNA結合劑之序列,而第二AAV載體可含有一或多個引導序列。
在一些具體實例中,載體系統可能夠在細胞中驅動一或多種核酸酶組分之表現。在一些具體實例中,視情況作為載體系統之部分之雙向構築體可包含能夠在細胞中驅動編碼序列表現之啟動子。在一些具體實例中,載體不包含一旦整合於細胞中即可驅動一或多個編碼序列表現之啟動子(例如諸如當在白蛋白基因座之內含子1處插入時,使用宿主細胞之內源性啟動子,如本文所例示)。在一些具體實例中,細胞可為諸如酵母、植物、昆蟲或哺乳動物細胞之真核細胞。在一些具體實例中,真核細胞可為哺乳動物細胞。在一些具體實例中,真核細胞可為嚙齒動物細胞。在一些具體實例中,真核細胞可為人類細胞。驅動不同類型之細胞中之表現之合適啟動子在所屬技術領域中已知。在一些具體實例中,啟動子可為野生型的。在其他具體實例中,啟動子可經修飾以用於更有效(efficient/efficacious)之表現。在又其他具體實例中,啟動子可經截短但仍保留其功能。舉例而言,啟動子可具有正常尺寸或適用於將載體適當封裝於病毒中之減小之尺寸。
在一些具體實例中,載體可包含編碼本文所描述之諸如Cas蛋白(例如Cas9)之RNA引導性DNA結合劑之核苷酸序列。在一些具體實例中,由載體編碼之核酸酶可為Cas蛋白。在一些具體實例中,載體系統可包含一個編碼核酸酶之核苷酸序列之複本。在其他具體實例中,載體系統可包含超過一個編碼核酸酶之核苷酸序列之複本。在一些具體實例中,編碼核酸酶之核苷酸序列可與至少一個轉錄或轉譯控制序列可操作地連接。在一些具體實例中,編碼核酸酶之核苷酸序列可與至少一個啟動子可操作地連接。
在一些具體實例中,載體可包含本文所描述之包含異源因子IX基因之構築體中之任一者或多者。在一些具體實例中,因子IX基因可與至少一個轉錄或轉譯控制序列可操作地連接。在一些具體實例中,因子IX基因可與至少一個啟動子可操作地連接。在一些具體實例中,因子IX基因不與驅動異源基因表現之啟動子連接。
在一些具體實例中,啟動子可為組成型、可誘導或組織特異性的。在一些具體實例中,啟動子可為組成型啟動子。非限制性例示性組成型啟動子包括細胞巨大病毒(cytomegalovirus;CMV)立即早期啟動子、猴病毒(SV40)啟動子、腺病毒主要晚期(MLP)啟動子、勞斯肉瘤病毒(Rous sarcoma virus;RSV)啟動子、小鼠乳腺腫瘤病毒(mouse mammary tumor virus;MMTV)啟動子、磷酸甘油酸激酶(phosphoglycerate kinase;PGK)啟動子、延長因子-α(elongation factor-alpha;EF1a)啟動子、泛蛋白啟動子、肌動蛋白啟動子、微管蛋白啟動子、免疫球蛋白啟動子、其功能性片段或前述啟動子中之任一者之組合。在一些具體實例中,啟動子可為CMV啟動子。在一些具體實例中,啟動子可為經截短之CMV啟動子。在其他具體實例中,啟動子可為EF1a啟動子。在一些具體實例中,啟動子可為可誘導啟動子。非限制性例示性可誘導啟動子包括可藉由熱衝擊、光、化學物質、肽、金屬、類固醇、抗生素或醇誘導之啟動子。在一些具體實例中,可誘導啟動子可為具有低基礎(非誘導)表現水平之可誘導啟動子,諸如Tet-On® 啟動子(Clontech)。
在一些具體實例中,啟動子可為組織特異性啟動子,例如對肝臟中之表現具有特異性之啟動子。
在一些具體實例中,組成物包含載體系統。在一些具體實例中,載體系統可包含一個單一載體。在其他具體實例中,載體系統可包含兩個載體。在額外具體實例中,載體系統可包含三個載體。當將不同引導RNA用於多工(multiplexing)時或當使用引導RNA之多個複本時,載體系統可包含超過三個載體。
在一些具體實例中,載體系統可包含可誘導啟動子以僅在將其遞送至目標細胞之後開始表現。非限制性例示性可誘導啟動子包括可藉由熱衝擊、光、化學物質、肽、金屬、類固醇、抗生素或醇誘導之啟動子。在一些具體實例中,可誘導啟動子可為具有低基礎(非誘導)表現水平之可誘導啟動子,諸如Tet-On® 啟動子(Clontech)。
在額外具體實例中,載體系統可包含組織特異性啟動子以僅在將其遞送至特定組織中之後開始表現。
包含單獨地或呈任何組合形式之引導RNA、結合RNA之DNA結合劑或包含編碼因子IX之序列之供體構築體之載體可藉由脂質體、奈米粒子、胞外體或微囊泡來遞送。載體亦可藉由脂質奈米粒子(LNP)來遞送。單獨地或呈任何組合形式之一或多個引導RNA、結合RNA之DNA結合劑(例如mRNA)或包含編碼異源蛋白之序列之供體構築體可藉由脂質體、奈米粒子、胞外體或微囊泡來遞送。單獨地或呈任何組合形式之一或多個引導RNA、結合RNA之DNA結合劑(例如mRNA)或包含編碼異源蛋白之序列之供體構築體可藉由LNP來遞送。
脂質奈米粒子(LNP)為用於遞送核苷酸及蛋白質貨物之熟知手段,且可用於遞送本文所揭示之引導RNA中之任一者、RNA引導性DNA結合劑及/或供體構築體(例如雙向構築體)。在一些具體實例中,LNP遞送呈核酸(例如DNA或mRNA)、或蛋白質(例如Cas核酸酶)、或適當時核酸以及蛋白質形式之組成物。
在一些具體實例中,本文提供用於將單獨或呈組合形式之本文所描述之引導RNA中之任一者及/或本文所揭示之供體構築體(例如雙向構築體)遞送至宿主細胞或宿主細胞群或個體之方法,其中該等組分中之任一者或多者與LNP締合。在一些具體實例中,該方法進一步包含RNA引導性DNA結合劑(例如Cas9或編碼Cas9之序列)。
在一些具體實例中,本文提供包含單獨或呈組合形式之本文所描述之引導RNA中之任一者及/或本文所揭示之供體構築體(例如雙向構築體)以及LNP的組成物。在一些具體實例中,組成物進一步包含RNA引導性DNA結合劑(例如Cas9或編碼Cas9之序列)。
在一些具體實例中,LNP包含陽離子脂質。在一些具體實例中,LNP包含十八-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙酯(亦稱為3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙基(9Z,12Z)-十八-9,12-二烯酸酯))或另一可離子化脂質。參見例如PCT/US2018/053559(2018年9月28日申請)、WO/2017/173054、WO2015/095340及WO2014/136086以及其中所提供之參考文獻之脂質。在一些具體實例中,LNP包含約4.5、5.0、5.5、6.0或6.5莫耳比之陽離子脂質胺與RNA磷酸酯(N:P)。在一些具體實例中,在LNP脂質之情形下,術語陽離子及可離子化可互換,例如其中可離子化脂質視pH而定為陽離子的。
在一些具體實例中,與本文所揭示之雙向構築體締合之LNP係用於製備用於治療疾病或病症之藥劑。疾病或病症可為諸如B型血友病之因子IX不足。
在一些具體實例中,單獨或呈組合形式之本文所描述之引導RNA中之任一者、RNA引導性DNA結合劑及/或本文所揭示之供體構築體(例如雙向構築體)(不論裸或作為載體之部分)係在脂質奈米粒子中調配或經由脂質奈米粒子投予;參見例如WO/2017/173054,其內容以全文引用之方式併入本文中。
在一些具體實例中,涵蓋包含以下之LNP組成物:RNA組分及脂質組分,其中脂質組分包含諸如生物可降解之可離子化脂質之胺脂質。在一些情況下,脂質組分包含生物可降解之可離子化脂質、膽固醇、DSPC及PEG-DMG。
顯然地,本文所揭示之引導RNA、RNA引導性DNA結合劑(例如Cas核酸酶或編碼Cas核酸酶之核酸)及包含編碼因子IX之序列之供體構築體(例如雙向構築體)可使用相同或不同系統來遞送。舉例而言,引導RNA、Cas核酸酶及構築體可由相同載體(例如AAV)攜載。可替代地,Cas核酸酶(呈蛋白質或mRNA形式)及/或gRNA可由質體或LNP攜載,而供體構築體可由諸如AAV之載體攜載。此外,不同遞送系統可藉由相同或不同途徑(例如藉由輸注;藉由注射,諸如肌內注射、尾部靜脈注射或其他靜脈內注射;藉由腹膜內投予及/或肌內注射)來投予。
不同遞送系統可在試管內或活體內同時或按任何依序次序遞送。在一些具體實例中,該供體構築體、引導RNA及Cas核酸酶可在試管內或活體內例如在一個載體、兩個載體、單獨載體、一個LNP、兩個LNP、單獨LNP或其組合中同時遞送。在一些具體實例中,呈載體形式及/或與LNP締合之供體構築體可在遞送呈載體形式及/或與單獨LNP締合或連同LNP一起呈核糖核蛋白(RNP)形式之引導RNA及/或Cas核酸酶之前(例如約1、2、3、4、5、6、7、8、9、10、11、12、13、14天或更多天)在活體內或試管內遞送。作為另一實例,呈載體形式及/或與單獨LNP締合或連同LNP一起呈核糖核蛋白(RNP)形式之引導RNA及Cas核酸酶可在遞送呈載體形式及/或與LNP締合之構築體之前(例如約1、2、3、4、5、6、7、8、9、10、11、12、13、14天或更多天)在活體內或試管內遞送。
在一些具體實例中,本發明亦提供用於投予本文所揭示之引導RNA中之任一者之醫藥調配物。在一些具體實例中,醫藥調配物包括如本文所揭示之RNA引導性DNA結合劑(例如Cas核酸酶)及包含治療性異源基因之編碼序列之供體構築體。適用於遞送至個體(例如人類個體)中之醫藥調配物在所屬技術領域中眾所周知。 IV.  使用方法
本文所描述之gRNA、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑適用於將因子IX核酸活體內或試管內引入宿主細胞或宿主細胞群中。在一些具體實例中,本文所描述之gRNA、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑適用於在宿主細胞或宿主細胞群中或在有需要之個體中表現因子IX。在一些具體實例中,本文所描述之gRNA、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑適用於治療有需要之個體之血友病(例如B型血友病)。本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑之投予應增加例如循環、血清或血漿水平的因子IX蛋白水平及/或因子IX活性水平。在一些具體實例中,治療有效性可藉由量測血清或血漿因子IX活性來評估,其中個體之因子IX之血漿水平及/或活性之增加指示治療有效性。在一些具體實例中,治療有效性可藉由量測血清或血漿因子IX蛋白及/或活性水水平來評估,其中個體之因子IX之血漿水平及/或活性之增加指示治療有效性。在一些具體實例中,治療有效性可藉由在aPTT分析中評估凝血功能及/或在TGA-EA分析中評估凝血酶生成來測定。在一些具體實例中,治療有效性可藉由評估例如循環因子IX之因子IX之水平來測定,可藉由例如夾心免疫分析、ELISA(參見例如實施例13)、MSD(參見例如實施例14)之凝血及/或免疫分析來量測。
在正常或健康個體中,因子IX活性及抗原水平係在約3-5 μg/mL正常合併血漿之約50%與160%之間變化,此係基於其從成人血漿中之純化,Amiral等人, Clin. Chem. 30(9), 1512-16, 1984,在表2處;亦參見Osterud等人, 1978。具有少於正常血漿水平之50%之因子IX活性及/或抗原水平之個體分類為患有血友病。詳言之,具有少於約1%活性因子之個體分類為患有嚴重血友病,而具有約1-5%活性因子之個體患有中度血友病。患有輕度血友病之個體具有介於正常水平之約6%-49%之間之活性凝血因子。在一些具體實例中,循環因子IX之水平可藉由凝血及/或免疫分析來量測,該等方法在所屬技術領域中眾所周知(例如Simioni等人, NEJM 2009,Adcock等人, Coagulation Handbook, Esoterix Laboratory Services, 2006)。用於偵測hFIX蛋白之免疫方法及功能上標準化功能亢進hFIX變異體之因子IX活性之方法係在實施例13中找到。在一些具體實例中,例如循環因子IX之因子IX可藉由例如夾心免疫分析、ELISA(參見例如實施例13)、MSD(參見例如實施例14)之凝血及/或免疫分析來量測。
因此,在一些具體實例中,本文所揭示之組成物及方法適用於將患有血友病之個體之因子IX血漿水平或因子IX活性水水平增加至正常水平之約2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%或更多。
在一些具體實例中,本文所揭示之組成物及方法適用於增加因子IX活性及/或水平,例如將循環FIX蛋白水平增加至約0.05 μg/ml、0.1 μg/ml、0.2 μg/ml、0.5 μg/ml、1 μg/ml、2 μg/ml、3 μg/ml或4 μg/ml。FIX蛋白水平可達到約150 μg/ml或更多。在一些具體實例中,本文所揭示之組成物及方法適用於將因子IX蛋白水平增加至約4 μg/ml。在一些具體實例中,本文所揭示之組成物及方法適用於將因子IX蛋白水平增加至約4 μg/ml至約5 μg/ml、約4 μg/ml至6 μg/ml、約4 μg/ml至8 μg/ml、約4 μg/ml至約10 μg/ml或更多。在一些具體實例中,本文所揭示之組成物及方法適用於將因子IX蛋白水平增加至約0.1 μg/ml至約10 μg/ml、約1 μg/ml至約10 μg/ml、約0.1 μg/ml至約6 μg/ml、約1 μg/ml至約6 μg/ml、約2 μg/ml至約5 μg/ml或約3 μg/ml至約5 μg/ml。舉例而言,本文所揭示之組成物及方法適用於將患有血友病之個體之因子IX血漿水平增加至約6、7、8、9、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150 μg/ml或更多。
在一些具體實例中,本文所揭示之組成物及方法適用於將患有血友病之個體之因子IX活性及/或因子IX水平之血漿水平相較於投予之前之個體血漿水平及/或因子IX活性而言增加約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%、110%、120%、130%、140%、150%、160%、170%、180%、190%、200%或更多。
在一些具體實例中,本文所揭示之組成物及方法適用於將宿主細胞或宿主細胞群中之因子IX蛋白及/或因子IX活性相較於投予至宿主細胞或宿主細胞群之前之因子IX水平及/或活性(例如正常水平)而言增加約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%、110%、120%、130%、140%、150%、160%、170%、180%、190%、200%或更多。在一些具體實例中,細胞為肝臟的細胞或肝臟的細胞之群。在一些具體實例中,該肝臟的細胞為肝細胞,或肝臟的細胞之群為肝細胞。
在一些具體實例中,該方法包含投予於LNP中之引導RNA及RNA引導性DNA結合劑(諸如編碼Cas9核酸酶之mRNA)。在另外具體實例中,該方法包含投予諸如雙向FIX構築體之編碼因子IX蛋白之AAV核酸構築體。包含引導RNA及編碼Cas9之mRNA之CRISPR/Cas9 LNP可靜脈內投予。AAV FIX供體構築體可靜脈內投予。CRISPR/Cas9 LNP之例示性劑量包括約0.1 mpk、0.25 mpk、0.3 mpk、0.5 mpk、1 mpk、2 mpk、3 mpk、4 mpk、5 mpk、6 mpk、8 mpk或10 mpk(RNA)。單位mg/kg及mpk在本文中可互換使用。包含編碼FIX蛋白之核酸之AAV之例示性劑量包括約1011 、1012 、1013 及1014 vg/kg之MOI,視情況MOI可為約1×1013 至1×1014 vg/kg。
在一些具體實例中,該方法包含表現治療有效量之因子IX蛋白。在一些具體實例中,該方法包含在個體中達成治療有效水平之循環因子IX凝血活性。在特定具體實例中,該方法包含達成正常值之至少約5%至約50%之因子IX活性。該方法可包含達成正常值之至少約50%至約150%之因子IX活性。在某些具體實例中,該方法包含達成因子IX活性相較於患者之基線因子IX活性增加正常因子IX活性之至少約1%至約50%,或正常因子IX活性之至少約5%至約50%,或正常因子IX活性之至少約50%至約150%。
在一些具體實例中,該方法進一步包含達成例如至少1個月、2個月、6個月、1年或2年效果之持久效果。在一些具體實例中,該方法進一步包含以持久且持續之方式達成例如至少1個月、2個月、6個月、1年或2年效果之治療效果。在一些具體實例中,循環因子IX活性及/或水平之水平穩定至少1個月、2個月、6個月、1年或更長。在一些具體實例中,FIX蛋白之穩態活性及/或水平達成至少7天、至少14天或至少28天。在額外具體實例中,該方法包含在單次劑量之後將因子IX活性及/或水平維持至少1、2、4或6個月或至少1、2、3、4或5年。
在涉及插入白蛋白基因座中之額外具體實例中,個體之循環白蛋白水平為正常的。該方法可包含將個體之循環白蛋白水平維持在正常循環白蛋白水平之± 5%、± 10%、± 15%、± 20%或± 50%內。在某些具體實例中,個體之白蛋白水平相較於未經治療之個體之白蛋白水平而言無變化至少4週、8週、12週或20週。在某些具體實例中,個體之白蛋白水平暫時下降,隨後返回至正常水平。詳言之,該等方法可包含未偵測到血漿白蛋白水平中之顯著改變。
在一些具體實例中,本發明包含修飾諸如人類白蛋白基因之白蛋白基因(例如在其中產生雙股斷裂)之方法或用途,其包含向宿主細胞或宿主細胞群投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。在一些具體實例中,本發明包含修飾諸如人類白蛋白內含子1之白蛋白內含子1區(例如在其中產生雙股斷裂)之方法或用途,其包含向宿主細胞或宿主細胞群投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。在一些具體實例中,本發明包含修飾諸如肝組織或肝細胞宿主細胞之人類安全港(例如在其中產生雙股斷裂)之方法或用途,其包含向宿主細胞或宿主細胞群投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。諸如白蛋白基因座之安全港基因座內之插入允許過度表現因子IX基因而對諸如肝細胞或肝臟的細胞之宿主細胞或細胞群無顯著不利之影響。在一些具體實例中,本發明包含修飾人類白蛋白基因座之內含子1(例如在其中產生雙股斷裂)之方法或用途,其包含向宿主細胞或宿主細胞群投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。在一些具體實例中,該引導RNA包含含有結合在人類白蛋白基因座之內含子1(SEQ ID NO: 1)內之至少15、16、17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-97組成之群之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,該方法係在試管內執行。在一些具體實例中,該方法係在活體內執行。在一些具體實例中,該供體構築體為包含編碼因子IX之序列之雙向構築體。在一些具體實例中,該宿主細胞為諸如肝臟的細胞。在額外具體實例中,肝臟的細胞為肝細胞。
在一些具體實例中,本發明包含將因子IX核酸引入宿主細胞或宿主細胞群中之方法或用途,其包含投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。在一些具體實例中,該引導RNA包含含有能夠結合至人類白蛋白基因座之內含子1(SEQ ID NO: 1)內之區域之至少15、16、17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-97組成之群之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,該方法係在試管內進行。在一些具體實例中,該方法係在活體內進行。在一些具體實例中,該供體構築體為包含編碼因子IX之序列之雙向構築體。在一些具體實例中,該宿主細胞為肝臟的細胞,或該宿主細胞群為諸如肝細胞之肝臟的細胞。
在一些具體實例中,本發明包含在宿主細胞或宿主細胞群中表現因子IX之方法或用途,其包含投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。在一些具體實例中,該引導RNA包含含有能夠結合至人類白蛋白基因座之內含子1(SEQ ID NO: 1)內之區域之至少15、16、17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-97組成之群之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,該方法係在試管內進行。在一些具體實例中,該方法係在活體內進行。在一些具體實例中,該供體構築體為包含編碼因子IX之序列之雙向構築體。在一些具體實例中,該宿主細胞為肝臟的細胞,或該宿主細胞群為諸如肝細胞之肝臟的細胞。
在一些具體實例中,本發明包含治療血友病(例如B型血友病)之方法或用途,其包含向有需要之個體投予或遞送本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)。在一些具體實例中,該引導RNA包含含有能夠結合至人類白蛋白基因座之內含子1(SEQ ID NO: 1)內之區域之至少15、16、17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-97組成之群之引導序列。在一些具體實例中,該引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少15、16、17、18、19或20個連續核苷酸。在一些具體實例中,該引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,本文所揭示之引導RNA包含與選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之引導序列。在一些具體實例中,本文所揭示之引導RNA包含為選自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之序列之至少17、18、19或20個連續核苷酸之引導序列。在一些具體實例中,本文所揭示之引導RNA包含選自由SEQ ID NO: 34-37、42-49、53-59、61-69、74-81、85-91、及93-97組成之群之引導序列。在一些具體實例中,該供體構築體為包含編碼因子IX之序列之雙向構築體。在一些具體實例中,宿主細胞為肝臟的細胞,或宿主細胞群為諸如肝細胞之肝臟的細胞。
如本文所描述,包含編碼因子IX之序列之供體構築體(例如雙向構築體)、引導RNA及RNA引導性DNA結合劑可使用所屬技術領域中已知之任何合適之遞送系統及方法來遞送。組成物可在試管內或活體內同時或按任何依序次序遞送。在一些具體實例中,該供體構築體、引導RNA及Cas核酸酶可在試管內或活體內例如在一個載體、兩個載體、單獨載體、一個LNP、兩個LNP、單獨LNP或其組合中同時遞送。在一些具體實例中,呈載體形式及/或與LNP締合之供體構築體可在遞送呈載體形式及/或與單獨LNP締合或連同LNP一起呈核糖核蛋白(RNP)形式之引導RNA及/或Cas核酸酶之前(例如約1、2、3、4、5、6、7、8、9、10、11、12、13、14天或更多天)在活體內或試管內遞送。在一些具體實例中,該供體構築體可在例如每天、每兩天、每三天、每四天、每週、每兩週、每三週或每四週之多次投予中遞送。在一些具體實例中,該供體構築體可以一週間隔,例如在第1週、第2週及第3週等遞送。作為另一實例,呈載體形式及/或與單獨LNP締合或連同LNP一起呈核糖核蛋白(RNP)形式之引導RNA及Cas核酸酶可在遞送呈載體形式及/或與LNP締合之構築體之前(例如約1、2、3、4、5、6、7、8、9、10、11、12、13、14天或更多天)在活體內或試管內遞送。在一些具體實例中,白蛋白引導RNA可在例如每天、每兩天、每三天、每四天、每週、每兩週、每三週或每四週之多次投予中遞送。在一些具體實例中,白蛋白引導RNA可以一週間隔,例如在第1週、第2週及第3週等遞送。在一些具體實例中,該Cas核酸酶可在多次投予中遞送,例如可每天、每兩天、每三天、每四天、每週、每兩週、每三週或每四週遞送。在一些具體實例中,該Cas核酸酶可以一週間隔,例如在第1週、第2週及第3週等遞送。在一些具體實例中,該引導RNA及Cas核酸酶與LNP締合且在遞送因子IX供體構築體之前遞送至宿主細胞或宿主細胞群。
在一些具體實例中,該供體構築體包含編碼因子IX之序列,其中因子IX序列為野生型因子IX,例如SEQ ID NO: 700。在一些具體實例中,該供體構築體包含編碼因子IX之序列,其中因子IX序列為野生型因子IX,例如SEQ ID NO: 701。在一些具體實例中,序列編碼因子IX之變異體。舉例而言,變異體具有相比於野生型因子IX而言增加之凝血活性。舉例而言,相對於SEQ ID NO: 701而言,變異因子IX包含一或多個突變,諸如位置R338(例如R338L)中之胺基酸取代。在一些具體實例中,序列編碼與SEQ ID NO: 700、701或SEQ ID NO: 702具有80%、85%、90%、93%、95%、97%、99%一致性、相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性之因子IX變異體。在一些具體實例中,序列編碼因子IX之片段,其中該片段相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性。
在一個實施例中,因子IX蛋白可包含位置L6及V181處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6及K265處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181及K265處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置K265及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181及K265處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、K265及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、I383及E186處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、K265及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、I383及E186處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置K265、I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181、K265及I383處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、V181、I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置L6、K265、I383及E185處之胺基酸取代。在另一實施例中,因子IX蛋白可包含位置V181、K265、I383及E185處之胺基酸取代。
在一些具體實例中,該供體構築體包含編碼因子IX變異體之序列,其中因子IX變異體在不存在其輔因子亦即因子VIII之情況下活化凝血(表現引起治療上相關之FVIII擬似物活性)。該等因子IX變異體可進一步維持野生型因子IX之活性。舉例而言,相對於野生型因子IX而言(例如相對於SEQ ID NO: 701而言),此類因子IX變異體可包含位置L6、V181、K265、I383、E185處之胺基酸取代或其組合。舉例而言,相對於野生型因子IX而言(例如相對於SEQ ID NO: 701而言),此類因子IX變異體可包含L6F突變、V181I突變、K265A突變、I383V突變、E185D突變或其組合。
在一特定實施例中,因子IX蛋白可包含位置V181、K265及I383處之胺基酸取代。在另一特定實施例中,因子IX蛋白可包含位置V181、K265、I383及E185處之胺基酸取代。在另一特定實施例中,因子IX蛋白可包含位置L6、V181、K265及I383處之胺基酸取代。
在一個實施例中,因子IX蛋白可包含L6F突變及V181I突變。在另一實施例中,因子IX蛋白可包含L6F突變及K265A突變。在另一實施例中,因子IX蛋白可包含L6F突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變及E185D突變。在另一實施例中,因子IX蛋白可包含V181I突變及K265A突變。在另一實施例中,因子IX蛋白可包含V181I突變及I383V突變。在另一實施例中,因子IX蛋白可包含V181I突變及E185D突變。在另一實施例中,因子IX蛋白可包含K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含K265A突變及E185D突變。在另一實施例中,因子IX蛋白可包含I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變, 及K265A突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變、K265A突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、I383V突變及E186D突變。在另一實施例中,因子IX蛋白可包含V181I突變、K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含V181I突變、K265A突變及E185D突變。在另一實施例中,因子IX蛋白可包含V181I突變、I383V突變及E186D突變。在另一實施例中,因子IX蛋白可包含K265A突變、I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變、K265A突變及I383V突變。在另一實施例中,因子IX蛋白可包含L6F突變、V181I突變、I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含L6F突變、K265A突變、I383V突變及E185D突變。在另一實施例中,因子IX蛋白可包含V181I突變、K265A突變、I383V突變及E185D突變。
在一特定實施例中,因子IX蛋白可包含V181I突變、K265A突變及I383V突變。在另一特定實施例中,因子IX蛋白可包含V181I突變、K265A突變、I383V突變及E185D突變。在一些具體實例中,因子IX蛋白與SEQ ID NO: 700具有至少80%、85%、90%、93%、95%、97%、99%一致性,相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性。在某些具體實例中,因子IX變異體與SEQ ID NO: 700具有至少80%、85%、90%、93%、95%、97%、99%一致性,相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性,且包含V181I突變、K265A突變、I383V突變及/或E185D突變。在另一特定實施例中,因子IX蛋白可包含L6F突變、V181I突變、K265A突變及I383V突變。在某些具體實例中,因子IX變異體與SEQ ID NO: 700具有至少80%、85%、90%、93%、95%、97%、99%一致性,相較於野生型因子IX而言具有至少80%、85%、90%、92%、94%、96%、98%、99%、100%或更多活性,且包含V181I突變、K265A突變及I383V突變。
在一些具體實例中,該宿主細胞為肝臟的細胞,或該宿主細胞群為肝臟的細胞。在一些具體實例中,該宿主細胞或宿主細胞群為任何合適之非分裂細胞。如本文所使用之「非分裂細胞」係指經末端分化且不分裂之細胞以及不分裂但保留再進入細胞分裂及增殖之能力之靜態細胞。舉例而言,肝臟的細胞保留分裂能力(例如當受傷或切除時),但典型地不分裂。在有絲細胞分裂期間,同源重組為保護基因組且修復雙股斷裂之機制。在一些具體實例中,「非分裂」細胞係指例如相較於對照分裂細胞,其中同源重組(homologous recombination;HR)不為修復細胞中之雙股DNA斷裂之主要機制之細胞。在一些具體實例中,「非分裂」細胞係指例如相較於對照分裂細胞,其中非同源末端接合(NHEJ)為修復細胞中之雙股DNA斷裂之主要機制之細胞。非分裂細胞類型已例如藉由有效NHEJ雙股DNA斷裂修復機制描述於文獻中。參見例如Iyama, DNA Repair (Amst.) 2013, 12(8): 620-636。在一些具體實例中,該宿主細胞包括但不限於肝臟的細胞、肌肉細胞或神經元細胞。在一些具體實例中,該宿主細胞或宿主細胞群為諸如小鼠、食蟹獼猴或人類肝細胞之肝細胞。在一些具體實例中,該宿主細胞為諸如小鼠、食蟹獼猴或人類肌細胞之肌細胞。在一些具體實例中,本文提供包含單獨或與RNA引導性DNA結合蛋白組合之任一個或多個本文所描述之引導RNA之宿主細胞組成物。在一些具體實例中,本文提供包含本文所描述之載體中之任一者或多者之宿主細胞組成物。
在一些具體實例中,該供體構築體(例如雙向構築體)係在諸如AAV載體(例如AAV8)之核酸載體中投予。在一些具體實例中,該供體構築體不包含同源臂。
在一些具體實例中,個體為哺乳動物。在一些具體實例中,個體為人類。在一些具體實例中,個體為母牛、豬、猴、綿羊、狗、貓、魚或家禽。
在一些具體實例中,包含編碼因子IX之序列之供體構築體(例如雙向構築體)、引導RNA及RNA引導性DNA結合劑係靜脈內投予。在一些具體實例中,將包含編碼因子IX之序列之供體構築體(例如雙向構築體)、引導RNA及RNA引導性DNA結合劑投予至肝循環中。
在一些具體實例中,單次投予包含編碼因子IX之序列之供體構築體(例如雙向構築體)、引導RNA及RNA引導性DNA結合劑足以將因子IX表現增加至所需水平。在其他具體實例中,超過一次投予包含有包含編碼因子IX之序列之供體構築體(例如雙向構築體)、引導RNA及RNA引導性DNA結合劑之組成物可有益於使治療效果最大化。
在一些具體實例中,本發明包括包含本文所描述之gRNA中之任一者或多者、供體構築體(例如包含編碼因子IX之序列之雙向構築體)及RNA引導性DNA結合劑(例如Cas核酸酶)之組合療法以及適用於治療如上文所描述之血友病之額外療法。舉例而言,本發明之方法可與其他止血劑、血液因子及藥物治療之使用組合。舉例而言,個體可投予有治療有效量之選自由以下組成之群之一或多種因子:因子XI、因子XII、前激肽釋放酶、高分子量激肽原(high molecular weight kininogen;HMWK)、因子V、因子VII、因子VIII、因子X、因子XIII、因子II、因子VIIa及馮威里氏因子(von Willebrands factor)。
在一些具體實例中,治療可進一步包含投予促凝劑,諸如內部凝血路徑活化劑,包括因子Xa、因子IXa、因子XIa、因子XIIa及VIIIa、前激肽釋放酶及高分子量激肽原;或外來凝血路徑活化劑,包括組織因子、因子VIIa、因子Va及因子Xa。   本說明書及例示性具體實例不應被認為具有限制性。出於本說明書及所附具體實例之目的,除非另外指示,否則表示量、百分比或比例之所有數值以及本說明書及具體實例中所使用之其他數值應理解為在所有情況下經術語「約」修飾,該程度為其尚未經如此修飾。因此,除非有相反指示,否則以下說明書及所附具體實例中所闡述之數值參數為可視設法獲得之所需特性而變化之近似值。至少且不試圖將等效物原則之應用限於具體實例之範圍,各數值參數至少應根據所報導之有效數位之數值且藉由應用普通捨入技術來解釋。
人類因子IX蛋白序列(SEQ ID NO: 700)NCBI參考:NP_000124: MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENANKILNRPKRYNSGKLEEFVQGNL ERECMEEKCSFEEAREVFENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCP FGFEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCSCTEGYRLAENQKSCEPAVPFPCGR VSVSQTSKLTRAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAKPGQFPW QVVLNGKVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRII PHHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVF HKGRSALVLQYLRVPLVDRATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVE GTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKEKTKLT
人類因子IX核苷酸序列(SEQ ID NO: 706)NCBI參考:NM_000133): 1 accactttca caatctgcta gcaaaggtta tgcagcgcgt gaacatgatc atggcagaat 61 caccaggcct catcaccatc tgccttttag gatatctact cagtgctgaa tgtacagttt 121 ttcttgatca tgaaaacgcc aacaaaattc tgaatcggcc aaagaggtat aattcaggta 181 aattggaaga gtttgttcaa gggaaccttg agagagaatg tatggaagaa aagtgtagtt 241 ttgaagaagc acgagaagtt tttgaaaaca ctgaaagaac aactgaattt tggaagcagt 301 atgttgatgg agatcagtgt gagtccaatc catgtttaaa tggcggcagt tgcaaggatg 361 acattaattc ctatgaatgt tggtgtccct ttggatttga aggaaagaac tgtgaattag 421 atgtaacatg taacattaag aatggcagat gcgagcagtt ttgtaaaaat agtgctgata 481 acaaggtggt ttgctcctgt actgagggat atcgacttgc agaaaaccag aagtcctgtg 541 aaccagcagt gccatttcca tgtggaagag tttctgtttc acaaacttct aagctcaccc 601 gtgctgagac tgtttttcct gatgtggact atgtaaattc tactgaagct gaaaccattt 661 tggataacat cactcaaagc acccaatcat ttaatgactt cactcgggtt gttggtggag 721 aagatgccaa accaggtcaa ttcccttggc aggttgtttt gaatggtaaa gttgatgcat 781 tctgtggagg ctctatcgtt aatgaaaaat ggattgtaac tgctgcccac tgtgttgaaa 841 ctggtgttaa aattacagtt gtcgcaggtg aacataatat tgaggagaca gaacatacag 901 agcaaaagcg aaatgtgatt cgaattattc ctcaccacaa ctacaatgca gctattaata 961 agtacaacca tgacattgcc cttctggaac tggacgaacc cttagtgcta aacagctacg 1021 ttacacctat ttgcattgct gacaaggaat acacgaacat cttcctcaaa tttggatctg 1081 gctatgtaag tggctgggga agagtcttcc acaaagggag atcagcttta gttcttcagt 1141 accttagagt tccacttgtt gaccgagcca catgtcttcg atctacaaag ttcaccatct 1201 ataacaacat gttctgtgct ggcttccatg aaggaggtag agattcatgt caaggagata 1261 gtgggggacc ccatgttact gaagtggaag ggaccagttt cttaactgga attattagct 1321 ggggtgaaga gtgtgcaatg aaaggcaaat atggaatata taccaaggta tcccggtatg 1381 tcaactggat taaggaaaaa acaaagctca cttaatgaaa gatggatttc caaggttaat 1441 tcattggaat tgaaaattaa cagggcctct cactaactaa tcactttccc atcttttgtt 1501 agatttgaat atatacattc tatgatcatt gctttttctc tttacagggg agaatttcat 1561 attttacctg agcaaattga ttagaaaatg gaaccactag aggaatataa tgtgttagga 1621 aattacagtc atttctaagg gcccagccct tgacaaaatt gtgaagttaa attctccact 1681 ctgtccatca gatactatgg ttctccacta tggcaactaa ctcactcaat tttccctcct 1741 tagcagcatt ccatcttccc gatcttcttt gcttctccaa ccaaaacatc aatgtttatt 1801 agttctgtat acagtacagg atctttggtc tactctatca caaggccagt accacactca 1861 tgaagaaaga acacaggagt agctgagagg ctaaaactca tcaaaaacac tactcctttt 1921 cctctaccct attcctcaat cttttacctt ttccaaatcc caatccccaa atcagttttt 1981 ctctttctta ctccctctct cccttttacc ctccatggtc gttaaaggag agatggggag 2041 catcattctg ttatacttct gtacacagtt atacatgtct atcaaaccca gacttgcttc 2101 cgtagtggag acttgctttt cagaacatag ggatgaagta aggtgcctga aaagtttggg 2161 ggaaaagttt ctttcagaga gttaagttat tttatatata taatatatat ataaaatata 2221 taatatacaa tataaatata tagtgtgtgt gtatgcgtgt gtgtagacac acacgcatac 2281 acacatataa tggaagcaat aagccattct aagagcttgt atggttatgg aggtctgact 2341 aggcatgatt tcacgaaggc aagattggca tatcattgta actaaaaaag ctgacattga 2401 cccagacata ttgtactctt tctaaaaata ataataataa tgctaacaga aagaagagaa 2461 ccgttcgttt gcaatctaca gctagtagag actttgagga agaattcaac agtgtgtctt 2521 cagcagtgtt cagagccaag caagaagttg aagttgccta gaccagagga cataagtatc 2581 atgtctcctt taactagcat accccgaagt ggagaagggt gcagcaggct caaaggcata 2641 agtcattcca atcagccaac taagttgtcc ttttctggtt tcgtgttcac catggaacat 2701 tttgattata gttaatcctt ctatcttgaa tcttctagag agttgctgac caactgacgt 2761 atgtttccct ttgtgaatta ataaactggt gttctggttc at
人類因子IX多肽(SEQ ID No: 701) YNSGKLEEFVQGNLERECMEEKCSFEEAREVFENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKEKTKLT    實施例
提供以下實施例以說明某些所揭示之具體實例且不應解釋為以任何方式限制本發明之範圍。實施例 1- 材料及方 選殖及質體製備
由商業供應商合成由ITR側接之雙向插入構築體且選殖至pUC57-Kan中。所得構築體(P00147)用作用於其他載體之親代選殖載體。亦商業地合成其他插入構築體(無ITR)且選殖至pUC57中。用BglII限制酶(New England BioLabs,目錄號R0144S)消化經純化之質體,且將插入構築體選殖至親代載體中。在Stbl3TM 化學上勝任型大腸桿菌(E. coli )(Thermo Fisher,目錄號C737303)中繁殖質體。 AAV 生產
於HEK293細胞中之三重轉染用於用所關注之構築體封裝基因組以進行AAV8及AAV-DJ生產,且經由碘克沙醇梯度超速離心方法由經溶解之細胞及培養基兩者純化所得載體(參見例如Lock等人, Hum Gene Ther. 2010年10月;21(10):1259-71)。用於含有基因組及所關注之構築體之三重轉染中之質體係在實施例中藉由「PXXXX」編號提及,亦參見例如表9。在儲存緩衝液(具有0.001% Pluronic F68之PBS)中透析經分離之AAV。藉由qPCR使用位於ITR區內之引子/探針測定AAV力價。 試管內轉錄(「 IVT 」)核酸酶 mRNA
藉由使用線性化質體DNA模板及T7 RNA聚合酶,進行試管內轉錄,生成含有N1-甲基假-U之加帽且聚腺苷酸化釀膿鏈球菌(「Spy」)Cas9 mRNA。一般而言,含有T7啟動子及100 nt聚(A/T)區之質體DNA係藉由在37℃下與XbaI一起培育以完成消化,接著在65℃下對XbaI進行熱不活化而加以線性化。由酶及緩衝鹽純化經線性化之質體。將用以生成經Cas9修飾之mRNA之IVT反應物在37℃下在以下條件下培育4小時:50 ng/µL經線性化之質體;各2 mM之GTP、ATP、CTP及N1-甲基假-UTP(Trilink);10 mM ARCA(Trilink);5 U/µL T7 RNA聚合酶(NEB);1 U/µL鼠RNA酶抑制劑(NEB);0.004 U/µL無機大腸桿菌焦磷酸酶(NEB);及1×反應緩衝液。添加TURBO DNA酶(ThermoFisher)至0.01 U/µL之最終濃度,且將反應物再培育30分鐘以移除DNA模板。根據製造商方案(ThermoFisher)使用MegaClear轉錄清除套組純化Cas9 mRNA。可替代地,使用LiCl沈澱、乙酸銨沈澱及乙酸鈉沈澱或使用LiCl沈澱法純化Cas9 mRNA,接著藉由切向流過濾進行進一步純化。藉由量測260 nm處之吸光度(Nanodrop)來測定轉錄物濃度,且藉由以Bioanlayzer(Agilent)進行毛細電泳法來分析轉錄物。
下文Cas9 mRNA包含Cas9 ORF SEQ ID NO: 703或SEQ ID NO: 704或PCT/US2019/053423(其以引用之方式併入本文中)之表24之序列。 用於遞送 Cas9 mRNA gRNA 脂質調配物
利用包含可離子化脂質(十八-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙酯,亦稱為3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙基(9Z,12Z)-十八-9,12-二烯酸酯))、膽固醇、DSPC及PEG2k-DMG之脂質調配物將Cas9 mRNA及gRNA遞送至細胞及動物。
對於利用預混合脂質調配物(在本文中稱為「脂質包」)之實驗,如本文進一步描述,在100%乙醇中以50:38:9:3之可離子化脂質:膽固醇:DSPC:PEG2k-DMG莫耳比復原組分,之後以約6.0之脂質胺與RNA磷酸酯(N:P)莫耳比與RNA貨物(例如Cas9 mRNA及gRNA)混合。
對於利用調配為脂質奈米粒子(LNP)之組分之實驗,以各種莫耳比將組分溶解於100%乙醇中。將RNA貨物(例如Cas9 mRNA及gRNA)溶解於25 mM檸檬酸鹽、100 mM NaCl(pH 5.0)中,產生約0.45 mg/mL之RNA貨物濃度。
對於實施例2中所描述之實驗,藉由根據製造商方案使用Precision Nanosystems NanoAssemblrTM Benchtop儀器,將脂質與RNA溶液微流混合來形成LNP。在使用差分流速進行混合期間維持2:1之水溶液與有機溶劑比。混合之後,收集LNP,在水中稀釋(約1:1 v/v),在室溫下保持1小時,且進一步用水稀釋(約1:1 v/v),之後進行最終緩衝液更換。用PD-10去鹽管柱(GE)來完成更換為50 mM Tris、45 mM NaCl、5%(w/v)蔗糖(pH 7.5)(TSS)之最終緩衝液更換。必要時,藉由用Amicon 100 kDa離心過濾器(Millipore)進行離心來濃縮調配物。隨後,使用0.2 μm無菌過濾器過濾所得混合物。將最終LNP儲存於-80℃下直至進一步使用為止。以45:44:9:2之可離子化脂質:膽固醇:DSPC:PEG2k-DMG莫耳比及約4.5之脂質胺與RNA磷酸酯(N:P)莫耳比以及1:1之gRNA與mRNA重量比調配LNP。
對於其他實施例中所描述之實驗,使用交叉流技術,利用於乙醇中之脂質與兩個體積之RNA溶液及一個體積之水之衝擊噴流混合製備LNP。經由混合十字管使於乙醇中之脂質與兩個體積之RNA溶液混合。經由線內T形件使第四水流與十字管之輸出流混合(參見WO2016010840 圖2)。將LNP在室溫下保持1小時,且進一步用水稀釋(約1:1 v/v)。在平板濾筒(Sartorius,100 kD MWCO)上使用切向流過濾來濃縮經稀釋之LNP,且隨後藉由透濾將其緩衝液更換為50 mM Tris、45 mM NaCl、5%(w/v)蔗糖(pH 7.5)(TSS)。可替代地,用PD-10去鹽管柱(GE)來完成更換為TSS之最終緩衝液更換。必要時,藉由用Amicon 100 kDa離心過濾器(Millipore)進行離心來濃縮調配物。隨後,使用0.2 μm無菌過濾器過濾所得混合物。將最終LNP儲存於4℃或-80℃下直至進一步使用為止。以50:38:9:3之可離子化脂質:膽固醇:DSPC:PEG2k-DMG莫耳比及約6.0之脂質胺與RNA磷酸酯(N:P)莫耳比以及1:1之gRNA與mRNA重量比調配LNP。 細胞培養及 試管內遞送 Cas9 mRNA gRNA 及插入構築體 Hepa1-6 細胞
將Hepa 1-6細胞以10,000個細胞/孔之密度塗鋪在96孔盤中。24小時之後,用LNP及AAV治療細胞。在治療之前,從孔中抽吸出培養基。將LNP在DMEM + 10% FBS培養基中稀釋至4 ng/ul,且在10% FBS(於DMEM中)中進一步稀釋至2 ng/ul,且在37℃下培育10 min(在5% FBS之最終濃度下)。AAV之目標MOI為1e6,稀釋於DMEM + 10% FBS培養基中。向細胞中添加50 μl上文經稀釋之在2 ng/ul下之LNP(遞送總共100 ng RNA貨物),接著添加50 μl AAV。LNP及AAV治療相隔數分鐘。細胞中之培養基之總體積為100 μl。在治療後72小時及治療後30天之後,從此等經治療之細胞中收集上清液以進行如下文所描述之人類FIX ELISA分析。初代肝細胞
將初代小鼠肝細胞(PMH)、初代食蟹獼猴肝細胞(PCH)、及初代人類肝細胞(PHH)解凍且再懸浮於具有增補劑(ThermoFisher)之肝細胞解凍培養基中,接著進行離心。丟棄上清液,且將所集結之細胞再懸浮於肝細胞平板培養基加增補劑包(ThermoFisher)中。對細胞進行計數,且將其對於PHH以33,000個細胞/孔且對於PCH以50,000個細胞/孔以及對於PMH以15,000個細胞/孔之密度塗鋪於包覆有Bio-coat膠原蛋白I之96孔盤上。使經塗鋪之細胞在37℃及5% CO2 氛圍下在組織培養培育箱中靜置且黏附5小時。培育之後,檢查細胞之單層形成,且在事先維持肝細胞之情況下將該等細胞洗滌三次,且在37℃下培育。
對於利用脂質包遞送之實驗,將Cas9 mRNA及gRNA在維持培養基中各自分別稀釋至2 mg/ml,且將各2.9 μl之Cas9 mRNA及gRNA添加至含有12.5 μl之50 mM檸檬酸鈉、200 mM pH為5之氯化鈉及6.9 μl水之孔(於96孔Eppendorf盤中)中。隨後,添加12.5 μl脂質包調配物,接著添加12.5 μl水及150 μl TSS。將各孔使用肝細胞維持培養基稀釋至20 ng/μl(相對於總RNA含量),且隨後用6%新鮮小鼠血清稀釋至10 ng/μl(相對於總RNA含量)。從細胞中抽吸培養基,之後進行轉染,且將40 μl脂質包/RNA混合物添加至細胞中,接著添加MOI為1e5之AAV(稀釋於維持培養基中)。如本文所描述,治療後72小時收集培養基以進行分析,且收穫細胞以進行進一步分析。 螢光素酶分析
對於涉及於細胞培養基中之NanoLuc偵測之實驗,將一個體積之Nano-Glo®螢光素酶分析受質與50體積之Nano-Glo®螢光素酶分析緩衝液組合。在Promega Glomax轉盤上以0.5 sec整合時間使用1:10稀釋之樣本(50 μl試劑+ 40 μl水+ 10 μl細胞培養基)運作分析。
對於涉及於細胞培養基中之HiBit標籤偵測之實驗,將LgBiT蛋白及Nano-GloR HiBiT胞外受質在室溫Nano-GloR HiBiT胞外緩衝液中分別以1:100及1:50稀釋。在Promega Glomax轉盤上以1.0 sec整合時間使用1:10稀釋之樣本(50 μl試劑+ 40 μl水+ 10 μl細胞培養基)運作分析。 活體內遞送 LNP / AAV
經由側尾部靜脈給藥小鼠以AAV、LNP、AAV及LNP兩者或媒劑(PBS + 0.001% Pluronic(對於AAV媒劑),TSS(對於LNP媒劑))。以0.1 mL/隻動物之體積及如本文所描述之量(載體基因組/隻小鼠,「vg/ms」)投予AAV。將LNP稀釋於TSS中且以如本文所指示之量、以約5微升/公克體重投予。典型地,若適用,則首先對小鼠注射AAV且隨後注射LNP。如下文進一步描述,在治療後各種時間點,收集血清及/或肝組織以進行某些分析。 人類因子 IX hFIX ELISA 分析
對於試管內研究,根據製造商方案使用人類因子IX ELISA套組(Abcam,目錄號ab188393)測定在細胞培養基中分泌之總人類因子IX水平。經分泌之hFIX水平係使用4參數邏輯擬合偏離標準曲線來定量且表示為ng/ml培養基。
對於活體內研究,如所指示收集血液且分離血清或血漿。根據製造商方案使用人類因子IX ELISA套組(Abcam,目錄號ab188393)測定總人類因子IX水平。血清或血漿hFIX水平係使用4參數邏輯擬合偏離標準曲線來定量且表示為μg/mL血清。 次世代定序法(「 next-generation sequencing NGS 」)及命中目標裂解效率分析
利用深度定序法以識別例如在白蛋白之內含子1內由基因編輯引入之插入及缺失之存在。在靶位周圍設計PCR引子且擴增所關注之基因組區域。按領域標準進行引子序列設計。
根據製造商方案(Illumina)執行額外PCR以添加化學物質以進行定序。在Illumina MiSeq儀器上對擴增子進行定序。在消除具有低品質分數之讀段之後,將讀段與參考基因組進行比對。將含有該等讀段之所得檔案映射至參考基因組(BAM檔案),其中選擇重疊所關注之目標區之讀段,且計算野生型讀段之數目相對於含有插入或缺失(「插入缺失」)之讀段之數目。
編輯百分比(例如「編輯效率」或「編輯%」)定義為具有插入或缺失(「插入缺失」)之序列讀段之總數目除以包括野生型之序列讀段之總數目。原位雜交分析
BaseScope(ACDbio,Newark,CA)為可提供例如含有插入轉殖基因(hFIX)及來自插入位點(例如白蛋白之外顯子1)之編碼序列之雜交mRNA轉錄物中之外顯子接合點之特異性偵測的專用RNA原位雜交技術。BaseScope用於量測表現雜交mRNA之肝臟的細胞之百分比。
為偵測雜交mRNA,由ACDbio(Newark,CA)設計可在插入雙向構築體之後產生之針對雜交mRNA之兩個探針。探針中之一者設計成偵測由在一個位向插入構築體產生之雜交mRNA,而另一探針設計成偵測由在另一位向插入構築體產生之雜交mRNA。收集來自不同小鼠組之肝且進行新鮮冷凍切片。根據製造商方案執行使用單個探針或合併探針進行之BaseScope分析。藉由HALO軟體掃描且分析載玻片。此分析之本底(生理鹽水治療組)為0.58%。實施例 2- 試管內測試具有及不具有同源臂之插入模板
在此實施例中,例如如實施例1中所描述,培養Hepa1-6細胞,且在存在或不存在遞送Cas9 mRNA及G000551之LNP之情況下用具有各種形式之插入模板(例如具有單股基因組(「ssAAV」)或自我互補基因組(「scAAV」))的AAV對其進行治療(n=3)。如實施例1中所描述來製備AAV及LNP。如實施例1中所描述,在治療後,收集培養基以用於人類因子IX水平。
Hepa1-6細胞為繼續在培養物中分裂之永生化小鼠肝臟的細胞之細胞系。如圖2中所示(治療後72小時時間點),僅包含200個bp同源臂之載體(來源於質體P00204之scAAV)引起可偵測之hFIX表現。在此實驗中,來源於P00123之AAV載體(缺乏同源臂之scAAV)及來源於P00147之AAV載體(缺乏同源臂之ssAAV雙向構築體)之使用不引起任何可偵測之hFIX表現。將細胞保持在培養物中,且當在治療後30天時進行再分析時確認此等結果(資料未示出)。實施例 3- 活體內測試具有及不具有同源臂之插入模板
在此實施例中,如實施例2中試管內測試,用來源於相同質體(P00123、P00204及P00147)之AAV治療小鼠。如實施例1中所描述製備且給藥給藥材料。給藥(對於各組,n=5)C57Bl/6小鼠以各3e11之載體基因組(vg/ms),接著為劑量為4 mg/kg(相對於總RNA貨物含量)之包含G000551(「G551」)之LNP。給藥後四週,使動物安樂死,且收集肝組織及血清以分別用於編輯及hFIX表現。
如圖3A及表12中所示,在經包含靶向鼠白蛋白之內含子1之gRNA之LNP治療之各動物組中偵測到~60%的肝編輯水平。然而,僅管各治療組中有穩健且一致水平之編輯,接受不具有同源臂之雙向載體(來源於P00147之ssAAV載體)與LNP組合治療之動物產生於血清中之最高水平的hFIX表現(圖3B及表13)。 12. 插入缺失 %
模板 平均插入缺失(%) 標準差插入缺失(%)
scAAV鈍化型(P00123) 66.72 4.09
ssAAV鈍化型(P00147) 68.10 2.27
ssAAV HR(P00204) 70.16 3.68
僅LNP 68.24 6.47
媒劑 0.28 0.08
13. 因子 IX 水平
模板 平均因子IX(μg/mL) 標準差因子IX(μg/mL)
scAAV鈍化型(P00123) 0.75 0.28
ssAAV鈍化型(P00147) 2.92 1.04
ssAAV HR(P00204) 0.96 0.35
僅LNP 0 0
媒劑 0 0
實施例 4- 試管內測試具有及不具有同源臂之 ssAAV 插入模板
此實施例中所描述之實驗檢驗將同源臂活體內併入ssAAV載體中之效果。
如實施例1中所描述製備且給藥用於此實驗中之給藥材料。給藥(對於各組,n=5)C57Bl/6小鼠以3e11 vg/ms,接著為劑量為0.5 mg/kg(相對於總RNA貨物含量)之包含G000666(「G666」)或G000551(「G551」)之LNP。給藥後四週,收集動物血清以用於hFIX表現。
如圖4A及表14中所示,使用具有不對稱同源臂之ssAAV載體(對於來源於質體P00350、P00356及P00362之載體,分別為300/600個bp臂、300/2000個bp臂及300/1500個bp臂)以插入由G551靶向之位點中引起循環hFIX水平低於分析之偵測下限。然而,使用不具有同源臂且在雙向位向具有兩個hFIX開放閱讀框(ORF)之ssAAV載體(來源於P00147)在各動物中產生可偵測之循環hFIX水平。
類似地,相較於使用不具有同源臂之雙向載體(來源於P00147),使用具有不對稱同源臂之ssAAV載體(對於來源於質體P00353及P00354之載體,分別為500個bp臂及800個bp臂)以插入由G666靶向之位點中產生較低但可偵測之水平(參見圖4B及表15)。 14.- 血清 hFIX 水平
AAV 平均血清FIX(μg/mL) 標準差血清FIX(μg/mL)
P00147 5.13 1.31
P00350 -0.22 0.08
P00356 -0.23 0.04
P00362 -0.09 0.16
15.- 血清 hFIX 水平
AAV 平均血清FIX(μg/mL) 標準差血清FIX(μg/mL)
P00147 7.72 4.67
P00353 0.20 0.23
P00354 0.46 0.26
實施例 5- 初代小鼠肝細胞中之在各靶位上之雙向構築體之試管內篩選
已證實,缺乏同源臂之雙向構築體勝過具有其他組態之載體,此實施例中所描述之實驗檢驗更改用於在hFIX與白蛋白之外顯子1之間形成雜交轉錄物之剪接受體及更改用於靶向CRISPR/Cas9介導之插入之gRNA的作用。在一組靶位上利用20個不同之靶向初代小鼠肝細胞(PMH)中之鼠白蛋白之內含子1之gRNA測試此等變化雙向構築體。
如實施例1中所描述製備在此實施例中測試之ssAAV及脂質包遞送材料且遞送至PMH,其中AAV之MOI為1e5。在治療後,收集經分離之基因組DNA及細胞培養基以分別進行編輯及轉殖基因表現分析。載體中之各者包含可如實施例1中所描述經由基於螢光素酶之螢光偵測來量測之報導體,在圖5C中繪製為相對螢光素酶單元(「relative luciferase unit;RLU」)。載體包含在hFIX ORF之3'端處融合之HiBit肽,此允許敏感性偵測相對表現。所測試之各載體之示意圖提供於圖5A中。所測試之gRNA示於圖5B及5C中,對於表5中所列舉之gRNA,使用縮短編號(例如其中略去前導的零,例如其中在表5中「G551」對應於「G000551」)。
如圖5B及表16中所示,在整個所測試之各組合中偵測到治療組中之各者之一致但不同水平之編輯。使用各種模板與引導RNA組合進行之轉殖基因表現示於圖5C及表17中。如圖5D中所示,顯著水平之插入缺失形成不一定引起更高效之轉殖基因表現。當不包括具有少於10%編輯之引導物時,使用P00411源性模板及P00418源性模板,R2 值分別為0.54及0.37。小鼠白蛋白剪接受體及人類FIX剪接受體各自引起有效之轉殖基因表現。 16 .- 插入缺失 %
引導物ID P00411 P00418 P00415
平均插入缺失(%) 標準差插入缺失(%) 平均插入缺失(%) 標準差插入缺失(%) 平均插入缺失(%) 標準差插入缺失(%)
G000551 67.4 1.42 70.67 2.29 66.73 4.90
G000552 90.93 0.15 91.10 2.43 90.37 1.01
G000553 77.80 3.83 77.47 1.87 80.50 0.85
G000554 72.37 6.49 70.53 3.16 70.60 2.91
G000555 35.37 2.63 35.77 9.34 40.47 4.75
G000666 62.47 3.87 50.90 19.41 65.90 3.99
G000667 30.57 2.73 25.30 3.67 31.67 2.29
G000668 63.60 2.02 66.65 4.60 68.30 4.90
G000669 19.10 2.51 19.33 1.53 18.70 1.25
G000670 47.80 3.27 49.10 4.42 51.97 2.06
G011722 4.20 0.72 4.27 1.20 4.20 0.26
G011723 5.63 1.27 6.07 0.15 5.93 0.15
G011724 6.10 1.28 8.50 2.69 7.13 1.27
G011725 1.93 0.29 2.60 0.79 2.53 0.65
G011726 10.73 1.46 11.70 0.50 12.43 1.33
G011727 14.20 1.56 14.80 2.36 16.20 2.69
G011728 10.55 1.20 13.65 0.92 15.50 1.56
G011729 5.00 0.10 5.63 0.25 6.00 1.01
G011730 7.83 0.97 9.13 0.59 7.33 0.59
G011731 23.70 0.66 25.27 1.21 24.87 1.01
僅AAV 0.15 0.07 0.05 0.07 0.10 0.00
17 . - 螢光素酶水平
引導物ID P00411 P00418 P00415
平均螢光素酶(RLU) 標準差螢光素酶(RLU) 平均螢光素酶(RLU) 標準差螢光素酶(RLU) 平均螢光素酶(RLU) 標準差螢光素酶(RLU)
G000551 58000.00 4331.28 41800.00 2165.64 78633.33 20274.70
G000552 95700.00 10573.08 80866.67 27911.35 205333.33 30664.86
G000553 205333.33 52993.71 177333.33 32929.22 471666.67 134001.00
G000554 125333.33 55949.38 91933.33 19194.10 232666.67 67002.49
G000555 59933.33 11566.04 77733.33 11061.80 155666.67 15947.83
G000666 88500.00 28735.87 93266.67 30861.19 313000.00 15394.80
G000667 75333.33 22653.11 68966.67 27222.11 153000.00 30805.84
G000668 164000.00 56320.51 133400.00 65111.29 429000.00 120751.80
G000669 28933.33 11636.29 22033.33 2413.16 46466.67 6543.19
G000670 162666.67 32959.57 200000.00 33867.39 424666.67 36473.73
G011722 16766.67 3384.28 8583.33 4103.10 24000.00 8915.16
G011723 22733.33 7252.82 17133.33 4905.44 26100.00 8109.87
G011724 17300.00 2400.00 28033.33 9091.94 30933.33 3365.02
G011725 8253.33 1163.20 8890.00 1429.27 20366.67 13955.05
G011726 12223.33 3742.54 11610.00 2490.44 14950.00 8176.03
G011727 35600.00 8128.35 36300.00 12301.22 86700.00 5023.94
G011728 14900.00 5011.99 22466.67 7130.45 38166.67 13829.08
G011729 10460.00 2543.95 11223.33 2220.28 26966.67 16085.50
G011730 14833.33 2307.24 21700.00 8681.59 41233.33 25687.03
G011731 16433.33 3274.65 22566.67 2205.30 20756.67 13096.20
僅AAV 217.00 15.56 215.00 15.56 207.00 1.41
實施例 6- 在各靶位上之雙向構築體之活體內篩選
如實施例1中所描述製備在此實施例中測試之ssAAV及LNP且遞送至C57Bl/6小鼠以評估活體內在各靶位上之雙向構築體之效能。給藥後四週,使動物安樂死,且收集肝組織及血清以分別用於編輯及hFIX表現。
在初始實驗中,將含有10種不同靶向白蛋白之內含子1之gRNA之10種不同LNP調配物以及來源於P00147之ssAAV遞送至小鼠。分別以3e11 vg/ms及4 mg/kg(相對於總RNA貨物含量)遞送AAV及LNP(對於各組,n=5)。在此實驗中測試之gRNA示於圖6中且列表於表18中。如圖6中所示且如試管內所觀測,顯著水平之插入缺失形成不預測轉殖基因之插入或表現。
在單獨實驗中,在活體內測試在實施例5中試管內測試之一組靶向20個不同靶位之20個gRNA。為此目的,將含有20個靶向白蛋白之內含子1之gRNA之LNP調配物以及來源於P00147之ssAAV遞送至小鼠。分別以3e11 vg/ms及1 mg/kg(相對於總RNA貨物含量)遞送AAV及LNP。在此實驗中測試之gRNA示於圖7A及7B中。
如圖7A中所示及表19中所列表,在整個所測試之各LNP/載體組合中偵測到治療組中之各者之不同水平之編輯。然而,如圖7B及表20中所示且與實施例5中所描述之試管內資料一致,較高水平之編輯不一定引起較高之活體內轉殖基因表現水平,指示雙向hFIX構築體之編輯與插入/表現之間缺乏相關性。實際上,所達成之編輯之量與如在圖7D中所提供之曲線圖中所觀察到之hFIX表現之量之間存在極少相關性。詳言之,當從分析中移除達成少於10%編輯之彼等gRNA時,在此實驗之編輯資料集與表現資料集之間計算出僅0.34之R2 值。有趣地,如圖7C中所示,提供比較如在實施例5之試管內實驗之RLU中所量測之表現水平與在此實驗中偵測到之活體內轉殖基因表現水平的相關性曲線圖,其中R2 值為0.70,證實初代細胞篩選與活體內治療之間之正相關性。
為於細胞水平評估雙向構築體之插入,例如如實施例1中所描述,使用原位雜交法(BaseScope)分析來自經治療之動物之肝組織。此分析利用可偵測hFIX轉殖基因與小鼠白蛋白外顯子1序列之間之接合點之探針作為雜交轉錄物。如圖8A中所示,在接受AAV及LNP兩者之動物中偵測到對雜交轉錄物呈陽性之細胞。特定言之,當僅投予AAV時,少於1.0%細胞對雜交轉錄物呈陽性。在投予包含G011723、G000551或G000666之LNP之情況下,4.9%、19.8%或52.3%細胞對雜交轉錄物呈陽性。另外,如圖8B中所示,循環hFIX水平與對雜交轉錄物呈陽性之細胞之數目相關。最後,分析利用可偵測在任一位向之雙向hFIX構築體之插入之合併探針。然而,當使用僅偵測單一位向之單一探針時,對雜交轉錄物呈陽性之細胞之量為使用合併探針偵測到之該量之約一半(在一個實施例中,4.46%對9.68%),表明雙向構築體實際上能夠在任一位向插入,產生與在蛋白質水平下之轉殖基因表現之量相關的經表現之雜交轉錄物。此等資料顯示所達成之循環hFIX水平視用於插入之引導物而定。 18 .-hFIX 血清水平及插入缺失 %
引導物 平均插入缺失(%) 標準差插入缺失(%) 平均hFIX血清水平 標準差hFIX血清水平
G000551 75.02 1.27 3.82 3.38
G000555 51.18 1.19 32.56 9.05
G000553 62.78 2.64 25.07 4.04
G000667 52.96 4.96 32.03 6.74
G000554 55.24 2.28 29.48 7.34
G000552 67.56 1.73 14.79 5.34
G000668 43.14 5.78 26.72 7.97
G000669 50.68 2.97 10.70 4.43
G000666 64.62 1.34 26.19 5.56
G000670 55.90 1.30 30.96 8.44
19.- 肝編輯 %
引導物 平均肝編輯(%) 標準差肝編輯(%)
G000551 59.48 4.02
G000555 58.72 3.65
G000553 51.26 2.81
G000554 33.04 8.76
G000555 12.72 4.46
G000666 53.60 4.92
G000667 26.74 4.98
G000668 39.22 3.04
G000669 33.34 4.77
G000670 47.50 5.58
G011722 10.34 1.68
G011723 4.02 0.84
G011724 2.46 0.64
G011725 8.26 1.24
G011726 6.90 1.01
G011727 13.33 6.43
G011728 35.78 9.34
G011729 4.62 1.46
G011730 12.68 3.14
G011731 26.70 1.86
20.- 血清 hFIX 水平
引導物 第1週 第2週 第4週
平均FIX(μg/mL) 標準差FIX(μg/mL) 平均FIX(μg/mL) 標準差FIX(μg/mL) 平均FIX(μg/mL) 標準差FIX(μg/mL)
G000551 10.88 2.74 10.25 2.51 9.39 3.48
G000555 13.34 2.09 12.00 2.75 12.43 2.57
G000553 17.64 4.34 20.27 6.35 15.31 2.43
G000554 12.79 4.99 14.29 6.09 12.74 4.93
G000555 11.94 5.79 11.99 5.76 8.61 4.02
G000666 21.63 1.32 20.65 1.55 17.23 0.62
G000667 16.77 2.86 12.35 2.85 12.57 5.60
G000668 21.35 1.51 18.20 3.18 17.72 2.25
G000669 5.76 2.10 6.72 2.93 3.39 0.78
G000670 18.18 2.17 19.16 3.05 15.49 3.61
G011722 8.07 1.74 7.74 2.41 8.07 1.74
G011723 2.11 0.28 1.65 0.28 2.11 0.28
G011724 0.92 0.43 0.60 0.30 0.92 0.43
G011725 1.75 0.77 1.14 0.67 1.75 0.77
G011726 0.59 0.30 1.01 0.64 0.59 0.30
G011727 6.71 2.80 6.90 3.68 6.71 2.80
G011728 11.77 3.12 12.29 3.43 11.77 3.12
G011729 0.94 0.35 0.89 0.29 0.94 0.35
G011730 5.93 1.77 6.33 1.73 5.93 1.77
G011731 3.56 0.87 3.78 0.50 3.56 0.87
僅AAV 0.00 0.00 0.00 0.00 0.00 0.00
媒劑 0.00 0.00 0.00 0.00 0.00 0.00
人類血清 3.63 0.32 3.61 0.35 3.28 0.03
實施例 7- 活體內 AAV LNP 遞送之時序
在此實施例中,在C57Bl/6小鼠中檢驗包含雙向hFIX構築體之ssAAV與LNP遞送之間之時序。
如實施例1中所描述製備在此實施例中測試之ssAAV及LNP且遞送至小鼠。LNP調配物含有G000551,且雙向模板係作為來源於P00147之ssAAV來遞送。分別以3e11 vg/ms及4 mg/kg(相對於總RNA貨物含量)遞送AAV及LNP(對於各組,n=5)。「僅模板」同屬性群僅接受AAV,而「PBS」同屬性群不接受AAV或LNP。一個同屬性群在第0天依序接受(相隔數分鐘)AAV及LNP(「第0天模板+ LNP」);另一同屬性群在第0天接受AAV且在第1天接受LNP(「第1天模板+ LNP」);且最終同屬性群在第0天接受AAV且在第7天接受LNP(「第7天模板+ LNP」)。在1週、2週及6週時,收集血漿以進行hFIX表現分析。
如圖9中所示,在各分析時間在各同屬性群中偵測hFIX,在AAV遞送之後第7天接受LNP之同屬性群之1週時間點除外。實施例 8- 在遞送 AAV 之後多次給藥 LNP
在此實施例中,檢驗ssAAV投予後之LNP重複給藥之效果。
如實施例1中所描述製備在此實施例中測試之ssAAV及LNP且遞送至C57Bl/6小鼠。LNP調配物含有G000551,且ssAAV來源於P00147。分別以3e11 vg/ms及0.5 mg/kg(相對於總RNA貨物含量)遞送AAV及LNP(對於各組,n=5)。「僅模板」同屬性群僅接受AAV,而「PBS」同屬性群不接受AAV或LNP。一個同屬性群在第0天依序接受(相隔數分鐘)AAV及LNP且不進行進一步治療(在圖10中,「模板+ LNP(1×)」);另一同屬性群在第0天依序接受(相隔數分鐘)AAV及LNP且在第7天接受第二劑量(在圖10中,「模板+ LNP(2×)」);且最終同屬性群在第0天依序接受(相隔數分鐘)AAV及LNP、在第7天接受第二劑量之LNP且在第14天接受第三劑量之LNP(在圖10中,「模板+ LNP(3×)」)。在投予AAV後1、2、4及6週時,收集血漿以進行hFIX表現分析。
如圖10中所示,在各分析時間在各同屬性群中偵測hFIX,且多次後續劑量之LNP未顯著地增加hFIX表現之量。實施例 9- 活體內 hFIX 表現之持續時間
在此實施例中評估經治療之動物中之隨時間推移之hFIX表現之持續時間。為此目的,在給藥後在經治療之動物之血清中量測hFIX作為一年持續時間研究之部分。
如實施例1中所描述製備在此實施例中測試之ssAAV及LNP且遞送至C57Bl/6小鼠。LNP調配物含有G000551,且ssAAV來源於P00147。以3e11 vg/ms遞送AAV,且以0.25或1.0 mg/kg遞送LNP(相對於總RNA貨物含量)(對於各組,n=5)。
如圖11A及表21中所示,對於兩個組,在各評估時間點持續hFIX表現至41週。咸信在8週時觀測到之水平下降係歸因於ELISA分析之變化性。在第2週及第41週藉由ELISA量測血清白蛋白水平,顯示在整個研究中循環白蛋白水平得到維持。
如圖11B及表22中所示,對於兩個組,在各評估時間點持續hFIX表現至52週。 21 FIX 水平
週數 劑量
0.25 mpk LNP 1 mpk LNP
平均hFIX(μg/mL) 標準差hFIX(μg/mL) 平均hFIX(μg/mL) 標準差hFIX(μg/mL)
2 0.48 0.21 2.24 1.12
4 0.55 0.18 2.82 1.67
8 0.40 0.17 1.72 0.77
12 0.48 0.20 2.85 1.34
20 0.48 0.27 2.45 1.26
41 0.79 0.49 4.63 0.95
22 –FIX 水平
週數 劑量
0.25 mpk LNP 1 mpk LNP
平均hFIX(μg/mL) 標準差hFIX(μg/mL) 平均hFIX(μg/mL) 標準差hFIX(μg/mL)
2 0.87 0.15 4.02 1.75
8 0.99 0.15 4.11 1.41
12 0.93 0.14 4.15 1.35
20 0.83 0.22 4.27 1.54
41 0.83 0.37 4.76 1.62
52 0.82 0.25 4.72 1.54
實施例 10- 變化劑量之 AAV LNP 調節活體內 hFIX 表現之作用
在此實施例中,在C57Bl/6小鼠中評估改變AAV及LNP兩者之劑量以調節hFIX表現之作用。
如實施例1中所描述製備在此實施例中測試之ssAAV及LNP且遞送至小鼠。LNP調配物含有G000553,且ssAAV來源於P00147。以1e11、3e11、1e12或3e12 vg/ms遞送AAV,且以0.1、0.3或1.0 mg/kg遞送LNP(相對於總RNA貨物含量)(對於各組,n=5)。給藥後兩週,使動物安樂死。在兩個時間點收集血清以進行hFIX表現分析。
如圖12A(1週)、圖12B(2週)及表23中所示,改變AAV或LNP之劑量可調節活體內hFIX表現之量。 23. – 血清 hFIX
時間點 RNP 劑量(mg/kg AAV 劑量(MOI 平均FIX (ng/ml SD N
第1週 0.1 1E+11 0.08 0.02 2
3E+11 0.11 0.04 5
1E+12 0.41 0.15 5
3E+12 0.61 0.17 5
0.3 1E+11 0.36 0.14 5
3E+11 0.67 0.26 5
1E+12 1.76 0.14 5
3E+12 4.70 2.40 5
1.0 1E+11 3.71 0.31 4
3E+11 8.00 0.51 5
1E+12 14.17 1.38 5
3E+12 20.70 2.79 5
人類血清1:1000 6.62 - 1
第2週 0.1 1E+11 0.12 0.01 2
3E+11 0.26 0.07 5
1E+12 0.83 0.24 5
3E+12 1.48 0.35 5
0.3 1E+11 0.70 0.26 4
3E+11 1.42 0.37 5
1E+12 3.53 0.49 5
3E+12 8.94 4.39 5
1.0 1E+11 5.40 0.47 4
3E+11 12.31 2.45 5
1E+12 17.89 1.95 5
3E+12 25.52 3.62 5
人類血清1:1000 4.47 - 1
實施例 11- 初代食蟹獼猴及初代人類肝細胞中之在各靶位上之雙向構築體之試管內篩選
在此實施例中,在一組靶位上利用分別靶向食蟹獼猴(「cynomolgus;cyno」)之內含子1及初代cyno(PCH)中之人類白蛋白以及初代人類肝細胞(PHH)之gRNA測試包含雙向構築體之ssAAV載體。
如實施例1中所描述製備在此實施例中測試之ssAAV及脂質包遞送材料且遞送至PCH及PHH。在治療後,收集經分離之基因組DNA及細胞培養基以分別進行編輯及轉殖基因表現分析。載體中之各者包含可如實施例1中所描述經由基於螢光素酶之螢光偵測來量測之報導體(來源於質體P00415),在圖13B及14B中繪製為相對螢光素酶單元(「RLU」)。舉例而言,AAV載體含有NanoLuc ORF(除GFP之外)。所測試之載體之示意圖提供於圖13B及14B中。對於表1及表7中所列舉之所測試之gRNA,gRNA係使用縮短編號示於圖中之各者中。
如針對PCH之圖13A及針對PHH之圖14A中所示,偵測到所測試之組合中之各者之不同水平之編輯(由於用於基於擴增子之定序之某些引子對失效,故在PCH實驗中測試之一些組合之編輯資料不報導於圖13A及表3中)。以圖形方式示於圖13A及14A中之編輯資料在下表3及表4中數值上再生。然而,如圖13B、13C以及圖14B及14C中所示,顯著水平之插入缺失形成不預測轉殖基因之插入或表現,指示分別PCH及PHH中之雙向構築體之編輯與插入/表現之間之相關性極少。作為一個量度,圖13C中所計算之R2 值為0.13,且圖14D之R2 值為0.22。
另外,在一組靶位上利用靶向初代人類肝細胞(PHH)中之人類白蛋白之內含子1之單引導RNA測試包含雙向構築體之ssAAV載體。
如實施例1中所描述製備ssAAV及LNP材料且遞送至PHH。在治療後,收集經分離之基因組DNA及細胞培養基以分別進行編輯及轉殖基因表現分析。載體中之各者包含可如實施例1中所描述經由基於螢光素酶之螢光偵測來量測之報導體(來源於質體P00415),在圖14D中繪製為相對螢光素酶單元(「RLU」)且列表於下表24中。舉例而言,AAV載體含有NanoLuc ORF(除GFP之外)。所測試之載體之示意圖提供於圖13B及14B中。對於表1及表7中所列舉之所測試之gRNA,gRNA係使用縮短編號示於圖14D中。
表3. 遞送至初代食蟹獼猴肝細胞之sgRNA 白蛋白內含子1 編輯資料
引導物ID 平均編輯% 標準差編輯%
G009867 25.05 0.21
G009866 18.7 3.96
G009876 14.85 4.88
G009875 12.85 2.33
G009874 28.25 6.01
G009873 42.65 5.59
G009865 59.15 0.21
G009872 48.15 3.46
G009871 46.5 5.23
G009864 33.2 8.34
G009863 54.8 12.45
G009862 44.6 7.21
G009861 28.65 0.21
G009860 33.2 7.07
G009859 0.05 0.07
G009858 14.65 1.77
G009857 23 0.99
G009856 14.8 0.99
G009851 1.5 0.42
G009868 12.15 2.47
G009850 63.45 13.93
G009849 57.55 8.27
G009848 33 5.37
G009847 66.75 7
G009846 61.85 5.02
G009845 54.4 7.5
G009844 47.15 2.05
表4. 遞送至初代人類肝細胞之sgRNA 白蛋白內含子1 編輯資料
引導物ID 平均編輯% 標準差編輯%
G009844 19.07 2.07
G009851 0.43 0.35
G009852 47.20 3.96
G009857 0.10 0.14
G009858 8.63 9.16
G009859 3.07 3.50
G009860 18.80 4.90
G009861 10.27 2.51
G009866 13.60 13.55
G009867 12.97 3.04
G009868 0.63 0.32
G009874 49.13 0.60
G012747 3.83 0.23
G012748 1.30 0.35
G012749 9.77 1.50
G012750 42.73 4.58
G012751 7.77 1.16
G012752 32.93 2.27
G012753 21.20 2.95
G012754 0.60 0.10
G012755 1.10 0.10
G012756 2.17 0.40
G012757 1.07 0.25
G012758 0.90 0.10
G012759 2.60 0.35
G012760 39.10 6.58
G012761 36.17 2.43
G012762 8.50 0.57
G012763 47.07 3.07
G012764 44.57 5.83
G012765 19.90 1.68
G012766 8.50 0.28
表24. hAlb 引導篩選螢光素酶
引導物 平均螢光素酶(RLU) 標準差螢光素酶(RLU)
G009844 3700000 509116.9
G009852 281000 69296.46
G009857 1550000 127279.2
G009858 551000 108894.4
G009859 1425000 77781.75
G009860 2240000 183847.8
G009861 663500 238295
G009866 274000 11313.71
G009867 44700 565.6854
G009874 2865000 431335.1
G012747 651000 59396.97
G012749 867000 93338.1
G012752 4130000 268700.6
G012753 1145000 162634.6
G012757 579000 257386.9
G012760 129000 36769.55
G012761 4045000 728320
G012762 2220000 127279.2
G012763 1155000 205061
G012764 11900000 1555635
G012765 1935000 134350.3
G012766 2050000 169705.6
LNP 8430 212.132
實施例 12- 活體內測試從替代安全港基因座進行之因子 IX 表現
在此實施例中,評估在替代安全港基因座處之包含雙向hFIX構築體之ssAAV插入。為測試向替代安全港基因座中之插入,如上文所描述製備AAV。使小鼠投予有劑量為3e11 vg/隻小鼠之AAV,緊隨著投予劑量為0.3 mg/kg之調配有Cas9 mRNA及引導RNA之LNP。在給藥後4週將動物處死,且收集肝及血液樣本。藉由NGS測定肝樣本中之編輯。藉由ELISA測定血清中之人類hFIX水平。NGS及ELISA資料顯示在替代安全港基因座內之有效hFIX插入及表現。實施例 13- 活體內測試非人類靈長類動物中之人類因子 IX 基因插入
在此實施例中,經由投予腺相關病毒(AAV)及/或具有各種引導物之脂質奈米粒子(LNP)執行評估食蟹獼猴中之人類因子IX基因插入及hFIX蛋白表現之8週研究。此研究係用如上文所描述製備之LNP調配物及AAV調配物來進行。各LNP調配物含有Cas9 mRNA及引導RNA(gRNA),其中mRNA:gRNA重量比為2:1。該ssAAV係來源於P00147。
在n=3之同屬性群中治療雄性食蟹獼猴。藉由以表10中所描述之劑量進行慢推注注射或輸注來給藥動物以AAV。在AAV治療之後,藉由慢推注或輸注使動物接受如表10中所描述之緩衝液或LNP。
給藥後兩週,經由經單超音波引導之經皮生檢收集肝試樣。將各生檢試樣在液氮中急驟冷凍且儲存於-86℃至-60℃下。藉由如先前所描述之NGS定序法執行肝試樣編輯分析。
對於因子IX ELISA分析,在給藥後第7天、第14天、第28天及第56天從動物收集血液樣本。收集血液樣本且在血液抽取之後加工成血漿,且儲存於-86℃至-60℃下直至分析為止。
藉由ELISA由血漿樣本測定總人類因子IX水平。簡言之,使Reacti-Bind 96孔微量盤(VWR目錄號PI15041)塗佈有濃度為1 µg/ml之捕捉抗體(針對人類因子IX抗體之小鼠mAB(HTI,目錄號AHIX-5041)),隨後使用1× PBS及5%牛血清白蛋白阻斷。接著,在單獨孔中培育稀釋於食蟹獼猴血漿中之經純化之人類因子IX蛋白之測試樣本或標準品(ERL,目錄號HFIX 1009,批號HFIX4840)。吸附濃度為100 ng/ml之偵測抗體(綿羊抗人類因子9多株抗體,Abcam,目錄號ab128048)。使用100 ng/mL二級抗體(具有HRP之驢抗綿羊IgG pAb,Abcam,目錄號ab97125)。使用TMB受質試劑組(BD OptEIA目錄號555214)發展盤。在微量盤讀取器(Molecular Devices i3系統)上在450 nm處以分光光度法評估光密度,且使用SoftMax pro 6.4對其進行分析。
偵測到插入缺失形成,確認編輯發生。NGS資料顯示有效之插入缺失形成。NHP中從白蛋白基因座進行之hFIX表現係藉由ELISA來量測且描繪於表11及圖15中。hFIX血漿水平達到先前描述為治療上有效之水平(George,等人, NEJM 377(23), 2215-27, 2017)。
如所量測,循環hFIX蛋白水平持續貫穿八週研究(參見圖15,顯示第7天、第14天、第28天及第56天之相應~135、~140、~150及~110 ng/mL平均水平),達成介於~75 ng/mL至~250 ng/mL範圍內之蛋白質水平。使用R338L功能亢進hFIX變異體之高~8倍比活性計算血漿hFIX水平(Simioni等人, NEJM 361(17), 1671-75, 2009)(其報導390 ± 28 U/毫克之hFIX-R338L之蛋白質比活性,及45 ± 2.4 U/毫克之野生型因子IX之蛋白質比活性)。計算在此實施例中測試之功能亢進因子IX變異體之功能上標準化因子IX活性,實驗在8週研究內達成對應於野生型因子IX活性之約20%-40%之於NHP中之穩定人類因子IX蛋白水平(範圍跨越野生型因子IX活性之12%-67%)。 10 肝中之編輯
動物ID 引導物ID F9-AAV(vg/kg) F9-AAV體積(mL/kg) LNP(mg/kg) LNP體積(mL/kg)
4001 G009860 3E+13 1 3 2
4002 G009860 3E+13 1 3 2
4003 G009860 3E+13 1 3 2
5001 TSS 3E+13 1 0 0
5002 TSS 3E+13 1 0 0
5003 TSS 3E+13 1 0 0
6001 G009862 0 0 3 2
6002 G009862 0 0 3 2
6003 G009862 0 0 3 2
11. hFIX 表現
動物ID 第7 因子IX (ng/mL 第14 因子IX (ng/mL 第28 因子IX (ng/mL 第56 因子IX (ng/mL
4001 122.84/+-2.85 94.93/+- 0.56 105.65/+- 1.94 97.31/+- 1.49
4002 149.77/+-13.5 222.92/+- 9.61 252.49/+- 6.46 152.05/+- 7.46
4003 134.06/+-6.17 107.04/+- 6.46 95.30/+- 3.18 74.23/+- 3.53
5001 ND ND ND ND
5002 ND ND ND ND
5003 ND ND ND ND
6001 ND ND ND ND
6002 ND ND ND ND
6003 ND ND ND ND
實施例 14- 活體內測試非人類靈長類動物中之因子 IX 插入
在此實施例中,在投予來源於P00147之ssAAV及/或具有包括G009860之各種引導物及各種LNP組分之CRISPR/Cas9脂質奈米粒子(LNP)後執行評估食蟹獼猴中之因子IX基因插入及hFIX蛋白表現之研究。
藉由NGS量測插入缺失形成,確認編輯發生。如實施例13中所描述,藉由ELISA使用針對人類因子IX抗體之小鼠mAB(HTI,目錄號AHIX-5041)、綿羊抗人類因子9多株抗體(Abcam,目錄號ab128048)及具有HRP之驢抗綿羊IgG pAb(Abcam,目錄號ab97125)由血漿樣本測定總人類因子IX水平。比在實施例13之實驗中達成之人類FIX蛋白水平高>3倍之人類FIX蛋白含量係使用替代CRISPR/Cas9 LNP從雙向模板獲得。在研究中,ELISA分析結果指示,在至少第14天及第28天時間點使用於NHP中之G009860達成等於或高於正常人類FIX水平範圍(3-5 μg/mL;Amiral等人, Clin. Chem., 30(9), 1512-16, 1984)之循環hFIX蛋白水平。初始資料指示在單次劑量之後在第14天之~3-4 μg/mL之循環人類FIX蛋白水平,其中水平持續貫穿研究前28天(~3 -5 μg/mL)。在研究結束時藉由相同方法量測人類FIX水平,且資料展現於表25中。 25. 血清人類因子 IX 蛋白水平 - 實施例 13 ELISA 方法
   第7天 FIX ng/mL 標準差 第14天 FIX ng/mL 標準差 第28天 FIX ng/mL 標準差 第42天 FIX ng/mL 標準差 第56天 FIX ng/mL 標準差
3001 2532.8 145.6 2562.6 99.0 3011.7 62.7 2936.7 72.4 2748.5 86.0
3002 2211.4 95.8 2958.5 119.2 3350.2 98.4 3049.7 112.7 3036.7 90.6
3003 3195.1 475.6 4433.9 238.7 3367.2 157.7 3746.1 95.6 3925.0 157.4
藉由ELISA量測循環白蛋白水平,指示在28天時維持基線白蛋白水平。在研究中,未經治療之動物中之所測試之白蛋白水平變化± ~15%。在經治療之動物中,循環白蛋白水平最低限度地變化且不下降超出正常範圍,且水平在一個月內恢復至基線。
亦藉由夾心免疫分析以更高動態範圍測定循環人類FIX蛋白水平。簡言之,用1% ECL阻斷劑(Sigma,GERPN2125)阻斷MSD GOLD 96孔抗生蛋白鏈菌素SECTOR盤(Meso Scale Diagnostics,目錄L15SA-1)。在流光阻斷溶液之後,將生物素標記捕捉抗體(Sino Biological,11503-R044)固定在盤上。使用重組人類FIX蛋白(Enzyme Research Laboratories,HFIX 1009)來在0.5% ECL阻斷劑中製備校準標準品。在洗滌之後,將校準標準品及血漿樣本添加至盤中且培育。在洗滌之後,將結合有磺基標籤標記之偵測抗體(Haematologic Technologies,AHIX-5041)添加至孔中且培育。在洗滌掉任何未結合之偵測抗體之後,將讀取緩衝液T施用至孔。在不進行任何額外培育之情況下,用MSD Quick Plex SQ120儀器使盤成像,且用Discovery Workbench 4.0套裝軟體(Meso Scale Discovery)分析資料。濃度以ug/m為單位表示為平均計算濃度。對於樣本,除非由星號指示(在此情況下N=2),否則N=3。如藉由MSD ELISA所量測之經治療之研究組中從白蛋白基因座進行之hFIX表現描繪於表26中。 26 . 血清人類因子 IX 蛋白水平 -MSD ELISA
     
           
           
           
           
           
           
   平均計算濃度(μg/mL)
   3001 3002 3003
時間點 濃度 分析間CV 濃度 分析間CV 濃度 分析間CV
第7天 7.85 20% 5.63 14% 11.20 26%
第14天 8.65 15% 11.06 18% 14.70 28%
第28天 9.14 7% 14.12 7% 10.85 25%
第42天 9.03 10% 33.12* 0% 13.22 13%
第56天 10.24 13% 16.72 12% 33.84* 4%
實施例 15 - 白蛋白人類引導物之脫靶( off target )分析
使用生物化學方法(參見例如Cameron等人,Nature Methods . 6, 600-606; 2017)測定由靶向白蛋白之Cas9裂解之潛在脫靶基因組位點。在此實驗中,使用經分離之HEK293基因組DNA篩選13個靶向人類白蛋白之sgRNA及兩個具有已知脫靶輪廓之對照引導物。在生物化學分析中使用16 nM引導物濃度偵測到之潛在脫靶位之數目示於表27中。分析識別用於所測試之sgRNA之潛在脫靶位。 27.- 脫靶分析
gRNA ID 目標 引導序列(SEQ ID NO:) 脫靶位計數
G012753 白蛋白 GACUGAAACUUCACAGAAUA (SEQ ID NO: 20) 62
G012761 白蛋白 AGUGCAAUGGAUAGGUCUUU (SEQ ID NO: 28) 75
G012752 白蛋白 UGACUGAAACUUCACAGAAU (SEQ ID NO: 19) 223
G012764 白蛋白 CCUCACUCUUGUCUGGGCAA (SEQ ID NO: 31) 3985
G012763 白蛋白 UGGGCAAGGGAAGAAAAAAA (SEQ ID NO: 30) 5443
G009857 白蛋白 AUUUAUGAGAUCAACAGCAC (SEQ ID NO: 5) 131
G009859 白蛋白 UUAAAUAAAGCAUAGUGCAA (SEQ ID NO: 7) 91
G009860 白蛋白 UAAAGCAUAGUGCAAUGGAU (SEQ ID NO: 8) 133
G012762 白蛋白 UGAUUCCUACAGAAAAACUC (SEQ ID NO: 29) 68
G009844 白蛋白 GAGCAACCUCACUCUUGUCU (SEQ ID NO: 2) 107
G012765 白蛋白 ACCUCACUCUUGUCUGGGCA (SEQ ID NO: 32) 41
G012766 白蛋白 UGAGCAACCUCACUCUUGUC (SEQ ID NO: 33) 78
G009874 白蛋白 UAAUAAAAUUCAAACAUCCU (SEQ ID NO: 13) 53
G000644 EMX1 GAGUCCGAGCAGAAGAAGAA (SEQ ID NO: 1129) 304
G000645 VEGFA GACCCCCUCCACCCCGCCUC (SEQ ID NO: 1130) 1641
在諸如在上文中使用之生物化學方法之已知脫靶偵測分析中,典型地藉由設計來恢復大量潛在脫靶位以便為可在其他情形下,例如在所關注之初代細胞中驗證之潛在位點「廣泛撒網」。舉例而言,當分析利用不含細胞環境之經純化之高分子量基因組DNA且視所使用之Cas9 RNP之劑量而定時,生物化學方法典型地過度展示潛在偏離脫靶位之數目。因此,藉由此等方法識別之潛在脫靶位可使用所識別之潛在脫靶位之靶向定序來驗證。    實施例16.使用人類化白蛋白小鼠篩選用於活體內人類F9 插入之引導RNA
吾等旨在識別用於將hF9 插入人類白蛋白基因座中之有效引導RNA。為此目的,吾等利用其中小鼠白蛋白基因座經對應人類白蛋白基因組序列(包括第一內含子)置換之小鼠(ALBhu/hu 小鼠)。此允許吾等在活體內成人肝之情形下測試靶向人類白蛋白之第一內含子之引導RNA之插入效率。使用ALBhu/hu 小鼠設置兩個單獨小鼠實驗以篩選總共11個引導RNA,各引導RNA靶向人類白蛋白基因座之第一內含子。在實驗第0天對全部小鼠進行稱重且經由尾部靜脈進行注射。在第1週、第3週、第4週及第6週經由尾部放血來收集血液,且分離血漿。在第7週終結小鼠。經由腔靜脈收集血液,且分離血漿。同樣剝離肝及脾。
在第一實驗中,如同實施例1製備且測試6個包含Cas9 mRNA及以下引導物之LNP:G009852、G009859、G009860、G009864、G009874及G012764。將LNP稀釋至0.3 mg/kg(使用30公克平均體重)且以每隻小鼠3E11病毒基因組之劑量共注射封裝有雙向hF9 插入模板之AAV8。每組注射五隻介於12週齡與14週齡之間之ALBhu/hu 雄性小鼠。使五隻來自同一同屬性群之小鼠注射封裝有與hF9 可操作地連接之CAGG啟動子之AAV8,此引起hF9 之游離型表現(以每隻小鼠3E11病毒基因組)。存在三個陰性對照組,其中每組有三隻小鼠注射僅緩衝液、僅封裝有雙向hF9 插入模板之AAV8或僅LNP-G009874。
在實驗中,如同實施例1製備且測試以下包含Cas9 mRNA及以下引導物之LNP:G009860、G012764、G009844、G009857、G012752、G012753及G012761。將全部LNP稀釋至0.3 mg/kg(使用40公克平均體重)且以3E11病毒基因組/隻小鼠之劑量共注射封裝有雙向hF9 插入模板之AAV8。每組注射五隻30週齡ALBhu/hu 雄性小鼠。使五隻來自同一同屬性群之小鼠注射封裝有與hF9 可操作地連接之CAGG啟動子之AAV8,此引起hF9 之游離型表現(以每隻小鼠3E11病毒基因組)。存在三個陰性對照組,其中每組有三隻小鼠注射僅緩衝液、僅封裝有雙向hF9 插入模板之AAV8或僅LNP-G009874。
對於分析,執行ELISA以在各時間點在小鼠中量測hFIX循環水平。出於此目的使用人類因子IX ELISA套組(ab188393),且用來自George King Bio-Medical之人類合併正常血漿作為陽性分析對照組運作全部盤。注射後第6週之各組中之血漿樣本中之人類因子IX表現水平示於 16A 及圖 16B 中。與試管內插入資料一致,當使用引導RNA G009852時,偵測到低至無因子IX血清水平。與人類白蛋白中缺乏相鄰PAM序列一致,當使用引導RNA G009864時,因子IX血清水平不可偵測。使用引導RNA G009859、G009860、G009874及G0012764觀測到各組之血清中之因子IX表現。
提交脾及全部肝之左側葉之一部分以進行次世代定序法(NGS)分析。使用NGS評估在注射AAV-hF9 供體及LNP-CRISPR/Cas9後第7週在人類化白蛋白基因座處具有插入/缺失(插入缺失)之肝臟的細胞之百分比。與人類白蛋白中缺乏相鄰PAM序列一致,當使用引導RNA G009864時,肝中無可偵測之編輯。使用引導RNA G009859、G009860、G009874及G012764(資料未示出)觀測到各組之肝中之編輯。
將剩餘肝固定在10%中性經緩衝福馬林中24小時且隨後轉移至70%乙醇。從單獨葉切割四個至五個樣本且運送至HistoWisz,且進行處理且嵌入於石蠟塊中。隨後,從各石蠟塊切割五微米切片,且在Ventana Ultra Discovery(Roche)上使用通用BASESCOPE™程序及Advanced Cell Diagnostics之試劑以及靶向在達成成功整合及轉錄時形成於來自ALBhu/hu 白蛋白基因座之第一內含子之人類白蛋白信號序列與hF9 轉殖基因之間之獨特mRNA接合點的定製設計探針執行BASESCOPE™。隨後,使用HALO成像軟體(Indica Labs)定量各樣本中之陽性細胞之百分比。隨後,各動物之多個葉上之陽性細胞百分比之平均值與第7週血清中之hFIX水平相關。結果示於 17 28 中。第7週血清水平與對hALB-hFIX mRNA呈陽性之細胞%強烈相關(r = 0.89;R2 = 0.79)。 28. 7 hFIX BASESCOPE™ 資料 .
小鼠 引導物 hFIX μg/mL (第7 週) mRNA 探針% (4-5 個切片) STD mRNA 探針% 所計數之總細胞
1 緩衝液 ND 0.09 0.03 152833
4 僅AAV ND 0.53 0.67 351084
7 僅LNP ND 0.48 0.33 75160
10 CAG F9 211.8 0.20 0.22 190277
15 G009852 ND 0.30 0.09 144518
20 G009859 0.5 0.82 0.45 143817
21 G009859 0.5 0.88 0.43 160172
22 G009859 2.3 1.71 1.54 26015
23 G009859 3.8 2.74 0.59 183085
24 G009859 0.6 2.78 1.96 152424
25 G009860 5.6 12.46 5.80 78935
26 G009860 10.6 13.76 5.32 112252
27 G009860 9.7 14.80 5.45 201592
28 G009860 2.1 3.32 0.76 84710
29 G009860 3.0 1.52 0.35 203277
30 G009864 ND 1.94 1.78 145807
35 G009874 1.7 2.42 1.14 126665
36 G009874 1.5 1.08 0.53 195861
37 G009874 2.1 1.02 1.29 181679
38 G009874 5.5 0.40 0.43 175359
39 G009874 1.5 0.44 0.18 205417
40 G012764 15.7 28.85 7.11 167824
41 G012764 19.6 19.17 8.23 70081
42 G012764 1.9 1.95 1.79 154742
43 G012764 7.7 4.38 0.68 114060
44 G012764 3.0 1.64 1.04 238623
43 DapB (-) -- 0.12 0.07 144730
實施例17-活體內使用與F9 剔除小鼠雜交之人類化白蛋白小鼠以評估所插入之人類F9 之功能性
對於下一項研究,在雄性ALBms/hu ×F9-/- 小鼠中測試所插入之hF9 之功能性。如同實施例1一樣製備包含Cas9 mRNA及以下引導物之LNP且進行測試:G009860(靶向人類白蛋白基因座之第一內含子)及G000666(靶向小鼠白蛋白基因座之第一內含子)。將G009860稀釋至0.3 mg/kg,且將G000666稀釋至1.0 mg/kg(使用31.2公克平均體重),且兩者均共注射劑量為3E11病毒基因組/隻小鼠之封裝有雙向hF9 插入模板之AAV8。每組注射五隻ALBms/hu ×F9-/- 雄性小鼠(16週齡)。使五隻來自同一同屬性群之小鼠注射封裝有與hF9可操作地連接之CAGG啟動子之AAV8,此引起hF9之游離型表現(以每隻小鼠3E11病毒基因組)。存在六個陰性對照動物,其中每組有一隻小鼠注射僅緩衝液或僅封裝有雙向hF9 插入模板之AAV8,且每組有兩隻小鼠僅注射分別為0.3 mg/kg及1.0 mg/kg之LNP-G009860或LNP-G000666。
對於分析,執行ELISA以在各時間點在小鼠中量測hFIX循環水平。出於此目的使用人類因子IX ELISA套組(ab188393),且用來自George King Bio-Medical之人類合併正常血漿作為陽性分析對照組運作全部盤。提交脾及所有肝之左側葉之一部分以進行NGS分析。
注射後第1週、第2週及第4週之各組中血漿樣本中之人類因子IX表現水平示於 18 中及 29 中。另外,顯示肝及脾中之白蛋白基因座處之插入及缺失(插入缺失)水平之NGS結果示於 29 中。如 18 29 中所示,在1週、3週及4週時在經治療之Alb+/hu /F9-/- 小鼠之血漿中偵測到hFIX,其中ELISA顯示在1週、3週及4週時之0.5-10 μg/mL表示值。 29. 人類 FIX 血漿水平及 NGS 結果 .
樣本 第1 (μg/mL 第3 (μg/mL 第4 (μg/mL 插入缺失 插入缺失
S1 PBS BLD BLD BLD 6.12 0.12
僅S18 AAV8 BLD BLD BLD 0.73 0.10
僅S2 G000666 BLD BLD BLD 37.48 0.92
僅S4 G000666 BLD BLD BLD 30.67 1.17
僅S19 G009860 BLD BLD BLD 12.25 0.31
僅S20 G009860 BLD BLD BLD 10.73 0.45
S10 CAG 42.60 129.83 117.74 1.45 0.12
S14 CAG 35.55 82.25 100.95 0.08 0.11
S15 CAG 37.30 115.51 107.26 0.10 0.05
S16 CAG 36.39 81.27 116.24 0.05 0.10
S17 CAG 40.50 101.38 124.15 0.16 0.06
S5 AAV8 + G000666 2.90 5.00 8.79 41.46 1.43
S6 AAV8 + G000666 4.67 6.11 10.29 33.81 1.59
S7 AAV8 + G000666 2.88 3.15 3.01 33.47 1.04
S8 AAV8 + G000666 0.94 1.61 無樣本 36.54 1.34
S9 AAV8 + G000666 7.14 7.53 7.23 30.63 1.38
S11 AAV8 + G009860 0.73 0.62 0.86 11.15 0.52
S12 AAV8 + G009860 0.52 0.43 0.47 7.05 0.39
S13 AAV8 + G009860 1.71 1.89 0.93 18.38 0.57
S21 AAV8 + G009860 1.21 2.79 0.59 13.44 0.22
S22 AAV8 + G009860 2.06 1.03 2.37 18.06 0.19
人類 4.00 3.91 4.12 N/A N/A
將剩餘肝固定在10%中性經緩衝福馬林中24小時且隨後轉移至70%乙醇。從單獨葉切割四個至五個樣本且運送至HistoWiz,且進行處理且嵌入於石蠟塊中。隨後,從各石蠟塊切割五微米切片以在Ventana Ultra Discovery(Roche)上使用通用BASESCOPE™程序及試劑(Advanced Cell Diagnostics)以及定製設計探針經由BASESCOPE™進行分析,該定製設計探針靶向在達成成功整合及轉錄時形成於來自ALBms/hu 小鼠中之各各別白蛋白基因座之第一內含子之人類或小鼠白蛋白信號序列與hF9轉殖基因之間之獨特mRNA接合點。使用HALO成像軟體(Indica Labs)定量各樣本中之陽性細胞之百分比。
接下來,使用最終血液以藉由活化部分凝血活酶時間(activated partial thromboplastin time;aPTT)及凝血酶生成分析(Thrombin Generation Assay;TGA)評估功能凝血活性。活化部分凝血活酶時間(aPTT)為血漿中之內部路徑凝血活性之臨床量度。藉由添加土耳其鞣酸或高嶺土來誘導血漿凝結,該土耳其鞣酸或高嶺土兩者均活化凝血內部路徑(稱為接觸路徑)中之凝血因子XII,此隨後引起一旦凝血酶活化,則從血纖維蛋白原生成血纖維蛋白。aPTT分析提供對個體生成血凝塊之能力之評估,且此資訊可用於測定出血或血栓形成之風險。為測試aPTT,使用具有機電血凝塊偵測方法之半自動化台式系統(Diagnostica Stago STart 4)(基於黏度之偵測系統)以評估血漿中之凝血。向具有鋼球之各光析管中添加50 μL檸檬酸化血漿,且在37℃下培育5 min,且隨後在於37℃下添加50 μL土耳其鞣酸(30 μM最終濃度)達300秒之情況下觸發凝血。在藉由向各光析管中添加50 μL 0.025 M氯化鈣(8 mM最終濃度)來最終活化凝血之後,鋼球開始在兩個驅動線圈之間往返振盪。藉由接收器線圈偵測球之移動。血纖維蛋白生成增加血漿黏度直至球停止移動為止,此記錄為凝血時間。所量測之唯一參數為凝血時間。重複兩次進行運作。
凝血酶產生分析(TGA)為經活化血漿中凝血酶生成之動力學之非臨床評估。凝血酶生成為必需凝血過程,此係因為凝血酶負責其他凝血因子之活化及額外凝血酶之繁殖(經由FXI活化)以將血纖維蛋白原轉化為血纖維蛋白。凝血酶生成分析提供對個體生成凝血酶之能力之評估,且此資訊可用於測定出血或血栓形成之風險。為執行TGA,使用經校準之自動化凝血酶曲線以在分光光度計(Thrombinograph™,Thermo Scientific)中評估凝血酶生成水平。對於高通量實驗,使用96孔盤(Immulon II HB)。向各孔中添加55 μL檸檬酸化血漿(對於小鼠血漿,用生理鹽水稀釋4×),且在37℃下培育30 min。在於37℃下添加15 μL 2 μM土耳其鞣酸(0.33 μM最終濃度)達45 min之情況下觸發凝血酶生成。在向各孔中自動化注射15 μL具有16 mM CaCl2 之螢光受質(FluCa;Thrombinoscope BV)之後測定凝血酶生成。使螢光受質與所生成之凝血酶反應,在460 nm處每33 sec在血漿中對其進行連續地量測達90 min。螢光強度與凝血酶之蛋白水解活性成比例。在追蹤中所量測之主要參數為滯後時間、峰值凝血酶生成、達至峰值凝血酶生成之時間及內源性凝血酶潛能(endogenous thrombin potential;ETP)。滯後時間提供在血漿中初始偵測凝血酶所需之時間之估值。峰值為在活化之後在給定時間生成之凝血酶之最大量。達至峰值凝血酶生成之時間為從凝血級聯開始至峰值凝血酶生成之時間。ETP為在所量測之60分鐘期間生成之凝血酶之總量。重複兩次進行運作。
19 30 中所示,在aPTT分析中,使用例如G000666進行之hF9 轉殖基因插入顯示經恢復之凝血功能。僅AAV及僅LNP陰性對照樣本顯示生理鹽水中之45-60秒之經延長之aPTT時間。陽性對照CAGG及測試樣本AAV8+LNP更接近28-34秒之正常人類aPTT。 30. aPTT TGA-EA.
樣本編號 I.V. 注射 第4 週F9 μg/mL 平均aPTT (sec TGA-EA 峰值(nM
1 PBS BLD 40.2 11.13
18 僅AAV BLD 62.5 -1
2 僅LNP g666 BLD 53.9 -1
4 僅LNP g666 BLD 65.0 2.45
19 僅LNP G009860 BLD 34.1 42.83
20 僅LNP G009860 BLD 56.7 18.07
10 AAV+CAGG F9 117.74 41.1 42.65
14 AAV+CAGG F9 100.95 34.1 49.96
15 AAV+CAGG F9 107.26 42.2 49.49
16 AAV+CAGG F9 116.24 37.9 44.46
17 AAV+CAGG F9 124.15 44.1 38.02
5 AAV+g666 8.79 31.3 72.11
6 AAV+g666 10.29 32.6 90.14
7 AAV+g666 3.01 33.5 58.33
8 AAV+g666 無樣本 NA NA
9 AAV+g666 7.23 25.9 67.23
11 AAV+G009860 0.86 36.8 56.92
12 AAV+G009860 0.47 37.7 45.16
13 AAV+G009860 0.93 35.3 60.45
21 AAV+G009860 0.59 36.1 47.44
22 AAV+G009860 2.37 > 300 管中之血凝塊
20A 20B 21 以及 30 中所示,在TGA-EA分析中,使用例如G000666進行之hF9 轉殖基因插入顯示增加之凝血酶生成。相較於陰性對照樣本,陽性對照CAGG及AAV8+LNP中之凝血酶濃度更高。
總之,在1週、3週及4週時在Alb+/hu /F9-/- 小鼠之血漿中偵測到hFIX,且發現經表現之hFIX-R338L具功能性,此係因為在TGA分析中生成凝血酶,且aPTT凝血時間得到改善。
人類白蛋白內含子1:(SEQ ID NO: 1) gtaagaaatccatttttctattgttcaacttttattctattttcccagtaaaataaagttttagtaaactctgcatctttaaagaattattttggcatttatttctaaaatggcatagtattttgtatttgtgaagtcttacaaggttatcttattaataaaattcaaacatcctaggtaaaaaaaaaaaaaggtcagaattgtttagtgactgtaattttcttttgcgcactaaggaaagtgcaaagtaacttagagtgactgaaacttcacagaatagggttgaagattgaattcataactatcccaaagacctatccattgcactatgctttatttaaaaaccacaaaacctgtgctgttgatctcataaatagaacttgtatttatatttattttcattttagtctgtcttcttggttgctgttgatagacactaaaagagtattagatattatctaagtttgaatataaggctataaatatttaataatttttaaaatagtattcttggtaattgaattattcttctgtttaaaggcagaagaaataattgaacatcatcctgagtttttctgtaggaatcagagcccaatattttgaaacaaatgcataatctaagtcaaatggaaagaaatataaaaagtaacattattacttcttgttttcttcagtatttaacaatccttttttttcttcccttgcccag 5 . 小鼠白蛋白引導 RNA
引導物ID 引導序列 小鼠基因組座標(mm10 SEQ ID NO:
G000551 AUUUGCAUCUGAGAACCCUU chr5:90461148-90461168 98
G000552 AUCGGGAACUGGCAUCUUCA chr5:90461590-90461610 99
G000553 GUUACAGGAAAAUCUGAAGG chr5:90461569-90461589 100
G000554 GAUCGGGAACUGGCAUCUUC chr5:90461589-90461609 101
G000555 UGCAUCUGAGAACCCUUAGG chr5:90461151-90461171 102
G000666 CACUCUUGUCUGUGGAAACA chr5:90461709-90461729 103
G000667 AUCGUUACAGGAAAAUCUGA chr5:90461572-90461592 104
G000668 GCAUCUUCAGGGAGUAGCUU chr5:90461601-90461621 105
G000669 CAAUCUUUAAAUAUGUUGUG chr5:90461674-90461694 106
G000670 UCACUCUUGUCUGUGGAAAC chr5:90461710-90461730 107
G011722 UGCUUGUAUUUUUCUAGUAA chr5:90461039-90461059 108
G011723 GUAAAUAUCUACUAAGACAA chr5:90461425-90461445 109
G011724 UUUUUCUAGUAAUGGAAGCC chr5:90461047-90461067 110
G011725 UUAUAUUAUUGAUAUAUUUU chr5:90461174-90461194 111
G011726 GCACAGAUAUAAACACUUAA chr5:90461480-90461500 112
G011727 CACAGAUAUAAACACUUAAC chr5:90461481-90461501 113
G011728 GGUUUUAAAAAUAAUAAUGU chr5:90461502-90461522 114
G011729 UCAGAUUUUCCUGUAACGAU chr5:90461572-90461592 115
G011730 CAGAUUUUCCUGUAACGAUC chr5:90461573-90461593 116
G011731 CAAUGGUAAAUAAGAAAUAA chr5:90461408-90461428 117
G013018 GGAAAAUCUGAAGGUGGCAA chr5:90461563-90461583 118
G013019 GGCGAUCUCACUCUUGUCUG chr5:90461717-90461737 119
6. 小鼠白蛋白 sgRNA 及修飾模式
引導物ID 完全序列 SEQ ID NO: 經完全序列修飾 SEQ ID NO:
G000551 AUUUGCAUCUGAGAACCCUUGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU 120 mA*mU*mU*UGCAUCUGAGAACCCUUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 142
G000552 AUCGGGAACUGGCAUCUUCA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 121 mA*mU*mC*GGGAACUGGCAUCUUCAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 143
G000553 GUUACAGGAAAAUCUGAAGG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 122 mG*mU*mU*ACAGGAAAAUCUGAAGGGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 144
G000554 GAUCGGGAACUGGCAUCUUC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 123 mG*mA*mU*CGGGAACUGGCAUCUUCGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 145
G000555 UGCAUCUGAGAACCCUUAGG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 124 mU*mG*mC*AUCUGAGAACCCUUAGGGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 146
G000666 CACUCUUGUCUGUGGAAACA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 125 mC*mA*mC*UCUUGUCUGUGGAAACAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 147
G000667 AUCGUUACAGGAAAAUCUGA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 126 mA*mU*mC*GUUACAGGAAAAUCUGAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 148
G000668 GCAUCUUCAGGGAGUAGCUU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 127 mG*mC*mA*UCUUCAGGGAGUAGCUUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 149
G000669 CAAUCUUUAAAUAUGUUGUG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 128 mC*mA*mA*UCUUUAAAUAUGUUGUGGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 150
G000670 UCACUCUUGUCUGUGGAAAC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 129 mU*mC*mA*CUCUUGUCUGUGGAAACGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 151
G011722 UGCUUGUAUUUUUCUAGUAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 130 mU*mG*mC*UUGUAUUUUUCUAGUAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 152
G011723 GUAAAUAUCUACUAAGACAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 131 mG*mU*mA*AAUAUCUACUAAGACAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 153
G011724 UUUUUCUAGUAAUGGAAGCC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 132 mU*mU*mU*UUCUAGUAAUGGAAGCCGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 154
G011725 UUAUAUUAUUGAUAUAUUUU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 133 mU*mU*mA*UAUUAUUGAUAUAUUUUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 155
G011726 GCACAGAUAUAAACACUUAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 134 mG*mC*mA*CAGAUAUAAACACUUAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 156
G011727 CACAGAUAUAAACACUUAAC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 135 mC*mA*mC*AGAUAUAAACACUUAACGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 157
G011728 GGUUUUAAAAAUAAUAAUGU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 136 mG*mG*mU*UUUAAAAAUAAUAAUGUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 158
G011729 UCAGAUUUUCCUGUAACGAU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 137 mU*mC*mA*GAUUUUCCUGUAACGAUGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 159
G011730 CAGAUUUUCCUGUAACGAUC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 138 mC*mA*mG*AUUUUCCUGUAACGAUCGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 160
G011731 CAAUGGUAAAUAAGAAAUAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 139 mC*mA*mA*UGGUAAAUAAGAAAUAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 161
G013018 GGAAAAUCUGAAGGUGGCAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 140 mG*mG*mA*AAAUCUGAAGGUGGCAAGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 162
G013019 GGCGAUCUCACUCUUGUCUG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 141 mG*mG*mC*GAUCUCACUCUUGUCUGGUUUUAGAmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAAAAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 163
7. Cyno 白蛋白引導 RNA
引導物ID 引導序列 Cyno 基因組座標(mf5 SEQ ID NO:
G009844 GAGCAACCUCACUCUUGUCU chr5:61198711-61198731 2
G009845 AGCAACCUCACUCUUGUCUG chr5:61198712-61198732 165
G009846 ACCUCACUCUUGUCUGGGGA chr5:61198716-61198736 166
G009847 CCUCACUCUUGUCUGGGGAA chr5:61198717-61198737 167
G009848 CUCACUCUUGUCUGGGGAAG chr5:61198718-61198738 168
G009849 GGGGAAGGGGAGAAAAAAAA chr5:61198731-61198751 169
G009850 GGGAAGGGGAGAAAAAAAAA chr5:61198732-61198752 170
G009851 AUGCAUUUGUUUCAAAAUAU chr5:61198825-61198845 3
G009852 UGCAUUUGUUUCAAAAUAUU chr5:61198826-61198846 172
G009853 UGAUUCCUACAGAAAAAGUC chr5:61198852-61198872 4
G009854 UACAGAAAAAGUCAGGAUAA chr5:61198859-61198879 174
G009855 UUUCUUCUGCCUUUAAACAG chr5:61198889-61198909 175
G009856 UUAUAGUUUUAUAUUCAAAC chr5:61198957-61198977 176
G009857 AUUUAUGAGAUCAACAGCAC chr5:61199062-61199082 5
G009858 GAUCAACAGCACAGGUUUUG chr5:61199070-61199090 6
G009859 UUAAAUAAAGCAUAGUGCAA chr5:61199096-61199116 7
G009860 UAAAGCAUAGUGCAAUGGAU chr5:61199101-61199121 8
G009861 UAGUGCAAUGGAUAGGUCUU chr5:61199108-61199128 9
G009862 AGUGCAAUGGAUAGGUCUUA chr5:61199109-61199129 182
G009863 UUACUUUGCACUUUCCUUAG chr5:61199186-61199206 183
G009864 UACUUUGCACUUUCCUUAGU chr5:61199187-61199207 184
G009865 UCUGACCUUUUAUUUUACCU chr5:61199238-61199258 185
G009866 UACUAAAACUUUAUUUUACU chr5:61199367-61199387 10
G009867 AAAGUUGAACAAUAGAAAAA chr5:61199401-61199421 11
G009868 AAUGCAUAAUCUAAGUCAAA chr5:61198812-61198832 12
G009869 AUUAUCCUGACUUUUUCUGU chr5:61198860-61198880 189
G009870 UGAAUUAUUCCUCUGUUUAA chr5:61198901-61198921 190
G009871 UAAUUUUCUUUUGCCCACUA chr5:61199203-61199223 191
G009872 AAAAGGUCAGAAUUGUUUAG chr5:61199229-61199249 192
G009873 AACAUCCUAGGUAAAAUAAA chr5:61199246-61199266 193
G009874 UAAUAAAAUUCAAACAUCCU chr5:61199258-61199278 13
G009875 UUGUCAUGUAUUUCUAAAAU chr5:61199322-61199342 195
G009876 UUUGUCAUGUAUUUCUAAAA chr5:61199323-61199343 196
8. Cyno sgRNA 及修飾模式
引導物ID 完全序列 SEQ ID NO: 經完全序列修飾 SEQ ID NO:
G009844 GAGCAACCUCACUCUUGUCU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 34 mG*mA*mG*CAACCUCACUCUUGUCUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUA AAAUAAGGCUAGUCCGUUAUCAmAmCmUmUm GmAmAmAmAmAmGmUmGmGmCmAmCmCmGm AmGmUmCmGmGmUmGmCmU*mU*mU*mU 66
G009845 AGCAACCUCACUCUUGUCUG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 198 mA*mG*mC*AACCUCACUCUUGUCUGGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUA AAAUAAGGCUAGUCCGUUAUCAmAmCmUmUm GmAmAmAmAmAmGmUmGmGmCmAmCmCmGm AmGmUmCmGmGmUmGmCmU*mU*mU*mU 231
G009846 ACCUCACUCUUGUCUGGGGA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 199 mA*mC*mC*UCACUCUUGUCUGGGGAGUUUU AGAmGmCmUmAmGmAmAmAmUmAmGmCAA GUUAAAAUAAGGCUAGUCCGUUAUCAmAmCm UmUmGmAmAmAmAmAmGmUmGmGmCmAmCm CmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 232
G009847 CCUCACUCUUGUCUGGGGAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 200 mC*mC*mU*CACUCUUGUCUGGGGAAGUUUUA GAmGmCmUmAmGmAmAmAmUmAmGmCAAGU UAAAAUAAGGCUAGUCCGUUAUCAmAmCmUm UmGmAmAmAmAmAmGmUmGmGmCmAmCmCm GmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 233
G009848 CUCACUCUUGUCUGGGGAAG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 201 mC*mU*mC*ACUCUUGUCUGGGGAAGGUUUU AGAmGmCmUmAmGmAmAmAmUmAmGmCAA GUUAAAAUAAGGCUAGUCCGUUAUCAmAmCm UmUmGmAmAmAmAmAmGmUmGmGmCmAmCm CmGmAmGmUmCmGmGmUmGmCmU*mU*mU*mU 234
G009849 GGGGAAGGGGAGAAAAAAAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 202 mG*mG*mG*GAAGGGGAGAAAAAAAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 235
G009850 GGGAAGGGGAGAAAAAAAAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 203 mG*mG*mG*AAGGGGAGAAAAAAAAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 236
G009851 AUGCAUUUGUUUCAAAAUAU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 35 mA*mU*mG*CAUUUGUUUCAAAAUAUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 67
G009852 UGCAUUUGUUUCAAAAUAUU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 36 mU*mG*mC*AUUUGUUUCAAAAUAUUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 68
G009853 UGAUUCCUACAGAAAAAGUC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 206 mU*mG*mA*UUCCUACAGAAAAAGUCGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 239
G009854 UACAGAAAAAGUCAGGAUAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 207 mU*mA*mC*AGAAAAAGUCAGGAUAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 240
G009855 UUUCUUCUGCCUUUAAACAG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 208 mU*mU*mU*CUUCUGCCUUUAAACAGGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 241
G009856 UUAUAGUUUUAUAUUCAAAC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 209 mU*mU*mA*UAGUUUUAUAUUCAAACGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 242
G009857 AUUUAUGAGAUCAACAGCAC GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 37 mA*mU*mU*UAUGAGAUCAACAGCACGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 69
G009858 GAUCAACAGCACAGGUUUUG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 38 mG*mA*mU*CAACAGCACAGGUUUUGGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 70
G009859 UUAAAUAAAGCAUAGUGCAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 39 mU*mU*mA*AAUAAAGCAUAGUGCAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 71
G009860 UAAAGCAUAGUGCAAUGGAU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 40 mU*mA*mA*AGCAUAGUGCAAUGGAUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 72
G009861 UAGUGCAAUGGAUAGGUCUU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 41 mU*mA*mG*UGCAAUGGAUAGGUCUUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 73
G009862 AGUGCAAUGGAUAGGUCUUA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 215 mA*mG*mU*GCAAUGGAUAGGUCUUAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 248
G009863 UUACUUUGCACUUUCCUUAG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 216 mU*mU*mA*CUUUGCACUUUCCUUAGGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 249
G009864 UACUUUGCACUUUCCUUAGU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 217 mU*mA*mC*UUUGCACUUUCCUUAGUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 250
G009865 UCUGACCUUUUAUUUUACCU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 218 mU*mC*mU*GACCUUUUAUUUUACCUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 251
G009866 UACUAAAACUUUAUUUUACU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 42 mU*mA*mC*UAAAACUUUAUUUUACUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 74
G009867 AAAGUUGAACAAUAGAAAAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 43 mA*mA*mA*GUUGAACAAUAGAAAAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 75
G009868 AAUGCAUAAUCUAAGUCAAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 44 mA*mA*mU*GCAUAAUCUAAGUCAAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 76
G009869 AUUAUCCUGACUUUUUCUGU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 222 mA*mU*mU*AUCCUGACUUUUUCUGUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 255
G009870 UGAAUUAUUCCUCUGUUUAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 223 mU*mG*mA*AUUAUUCCUCUGUUUAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 256
G009871 UAAUUUUCUUUUGCCCACUA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 224 mU*mA*mA*UUUUCUUUUGCCCACUAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUm GmAmAmAmAmAmGmUmGmGmCmAmCmCmGm AmGmUmCmGmGmUmGmCmU*mU*mU*mU 257
G009872 AAAAGGUCAGAAUUGUUUAG GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 225 mA*mA*mA*AGGUCAGAAUUGUUUAGGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 258
G009873 AACAUCCUAGGUAAAAUAAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 226 mA*mA*mC*AUCCUAGGUAAAAUAAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 259
G009874 UAAUAAAAUUCAAACAUCCU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 45 mU*mA*mA*UAAAAUUCAAACAUCCUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 77
G009875 UUGUCAUGUAUUUCUAAAAU GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 228 mU*mU*mG*UCAUGUAUUUCUAAAAUGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 261
G009876 UUUGUCAUGUAUUUCUAAAA GUUUUAGAGCUAGAAAUAGC AAGUUAAAAUAAGGCUAGUC CGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGCUUUU 229 mU*mU*mU*GUCAUGUAUUUCUAAAAGUUUUAG AmGmCmUmAmGmAmAmAmUmAmGmCAAGUUAA AAUAAGGCUAGUCCGUUAUCAmAmCmUmUmGm AmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU 262
9. 載體組分及序列
質體ID 5' ITR 第1位向 第2位向 3' ITR
剪接受體 轉殖基因 Poly-A Poly-A 轉殖基因 剪接受體
P00147 (SEQ ID NO: 263) 小鼠白蛋白剪接受體(SEQ ID NO: 264) 人類因子IX(R338L) (SEQ ID NO: 264) SEQ ID NO: 266 SEQ ID NO: 267 人類因子IX(R338L) (SEQ ID NO: 268) 小鼠白蛋白剪接受體(SEQ ID NO: 269) (SEQ ID NO: 270)
P00411 (SEQ ID NO: 263) 人類因子IX剪接受體(SEQ ID NO: 271) 人類因子IX(R338L)-HiBit (SEQ ID NO: 272) SEQ ID NO: 266 SEQ ID NO: 267 人類因子IX(R338L)-HiBit (SEQ ID NO: 273) 人類因子IX剪接受體(SEQ ID NO: 274) (SEQ ID NO: 270)
P00415 (SEQ ID NO: 263) 小鼠白蛋白剪接受體(SEQ ID NO: 264) Nluc-P2A-GFP(SEQ ID NO: 275) SEQ ID NO: 266 SEQ ID NO: 267 Nluc-P2A-GFP(SEQ ID NO: 276) 小鼠白蛋白剪接受體(SEQ ID NO: 269) (SEQ ID NO: 270)
P00418 (SEQ ID NO: 263) 小鼠白蛋白剪接受體(SEQ ID NO: 264) 人類因子IX(R338L)-HiBit (SEQ ID NO: 272) SEQ ID NO: 266 SEQ ID NO: 267 人類因子IX(R338L)-HiBit (SEQ ID NO: 273) 小鼠白蛋白剪接受體(SEQ ID NO: 269) (SEQ ID NO: 270)
5' ITR序列(SEQ ID NO: 263): TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT
小鼠白蛋白剪接受體(第1位向)(SEQ ID NO: 264): TAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAG
人類因子IX(R338L),第1位向(SEQ ID NO: 265): TTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAA
Poly-A(第1位向)(SEQ ID NO: 266): CCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCC
Poly-A(第2位向)(SEQ ID NO: 267): AAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTG
人類因子IX(R338L),第2位向(SEQ ID NO: 268): TTAGGTGAGCTTAGTCTTTTCTTTTATCCAATTCACGTAGCGAGAGACCTTCGTATAGATGCCATATTTCCCCTTCATCGCACATTCCTCCCCCCAACTTATTATCCCGGTCAAGAAACTTGTTCCTTCGACTTCAGTGACGTGTGGTCCACCTGAATCACCTTGGCATGAGTCGCGACCGCCCTCGTGAAACCCAGCACAAAACATGTTATTGTAAATCGTAAATTTCGTGGACAGAAGACAGGTCGCTCTATCGACCAACGGGACGCGCAAATATTGCAGAACGAGGGCTGATCGACCTTTGTGGAAGACCCGCCCCCACCCACTCACATATCCGCTCCCAAATTTCAAGAAGATATTTGTATATTCTTTATCGGCTATACAAATCGGGGTAACATAGGAGTTAAGTACGAGTGGCTCGTCCAGCTCCAGGAGGGCTATATCATGGTTGTACTTGTTTATAGCGGCATTATAATTGTGATGGGGTATGATCCTGATAACATTCCTTTTCTGTTCAGTATGCTCAGTTTCTTCAATGTTGTGTTCGCCAGCCACGACCGTAATCTTAACCCCCGTCTCGACACAGTGTGCGGCCGTTACAATCCACTTTTCATTGACTATGGAGCCCCCACAAAACGCGTCGACTTTTCCGTTGAGCACCACCTGCCATGGAAATTGGCCAGGTTTAGCGTCCTCGCCCCCGACAACCCTAGTAAAGTCATTAAATGACTGTGTGGATTGTGTTATATTATCAAGAATCGTTTCGGCTTCAGTAGAGTTAACGTAGTCCACATCGGGAAAAACTGTCTCGGCCCTTGTCAACTTTGATGTCTGGGACACACTTACCCGACCGCACGGGAAGGGCACCGCCGGTTCACAGCTCTTTTGATTCTCAGCGAGCCGGTAGCCCTCAGTGCAACTACACACAACTTTGTTGTCGGCGGAATTTTTACAGAATTGCTCGCATCGTCCATTTTTAATGTTGCAGGTGACGTCCAACTCGCAGTTTTTTCCTTCAAAACCAAAAGGGCACCAACACTCGTAGGAATTTATATCGTCTTTACAACTCCCCCCATTCAGACATGGATTAGATTCGCATTGGTCCCCATCGACATATTGCTTCCAGAACTCAGTGGTCCGTTCTGTATTCTCAAACACCTCGCGCGCTTCTTCAAAACTGCATTTTTCCTCCATACACTCTCGCTCCAAGTTCCCTTGCACGAATTCTTCAAGCTTTCCTGAGTTATACCTTTTAGGCCGGTTAAGTATCTTATTCGCGTTTTCGTGGTCCAGAAA
小鼠白蛋白剪接受體(第2位向)(SEQ ID NO: 269): CTGTGGAAACAGGGAGAGAAAAACCACACAACATATTTAAAGATTGATGAAGACAACTAACTGTAATATGCTGCTTTTTGTTCTTCTCTTCACTGACCTA
3' ITR序列(SEQ ID NO: 270): AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
人類因子IX剪接受體(第1位向)(SEQ ID NO: 271): GATTATTTGGATTAAAAACAAAGACTTTCTTAAGAGATGTAAAATTTTCATGATGTTTTCTTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAG
人類因子IX(R338L)-HiBit(第1位向)(SEQ ID NO: 272): TTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTCTCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTGTCAGCGGATGGAGACTGTTCAAGAAGATCAGCTAA
人類因子IX(R338L)-HiBit(第2位向)(SEQ ID NO: 273): TTAGGAAATCTTCTTAAACAGCCGCCAGCCGCTCACGGTGAGCTTAGTCTTTTCTTTTATCCAATTCACGTAGCGAGAGACCTTCGTATAGATGCCATATTTCCCCTTCATCGCACATTCCTCCCCCCAACTTATTATCCCGGTCAAGAAACTTGTTCCTTCGACTTCAGTGACGTGTGGTCCACCTGAATCACCTTGGCATGAGTCGCGACCGCCCTCGTGAAACCCAGCACAAAACATGTTATTGTAAATCGTAAATTTCGTGGACAGAAGACAGGTCGCTCTATCGACCAACGGGACGCGCAAATATTGCAGAACGAGGGCTGATCGACCTTTGTGGAAGACCCGCCCCCACCCACTCACATATCCGCTCCCAAATTTCAAGAAGATATTTGTATATTCTTTATCGGCTATACAAATCGGGGTAACATAGGAGTTAAGTACGAGTGGCTCGTCCAGCTCCAGGAGGGCTATATCATGGTTGTACTTGTTTATAGCGGCATTATAATTGTGATGGGGTATGATCCTGATAACATTCCTTTTCTGTTCAGTATGCTCAGTTTCTTCAATGTTGTGTTCGCCAGCCACGACCGTAATCTTAACCCCCGTCTCGACACAGTGTGCGGCCGTTACAATCCACTTTTCATTGACTATGGAGCCCCCACAAAACGCGTCGACTTTTCCGTTGAGCACCACCTGCCATGGAAATTGGCCAGGTTTAGCGTCCTCGCCCCCGACAACCCTAGTAAAGTCATTAAATGACTGTGTGGATTGTGTTATATTATCAAGAATCGTTTCGGCTTCAGTAGAGTTAACGTAGTCCACATCGGGAAAAACTGTCTCGGCCCTTGTCAACTTTGATGTCTGGGACACACTTACCCGACCGCACGGGAAGGGCACCGCCGGTTCACAGCTCTTTTGATTCTCAGCGAGCCGGTAGCCCTCAGTGCAACTACACACAACTTTGTTGTCGGCGGAATTTTTACAGAATTGCTCGCATCGTCCATTTTTAATGTTGCAGGTGACGTCCAACTCGCAGTTTTTTCCTTCAAAACCAAAAGGGCACCAACACTCGTAGGAATTTATATCGTCTTTACAACTCCCCCCATTCAGACATGGATTAGATTCGCATTGGTCCCCATCGACATATTGCTTCCAGAACTCAGTGGTCCGTTCTGTATTCTCAAACACCTCGCGCGCTTCTTCAAAACTGCATTTTTCCTCCATACACTCTCGCTCCAAGTTCCCTTGCACGAATTCTTCAAGCTTTCCTGAGTTATACCTTTTAGGCCGGTTAAGTATCTTATTCGCGTTTTCGTGGTCCAGAAA
人類因子IX剪接受體(第2位向)(SEQ ID NO: 274): CTGAAATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAAAGAAAACATCATGAAAATTTTACATCTCTTAAGAAAGTCTTTGTTTTTAATCCAAATAATC
Nluc-P2A-GFP(第1位向)(SEQ ID NO: 275): TTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAGTATTCACTTTGGAGGACTTTGTCGGTGACTGGAGGCAAACCGCTGGTTATAATCTCGACCAAGTACTGGAACAGGGCGGGGTAAGTTCCCTCTTTCAGAATTTGGGTGTAAGCGTCACACCAATCCAGCGGATTGTGTTGTCTGGAGAGAACGGACTCAAAATTGACATCCATGTTATCATTCCATATGAAGGTCTCAGTGGAGACCAAATGGGGCAGATCGAGAAGATTTTCAAGGTAGTTTACCCAGTCGACGATCACCACTTCAAAGTCATTCTCCACTATGGCACACTTGTTATCGACGGAGTAACTCCTAATATGATTGATTACTTTGGTCGCCCGTATGAGGGCATCGCAGTGTTTGATGGCAAAAAGATCACCGTAACAGGAACGTTGTGGAATGGGAACAAGATAATCGACGAGAGATTGATAAATCCAGACGGGTCACTCCTGTTCAGGGTTACAATTAACGGCGTCACAGGATGGAGACTCTGTGAACGAATACTGGCCACAAATTTTTCACTCCTGAAGCAGGCCGGAGACGTGGAGGAAAACCCAGGGCCCGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGGAGGAGGAAGCCCGAAGAAGAAGAGAAAGGTCTAA
Nluc-P2A-GFP(第2位向)(SEQ ID NO: 276): TTACACCTTCCTCTTCTTCTTGGGGCTGCCGCCGCCCTTGTACAGCTCGTCCATGCCCAGGGTGATGCCGGCGGCGGTCACGAACTCCAGCAGCACCATGTGGTCCCTCTTCTCGTTGGGGTCCTTGCTCAGGGCGCTCTGGGTGCTCAGGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGTTCTGCTGGTAGTGGTCGGCCAGCTGCACGCTGCCGTCCTCGATGTTGTGCCTGATCTTGAAGTTCACCTTGATGCCGTTCTTCTGCTTGTCGGCCATGATGTACACGTTGTGGCTGTTGTAGTTGTACTCCAGCTTGTGGCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTCAGCTCGATCCTGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCCCTGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGATGGTCCTCTCCTGCACGTAGCCCTCGGGCATGGCGCTCTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGTACCTGCTGAAGCACTGCACGCCGTAGGTCAGGGTGGTCACCAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTGCCGTAGGTGGCGTCGCCCTCGCCCTCGCCGCTCACGCTGAACTTGTGGCCGTTCACGTCGCCGTCCAGCTCCACCAGGATGGGCACCACGCCGGTGAACAGCTCCTCGCCCTTGCTCACGGGGCCGGGGTTCTCCTCCACGTCGCCGGCCTGCTTCAGCAGGCTGAAGTTGGTGGCCAGGATCCTCTCGCACAGCCTCCAGCCGGTCACGCCGTTGATGGTCACCCTGAACAGCAGGCTGCCGTCGGGGTTGATCAGCCTCTCGTCGATGATCTTGTTGCCGTTCCACAGGGTGCCGGTCACGGTGATCTTCTTGCCGTCGAACACGGCGATGCCCTCGTAGGGCCTGCCGAAGTAGTCGATCATGTTGGGGGTCACGCCGTCGATCACCAGGGTGCCGTAGTGCAGGATCACCTTGAAGTGGTGGTCGTCCACGGGGTACACCACCTTGAAAATCTTCTCGATCTGGCCCATCTGGTCGCCGCTCAGGCCCTCGTAGGGGATGATCACGTGGATGTCGATCTTCAGGCCGTTCTCGCCGCTCAGCACGATCCTCTGGATGGGGGTCACGCTCACGCCCAGGTTCTGGAACAGGCTGCTCACGCCGCCCTGCTCCAGCACCTGGTCCAGGTTGTAGCCGGCGGTCTGCCTCCAGTCGCCCACGAAGTCCTCCAGGGTGAACACGGCCTCCTCGAAGCTGCACTTCTCCTCCATGCACTCCCTCTCCAGGTTGCCCTGCACGAACTCCTCCAGCTTGCCGCTGTTGTACCTCTTGGGCCTGTTCAGGATCTTGTTGGCGTTCTCGTGGTCCAGGAA
P00147完全序列(從ITR至ITR):(SEQ ID NO: 277) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTTAGGTGAGCTTAGTCTTTTCTTTTATCCAATTCACGTAGCGAGAGACCTTCGTATAGATGCCATATTTCCCCTTCATCGCACATTCCTCCCCCCAACTTATTATCCCGGTCAAGAAACTTGTTCCTTCGACTTCAGTGACGTGTGGTCCACCTGAATCACCTTGGCATGAGTCGCGACCGCCCTCGTGAAACCCAGCACAAAACATGTTATTGTAAATCGTAAATTTCGTGGACAGAAGACAGGTCGCTCTATCGACCAACGGGACGCGCAAATATTGCAGAACGAGGGCTGATCGACCTTTGTGGAAGACCCGCCCCCACCCACTCACATATCCGCTCCCAAATTTCAAGAAGATATTTGTATATTCTTTATCGGCTATACAAATCGGGGTAACATAGGAGTTAAGTACGAGTGGCTCGTCCAGCTCCAGGAGGGCTATATCATGGTTGTACTTGTTTATAGCGGCATTATAATTGTGATGGGGTATGATCCTGATAACATTCCTTTTCTGTTCAGTATGCTCAGTTTCTTCAATGTTGTGTTCGCCAGCCACGACCGTAATCTTAACCCCCGTCTCGACACAGTGTGCGGCCGTTACAATCCACTTTTCATTGACTATGGAGCCCCCACAAAACGCGTCGACTTTTCCGTTGAGCACCACCTGCCATGGAAATTGGCCAGGTTTAGCGTCCTCGCCCCCGACAACCCTAGTAAAGTCATTAAATGACTGTGTGGATTGTGTTATATTATCAAGAATCGTTTCGGCTTCAGTAGAGTTAACGTAGTCCACATCGGGAAAAACTGTCTCGGCCCTTGTCAACTTTGATGTCTGGGACACACTTACCCGACCGCACGGGAAGGGCACCGCCGGTTCACAGCTCTTTTGATTCTCAGCGAGCCGGTAGCCCTCAGTGCAACTACACACAACTTTGTTGTCGGCGGAATTTTTACAGAATTGCTCGCATCGTCCATTTTTAATGTTGCAGGTGACGTCCAACTCGCAGTTTTTTCCTTCAAAACCAAAAGGGCACCAACACTCGTAGGAATTTATATCGTCTTTACAACTCCCCCCATTCAGACATGGATTAGATTCGCATTGGTCCCCATCGACATATTGCTTCCAGAACTCAGTGGTCCGTTCTGTATTCTCAAACACCTCGCGCGCTTCTTCAAAACTGCATTTTTCCTCCATACACTCTCGCTCCAAGTTCCCTTGCACGAATTCTTCAAGCTTTCCTGAGTTATACCTTTTAGGCCGGTTAAGTATCTTATTCGCGTTTTCGTGGTCCAGAAAAACTGTGGAAACAGGGAGAGAAAAACCACACAACATATTTAAAGATTGATGAAGACAACTAACTGTAATATGCTGCTTTTTGTTCTTCTCTTCACTGACCTAAGAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00411完全序列(從ITR至ITR):(SEQ ID NO: 278) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTCTGATTATTTGGATTAAAAACAAAGACTTTCTTAAGAGATGTAAAATTTTCATGATGTTTTCTTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTCTCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTGTCAGCGGATGGAGACTGTTCAAGAAGATCAGCTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTTAGGAAATCTTCTTAAACAGCCGCCAGCCGCTCACGGTGAGCTTAGTCTTTTCTTTTATCCAATTCACGTAGCGAGAGACCTTCGTATAGATGCCATATTTCCCCTTCATCGCACATTCCTCCCCCCAACTTATTATCCCGGTCAAGAAACTTGTTCCTTCGACTTCAGTGACGTGTGGTCCACCTGAATCACCTTGGCATGAGTCGCGACCGCCCTCGTGAAACCCAGCACAAAACATGTTATTGTAAATCGTAAATTTCGTGGACAGAAGACAGGTCGCTCTATCGACCAACGGGACGCGCAAATATTGCAGAACGAGGGCTGATCGACCTTTGTGGAAGACCCGCCCCCACCCACTCACATATCCGCTCCCAAATTTCAAGAAGATATTTGTATATTCTTTATCGGCTATACAAATCGGGGTAACATAGGAGTTAAGTACGAGTGGCTCGTCCAGCTCCAGGAGGGCTATATCATGGTTGTACTTGTTTATAGCGGCATTATAATTGTGATGGGGTATGATCCTGATAACATTCCTTTTCTGTTCAGTATGCTCAGTTTCTTCAATGTTGTGTTCGCCAGCCACGACCGTAATCTTAACCCCCGTCTCGACACAGTGTGCGGCCGTTACAATCCACTTTTCATTGACTATGGAGCCCCCACAAAACGCGTCGACTTTTCCGTTGAGCACCACCTGCCATGGAAATTGGCCAGGTTTAGCGTCCTCGCCCCCGACAACCCTAGTAAAGTCATTAAATGACTGTGTGGATTGTGTTATATTATCAAGAATCGTTTCGGCTTCAGTAGAGTTAACGTAGTCCACATCGGGAAAAACTGTCTCGGCCCTTGTCAACTTTGATGTCTGGGACACACTTACCCGACCGCACGGGAAGGGCACCGCCGGTTCACAGCTCTTTTGATTCTCAGCGAGCCGGTAGCCCTCAGTGCAACTACACACAACTTTGTTGTCGGCGGAATTTTTACAGAATTGCTCGCATCGTCCATTTTTAATGTTGCAGGTGACGTCCAACTCGCAGTTTTTTCCTTCAAAACCAAAAGGGCACCAACACTCGTAGGAATTTATATCGTCTTTACAACTCCCCCCATTCAGACATGGATTAGATTCGCATTGGTCCCCATCGACATATTGCTTCCAGAACTCAGTGGTCCGTTCTGTATTCTCAAACACCTCGCGCGCTTCTTCAAAACTGCATTTTTCCTCCATACACTCTCGCTCCAAGTTCCCTTGCACGAATTCTTCAAGCTTTCCTGAGTTATACCTTTTAGGCCGGTTAAGTATCTTATTCGCGTTTTCGTGGTCCAGAAAAACTGAAATGTAAAAGAATAATTCTTTAGTTTTAGCAAAAAAGAAAACATCATGAAAATTTTACATCTCTTAAGAAAGTCTTTGTTTTTAATCCAAATAATCAGAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00415完全序列(從ITR至ITR):(SEQ ID NO: 279) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCAGTATTCACTTTGGAGGACTTTGTCGGTGACTGGAGGCAAACCGCTGGTTATAATCTCGACCAAGTACTGGAACAGGGCGGGGTAAGTTCCCTCTTTCAGAATTTGGGTGTAAGCGTCACACCAATCCAGCGGATTGTGTTGTCTGGAGAGAACGGACTCAAAATTGACATCCATGTTATCATTCCATATGAAGGTCTCAGTGGAGACCAAATGGGGCAGATCGAGAAGATTTTCAAGGTAGTTTACCCAGTCGACGATCACCACTTCAAAGTCATTCTCCACTATGGCACACTTGTTATCGACGGAGTAACTCCTAATATGATTGATTACTTTGGTCGCCCGTATGAGGGCATCGCAGTGTTTGATGGCAAAAAGATCACCGTAACAGGAACGTTGTGGAATGGGAACAAGATAATCGACGAGAGATTGATAAATCCAGACGGGTCACTCCTGTTCAGGGTTACAATTAACGGCGTCACAGGATGGAGACTCTGTGAACGAATACTGGCCACAAATTTTTCACTCCTGAAGCAGGCCGGAGACGTGGAGGAAAACCCAGGGCCCGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGGAGGAGGAAGCCCGAAGAAGAAGAGAAAGGTCTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTTACACCTTCCTCTTCTTCTTGGGGCTGCCGCCGCCCTTGTACAGCTCGTCCATGCCCAGGGTGATGCCGGCGGCGGTCACGAACTCCAGCAGCACCATGTGGTCCCTCTTCTCGTTGGGGTCCTTGCTCAGGGCGCTCTGGGTGCTCAGGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGTTCTGCTGGTAGTGGTCGGCCAGCTGCACGCTGCCGTCCTCGATGTTGTGCCTGATCTTGAAGTTCACCTTGATGCCGTTCTTCTGCTTGTCGGCCATGATGTACACGTTGTGGCTGTTGTAGTTGTACTCCAGCTTGTGGCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTCAGCTCGATCCTGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCCCTGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGATGGTCCTCTCCTGCACGTAGCCCTCGGGCATGGCGCTCTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGTACCTGCTGAAGCACTGCACGCCGTAGGTCAGGGTGGTCACCAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTGCCGTAGGTGGCGTCGCCCTCGCCCTCGCCGCTCACGCTGAACTTGTGGCCGTTCACGTCGCCGTCCAGCTCCACCAGGATGGGCACCACGCCGGTGAACAGCTCCTCGCCCTTGCTCACGGGGCCGGGGTTCTCCTCCACGTCGCCGGCCTGCTTCAGCAGGCTGAAGTTGGTGGCCAGGATCCTCTCGCACAGCCTCCAGCCGGTCACGCCGTTGATGGTCACCCTGAACAGCAGGCTGCCGTCGGGGTTGATCAGCCTCTCGTCGATGATCTTGTTGCCGTTCCACAGGGTGCCGGTCACGGTGATCTTCTTGCCGTCGAACACGGCGATGCCCTCGTAGGGCCTGCCGAAGTAGTCGATCATGTTGGGGGTCACGCCGTCGATCACCAGGGTGCCGTAGTGCAGGATCACCTTGAAGTGGTGGTCGTCCACGGGGTACACCACCTTGAAAATCTTCTCGATCTGGCCCATCTGGTCGCCGCTCAGGCCCTCGTAGGGGATGATCACGTGGATGTCGATCTTCAGGCCGTTCTCGCCGCTCAGCACGATCCTCTGGATGGGGGTCACGCTCACGCCCAGGTTCTGGAACAGGCTGCTCACGCCGCCCTGCTCCAGCACCTGGTCCAGGTTGTAGCCGGCGGTCTGCCTCCAGTCGCCCACGAAGTCCTCCAGGGTGAACACGGCCTCCTCGAAGCTGCACTTCTCCTCCATGCACTCCCTCTCCAGGTTGCCCTGCACGAACTCCTCCAGCTTGCCGCTGTTGTACCTCTTGGGCCTGTTCAGGATCTTGTTGGCGTTCTCGTGGTCCAGGAA
P00418完全序列(從ITR至ITR):(SEQ ID NO: 280) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTCTCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTGTCAGCGGATGGAGACTGTTCAAGAAGATCAGCTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTTAGGAAATCTTCTTAAACAGCCGCCAGCCGCTCACGGTGAGCTTAGTCTTTTCTTTTATCCAATTCACGTAGCGAGAGACCTTCGTATAGATGCCATATTTCCCCTTCATCGCACATTCCTCCCCCCAACTTATTATCCCGGTCAAGAAACTTGTTCCTTCGACTTCAGTGACGTGTGGTCCACCTGAATCACCTTGGCATGAGTCGCGACCGCCCTCGTGAAACCCAGCACAAAACATGTTATTGTAAATCGTAAATTTCGTGGACAGAAGACAGGTCGCTCTATCGACCAACGGGACGCGCAAATATTGCAGAACGAGGGCTGATCGACCTTTGTGGAAGACCCGCCCCCACCCACTCACATATCCGCTCCCAAATTTCAAGAAGATATTTGTATATTCTTTATCGGCTATACAAATCGGGGTAACATAGGAGTTAAGTACGAGTGGCTCGTCCAGCTCCAGGAGGGCTATATCATGGTTGTACTTGTTTATAGCGGCATTATAATTGTGATGGGGTATGATCCTGATAACATTCCTTTTCTGTTCAGTATGCTCAGTTTCTTCAATGTTGTGTTCGCCAGCCACGACCGTAATCTTAACCCCCGTCTCGACACAGTGTGCGGCCGTTACAATCCACTTTTCATTGACTATGGAGCCCCCACAAAACGCGTCGACTTTTCCGTTGAGCACCACCTGCCATGGAAATTGGCCAGGTTTAGCGTCCTCGCCCCCGACAACCCTAGTAAAGTCATTAAATGACTGTGTGGATTGTGTTATATTATCAAGAATCGTTTCGGCTTCAGTAGAGTTAACGTAGTCCACATCGGGAAAAACTGTCTCGGCCCTTGTCAACTTTGATGTCTGGGACACACTTACCCGACCGCACGGGAAGGGCACCGCCGGTTCACAGCTCTTTTGATTCTCAGCGAGCCGGTAGCCCTCAGTGCAACTACACACAACTTTGTTGTCGGCGGAATTTTTACAGAATTGCTCGCATCGTCCATTTTTAATGTTGCAGGTGACGTCCAACTCGCAGTTTTTTCCTTCAAAACCAAAAGGGCACCAACACTCGTAGGAATTTATATCGTCTTTACAACTCCCCCCATTCAGACATGGATTAGATTCGCATTGGTCCCCATCGACATATTGCTTCCAGAACTCAGTGGTCCGTTCTGTATTCTCAAACACCTCGCGCGCTTCTTCAAAACTGCATTTTTCCTCCATACACTCTCGCTCCAAGTTCCCTTGCACGAATTCTTCAAGCTTTCCTGAGTTATACCTTTTAGGCCGGTTAAGTATCTTATTCGCGTTTTCGTGGTCCAGAAAAACTGTGGAAACAGGGAGAGAAAAACCACACAACATATTTAAAGATTGATGAAGACAACTAACTGTAATATGCTGCTTTTTGTTCTTCTCTTCACTGACCTAAGAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00123完全序列(從ITR至ITR):(SEQ ID NO: 281) GGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGATAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACTAGTCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGA
P00204完全序列(從ITR至ITR):(SEQ ID NO: 282) GGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGGAGGGGTGGAGTCGTGACCTAGGTCGTCTCCGGCTCTGCTTTTTCCAGGGGTGTGTTTCGCCGAGAAGCACGTAAGAGTTTTATGTTTTTTCATCTCTGCTTGTATTTTTCTAGTAATGGAAGCCTGGTATTTTAAAATAGTTAAATTTTCCTTTAGTGCTGATTTCTAGATTATTATTACTGTTGTTGTTGTTATTATTGTCATTATTTGCATCTGAGAACTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCCTTAGGTGGTTATATTATTGATATATTTTTGGTATCTTTGATGACAATAATGGGGGATTTTGAAAGCTTAGCTTTAAATTTCTTTTAATTAAAAAAAAATGCTAGGCAGAATGACTCAAATTACGTTGGATACAGTTGAATTTATTACGGTCTCATAGGGCCTGCCTGCTCGACCATGCTATACTAAAAATTAAAAGTGTACTAGTCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGA
P00353完全序列(從ITR至ITR):(SEQ ID NO: 283) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTGATTTTGAAAGCTTAGCTTTAAATTTCTTTTAATTAAAAAAAAATGCTAGGCAGAATGACTCAAATTACGTTGGATACAGTTGAATTTATTACGGTCTCATAGGGCCTGCCTGCTCGACCATGCTATACTAAAAATTAAAAGTGTGTGTTACTAATTTTATAAATGGAGTTTCCATTTATATTTACCTTTATTTCTTATTTACCATTGTCTTAGTAGATATTTACAAACATGACAGAAACACTAAATCTTGAGTTTGAATGCACAGATATAAACACTTAACGGGTTTTAAAAATAATAATGTTGGTGAAAAAATATAACTTTGAGTGTAGCAGAGAGGAACCATTGCCACCTTCAGATTTTCCTGTAACGATCGGGAACTGGCATCTTCAGGGAGTAGCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCGTGAGATCGCCCATCGGTATAATGATTTGGGAGAACAACATTTCAAAGGCCTGTAAGTTATAATGCTGAAAGCCCACTTAATATTTCTGGTAGTATTAGTTAAAGTTTTAAAACACCTTTTTCCACCTTGAGTGTGAGAATTGTAGAGCAGTGCTGTCCAGTAGAAATGTGTGCATTGACAGAAAGACTGTGGATCTGTGCTGAGCAATGTGGCAGCCAGAGATCACAAGGCTATCAAGCACTTTGCACATGGCAAGTGTAACTGAGAAGCACACATTCAAATAATAGTTAATTTTAATTGAATGTATCTAGCCATGTGTGGCTAGTAGCTCCTTTCCTGGAGAGAGAATCTGGAGCCCACATCTAACTTGTTAAGTCTGGAATCTTATTTTTTATTTCTGGAAAGGTCTATGAACTATAGTTTTGGGGGCAGCTCACTTACTAACTTTTAATGCAATAAGAATCTCATGGTATCTTGAGAACATTATTTTGTCTCTTTGTAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00354完全序列(從ITR至ITR):(SEQ ID NO: 284) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTTAGCCTCTGGCAAAATGAAGTGGGTAACCTTTCTCCTCCTCCTCTTCGTCTCCGGCTCTGCTTTTTCCAGGGGTGTGTTTCGCCGAGAAGCACGTAAGAGTTTTATGTTTTTTCATCTCTGCTTGTATTTTTCTAGTAATGGAAGCCTGGTATTTTAAAATAGTTAAATTTTCCTTTAGTGCTGATTTCTAGATTATTATTACTGTTGTTGTTGTTATTATTGTCATTATTTGCATCTGAGAACCCTTAGGTGGTTATATTATTGATATATTTTTGGTATCTTTGATGACAATAATGGGGGATTTTGAAAGCTTAGCTTTAAATTTCTTTTAATTAAAAAAAAATGCTAGGCAGAATGACTCAAATTACGTTGGATACAGTTGAATTTATTACGGTCTCATAGGGCCTGCCTGCTCGACCATGCTATACTAAAAATTAAAAGTGTGTGTTACTAATTTTATAAATGGAGTTTCCATTTATATTTACCTTTATTTCTTATTTACCATTGTCTTAGTAGATATTTACAAACATGACAGAAACACTAAATCTTGAGTTTGAATGCACAGATATAAACACTTAACGGGTTTTAAAAATAATAATGTTGGTGAAAAAATATAACTTTGAGTGTAGCAGAGAGGAACCATTGCCACCTTCAGATTTTCCTGTAACGATCGGGAACTGGCATCTTCAGGGAGTAGCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCGTGAGATCGCCCATCGGTATAATGATTTGGGAGAACAACATTTCAAAGGCCTGTAAGTTATAATGCTGAAAGCCCACTTAATATTTCTGGTAGTATTAGTTAAAGTTTTAAAACACCTTTTTCCACCTTGAGTGTGAGAATTGTAGAGCAGTGCTGTCCAGTAGAAATGTGTGCATTGACAGAAAGACTGTGGATCTGTGCTGAGCAATGTGGCAGCCAGAGATCACAAGGCTATCAAGCACTTTGCACATGGCAAGTGTAACTGAGAAGCACACATTCAAATAATAGTTAATTTTAATTGAATGTATCTAGCCATGTGTGGCTAGTAGCTCCTTTCCTGGAGAGAGAATCTGGAGCCCACATCTAACTTGTTAAGTCTGGAATCTTATTTTTTATTTCTGGAAAGGTCTATGAACTATAGTTTTGGGGGCAGCTCACTTACTAACTTTTAATGCAATAAGAATCTCATGGTATCTTGAGAACATTATTTTGTCTCTTTGTAGTACTGAAACCTTATACATGTGAAGTAAGGGGTCTATACTTAAGTCACATCTCCAACCTTAGTAATGTTTTAATGTAGTAAAAAAATGAGTAATTAATTTATTTTTAGAAGGTCAATAGTATCATGTATTCCAAATAACAGAGGTATATGGTTAGAAAAGAAACAATTCAAAGGACTTATATAATATCTAGCCTTGACAATGAATAAATTTAGAGAGTAGTTTGCCTGTTTGCCTCATGTTCATAAATCTATTGACACATATGTGCATCTGCACTTCAGCATGGTAGAAGTCCATATTCAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00350:300/600 bp HA F9構築體(對於G551而言)(SEQ ID NO: 285) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTAAGTATATTAGAGCGAGTCTTTCTGCACACAGATCACCTTTCCTATCAACCCCACTAGCCTCTGGCAAAATGAAGTGGGTAACCTTTCTCCTCCTCCTCTTCGTCTCCGGCTCTGCTTTTTCCAGGGGTGTGTTTCGCCGAGAAGCACGTAAGAGTTTTATGTTTTTTCATCTCTGCTTGTATTTTTCTAGTAATGGAAGCCTGGTATTTTAAAATAGTTAAATTTTCCTTTAGTGCTGATTTCTAGATTATTATTACTGTTGTTGTTGTTATTATTGTCATTATTTGCATCTGAGAACCTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCCTTAGGTGGTTATATTATTGATATATTTTTGGTATCTTTGATGACAATAATGGGGGATTTTGAAAGCTTAGCTTTAAATTTCTTTTAATTAAAAAAAAATGCTAGGCAGAATGACTCAAATTACGTTGGATACAGTTGAATTTATTACGGTCTCATAGGGCCTGCCTGCTCGACCATGCTATACTAAAAATTAAAAGTGTGTGTTACTAATTTTATAAATGGAGTTTCCATTTATATTTACCTTTATTTCTTATTTACCATTGTCTTAGTAGATATTTACAAACATGACAGAAACACTAAAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00356:300/2000 bp HA F9構築體(對於G551而言)(SEQ ID NO: 286) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTAAGTATATTAGAGCGAGTCTTTCTGCACACAGATCACCTTTCCTATCAACCCCACTAGCCTCTGGCAAAATGAAGTGGGTAACCTTTCTCCTCCTCCTCTTCGTCTCCGGCTCTGCTTTTTCCAGGGGTGTGTTTCGCCGAGAAGCACGTAAGAGTTTTATGTTTTTTCATCTCTGCTTGTATTTTTCTAGTAATGGAAGCCTGGTATTTTAAAATAGTTAAATTTTCCTTTAGTGCTGATTTCTAGATTATTATTACTGTTGTTGTTGTTATTATTGTCATTATTTGCATCTGAGAACCTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCCTTAGGTGGTTATATTATTGATATATTTTTGGTATCTTTGATGACAATAATGGGGGATTTTGAAAGCTTAGCTTTAAATTTCTTTTAATTAAAAAAAAATGCTAGGCAGAATGACTCAAATTACGTTGGATACAGTTGAATTTATTACGGTCTCATAGGGCCTGCCTGCTCGACCATGCTATACTAAAAATTAAAAGTGTGTGTTACTAATTTTATAAATGGAGTTTCCATTTATATTTACCTTTATTTCTTATTTACCATTGTCTTAGTAGATATTTACAAACATGACAGAAACACTAAATCTTGAGTTTGAATGCACAGATATAAACACTTAACGGGTTTTAAAAATAATAATGTTGGTGAAAAAATATAACTTTGAGTGTAGCAGAGAGGAACCATTGCCACCTTCAGATTTTCCTGTAACGATCGGGAACTGGCATCTTCAGGGAGTAGCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGACAAGAGTGAGATCGCCCATCGGTATAATGATTTGGGAGAACAACATTTCAAAGGCCTGTAAGTTATAATGCTGAAAGCCCACTTAATATTTCTGGTAGTATTAGTTAAAGTTTTAAAACACCTTTTTCCACCTTGAGTGTGAGAATTGTAGAGCAGTGCTGTCCAGTAGAAATGTGTGCATTGACAGAAAGACTGTGGATCTGTGCTGAGCAATGTGGCAGCCAGAGATCACAAGGCTATCAAGCACTTTGCACATGGCAAGTGTAACTGAGAAGCACACATTCAAATAATAGTTAATTTTAATTGAATGTATCTAGCCATGTGTGGCTAGTAGCTCCTTTCCTGGAGAGAGAATCTGGAGCCCACATCTAACTTGTTAAGTCTGGAATCTTATTTTTTATTTCTGGAAAGGTCTATGAACTATAGTTTTGGGGGCAGCTCACTTACTAACTTTTAATGCAATAAGATCCATGGTATCTTGAGAACATTATTTTGTCTCTTTGTAGTACTGAAACCTTATACATGTGAAGTAAGGGGTCTATACTTAAGTCACATCTCCAACCTTAGTAATGTTTTAATGTAGTAAAAAAATGAGTAATTAATTTATTTTTAGAAGGTCAATAGTATCATGTATTCCAAATAACAGAGGTATATGGTTAGAAAAGAAACAATTCAAAGGACTTATATAATATCTAGCCTTGACAATGAATAAATTTAGAGAGTAGTTTGCCTGTTTGCCTCATGTTCATAAATCTATTGACACATATGTGCATCTGCACTTCAGCATGGTAGAAGTCCATATTCCTTTGCTTGGAAAGGCAGGTGTTCCCATTACGCCTCAGAGAATAGCTGACGGGAAGAGGCTTTCTAGATAGTTGTATGAAAGATATACAAAATCTCGCAGGTATACACAGGCATGATTTGCTGGTTGGGAGAGCCACTTGCCTCATACTGAGGTTTTTGTGTCTGCTTTTCAGAGTCCTGATTGCCTTTTCCCAGTATCTCCAGAAATGCTCATACGATGAGCATGCCAAATTAGTGCAGGAAGTAACAGACTTTGCAAAGACGTGTGTTGCCGATGAGTCTGCCGCCAACTGTGACAAATCCCTTGTGAGTACCTTCTGATTTTGTGGATCTACTTTCCTGCTTTCTGGAACTCTGTTTCAAAGCCAATCATGACTCCATCACTTAAGGCCCCGGGAACACTGTGGCAGAGGGCAGCAGAGAGATTGATAAAGCCAGGGTGATGGGAATTTTCTGTGGGACTCCATTTCATAGTAATTGCAGAAGCTACAATACACTCAAAAAGTCTCACCACATGACTGCCCAAATGGGAGCTTGACAGTGACAGTGACAGTAGATATGCCAAAGTGGATGAGGGAAAGACCACAAGAGCTAAACCCTGTAAAAAGAACTGTAGGCAACTAAGGAATGCAGAGAGAAAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
P00362:300/1500 bp HA F9構築體(對於G551而言)(SEQ ID NO: 287) TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGATCTAAGTATATTAGAGCGAGTCTTTCTGCACACAGATCACCTTTCCTATCAACCCCACTAGCCTCTGGCAAAATGAAGTGGGTAACCTTTCTCCTCCTCCTCTTCGTCTCCGGCTCTGCTTTTTCCAGGGGTGTGTTTCGCCGAGAAGCACGTAAGAGTTTTATGTTTTTTCATCTCTGCTTGTATTTTTCTAGTAATGGAAGCCTGGTATTTTAAAATAGTTAAATTTTCCTTTAGTGCTGATTTCTAGATTATTATTACTGTTGTTGTTGTTATTATTGTCATTATTTGCATCTGAGAACCTTTTTCTTGATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTCAAGGGAACCTTGAGAGAGAATGTATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTGATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGAGGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGTTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAAGAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCTATCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAACCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCCTTAGGTGGTTATATTATTGATATATTTTTGGTATCTTTGATGACAATAATGGGGGATTTTGAAAGCTTAGCTTTAAATTTCTTTTAATTAAAAAAAAATGCTAGGCAGAATGACTCAAATTACGTTGGATACAGTTGAATTTATTACGGTCTCATAGGGCCTGCCTGCTCGACCATGCTATACTAAAAATTAAAAGTGTGTGTTACTAATTTTATAAATGGAGTTTCCATTTATATTTACCTTTATTTCTTATTTACCATTGTCTTAGTAGATATTTACAAACATGACAGAAACACTAAATCTTGAGTTTGAATGCACAGATATAAACACTTAACGGGTTTTAAAAATAATAATGTTGGTGAAAAAATATAACTTTGAGTGTAGCAGAGAGGAACCATTGCCACCTTCAGATTTTCCTGTAACGATCGGGAACTGGCATCTTCAGGGAGTAGCTTAGGTCAGTGAAGAGAAGAACAAAAAGCAGCATATTACAGTTAGTTGTCTTCATCAATCTTTAAATATGTTGTGTGGTTTTTCTCTCCCTGTTTCCACAGACAAGAGTGAGATCGCCCATCGGTATAATGATTTGGGAGAACAACATTTCAAAGGCCTGTAAGTTATAATGCTGAAAGCCCACTTAATATTTCTGGTAGTATTAGTTAAAGTTTTAAAACACCTTTTTCCACCTTGAGTGTGAGAATTGTAGAGCAGTGCTGTCCAGTAGAAATGTGTGCATTGACAGAAAGACTGTGGATCTGTGCTGAGCAATGTGGCAGCCAGAGATCACAAGGCTATCAAGCACTTTGCACATGGCAAGTGTAACTGAGAAGCACACATTCAAATAATAGTTAATTTTAATTGAATGTATCTAGCCATGTGTGGCTAGTAGCTCCTTTCCTGGAGAGAGAATCTGGAGCCCACATCTAACTTGTTAAGTCTGGAATCTTATTTTTTATTTCTGGAAAGGTCTATGAACTATAGTTTTGGGGGCAGCTCACTTACTAACTTTTAATGCAATAAGATCCATGGTATCTTGAGAACATTATTTTGTCTCTTTGTAGTACTGAAACCTTATACATGTGAAGTAAGGGGTCTATACTTAAGTCACATCTCCAACCTTAGTAATGTTTTAATGTAGTAAAAAAATGAGTAATTAATTTATTTTTAGAAGGTCAATAGTATCATGTATTCCAAATAACAGAGGTATATGGTTAGAAAAGAAACAATTCAAAGGACTTATATAATATCTAGCCTTGACAATGAATAAATTTAGAGAGTAGTTTGCCTGTTTGCCTCATGTTCATAAATCTATTGACACATATGTGCATCTGCACTTCAGCATGGTAGAAGTCCATATTCCTTTGCTTGGAAAGGCAGGTGTTCCCATTACGCCTCAGAGAATAGCTGACGGGAAGAGGCTTTCTAGATAGTTGTATGAAAGATATACAAAATCTCGCAGGTATACACAGGCATGATTTGCTGGTTGGGAGAGCCACTTAGATCTAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAA
在P00147中經編碼之因子IX R338L多肽(SEQ ID NO: 702) YNSGKLEEFVQGNLERECMEEKCSFEEAREVFENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCSCTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKYNHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLLSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKEKTKLT
Cas9 ORF(SEQ ID NO: 703) ATGGATAAGAAGTACTCAATCGGGCTGGATATCGGAACTAATTCCGTGGGTTGGGCAGTGATCACGGATGAATACAAAGTGCCGTCCAAGAAGTTCAAGGTCCTGGGGAACACCGATAGACACAGCATCAAGAAAAATCTCATCGGAGCCCTGCTGTTTGACTCCGGCGAAACCGCAGAAGCGACCCGGCTCAAACGTACCGCGAGGCGACGCTACACCCGGCGGAAGAATCGCATCTGCTATCTGCAAGAGATCTTTTCGAACGAAATGGCAAAGGTCGACGACAGCTTCTTCCACCGCCTGGAAGAATCTTTCCTGGTGGAGGAGGACAAGAAGCATGAACGGCATCCTATCTTTGGAAACATCGTCGACGAAGTGGCGTACCACGAAAAGTACCCGACCATCTACCATCTGCGGAAGAAGTTGGTTGACTCAACTGACAAGGCCGACCTCAGATTGATCTACTTGGCCCTCGCCCATATGATCAAATTCCGCGGACACTTCCTGATCGAAGGCGATCTGAACCCTGATAACTCCGACGTGGATAAGCTTTTCATTCAACTGGTGCAGACCTACAACCAACTGTTCGAAGAAAACCCAATCAATGCTAGCGGCGTCGATGCCAAGGCCATCCTGTCCGCCCGGCTGTCGAAGTCGCGGCGCCTCGAAAACCTGATCGCACAGCTGCCGGGAGAGAAAAAGAACGGACTTTTCGGCAACTTGATCGCTCTCTCACTGGGACTCACTCCCAATTTCAAGTCCAATTTTGACCTGGCCGAGGACGCGAAGCTGCAACTCTCAAAGGACACCTACGACGACGACTTGGACAATTTGCTGGCACAAATTGGCGATCAGTACGCGGATCTGTTCCTTGCCGCTAAGAACCTTTCGGACGCAATCTTGCTGTCCGATATCCTGCGCGTGAACACCGAAATAACCAAAGCGCCGCTTAGCGCCTCGATGATTAAGCGGTACGACGAGCATCACCAGGATCTCACGCTGCTCAAAGCGCTCGTGAGACAGCAACTGCCTGAAAAGTACAAGGAGATCTTCTTCGACCAGTCCAAGAATGGGTACGCAGGGTACATCGATGGAGGCGCTAGCCAGGAAGAGTTCTATAAGTTCATCAAGCCAATCCTGGAAAAGATGGACGGAACCGAAGAACTGCTGGTCAAGCTGAACAGGGAGGATCTGCTCCGGAAACAGAGAACCTTTGACAACGGATCCATTCCCCACCAGATCCATCTGGGTGAGCTGCACGCCATCTTGCGGCGCCAGGAGGACTTTTACCCATTCCTCAAGGACAACCGGGAAAAGATCGAGAAAATTCTGACGTTCCGCATCCCGTATTACGTGGGCCCACTGGCGCGCGGCAATTCGCGCTTCGCGTGGATGACTAGAAAATCAGAGGAAACCATCACTCCTTGGAATTTCGAGGAAGTTGTGGATAAGGGAGCTTCGGCACAAAGCTTCATCGAACGAATGACCAACTTCGACAAGAATCTCCCAAACGAGAAGGTGCTTCCTAAGCACAGCCTCCTTTACGAATACTTCACTGTCTACAACGAACTGACTAAAGTGAAATACGTTACTGAAGGAATGAGGAAGCCGGCCTTTCTGTCCGGAGAACAGAAGAAAGCAATTGTCGATCTGCTGTTCAAGACCAACCGCAAGGTGACCGTCAAGCAGCTTAAAGAGGACTACTTCAAGAAGATCGAGTGTTTCGACTCAGTGGAAATCAGCGGGGTGGAGGACAGATTCAACGCTTCGCTGGGAACCTATCATGATCTCCTGAAGATCATCAAGGACAAGGACTTCCTTGACAACGAGGAGAACGAGGACATCCTGGAAGATATCGTCCTGACCTTGACCCTTTTCGAGGATCGCGAGATGATCGAGGAGAGGCTTAAGACCTACGCTCATCTCTTCGACGATAAGGTCATGAAACAACTCAAGCGCCGCCGGTACACTGGTTGGGGCCGCCTCTCCCGCAAGCTGATCAACGGTATTCGCGATAAACAGAGCGGTAAAACTATCCTGGATTTCCTCAAATCGGATGGCTTCGCTAATCGTAACTTCATGCAATTGATCCACGACGACAGCCTGACCTTTAAGGAGGACATCCAAAAAGCACAAGTGTCCGGACAGGGAGACTCACTCCATGAACACATCGCGAATCTGGCCGGTTCGCCGGCGATTAAGAAGGGAATTCTGCAAACTGTGAAGGTGGTCGACGAGCTGGTGAAGGTCATGGGACGGCACAAACCGGAGAATATCGTGATTGAAATGGCCCGAGAAAACCAGACTACCCAGAAGGGCCAGAAAAACTCCCGCGAAAGGATGAAGCGGATCGAAGAAGGAATCAAGGAGCTGGGCAGCCAGATCCTGAAAGAGCACCCGGTGGAAAACACGCAGCTGCAGAACGAGAAGCTCTACCTGTACTATTTGCAAAATGGACGGGACATGTACGTGGACCAAGAGCTGGACATCAATCGGTTGTCTGATTACGACGTGGACCACATCGTTCCACAGTCCTTTCTGAAGGATGACTCGATCGATAACAAGGTGTTGACTCGCAGCGACAAGAACAGAGGGAAGTCAGATAATGTGCCATCGGAGGAGGTCGTGAAGAAGATGAAGAATTACTGGCGGCAGCTCCTGAATGCGAAGCTGATTACCCAGAGAAAGTTTGACAATCTCACTAAAGCCGAGCGCGGCGGACTCTCAGAGCTGGATAAGGCTGGATTCATCAAACGGCAGCTGGTCGAGACTCGGCAGATTACCAAGCACGTGGCGCAGATCTTGGACTCCCGCATGAACACTAAATACGACGAGAACGATAAGCTCATCCGGGAAGTGAAGGTGATTACCCTGAAAAGCAAACTTGTGTCGGACTTTCGGAAGGACTTTCAGTTTTACAAAGTGAGAGAAATCAACAACTACCATCACGCGCATGACGCATACCTCAACGCTGTGGTCGGTACCGCCCTGATCAAAAAGTACCCTAAACTTGAATCGGAGTTTGTGTACGGAGACTACAAGGTCTACGACGTGAGGAAGATGATAGCCAAGTCCGAACAGGAAATCGGGAAAGCAACTGCGAAATACTTCTTTTACTCAAACATCATGAACTTTTTCAAGACTGAAATTACGCTGGCCAATGGAGAAATCAGGAAGAGGCCACTGATCGAAACTAACGGAGAAACGGGCGAAATCGTGTGGGACAAGGGCAGGGACTTCGCAACTGTTCGCAAAGTGCTCTCTATGCCGCAAGTCAATATTGTGAAGAAAACCGAAGTGCAAACCGGCGGATTTTCAAAGGAATCGATCCTCCCAAAGAGAAATAGCGACAAGCTCATTGCACGCAAGAAAGACTGGGACCCGAAGAAGTACGGAGGATTCGATTCGCCGACTGTCGCATACTCCGTCCTCGTGGTGGCCAAGGTGGAGAAGGGAAAGAGCAAAAAGCTCAAATCCGTCAAAGAGCTGCTGGGGATTACCATCATGGAACGATCCTCGTTCGAGAAGAACCCGATTGATTTCCTCGAGGCGAAGGGTTACAAGGAGGTGAAGAAGGATCTGATCATCAAACTCCCCAAGTACTCACTGTTCGAACTGGAAAATGGTCGGAAGCGCATGCTGGCTTCGGCCGGAGAACTCCAAAAAGGAAATGAGCTGGCCTTGCCTAGCAAGTACGTCAACTTCCTCTATCTTGCTTCGCACTACGAAAAACTCAAAGGGTCACCGGAAGATAACGAACAGAAGCAGCTTTTCGTGGAGCAGCACAAGCATTATCTGGATGAAATCATCGAACAAATCTCCGAGTTTTCAAAGCGCGTGATCCTCGCCGACGCCAACCTCGACAAAGTCCTGTCGGCCTACAATAAGCATAGAGATAAGCCGATCAGAGAACAGGCCGAGAACATTATCCACTTGTTCACCCTGACTAACCTGGGAGCCCCAGCCGCCTTCAAGTACTTCGATACTACTATCGATCGCAAAAGATACACGTCCACCAAGGAAGTTCTGGACGCGACCCTGATCCACCAAAGCATCACTGGACTCTACGAAACTAGGATCGATCTGTCGCAGCTGGGTGGCGAT
U-dep Cas9 ORF(SEQ ID NO: 704) ATGGACAAGAAGTACAGCATCGGACTGGACATCGGAACAAACAGCGTCGGATGGGCAGTCATCACAGACGAATACAAGGTCCCGAGCAAGAAGTTCAAGGTCCTGGGAAACACAGACAGACACAGCATCAAGAAGAACCTGATCGGAGCACTGCTGTTCGACAGCGGAGAAACAGCAGAAGCAACAAGACTGAAGAGAACAGCAAGAAGAAGATACACAAGAAGAAAGAACAGAATCTGCTACCTGCAGGAAATCTTCAGCAACGAAATGGCAAAGGTCGACGACAGCTTCTTCCACAGACTGGAAGAAAGCTTCCTGGTCGAAGAAGACAAGAAGCACGAAAGACACCCGATCTTCGGAAACATCGTCGACGAAGTCGCATACCACGAAAAGTACCCGACAATCTACCACCTGAGAAAGAAGCTGGTCGACAGCACAGACAAGGCAGACCTGAGACTGATCTACCTGGCACTGGCACACATGATCAAGTTCAGAGGACACTTCCTGATCGAAGGAGACCTGAACCCGGACAACAGCGACGTCGACAAGCTGTTCATCCAGCTGGTCCAGACATACAACCAGCTGTTCGAAGAAAACCCGATCAACGCAAGCGGAGTCGACGCAAAGGCAATCCTGAGCGCAAGACTGAGCAAGAGCAGAAGACTGGAAAACCTGATCGCACAGCTGCCGGGAGAAAAGAAGAACGGACTGTTCGGAAACCTGATCGCACTGAGCCTGGGACTGACACCGAACTTCAAGAGCAACTTCGACCTGGCAGAAGACGCAAAGCTGCAGCTGAGCAAGGACACATACGACGACGACCTGGACAACCTGCTGGCACAGATCGGAGACCAGTACGCAGACCTGTTCCTGGCAGCAAAGAACCTGAGCGACGCAATCCTGCTGAGCGACATCCTGAGAGTCAACACAGAAATCACAAAGGCACCGCTGAGCGCAAGCATGATCAAGAGATACGACGAACACCACCAGGACCTGACACTGCTGAAGGCACTGGTCAGACAGCAGCTGCCGGAAAAGTACAAGGAAATCTTCTTCGACCAGAGCAAGAACGGATACGCAGGATACATCGACGGAGGAGCAAGCCAGGAAGAATTCTACAAGTTCATCAAGCCGATCCTGGAAAAGATGGACGGAACAGAAGAACTGCTGGTCAAGCTGAACAGAGAAGACCTGCTGAGAAAGCAGAGAACATTCGACAACGGAAGCATCCCGCACCAGATCCACCTGGGAGAACTGCACGCAATCCTGAGAAGACAGGAAGACTTCTACCCGTTCCTGAAGGACAACAGAGAAAAGATCGAAAAGATCCTGACATTCAGAATCCCGTACTACGTCGGACCGCTGGCAAGAGGAAACAGCAGATTCGCATGGATGACAAGAAAGAGCGAAGAAACAATCACACCGTGGAACTTCGAAGAAGTCGTCGACAAGGGAGCAAGCGCACAGAGCTTCATCGAAAGAATGACAAACTTCGACAAGAACCTGCCGAACGAAAAGGTCCTGCCGAAGCACAGCCTGCTGTACGAATACTTCACAGTCTACAACGAACTGACAAAGGTCAAGTACGTCACAGAAGGAATGAGAAAGCCGGCATTCCTGAGCGGAGAACAGAAGAAGGCAATCGTCGACCTGCTGTTCAAGACAAACAGAAAGGTCACAGTCAAGCAGCTGAAGGAAGACTACTTCAAGAAGATCGAATGCTTCGACAGCGTCGAAATCAGCGGAGTCGAAGACAGATTCAACGCAAGCCTGGGAACATACCACGACCTGCTGAAGATCATCAAGGACAAGGACTTCCTGGACAACGAAGAAAACGAAGACATCCTGGAAGACATCGTCCTGACACTGACACTGTTCGAAGACAGAGAAATGATCGAAGAAAGACTGAAGACATACGCACACCTGTTCGACGACAAGGTCATGAAGCAGCTGAAGAGAAGAAGATACACAGGATGGGGAAGACTGAGCAGAAAGCTGATCAACGGAATCAGAGACAAGCAGAGCGGAAAGACAATCCTGGACTTCCTGAAGAGCGACGGATTCGCAAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACATTCAAGGAAGACATCCAGAAGGCACAGGTCAGCGGACAGGGAGACAGCCTGCACGAACACATCGCAAACCTGGCAGGAAGCCCGGCAATCAAGAAGGGAATCCTGCAGACAGTCAAGGTCGTCGACGAACTGGTCAAGGTCATGGGAAGACACAAGCCGGAAAACATCGTCATCGAAATGGCAAGAGAAAACCAGACAACACAGAAGGGACAGAAGAACAGCAGAGAAAGAATGAAGAGAATCGAAGAAGGAATCAAGGAACTGGGAAGCCAGATCCTGAAGGAACACCCGGTCGAAAACACACAGCTGCAGAACGAAAAGCTGTACCTGTACTACCTGCAGAACGGAAGAGACATGTACGTCGACCAGGAACTGGACATCAACAGACTGAGCGACTACGACGTCGACCACATCGTCCCGCAGAGCTTCCTGAAGGACGACAGCATCGACAACAAGGTCCTGACAAGAAGCGACAAGAACAGAGGAAAGAGCGACAACGTCCCGAGCGAAGAAGTCGTCAAGAAGATGAAGAACTACTGGAGACAGCTGCTGAACGCAAAGCTGATCACACAGAGAAAGTTCGACAACCTGACAAAGGCAGAGAGAGGAGGACTGAGCGAACTGGACAAGGCAGGATTCATCAAGAGACAGCTGGTCGAAACAAGACAGATCACAAAGCACGTCGCACAGATCCTGGACAGCAGAATGAACACAAAGTACGACGAAAACGACAAGCTGATCAGAGAAGTCAAGGTCATCACACTGAAGAGCAAGCTGGTCAGCGACTTCAGAAAGGACTTCCAGTTCTACAAGGTCAGAGAAATCAACAACTACCACCACGCACACGACGCATACCTGAACGCAGTCGTCGGAACAGCACTGATCAAGAAGTACCCGAAGCTGGAAAGCGAATTCGTCTACGGAGACTACAAGGTCTACGACGTCAGAAAGATGATCGCAAAGAGCGAACAGGAAATCGGAAAGGCAACAGCAAAGTACTTCTTCTACAGCAACATCATGAACTTCTTCAAGACAGAAATCACACTGGCAAACGGAGAAATCAGAAAGAGACCGCTGATCGAAACAAACGGAGAAACAGGAGAAATCGTCTGGGACAAGGGAAGAGACTTCGCAACAGTCAGAAAGGTCCTGAGCATGCCGCAGGTCAACATCGTCAAGAAGACAGAAGTCCAGACAGGAGGATTCAGCAAGGAAAGCATCCTGCCGAAGAGAAACAGCGACAAGCTGATCGCAAGAAAGAAGGACTGGGACCCGAAGAAGTACGGAGGATTCGACAGCCCGACAGTCGCATACAGCGTCCTGGTCGTCGCAAAGGTCGAAAAGGGAAAGAGCAAGAAGCTGAAGAGCGTCAAGGAACTGCTGGGAATCACAATCATGGAAAGAAGCAGCTTCGAAAAGAACCCGATCGACTTCCTGGAAGCAAAGGGATACAAGGAAGTCAAGAAGGACCTGATCATCAAGCTGCCGAAGTACAGCCTGTTCGAACTGGAAAACGGAAGAAAGAGAATGCTGGCAAGCGCAGGAGAACTGCAGAAGGGAAACGAACTGGCACTGCCGAGCAAGTACGTCAACTTCCTGTACCTGGCAAGCCACTACGAAAAGCTGAAGGGAAGCCCGGAAGACAACGAACAGAAGCAGCTGTTCGTCGAACAGCACAAGCACTACCTGGACGAAATCATCGAACAGATCAGCGAATTCAGCAAGAGAGTCATCCTGGCAGACGCAAACCTGGACAAGGTCCTGAGCGCATACAACAAGCACAGAGACAAGCCGATCAGAGAACAGGCAGAAAACATCATCCACCTGTTCACACTGACAAACCTGGGAGCACCGGCAGCATTCAAGTACTTCGACACAACAATCGACAGAAAGAGATACACAAGCACAAAGGAAGTCCTGGACGCAACACTGATCCACCAGAGCATCACAGGACTGTACGAAACAAGAATCGACCTGAGCCAGCTGGGAGGAGACGGAGGAGGAAGCCCGAAGAAGAAGAGAAAGGTCTAG
包含U dep Cas9之mRNA(SEQ ID NO: 705) GGGUCCCGCAGUCGGCGUCCAGCGGCUCUGCUUGUUCGUGUGUGUGUCGUUGCAGGCCUUAUUCGGAUCCGCCACCAUGGACAAGAAGUACAGCAUCGGACUGGACAUCGGAACAAACAGCGUCGGAUGGGCAGUCAUCACAGACGAAUACAAGGUCCCGAGCAAGAAGUUCAAGGUCCUGGGAAACACAGACAGACACAGCAUCAAGAAGAACCUGAUCGGAGCACUGCUGUUCGACAGCGGAGAAACAGCAGAAGCAACAAGACUGAAGAGAACAGCAAGAAGAAGAUACACAAGAAGAAAGAACAGAAUCUGCUACCUGCAGGAAAUCUUCAGCAACGAAAUGGCAAAGGUCGACGACAGCUUCUUCCACAGACUGGAAGAAAGCUUCCUGGUCGAAGAAGACAAGAAGCACGAAAGACACCCGAUCUUCGGAAACAUCGUCGACGAAGUCGCAUACCACGAAAAGUACCCGACAAUCUACCACCUGAGAAAGAAGCUGGUCGACAGCACAGACAAGGCAGACCUGAGACUGAUCUACCUGGCACUGGCACACAUGAUCAAGUUCAGAGGACACUUCCUGAUCGAAGGAGACCUGAACCCGGACAACAGCGACGUCGACAAGCUGUUCAUCCAGCUGGUCCAGACAUACAACCAGCUGUUCGAAGAAAACCCGAUCAACGCAAGCGGAGUCGACGCAAAGGCAAUCCUGAGCGCAAGACUGAGCAAGAGCAGAAGACUGGAAAACCUGAUCGCACAGCUGCCGGGAGAAAAGAAGAACGGACUGUUCGGAAACCUGAUCGCACUGAGCCUGGGACUGACACCGAACUUCAAGAGCAACUUCGACCUGGCAGAAGACGCAAAGCUGCAGCUGAGCAAGGACACAUACGACGACGACCUGGACAACCUGCUGGCACAGAUCGGAGACCAGUACGCAGACCUGUUCCUGGCAGCAAAGAACCUGAGCGACGCAAUCCUGCUGAGCGACAUCCUGAGAGUCAACACAGAAAUCACAAAGGCACCGCUGAGCGCAAGCAUGAUCAAGAGAUACGACGAACACCACCAGGACCUGACACUGCUGAAGGCACUGGUCAGACAGCAGCUGCCGGAAAAGUACAAGGAAAUCUUCUUCGACCAGAGCAAGAACGGAUACGCAGGAUACAUCGACGGAGGAGCAAGCCAGGAAGAAUUCUACAAGUUCAUCAAGCCGAUCCUGGAAAAGAUGGACGGAACAGAAGAACUGCUGGUCAAGCUGAACAGAGAAGACCUGCUGAGAAAGCAGAGAACAUUCGACAACGGAAGCAUCCCGCACCAGAUCCACCUGGGAGAACUGCACGCAAUCCUGAGAAGACAGGAAGACUUCUACCCGUUCCUGAAGGACAACAGAGAAAAGAUCGAAAAGAUCCUGACAUUCAGAAUCCCGUACUACGUCGGACCGCUGGCAAGAGGAAACAGCAGAUUCGCAUGGAUGACAAGAAAGAGCGAAGAAACAAUCACACCGUGGAACUUCGAAGAAGUCGUCGACAAGGGAGCAAGCGCACAGAGCUUCAUCGAAAGAAUGACAAACUUCGACAAGAACCUGCCGAACGAAAAGGUCCUGCCGAAGCACAGCCUGCUGUACGAAUACUUCACAGUCUACAACGAACUGACAAAGGUCAAGUACGUCACAGAAGGAAUGAGAAAGCCGGCAUUCCUGAGCGGAGAACAGAAGAAGGCAAUCGUCGACCUGCUGUUCAAGACAAACAGAAAGGUCACAGUCAAGCAGCUGAAGGAAGACUACUUCAAGAAGAUCGAAUGCUUCGACAGCGUCGAAAUCAGCGGAGUCGAAGACAGAUUCAACGCAAGCCUGGGAACAUACCACGACCUGCUGAAGAUCAUCAAGGACAAGGACUUCCUGGACAACGAAGAAAACGAAGACAUCCUGGAAGACAUCGUCCUGACACUGACACUGUUCGAAGACAGAGAAAUGAUCGAAGAAAGACUGAAGACAUACGCACACCUGUUCGACGACAAGGUCAUGAAGCAGCUGAAGAGAAGAAGAUACACAGGAUGGGGAAGACUGAGCAGAAAGCUGAUCAACGGAAUCAGAGACAAGCAGAGCGGAAAGACAAUCCUGGACUUCCUGAAGAGCGACGGAUUCGCAAACAGAAACUUCAUGCAGCUGAUCCACGACGACAGCCUGACAUUCAAGGAAGACAUCCAGAAGGCACAGGUCAGCGGACAGGGAGACAGCCUGCACGAACACAUCGCAAACCUGGCAGGAAGCCCGGCAAUCAAGAAGGGAAUCCUGCAGACAGUCAAGGUCGUCGACGAACUGGUCAAGGUCAUGGGAAGACACAAGCCGGAAAACAUCGUCAUCGAAAUGGCAAGAGAAAACCAGACAACACAGAAGGGACAGAAGAACAGCAGAGAAAGAAUGAAGAGAAUCGAAGAAGGAAUCAAGGAACUGGGAAGCCAGAUCCUGAAGGAACACCCGGUCGAAAACACACAGCUGCAGAACGAAAAGCUGUACCUGUACUACCUGCAGAACGGAAGAGACAUGUACGUCGACCAGGAACUGGACAUCAACAGACUGAGCGACUACGACGUCGACCACAUCGUCCCGCAGAGCUUCCUGAAGGACGACAGCAUCGACAACAAGGUCCUGACAAGAAGCGACAAGAACAGAGGAAAGAGCGACAACGUCCCGAGCGAAGAAGUCGUCAAGAAGAUGAAGAACUACUGGAGACAGCUGCUGAACGCAAAGCUGAUCACACAGAGAAAGUUCGACAACCUGACAAAGGCAGAGAGAGGAGGACUGAGCGAACUGGACAAGGCAGGAUUCAUCAAGAGACAGCUGGUCGAAACAAGACAGAUCACAAAGCACGUCGCACAGAUCCUGGACAGCAGAAUGAACACAAAGUACGACGAAAACGACAAGCUGAUCAGAGAAGUCAAGGUCAUCACACUGAAGAGCAAGCUGGUCAGCGACUUCAGAAAGGACUUCCAGUUCUACAAGGUCAGAGAAAUCAACAACUACCACCACGCACACGACGCAUACCUGAACGCAGUCGUCGGAACAGCACUGAUCAAGAAGUACCCGAAGCUGGAAAGCGAAUUCGUCUACGGAGACUACAAGGUCUACGACGUCAGAAAGAUGAUCGCAAAGAGCGAACAGGAAAUCGGAAAGGCAACAGCAAAGUACUUCUUCUACAGCAACAUCAUGAACUUCUUCAAGACAGAAAUCACACUGGCAAACGGAGAAAUCAGAAAGAGACCGCUGAUCGAAACAAACGGAGAAACAGGAGAAAUCGUCUGGGACAAGGGAAGAGACUUCGCAACAGUCAGAAAGGUCCUGAGCAUGCCGCAGGUCAACAUCGUCAAGAAGACAGAAGUCCAGACAGGAGGAUUCAGCAAGGAAAGCAUCCUGCCGAAGAGAAACAGCGACAAGCUGAUCGCAAGAAAGAAGGACUGGGACCCGAAGAAGUACGGAGGAUUCGACAGCCCGACAGUCGCAUACAGCGUCCUGGUCGUCGCAAAGGUCGAAAAGGGAAAGAGCAAGAAGCUGAAGAGCGUCAAGGAACUGCUGGGAAUCACAAUCAUGGAAAGAAGCAGCUUCGAAAAGAACCCGAUCGACUUCCUGGAAGCAAAGGGAUACAAGGAAGUCAAGAAGGACCUGAUCAUCAAGCUGCCGAAGUACAGCCUGUUCGAACUGGAAAACGGAAGAAAGAGAAUGCUGGCAAGCGCAGGAGAACUGCAGAAGGGAAACGAACUGGCACUGCCGAGCAAGUACGUCAACUUCCUGUACCUGGCAAGCCACUACGAAAAGCUGAAGGGAAGCCCGGAAGACAACGAACAGAAGCAGCUGUUCGUCGAACAGCACAAGCACUACCUGGACGAAAUCAUCGAACAGAUCAGCGAAUUCAGCAAGAGAGUCAUCCUGGCAGACGCAAACCUGGACAAGGUCCUGAGCGCAUACAACAAGCACAGAGACAAGCCGAUCAGAGAACAGGCAGAAAACAUCAUCCACCUGUUCACACUGACAAACCUGGGAGCACCGGCAGCAUUCAAGUACUUCGACACAACAAUCGACAGAAAGAGAUACACAAGCACAAAGGAAGUCCUGGACGCAACACUGAUCCACCAGAGCAUCACAGGACUGUACGAAACAAGAAUCGACCUGAGCCAGCUGGGAGGAGACGGAGGAGGAAGCCCGAAGAAGAAGAGAAAGGUCUAGCUAGCCAUCACAUUUAAAAGCAUCUCAGCCUACCAUGAGAAUAAGAGAAAGAAAAUGAAGAUCAAUAGCUUAUUCAUCUCUUUUUCUUUUUCGUUGGUGUAAAGCCAACACCCUGUCUAAAAAACAUAAAUUUCUUUAAUCAUUUUGCCUCUUUUCUCUGUGCUUCAAUUAAUAAAAAAUGGAAAGAACCUCGAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
圖1顯示如在AAV基因組中表示之構築體格式。SA=剪接受體;pA= polyA信號序列;HA=同源臂(homology arm);LHA=左同源臂;RHA=右同源臂。 圖2顯示不具有同源臂之載體在永生化的肝臟的細胞之細胞系(Hepa1-6)中無功效。來源於質體P00204之包含200 bp同源臂之scAAV引起在分裂細胞中之hFIX之表現。來源於P00123之AAV載體(缺乏同源臂之scAAV)及來源於P00147之AAV載體(缺乏同源臂之ssAAV雙向構築體)之使用不引起可偵測之hFIX表現。 圖3A及3B顯示使用來源於P00123、P00147或P00204之載體進行之具有及不具有同源臂之插入模板之活體內測試之結果。圖3A顯示在經包含CRISPR/Cas9組分之LNP治療之各動物組中偵測到如藉由~60%的插入缺失形成所量測之肝編輯水平。圖3B顯示接受不具有同源臂之ssAAV載體(來源於P00147)與LNP治療之組合之動物引起血清中之最高水平的hFIX表現。 圖4A及4B顯示具有及不具有同源臂之ssAAV插入模板之活體內測試之結果。圖4A比較用來源於質體P00350之載體、來源於質體P00356之載體、來源於質體P00362之載體(具有如所示之不對稱同源臂)、及來源於質體P00147之載體(如圖4B中所示之雙向構築體)進行之靶向插入。圖4B比較用來源於質體P00353之載體、來源於質體P00354之載體(具有如所示之對稱同源臂)、及來源於質體P00147之載體靶向之往第二位點中的插入。 圖5A-5D顯示在初代小鼠肝細胞中在20個靶位(target site)上之雙向構築體之靶向插入的結果。圖5A顯示所測試之載體中之各者之示意圖。圖5B顯示跨所測試之各組合之治療組中之各者之如藉由插入缺失形成所量測的編輯。圖5C及圖5D顯示顯著水平的編輯(呈在特定靶位處之插入缺失形成)並不一定引起更高效之轉殖基因之插入或表現。hSA=人類F9剪接受體;mSA=小鼠白蛋白剪接受體;HiBit=用於基於螢光素酶之偵測之標籤;pA= polyA信號序列;Nluc=奈米螢光素酶報導體;GFP=綠色螢光報導體。 圖6顯示使用來源於P00147之ssAAV進行之在10個靶位上之用雙向構築體進行之靶向插入之活體內篩選的結果。如所示,顯著水平的插入缺失形成並不一定引起高水平的轉殖基因表現。 圖7A-7D顯示使用來源於P00147之ssAAV進行之在20個靶位上之雙向構築體之活體內篩選的結果。圖7A顯示跨所測試之各LNP/載體組合對治療組中之各者偵測到如藉由插入缺失形成所量測之不同水平的的編輯。圖7B提供對應之靶向插入資料。結果顯示插入缺失形成與雙向構築體插入或表現之間之差相關性(圖7B及圖7D),及試管內結果與活體內結果之間之正相關性(圖7C)。 圖8A及8B於細胞水平顯示使用原位雜交法使用可偵測hFIX轉殖基因與小鼠白蛋白外顯子1序列之間之接合點之探針進行之雙向構築體插入(圖8A)。循環hFIX水平與對於雜交轉錄物為陽性的細胞數目相關(圖8B)。 圖9顯示改變包含雙向hFIX構築體之ssAAV與LNP遞送之間之時序對靶向插入的影響。 圖10顯示在遞送雙向hFIX構築體之後改變LNP給藥次數(例如1、2或3次)對靶向插入的影響。 圖11A顯示活體內hFIX表現之持續時間。圖11B證實從白蛋白之內含子1進行之表現持續。 圖12A及圖12B顯示改變AAV或LNP劑量可調節活體內從白蛋白基因之內含子1表現hFIX之量。宗宗宗 圖13A-13C顯示在初代食蟹獼猴肝細胞中在各靶位上篩選雙向構築體之結果。圖13A顯示對樣本中之各者偵測到的如藉由插入缺失形成所量測之不同水平的編輯。圖13B及圖13C顯示顯著水平的插入缺失形成不預測雙向構築體向白蛋白之內含子1中之插入或表現。 圖14A-14C顯示在初代人類肝細胞中在各靶位上篩選雙向構築體之結果。圖14A顯示對樣本中之各者偵測到的如藉由插入缺失形成所量測之編輯。圖14B、圖14C及14D顯示顯著水平的插入缺失形成不預測雙向構築體向白蛋白基因之內含子1中之插入或表現。 圖15顯示其中非人類靈長類動物給藥有LNP以及雙向hFIX插入模板(來源於P00147)之活體內研究之結果。僅在經LNP及AAV兩者治療之動物中達成全身性hFIX水平,而使用單單AAV或單單LNP無可偵測之hFIX。 圖16A及圖16B顯示注射後第6週之血漿樣本中之人類因子IX表現水平。 圖17顯示各動物之在多個葉上之第7週血清水平及%陽性細胞。 圖18顯示注射後第1週、第2週及第4週之各組中之血漿樣本中之人類因子IX表現水平。 圖19顯示aPTT分析中之hF9 轉殖基因插入及凝血功能。 圖20A及圖20B顯示TGA-EA分析中之hF9 轉殖基因插入及凝血酶生成。 圖21顯示hF9 轉殖基因插入及凝血酶生成。

Claims (143)

  1. 一種將因子IX核酸引入細胞或細胞群中之方法,其包含投予: i)包含因子IX蛋白編碼序列之核酸構築體; ii)RNA引導性DNA結合劑;及 iii)引導RNA(guide RNA;gRNA),其包含選自以下之序列: a)與選自由SEQ ID No: 2、8、13、19、28、29、31、32、及33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; b)選自由SEQ ID NO: 2、8、13、19、28、29、31、32、及33組成之群之序列之至少17、18、19或20個連續核苷酸; c)選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之序列; d)與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; e)選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸; f)選自由SEQ ID NO: 34-97組成之群之序列; g)與選自由SEQ ID NO: 98-119組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; h)選自由SEQ ID NO: 98-119組成之群之序列之至少17、18、19或20個連續核苷酸;及 i)選自由SEQ ID NO: 120-163組成之群之序列;及 j)選自由表2、表7及表8中之SEQ ID NO組成之群之序列, 從而將該因子IX核酸引入該細胞或該細胞群中。
  2. 一種在細胞或細胞群中表現因子IX之方法,其包含投予: i)包含因子IX蛋白編碼序列之核酸構築體; ii)RNA引導性DNA結合劑;及 iii)引導RNA(gRNA),其包含選自以下之序列: a)與選自由SEQ ID No: 2、8、13、19、28、29、31、32、及33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; b)選自由SEQ ID NO: 2、8、13、19、28、29、31、32、及33組成之群之序列之至少17、18、19或20個連續核苷酸; c)選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之序列; d)與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; e)選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸; f)選自由SEQ ID NO: 34-97組成之群之序列; g)與選自由SEQ ID NO: 98-119組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; h)選自由SEQ ID NO: 98-119組成之群之序列之至少17、18、19或20個連續核苷酸;及 i)選自由SEQ ID NO: 120-163組成之群之序列; l)選自由表2、表7及表8中之SEQ ID NO組成之群之序列, 從而在細胞或細胞群中表現因子IX。
  3. 如請求項1或2所述之方法,其中該投予係試管內。
  4. 如請求項1至3中任一項所述之方法,其中該gRNA包含引導序列,該引導序列包含選自以下之序列: a)與選自由SEQ ID No 2、8、13、19、28、29、31、32、33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; b)選自由SEQ ID NO: 2、8、13、19、28、29、31、32、33組成之群之序列之至少17、18、19或20個連續核苷酸; c)選自由SEQ ID NO: 34、40、45、51、60、61、63、64、65、66、72、77、83、92、93、95、96、及97組成之群之序列; d)與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列; e)選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸;及 f)選自由SEQ ID NO: 34-97組成之群之序列。
  5. 如請求項1至4中任一項所述之方法,其中該核酸構築體係在核酸載體及/或脂質奈米粒子中投予。
  6. 如請求項1至5中任一項所述之方法,其中該RNA引導性DNA結合劑為Cas9或編碼Cas9之核酸。
  7. 如請求項1至6中任一項所述之方法,其中該RNA引導性DNA結合劑為編碼該RNA引導性DNA結合劑之核酸。
  8. 如請求項7所述之方法,其中該編碼RNA引導性DNA結合劑之核酸為mRNA。
  9. 如請求項8所述之方法,其中該mRNA為經修飾之mRNA。
  10. 如請求項1至9中任一項所述之方法,其中該RNA引導性DNA結合劑及/或gRNA係在核酸載體及/或脂質奈米粒子中投予。
  11. 如請求項5至10中任一項所述之方法,其中該核酸載體為病毒載體。
  12. 如請求項11所述之方法,其中該病毒載體係選自由以下組成之群:腺相關病毒(AAV)載體、腺病毒載體、反轉錄病毒載體、及慢病毒載體。
  13. 如請求項12所述之方法,其中該AAV載體係選自由以下組成之群:AAV1、AAV3、AAV4、AAV5、AAV6、AAV8、AAV-DJ、及AAV2/8。
  14. 如請求項13或14所述之方法,其中該病毒載體為AAV載體。
  15. 如請求項1至14中任一項所述之方法,其中該核酸構築體、RNA引導性DNA結合劑、及gRNA係按任何次序及/或以任何組合依序投予。
  16. 如請求項1至14中任一項所述之方法,其中該核酸構築體、RNA引導性DNA結合劑、及gRNA係個別地同時投予或以任何組合同時投予。
  17. 如請求項1至16中任一項所述之方法,其中該RNA引導性DNA結合劑或RNA引導性DNA結合劑與gRNA的組合係在投予該核酸構築體之前投予。
  18. 如請求項1至17中任一項所述之方法,其中該核酸構築體係在投予該gRNA及/或RNA引導性DNA結合劑之前投予。
  19. 如請求項1至18中任一項所述之方法,其中該RNA引導性DNA結合劑為Cas核酸酶。
  20. 如請求項19所述之方法,其中該Cas核酸酶為第2類Cas核酸酶。
  21. 如請求項19或20所述之方法,其中該Cas核酸酶為Cas9。
  22. 如請求項21所述之方法,其中該Cas核酸酶為釀膿鏈球菌Cas9核酸酶。
  23. 如請求項19至22中任一項所述之方法,其中該Cas核酸酶具有位點特異性DNA結合活性。
  24. 如請求項19至23中任一項所述之方法,其中該Cas核酸酶為切口酶(nickase)。
  25. 如請求項19至23中任一項所述之方法,其中該Cas核酸酶為裂解酶(cleavase)。
  26. 如請求項19至23中任一項所述之方法,其中該Cas核酸酶不具有切口酶或裂解酶活性。
  27. 如請求項1至26中任一項所述之方法,其中該核酸構築體為雙向核酸構築體。
  28. 如前述請求項中任一項所述之方法,其中該核酸構築體為同源非依賴性供體構築體。
  29. 如請求項1至28中任一項所述之方法,其中該核酸構築體為單股的或雙股的。
  30. 如請求項1至29中任一項所述之方法,其中該核酸構築體為單股DNA或雙股DNA。
  31. 如請求項1至30中任一項所述之方法,其中該雙向構築體不包含驅動該因子IX蛋白之表現之啟動子。
  32. 如請求項1至31中任一項所述之方法,其中該細胞或細胞群用異源信號肽表現因子IX。
  33. 如請求項32所述之方法,其中該細胞或細胞群用白蛋白信號肽表現因子IX。
  34. 如請求項1至33中任一項所述之方法,其中該細胞或細胞群用視情況與異源肽組合之因子IX信號肽表現因子IX。
  35. 如請求項1至34中任一項所述之方法,其中該細胞或細胞群為或包括肝臟的細胞(liver cell)。
  36. 如請求項35所述之方法,其中該肝臟的細胞為肝細胞(hepatocyte)。
  37. 如請求項1至36中任一項所述之方法,其中該核酸編碼野生型因子IX蛋白。
  38. 如請求項1至36中任一項所述之方法,其中該核酸編碼突變型因子IX蛋白。
  39. 如請求項38所述之方法,其中該核酸編碼具有突變R338L之因子IX蛋白。
  40. 一種將因子IX核酸引入細胞或細胞群中之方法,其包含向該細胞或細胞群投予包含因子IX蛋白編碼序列之雙向核酸構築體,從而在該細胞或細胞群中表現因子IX。
  41. 一種在細胞或細胞群中表現因子IX之方法,其包含向該細胞或細胞群投予包含因子IX蛋白編碼序列之雙向核酸構築體,從而在該細胞或細胞群中表現因子IX表現。
  42. 如請求項40或41所述之方法,其中該雙向核酸構築體包含: a)包含針對因子IX之編碼序列之第一區段;及 b)包含因子IX之編碼序列之反向互補物之第二區段, 其中該構築體不包含驅動該因子IX表現之啟動子。
  43. 如請求項27至42中任一項所述之方法,其中該雙向核酸構築體包含該針對因子IX之編碼序列上游之剪接受體。
  44. 如請求項40至43中任一項所述之方法,其進一步包含投予RNA引導性DNA結合劑,其例如呈編碼RNA引導性DNA結合劑之核酸形式。
  45. 如請求項40至44中任一項所述之方法,其進一步包含投予gRNA。
  46. 如請求項40至45中任一項所述之方法,其中該雙向核酸構築體係在核酸載體及/或脂質奈米粒子中投予。
  47. 如請求項40至46中任一項所述之方法,其中該RNA引導性DNA結合劑係在核酸載體及/或脂質奈米粒子中投予。
  48. 如請求項40至47中任一項所述之方法,其中該gRNA係在核酸載體及/或脂質奈米粒子中投予。
  49. 如請求項46至48中任一項所述之方法,其中該核酸載體為病毒載體。
  50. 如請求項49所述之方法,其中該病毒載體係選自由以下組成之群:腺相關病毒(AAV)載體、腺病毒載體、反轉錄病毒載體、及慢病毒載體。
  51. 如請求項50所述之方法,其中該AAV載體係選自由以下組成之群:AAV1、AAV3、AAV4、AAV5、AAV6、AAV8、AAV-DJ、及AAV2/8。
  52. 如請求項50或51所述之方法,其中該病毒載體為AAV載體。
  53. 如請求項40至52中任一項所述之方法,其中該雙向核酸構築體、RNA引導性DNA結合劑、及gRNA係按任何次序及/或以任何組合依序投予。
  54. 如請求項40至52中任一項所述之方法,其中該雙向核酸構築體、RNA引導性DNA結合劑、及gRNA係以任何組合同時投予。
  55. 如請求項40至53中任一項所述之方法,其中該RNA引導性DNA結合劑或RNA引導性DNA結合劑與gRNA的組合係在投予該雙向核酸構築體之前投予。
  56. 如請求項40至53中任一項所述之方法,其中該雙向核酸構築體係在投予該gRNA及/或RNA引導性DNA結合劑之前投予。
  57. 如請求項40至56中任一項所述之方法,其中該雙向核酸構築體、RNA引導性DNA結合劑、及gRNA係以任何組合彼此相隔一小時內投予。
  58. 如請求項40至57中任一項所述之方法,其中該雙向構築體不包含驅動該因子IX蛋白之表現之啟動子。
  59. 如請求項40至58中任一項所述之方法,其中該雙向構築體為單股的或雙股的。
  60. 如請求項40至59中任一項所述之方法,其中該核酸構築體為單股DNA或雙股DNA。
  61. 如請求項40至60中任一項所述之方法,其中該gRNA包含選自由SEQ ID NO: 2-33組成之群之序列或與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列之至少17、18、19或20個連續核苷酸。
  62. 一種將因子IX核酸引入細胞或細胞群中之方法,其包含投予: i)包含因子IX蛋白編碼序列之雙向核酸構築體; ii)RNA引導性DNA結合劑;及 iii)包含靶向安全港基因座之序列之引導RNA(gRNA), 從而將該因子IX核酸引入該細胞或該細胞群中。
  63. 一種在細胞或細胞群中表現因子IX之方法,其包含投予: i)包含因子IX蛋白編碼序列之雙向核酸構築體; ii)RNA引導性DNA結合劑;及 iii)包含靶向該細胞或細胞群中之安全港基因座之序列之引導RNA(gRNA), 從而在該細胞或細胞群中表現因子IX。
  64. 如請求項62或63所述之方法,其中該投予係試管內。
  65. 如請求項62或63所述之方法,其中該投予係活體內。
  66. 如請求項62至65中任一項所述之方法,其中該gRNA包含選自由SEQ ID NO: 2-33組成之群之序列或與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列之至少17、18、19或20個連續核苷酸。
  67. 一種用於在細胞中表現因子IX之組成物,其中該組成物包含: i)包含因子IX蛋白編碼序列之核酸構築體; ii)RNA引導性DNA結合劑;及 iii)包含引導序列之引導RNA(gRNA),該引導序列係選自由以下組成之群:SEQ ID NO: 2-33或與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。
  68. 如請求項40至67中任一項所述之方法或組成物,其中該RNA引導性DNA結合劑為編碼RNA引導性DNA結合劑之核酸。
  69. 如請求項40至68中任一項所述之方法或組成物,其中該RNA引導性DNA結合劑為Cas核酸酶。
  70. 如請求項69所述之方法或組成物,其中該Cas核酸酶為編碼Cas核酸酶之核酸。
  71. 如請求項40至69中任一項所述之方法或組成物,其中該RNA引導性DNA結合劑為編碼Cas核酸酶之mRNA。
  72. 如請求項71所述之方法或組成物,其中該mRNA為經修飾之mRNA。
  73. 如請求項69至72中任一項所述之方法或組成物,其中該Cas核酸酶為第2類Cas核酸酶。
  74. 如請求項69至73中任一項所述之方法或組成物,其中該Cas核酸酶為Cas9。
  75. 如請求項69至74中任一項所述之方法或組成物,其中該Cas核酸酶係選自由以下組成之群:釀膿鏈球菌核酸酶、金黃色葡萄球菌(S. aureus )核酸酶、空腸曲桿菌(C .jejuni )核酸酶、嗜熱鏈球菌(S. thermophilus )核酸酶、腦膜炎雙球菌(N .meningitidis )核酸酶、及其等之變異體。
  76. 如請求項75所述之方法或組成物,其中該Cas核酸酶為釀膿鏈球菌Cas9核酸酶或其變異體。
  77. 如請求項69至76中任一項所述之方法或組成物,其中該Cas核酸酶具有位點特異性DNA結合活性。
  78. 如請求項69至77中任一項所述之方法或組成物,其中該Cas核酸酶為切口酶。
  79. 如請求項69至77中任一項所述之方法或組成物,其中該Cas核酸酶為裂解酶。
  80. 如請求項69至77中任一項所述之方法,其中該Cas核酸酶不具有切口酶或裂解酶活性。
  81. 一種用於在細胞或細胞群中表現因子IX之組成物,其中該組成物包含有包含因子IX蛋白編碼序列之雙向核酸構築體。
  82. 一種宿主細胞,其係藉由如前述請求項中任一項所述之方法或用如前述請求項中任一項所述之組成物製得。
  83. 如請求項82所述之宿主細胞,其中該宿主細胞為肝臟的細胞。
  84. 如請求項82或83所述之宿主細胞,其中該宿主細胞為非分裂細胞類型。
  85. 如請求項82至84中任一項所述之宿主細胞,其中該宿主細胞表現由該雙向構築體編碼之因子IX多肽。
  86. 如請求項82至85中任一項所述之宿主細胞,其中該宿主細胞為肝細胞。
  87. 如前述請求項中任一項所述之方法、組成物或宿主細胞,其中該gRNA包含SEQ ID NO: 401。
  88. 一種治療因子IX不足之方法,其包含向患有該因子IX不足之個體投予以下: i)包含因子IX蛋白編碼序列之雙向核酸構築體; ii)RNA引導性DNA結合劑或編碼RNA引導性DNA結合劑之序列;及 iii)包含靶向安全港基因座之序列之引導RNA(gRNA), 從而在該個體中表現該因子IX蛋白。
  89. 如請求項88所述之方法,其包含表現治療有效量之該因子IX蛋白。
  90. 如請求項88或89所述之方法,其包含在該個體中達成治療有效水平之循環因子IX凝血活性。
  91. 如請求項88至90中任一項所述之方法,其中該個體為人類。
  92. 如請求項88至91中任一項所述之方法,其進一步包含達成正常值之至少約1%,例如正常值之至少約5%之循環FIX活性或FIX蛋白水平。
  93. 如請求項88至92中任一項所述之方法,其中該循環FIX活性或FIX蛋白水平低於正常值之約150%。
  94. 如請求項88至93中任一項所述之方法,其進一步包含達成正常值之至少約1%至約150%之循環FIX活性或FIX蛋白水平。
  95. 如請求項88至94中任一項所述之方法,其進一步包含達成FIX活性相較於該個體之基線FIX活性增加正常FIX活性之至少約1%。
  96. 如請求項88至95中任一項所述之方法,其進一步包含達成FIX活性相較於該個體之基線FIX活性增加正常FIX活性之至少約50%。
  97. 如請求項88至96中任一項所述之方法,其進一步包含在該個體中達成例如至少1個月、2個月、6個月、1年或2年效果之持續且持久效果。
  98. 如請求項88至97中任一項所述之方法,其中在投予該雙向核酸構築體之後,該個體之循環白蛋白水平正常至少1個月、2個月、6個月或1年。
  99. 如請求項88至99中任一項所述之方法,其中在投予該雙向核酸構築體之後,該個體之循環白蛋白水平維持4週。
  100. 如請求項88至99中任一項所述之方法,其中該個體之循環白蛋白水平暫時下降,隨後返回至正常值。
  101. 如請求項88至100中任一項所述之方法,其中該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列之至少17、18、19或20個連續核苷酸。
  102. 如請求項88至101中任一項所述之方法,其中該引導RNA包含與選自由SEQ ID NO: 2-33組成之群之序列具有至少95%、90%、85%、80%或75%一致性之序列。
  103. 如請求項88至102中任一項所述之方法,其中該引導RNA包含選自由SEQ ID NO: 2-33組成之群之序列。
  104. 如前述請求項中任一項所述之方法、組成物或宿主細胞,其中該引導RNA包含SEQ ID NO: 401或SEQ ID NO: 402。
  105. 如前述請求項中任一項所述之方法、組成物或宿主細胞,其中該因子IX為人類因子IX。
  106. 如前述請求項中任一項所述之方法、組成物或宿主細胞,其中該因子IX為重組人類因子IX。
  107. 如前述請求項中任一項所述之方法、組成物或宿主細胞,其中該因子IX為因子IX之功能亢進變異體。
  108. 如前述請求項中任一項所述之方法、組成物或宿主細胞,其中該因子IX為包含R338處之取代之人類因子IX變異體。
  109. 一種如前述請求項中任一項所述之組成物或構築體之用途,其係用於治療個體之因子IX不足。
  110. 一種如前述請求項中任一項所述之組成物或構築體之用途,其係用於治療個體之B型血友病。
  111. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 2之核酸序列。
  112. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 3之核酸序列。
  113. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 4之核酸序列。
  114. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 5之核酸序列。
  115. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 6之核酸序列。
  116. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 7之核酸序列。
  117. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 8之核酸序列。
  118. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 9之核酸序列。
  119. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 10之核酸序列。
  120. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 11之核酸序列。
  121. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 12之核酸序列。
  122. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 13之核酸序列。
  123. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 14之核酸序列。
  124. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 15之核酸序列。
  125. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 16之核酸序列。
  126. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 17之核酸序列。
  127. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 18之核酸序列。
  128. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 19之核酸序列。
  129. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 20之核酸序列。
  130. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 21之核酸序列。
  131. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 22之核酸序列。
  132. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 23之核酸序列。
  133. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 24之核酸序列。
  134. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 25之核酸序列。
  135. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 26之核酸序列。
  136. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 27之核酸序列。
  137. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 28之核酸序列。
  138. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 29之核酸序列。
  139. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 30之核酸序列。
  140. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 31之核酸序列。
  141. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 32之核酸序列。
  142. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含SEQ ID NO: 33之核酸序列。
  143. 如前述請求項中任一項所述之方法及組成物,其中該引導RNA包含來自由SEQ ID NO: 2-5、10-17、21-27、及29-33組成之群之核酸序列。
TW108137786A 2018-10-18 2019-10-18 用於表現因子ix的組成物及方法 TW202027799A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201862747509P 2018-10-18 2018-10-18
US62/747,509 2018-10-18
US201962829009P 2019-04-03 2019-04-03
US62/829,009 2019-04-03
US201962829621P 2019-04-04 2019-04-04
US62/829,621 2019-04-04
US201962840352P 2019-04-29 2019-04-29
US62/840,352 2019-04-29

Publications (1)

Publication Number Publication Date
TW202027799A true TW202027799A (zh) 2020-08-01

Family

ID=68732041

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137786A TW202027799A (zh) 2018-10-18 2019-10-18 用於表現因子ix的組成物及方法

Country Status (15)

Country Link
US (1) US20200289628A1 (zh)
EP (1) EP3867380A2 (zh)
JP (1) JP2022512731A (zh)
KR (1) KR20210102881A (zh)
CN (1) CN113260701A (zh)
AU (1) AU2019360270A1 (zh)
BR (1) BR112021007301A2 (zh)
CA (1) CA3116331A1 (zh)
CO (1) CO2021006365A2 (zh)
IL (1) IL282238A (zh)
MX (1) MX2021004277A (zh)
PH (1) PH12021550846A1 (zh)
SG (1) SG11202103734PA (zh)
TW (1) TW202027799A (zh)
WO (1) WO2020082046A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019005166T5 (de) 2018-10-16 2021-07-29 Blueallele, Llc Verfahren zur gezielten insertion von dna in gene
MX2021015122A (es) 2019-06-07 2022-04-06 Regeneron Pharma Animales no humanos que comprenden un locus de albumina humanizado.
AU2022379633A1 (en) 2021-10-27 2024-04-11 Regeneron Pharmaceuticals, Inc. Compositions and methods for expressing factor ix for hemophilia b therapy
CN118251491A (zh) 2021-10-28 2024-06-25 瑞泽恩制药公司 用于敲除C5的CRISPR/Cas相关方法及组合物
TW202332767A (zh) 2022-02-02 2023-08-16 美商雷傑納榮製藥公司 用於治療龐貝氏症之抗TfR:GAA及抗CD63:GAA插入
WO2023212677A2 (en) 2022-04-29 2023-11-02 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
WO2023220603A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. Vectors and methods for in vivo antibody production
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
WO2023235726A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr interference therapeutics for c9orf72 repeat expansion disease
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024073606A1 (en) 2022-09-28 2024-04-04 Regeneron Pharmaceuticals, Inc. Antibody resistant modified receptors to enhance cell-based therapies
US20240182561A1 (en) 2022-11-04 2024-06-06 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
WO2024107765A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946787A (en) 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
ATE74164T1 (de) 1985-04-22 1992-04-15 Genetics Inst Herstellung mit hoher leistung des aktivfaktors ix.
US4994371A (en) 1987-08-28 1991-02-19 Davie Earl W DNA preparation of Christmas factor and use of DNA sequences
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
FR2638643B1 (fr) 1988-11-09 1991-04-12 Transgene Sa Sequence d'adn codant pour le facteur ix humain ou une proteine analogue, vecteur d'expression, cellules transformees, procede de preparation du facteur ix et produits obtenus correspondants
US5378825A (en) 1990-07-27 1995-01-03 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs
EP0618925B2 (en) 1991-12-24 2012-04-18 Isis Pharmaceuticals, Inc. Antisense oligonucleotides
EP0752005B1 (en) 1994-03-23 2008-10-08 Ohio University Compacted nucleic acids and their delivery to cells
GB9408717D0 (en) 1994-05-03 1994-06-22 Biotech & Biolog Scien Res DNA sequences
JPH10500310A (ja) 1994-05-19 1998-01-13 ダコ アクティーゼルスカブ 淋菌及びトラコーマ クラミジアの検出のためのpna プローブ
US6531298B2 (en) 1997-07-21 2003-03-11 The University Of North Carolina At Chapel Hill Factor IX antihemophilic factor with increased clotting activity
EP2423307A1 (en) 2006-06-19 2012-02-29 Catalyst Biosciences, Inc. Modified coagulation factor IV polypeptides and use thereof for treatment
EP2281050B1 (en) 2008-04-14 2014-04-02 Sangamo BioSciences, Inc. Linear donor constructs for targeted integration
KR101759586B1 (ko) 2008-08-22 2017-07-19 상가모 테라퓨틱스, 인코포레이티드 표적화된 단일가닥 분할 및 표적화된 통합을 위한 방법 및 조성물
EP2660318A1 (en) 2010-02-09 2013-11-06 Sangamo BioSciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
PT2800811T (pt) 2012-05-25 2017-08-17 Univ California Métodos e composições para modificação de adn alvo dirigida por arn e para modulação dirigida por arn de transcrição
CN110643600A (zh) 2012-10-23 2020-01-03 基因工具股份有限公司 用于切割靶dna的系统及其用途
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
BR112015021791B1 (pt) 2013-03-08 2022-08-30 Novartis Ag Compostos de lipídio catiônico e composições de lipídios e farmacêuticas
CN116083487A (zh) * 2013-05-15 2023-05-09 桑格摩生物治疗股份有限公司 用于治疗遗传病状的方法和组合物
US9771403B2 (en) * 2013-12-09 2017-09-26 Sangamo Therapeutics, Inc. Methods and compositions for treating hemophilia
EP3872066A1 (en) 2013-12-19 2021-09-01 Novartis AG Lipids and lipid compositions for the delivery of active agents
US20150376587A1 (en) 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
US10342761B2 (en) 2014-07-16 2019-07-09 Novartis Ag Method of encapsulating a nucleic acid in a lipid nanoparticle host
CN113337533A (zh) 2014-12-23 2021-09-03 先正达参股股份有限公司 用于鉴定和富集包含位点特异性基因组修饰的细胞的方法和组合物
EP3265559B1 (en) 2015-03-03 2021-01-06 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
WO2017004279A2 (en) 2015-06-29 2017-01-05 Massachusetts Institute Of Technology Compositions comprising nucleic acids and methods of using the same
CA2999649A1 (en) * 2015-11-06 2017-05-11 Crispr Therapeutics Ag Materials and methods for treatment of glycogen storage disease type 1a
EP3380622A4 (en) * 2015-11-23 2019-08-07 Sangamo Therapeutics, Inc. METHODS AND COMPOSITIONS FOR MODIFYING IMMUNITY
EP3967758A1 (en) * 2015-12-01 2022-03-16 CRISPR Therapeutics AG Materials and methods for treatment of alpha-1 antitrypsin deficiency
WO2017136794A1 (en) 2016-02-03 2017-08-10 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
JP7245651B2 (ja) 2016-03-30 2023-03-24 インテリア セラピューティクス,インコーポレイテッド Crispr/cas構成成分のための脂質ナノ粒子製剤
EA201991369A1 (ru) 2016-12-08 2019-12-30 Интеллиа Терапьютикс, Инк. Модифицированные направляющие рнк
GB2566453B (en) 2017-09-12 2021-01-13 Univ Of Northumbria At Newcastle Impactor for aerosol component collection
JP2021500863A (ja) 2017-09-29 2021-01-14 インテリア セラピューティクス,インコーポレイテッド ゲノム編集用のポリヌクレオチド、組成物および方法
MA50877A (fr) * 2017-11-21 2020-09-30 Bayer Healthcare Llc Matériaux et méthodes pour le traitement de la rétinite pigmentaire autosomique dominante
US20220218843A1 (en) * 2018-08-10 2022-07-14 Logicbio Therapeutics, Inc. Non-disruptive gene therapy for the treatment of mma
DE112019005166T5 (de) 2018-10-16 2021-07-29 Blueallele, Llc Verfahren zur gezielten insertion von dna in gene

Also Published As

Publication number Publication date
PH12021550846A1 (en) 2021-12-06
IL282238A (en) 2021-05-31
BR112021007301A2 (pt) 2021-07-27
AU2019360270A1 (en) 2021-05-27
WO2020082046A2 (en) 2020-04-23
CN113260701A (zh) 2021-08-13
CO2021006365A2 (es) 2021-08-19
KR20210102881A (ko) 2021-08-20
JP2022512731A (ja) 2022-02-07
MX2021004277A (es) 2021-09-08
EP3867380A2 (en) 2021-08-25
US20200289628A1 (en) 2020-09-17
CA3116331A1 (en) 2020-04-23
SG11202103734PA (en) 2021-05-28
WO2020082046A3 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
TW202027799A (zh) 用於表現因子ix的組成物及方法
JP7472121B2 (ja) アルブミン遺伝子座からの導入遺伝子発現のための組成物及び方法
US20210316014A1 (en) Nucleic acid constructs and methods of use
AU2016326711B2 (en) Use of exonucleases to improve CRISPR/Cas-mediated genome editing
JP2021500867A (ja) ヒト化ttr遺伝子座を含む非ヒト動物および使用方法
JP2022505381A (ja) アルファ1アンチトリプシン欠乏症を治療するための組成物及び方法
US11622547B2 (en) Genetically modified mouse that expresses human albumin
ES2966625T3 (es) Roedores que comprenden un locus del factor de coagulación 12 humanizado
US20230149563A1 (en) Compositions and methods for expressing factor ix for hemophilia b therapy
KR20240099358A (ko) B형 혈우병 치료를 위한 인자 ix를 발현하기 위한 조성물 및 방법
WO2023064918A1 (en) Compositions and methods for treating alpha-1 antitrypsin deficiency