TW201928107A - 流量控制裝置 - Google Patents

流量控制裝置 Download PDF

Info

Publication number
TW201928107A
TW201928107A TW107142369A TW107142369A TW201928107A TW 201928107 A TW201928107 A TW 201928107A TW 107142369 A TW107142369 A TW 107142369A TW 107142369 A TW107142369 A TW 107142369A TW 201928107 A TW201928107 A TW 201928107A
Authority
TW
Taiwan
Prior art keywords
valve
control valve
flow rate
flow control
pressure
Prior art date
Application number
TW107142369A
Other languages
English (en)
Other versions
TWI679297B (zh
Inventor
杉田勝幸
土肥亮介
平田薰
川田幸司
池田信一
西野功二
Original Assignee
日商富士金股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士金股份有限公司 filed Critical 日商富士金股份有限公司
Publication of TW201928107A publication Critical patent/TW201928107A/zh
Application granted granted Critical
Publication of TWI679297B publication Critical patent/TWI679297B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/003Circuit elements having no moving parts for process regulation, (e.g. chemical processes, in boilers or the like); for machine tool control (e.g. sewing machines, automatic washing machines); for liquid level control; for controlling various mechanisms; for alarm circuits; for ac-dc transducers for control purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/024Controlling the inlet pressure, e.g. back-pressure regulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/028Controlling a pressure difference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/0402Control of fluid pressure without auxiliary power with two or more controllers mounted in series
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

流量控制裝置(100),其構成為具備:設在流路的壓力控制閥(6)、設在壓力控制閥之下游側的流量控制閥(8)、測量壓力控制閥之下游側且流量控制閥之上游側之壓力的第1壓力感測器(3),流量控制閥,是具有:與閥座(12)接離的閥體(13)、為了使閥體接離而使閥體移動的壓電元件(10b)、設置在壓電元件之側面的應變感測器(20),基於第1壓力感測器(3)所輸出的訊號來控制壓力控制閥(6),基於應變感測器(20)所輸出的訊號來控制流量控制閥(8)之壓電元件的驅動。

Description

流量控制裝置
本發明,是關於流量控制裝置,特別是關於適合利用在半導體製造設備或化學品製造設備等的流量控制裝置。
在半導體製造裝置或化學廠中,為了控制材料氣體或蝕刻氣體等之流體的流動,利用有各種類型的流量計或流量控制裝置。其中,壓力式流量控制裝置,可藉由將控制閥與限縮部(例如限流板)組合而成之比較簡單的機構來高精度地控制各種流體的流量,故被廣泛利用(例如專利文獻1)。
作為壓力式流量控制裝置的控制閥,就耐蝕性高、發塵少、氣體的置換性良好、開閉速度快以及閉閥時可迅速且確實地封閉流體通路等的觀點來看,大多使用金屬隔膜閥。且,作為使金屬隔膜開閉的驅動裝置,是廣泛利用有壓電元件驅動裝置(亦稱為壓電致動器)。
於專利文獻2揭示壓電元件驅動式閥,其構成為使用上述般的壓電元件(Piezo元件)來使金屬隔膜閥體開閉。在壓電元件驅動式閥,因施加於壓電元件之驅動電壓的大小,而使壓電元件的伸長程度變化,伴隨於此使將金屬隔膜閥體按壓至閥座的按壓力變化。在金屬隔膜閥體對閥座以充分的按壓力來按壓時,是成為閉閥狀態,按壓力變弱的話則金屬隔膜閥體會離開閥座而開閥。壓電元件驅動式閥,除了可高速動作之外,有著動作特性上的遲滯較小的優點。
且,於壓電元件驅動式閥,有著常開式與常閉式,在常開式,是與電壓施加所致之壓電元件的伸長連動而使閥體往閉方向移動。另一方面,在常閉式是與壓電元件的伸長連動而使閥體往開方向移動。常開式的壓電元件驅動式閥,例如揭示於專利文獻3。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開2004-138425號公報
[專利文獻2]日本特開2007-192269號公報
[專利文獻3]日本專利第4933936號
[發明所欲解決的課題]
在以往的半導體製程控制中,壓電元件驅動式閥,是以消除對設定流量之偏差的方式來控制,故多為類比地以些許的位移量來比較平緩地進行開閉動作。
但是,近年來,流量控制裝置,是要求適用於例如ALD(Atomic Layer Deposition)等,這種用途,是要求著藉由高速(周期非常短)脈衝狀的控制訊號來使控制閥開閉而在短時間之內高速進行流量的切換。該情況時,在以往的壓力式流量控制裝置般,使用控制閥來控制限縮部之上游側之壓力的流量控制方式,會無法得到充分的流量上升/下降特性,難以對應脈衝性的流量控制。
且,為了適當進行脈衝性的流量控制,亦考量到使用反應性優異的電磁閥等來構成流量控制裝置。但是,在該情況時,裝置的製造成本會增加,會有損失藉由壓力式流量控制裝置所具有之比較簡單的機構而可高精度地控制流量的優點之虞。因此,在以往的流量控制裝置,是難以兼具脈衝性的流量控制與連續性流動的流量控制之雙方來適當地進行。
本發明,是為了解決上述課題而完成者,其主要的目的在於提供反應性良好的流量控制裝置,是繼承以往之壓力式流量控制裝置的特長,且亦可對應於脈衝流量控制等。

[用以解決課題的手段]
本發明之實施形態的流量控制裝置,是具備:設在流路的壓力控制閥、設在前述壓力控制閥之下游側的流量控制閥、測量前述壓力控制閥之下游側且前述流量控制閥之上游側之壓力的第1壓力感測器、開度為固定的限縮部,前述流量控制閥,是具有:與閥座接離的閥體、為了使前述閥體接離於前述閥座而使前述閥體移動用的壓電元件、設置在前述壓電元件之側面的應變感測器,將前述流量控制閥所具有之前述閥座與前述閥體之間的距離作為開度,前述流量控制閥,是使用來作為可變更前述開度的限縮部,基於由前述第1壓力感測器所輸出的訊號來控制前述壓力控制閥,並基於由前述應變感測器所輸出的訊號來控制前述壓電元件的驅動,在進行連續流動的控制時,使用前述開度為固定的限縮部來進行流量控制,在進行斷續流量的控制時,是使用前述流量控制閥作為可變更前述開度的限縮部來進行流量控制。
在一實施形態中,在使用前述開度為固定的限縮部來進行前述連續流動的控制時,使前述流體控制閥成為全開。
在一實施形態中,前述開度為固定的限縮部,是設在前述流量控制閥的上游側。
在一實施形態中,上述流量控制裝置,是進一步具備測量前述流量控制閥之下游側之壓力的第2壓力感測器。
在一實施形態中,前述開度為固定的限縮部,是設在前述流量控制閥的下游側。
在一實施形態中,上述流量控制裝置,是進一步具備測量前述開度為固定之限縮部之下游側之壓力的第2壓力感測器。
在一實施形態中,上述流量控制裝置,是進一步具備測量前述流量控制閥與前述開度為固定之限縮部之間之壓力的第3壓力感測器。
在一實施形態中,前述開度為固定的限縮部的最大設定流量,是比前述流量控制閥的最大設定流量還大。
在一實施形態中,在前述流量控制閥之上游側的壓力與前述流量控制閥之下游側的壓力符合臨界膨脹條件的狀態下進行流量控制。
在一實施形態中,前述應變感測器,是含有:用來檢測前述壓電元件之伸長方向之應變的第1應變計、用來檢測與前述壓電元件之前述伸長方向正交之方向之應變的第2應變計。
在一實施形態中,前述流量控制閥是常開式的閥,其構成為具備壓電致動器,該壓電致動器具有:含有安裝有前述應變感測器的前述壓電元件的複數個壓電元件、將前述複數個壓電元件收容成一列的筒體,藉由對前述壓電致動器施加電壓,而使作為前述閥體之金屬隔膜閥體往閥座的方向移動。
在一實施形態中,前述流量控制閥是常開式的閥,其構成為具備壓電致動器,該壓電致動器具有:安裝有前述應變感測器的前述壓電元件、將前述壓電元件予以收容的筒體,藉由對前述壓電致動器施加電壓,而使作為前述閥體之金屬隔膜閥體往閥座的方向移動。

[發明的效果]
根據本發明的實施形態,提供反應性良好的流量控制裝置。
以下,雖參照圖式來說明本發明的實施形態,但本發明並不限定於以下的實施形態。
圖1,是表示本發明之實施形態之流量控制裝置100的構造。流量控制裝置100,是具備:設在氣體G0之流入側之流路1的壓力控制閥6、設在壓力控制閥6之下游側的流量控制閥8、檢測出壓力控制閥6之下游側且流量控制閥8之上游側之壓力P1 的第1(或上游)壓力感測器3、配置在壓力控制閥6之下游側的限縮部2。
在本實施形態,限縮部2,是藉由配置在流量控制閥8之上游側的限流板所構成。限流板,其孔口的面積為固定,故作為開度固定的限縮部來發揮功能。又,在本說明書中,所謂的「限縮部」,是將流路的剖面積限制成比前後流路剖面積還小的部分,例如,使用限流板或臨界噴嘴、音速噴嘴等而構成,但亦可使用其他東西來構成。且,在本說明書中,限縮部亦包含:將閥的閥座與閥體之間的距離定為開度,將該開度當成虛擬的可變孔口的閥構造。這種閥構造,是作為開度可變的限縮部來發揮功能。
本實施形態的流量控制裝置100,還具備:測量流量控制閥8之下游側之壓力P2 的第2(或下游)壓力感測器4、檢測出壓力控制閥6之上游側之壓力P0 的流入壓力感測器5。但是,流量控制裝置100,在其他態樣中,不具備第2壓力感測器4或流入壓力感測器5亦可。
第1壓力感測器3,可測量壓力控制閥6與限縮部2或流量控制閥8之間的流體壓力亦即上游壓力P1 ,第2壓力感測器4,可測量限縮部2或流量控制閥8之下游壓力P2 。且,流入壓力感測器5,可測量從所連接之氣體供給裝置(例如原料氣化器或氣體供給源等)供給至流量控制裝置100的材料氣體、蝕刻氣體或載流氣體等之流入壓力P0 。流入壓力P0 ,是利用來控制來自氣體供給裝置的氣體供給量或氣體供給壓。
流量控制閥8的下游側,是透過下游閥(未圖示)而連接於半導體製造裝置的製程腔室。於製程腔室連接有真空泵,傳統而言,製程腔室的內部是在抽真空的狀態下,由流量控制裝置100將流量控制過的氣體G1供給至製程腔室。作為下游閥,例如,可使用以壓縮空氣來控制開閉動作的公知之空氣驅動閥(Air Operated Valve)或電磁閥等。
流量控制裝置100的流路1,是藉由配管來構成亦可,藉由形成為金屬製塊體的流路孔來構成亦可。第1及第2壓力感測器3、4,例如亦可為將矽單晶的感測器晶片與隔膜予以內藏者。
且,壓力控制閥6,例如,以壓電致動器來驅動金屬製隔膜閥體之公知的壓電元件驅動式閥亦可。如後述般,壓力控制閥6,是因應由第1壓力感測器3所輸出的訊號來控制其開度,例如,第1壓力感測器3所輸出的上游壓力P1 ,是以維持在所輸入之設定值的方式來進行回授控制。
且,在本實施形態中,流量控制閥8,是具備以下元件之壓電元件驅動式的閥:配置成對閥座抵接及分離(以下有時稱為接離)的閥體、用來使閥體移動的壓電元件、檢測出壓電元件之伸長量的應變感測器(亦稱為應變計)20。如後述般,流量控制閥8,是構成為基於應變感測器20所輸出的訊號,而可回授控制壓電元件的驅動。
圖2,是表示圖1所示的流量控制閥8與設在其下游側的第2壓力感測器4的構造例。流量控制閥8及第2壓力感測器4,是安裝在本體塊11。又,本體塊11的入口側,是連接於圖1所示之安裝有壓力控制閥6及第1壓力感測器3的其他本體塊(未圖示)。且,圖1所示的限縮部2,是在本體塊11與其他本體塊的連接部中,例如透過墊圈來固定作為限流板。但是,作為限縮部,除了限流板等之孔口構件以外,亦可使用臨界噴嘴或音速噴嘴。孔口或噴嘴的口徑,例如設定成100μm~500μm。
圖2所示的流量控制閥8,為常開式的閥,構成為藉由壓電致動器10的伸長來使閥體往閥座的方向移動。流量控制閥8,具備:含有1根或複數根壓電元件10b(參照圖3)的壓電致動器10、配置在壓電致動器10之下方的金屬隔膜閥體13、設在壓電致動器10之外側的導引筒體14。
壓電致動器10的下端10t,是由支撐體16所支撐,於支撐體16的下方設有與隔膜閥體13抵接的閥體按壓部18。金屬隔膜閥體13,是自身彈性恢復型,例如由鎳鉻合金鋼等之薄板所形成。
金屬隔膜閥體13,是對於設在本體塊11之流路的閥座12配置成可接離。本實施形態的金屬隔膜閥體13,是形成為使中央部往上方稍微膨出的倒盤形狀,但金屬隔膜閥體13的形狀為平板狀亦可,且,材質亦可為不銹鋼或英高鎳合金或其他的合金鋼。金屬隔膜閥體13,是藉由1片的金屬隔膜所構成亦可,藉由疊層之2~3片之複數片金屬隔膜所構成亦可。
在上述構造中,在沒對壓電致動器10施加驅動電壓的狀態下,金屬隔膜閥體13(中央部)是藉由自身彈性力來對閥座12分離。且,在本實施形態,配置在支撐體16之周圍的彈性構件(此處為盤簧)15是將支撐體16及壓電致動器10予以支撐,在無施加電壓時使金屬隔膜閥體13容易從閥座12分離。彈性構件15,是用於事先將壓電致動器10予以壓縮。
另一方面,若對壓電致動器10施加驅動電壓的話,在對閥本體11固定的導引筒體14之內側,使壓電致動器10朝向下方伸長。然後,壓電致動器10的下端10t會抵抗彈性構件15的彈推力而將支撐體16往下壓,與此連動而閥體按壓部18會使金屬隔膜閥體13往閥座12的方向移動。藉此,閥開度會減少而最終會閉閥。
這種常開式的閥,在對壓電致動器10施加最大驅動電壓時是成為閉閥狀態,使驅動電壓減少藉此可任意調節開度。且,在常開式的閥,從壓電致動器10到閥體按壓部18為止是以比較少活動的機構來連接,且難以妨礙電壓施加開始時之壓電致動器10的伸長。因此,容易從對壓電致動器10施加電壓的瞬間開始使閥體13移動,反應性為良好。
接著,說明構成流體控制閥8的壓電致動器10之詳細構造。圖3(a),是將外側的筒體10a、在該筒體10a內以並排成一列的狀態來收容的複數個壓電元件10b(以下有時稱為壓電疊堆10b)予以分解來表示,圖3(b),是表示從正面方向觀看圖3(a)所示之連接部10c的狀態。在圖3(a),是將壓電致動器10以與圖2上下顛倒的方式表示。
如圖3(a)所示般,在壓電致動器10中,於複數個壓電元件10b之中的1個,藉由接著劑等來直接安裝有應變感測器20。應變感測器20是配置在壓電元件的側面,在本實施形態中,是藉由第1應變計20z與第2應變計20x所構成,該第1應變計20z是檢測出壓電元件之疊層方向,亦即,壓電疊堆之主伸長方向的z方向之應變,該第2應變計20x,是檢測出與主伸長方向正交的x方向之應變。作為第1應變計20z及第2應變計20x,例如可使用共和電業股份有限公司製的KFR-02N或KFGS-1、KFGS-3等。
在本實施形態中,第1應變計20z是被貼附成全體接觸至壓電元件,第2應變計20x是跨越第1應變計20z之中央部以交差的方式來貼附於壓電元件。第1應變計20z及第2應變計20x,可將壓電元件的位移,作為第1應變計20z及第2應變計20x之電阻的變化來檢測。
且,如圖3(b)所示般,於連接部10c,設有:用來對壓電疊堆10b施加驅動電壓的一對驅動電壓端子22a、22b、與第1應變計20z之一方之端子連接的第1應變感測器輸出端子24a、與第1應變計20z之另一方之端子及第2應變計20x之一方之端子共通地連接的應變感測器共通輸出端子24c、與第2應變計20x之另一方之端子連接的第2應變感測器輸出端子24b。
構成壓電疊堆10b的複數個壓電元件10b,是藉由公知的電路構造來電性連接於驅動電壓端子22a、22b,藉由對驅動電壓端子22a、22b施加電壓,可使複數個壓電元件10b全部往疊堆方向伸長。壓電疊堆的位移,是藉由施加電壓的大小而可控制。作為壓電致動器10,例如可利用NTK CERATEC公司等所販售者。又,壓電致動器10,在其他態樣中,是由收容在筒體的單一壓電元件及安裝在該側面的應變感測器所構成亦可。
第1及第2應變感測器輸出端子24a、24b及應變感測器共通輸出端子24c,是連接於設在外部基板的電路,而形成包含第1應變計20z及第2應變計20x的橋式電路。在該橋式電路中,可檢測出第1應變計20z及第2應變計20x之電阻值的變化。
圖4,是表示用來檢測第1應變計20z及第2應變計20x之電阻值變化的範例等效電路。圖4所示的等效電路中,設在分歧點A-D間及分歧點C-D間的電阻R1、R2,是對應於設在外部基板上之已知電阻值的固定電阻,設在分歧點A-B之間的電阻R3,是對應於第1應變計20z,設在分歧點B-C之間的電阻R4,是對應於第2應變計20x。在本實施形態,第1應變計20z及第2應變計20x的電阻值與2個固定電阻R1、R2的電阻值是設定成相同,例如,均設定成120歐姆或350歐姆。
且,在圖4中,分歧點A,是對應於第1應變感測器輸出端子24a,分歧點B,是對應於應變感測器共通輸出端子24c,分歧點C,是對應於第2應變感測器輸出端子24b。在該等效電路中,是在分歧點A-C之間施加有既定的橋接偏壓電壓的狀態下,將第1應變計20z或第2應變計20x之電阻值的變化,作為橋接輸出訊號(分歧點B-D之間的電位差)的變化來檢測。又,如上述般當各電阻R1~R4的大小相同的情況,在第1及第2應變計20z、20x沒有發生應力的初始狀態中,橋接輸出訊號正常來說是顯示為零。
在對壓電疊堆施加有驅動電壓時,安裝有應變感測器20的壓電元件是往z方向伸長,且在與此正交的x方向收縮。該情況時,第1應變計20z的電阻值,是與壓電元件的伸長量對應而增加,第2應變計20x的電阻值是與壓電元件的收縮量對應而減少。
然後,圖4所示的電路,在對壓電疊堆10b施加有驅動電壓而使其伸長時,第1應變計20z的應變量會增大而使橋接輸出訊號增加,並且第2應變計20x的應變量會減少而亦使橋接輸出訊號增加。因此,在壓電疊堆位移時,會發生橋接輸出訊號的變動,其對應於第1應變計20z之應變量的增加分量與第2應變計20x之應變量的減少分量之合計。藉此,可使橋接輸出訊號增幅。
且,如上述般使用第1應變計20z、與此正交的第2應變計20x來構成橋式電路,藉此可修正因溫度變化所致之應變計的電阻值變化。這是因為,例如在溫度上升而使壓電元件膨脹時,該膨脹,對於第1應變計20z是造成使橋接輸出訊號增加的要素,相對於此,對於第2應變計20x是造成使橋接輸出訊號減少的要素,可得到使溫度所致之增加要素與減少要素抵銷的橋接輸出訊號。因此,即使是起因於溫度的變化而發生壓電元件自身的膨脹及收縮時,亦可降低對橋接輸出訊號的影響,可實現溫度補償。
圖5,是表示僅使用第1應變計20z(縱向1計)的情況(圖4所示的等效電路中,將設在分歧點B-C之間的電阻R4作為已知的固定電阻來構成橋式電路的情況)之壓電驅動電壓與應變感測器輸出(橋接輸出訊號:放大增益×400)之間關係的圖表A1、以及使用上述第1應變計20z與第2應變計20x(正交2計)來構成應變感測器之情況的圖表A2。作為圖表A2,是同樣地表示出正交2計之構造的2個例子。
比較圖表A1與圖表A2而可得知,在施加壓電驅動電壓時,在使用正交2計之情況的圖表A2,比起縱向1計之情況的圖表A1,可得到增幅過的應變感測器輸出。
且,圖6(a),是表示使用縱向1計之情況之應變感測器輸出的溫度影響性(15℃、25℃、35℃的圖表A3、A4、A5),圖6(b)是表示使用正交2計之情況。比較圖6(a)與圖6(b)而可得知,藉由使用正交2計,15℃的圖表A3、25℃的圖表A4、35℃的圖表A5,是成為更接近者,得知可降低溫度影響性。又,為了更高精度地進行溫度補償,將壓電驅動電壓(對壓電元件的施加電壓)為0時的應變感測器輸出修正為0,來進行歸零修正亦可。
且,由圖5及圖6可得知,壓電驅動電壓與應變感測器輸出的關係,在升壓時與降壓時有些許不同。這認為是因為,在壓電致動器的升壓時與降壓時,即使驅動電壓的大小相同,閥的實際開度亦會不同,對此,應變感測器輸出會是對應閥的實際開度者。如上述般,有著僅參照驅動電壓會難以判斷閥的實際開度的情況,但基於應變感測器的輸出來回授控制閥開度的話,可更高精度地進行開度調整。
又,在本說明書中,應變感測器的輸出,是代表著與構成應變感測器的應變計之應變量相對地變化之應變計的電阻值所對應的各種輸出,例如,為應變計之電阻值本身亦可,組合複數個應變計的惠斯登電橋所輸出之上述的橋接輸出訊號(參照圖4)等亦可。由任何態樣所得到的應變感測器之輸出,均為與壓電元件的伸長量對應者,而可基於應變感測器的輸出來得知壓電元件的伸長量。
以下,再次參照圖1,來說明流量控制裝置100的流量控制動作。
流量控制裝置100,是具備第1控制電路7,其基於第1壓力感測器3的輸出來控制壓力控制閥6的開閉動作。第1控制電路7,是構成為:使從外部受到的設定上游壓力與第1壓力感測器3的輸出P1 之差成為零的方式來回授控制壓力控制閥6。藉此,可將壓力控制閥6的下游側且流量控制閥8的上游側之壓力P1 維持在設定值。
且,流量控制裝置100,是具有第2控制電路17,其將來自設在流量控制閥8之應變感測器20的輸出作為壓電閥位移來接收,並基於該輸出來控制流量控制閥8的驅動。又,於圖1,表示出使第1控制電路7與第2控制電路17個別地設置的態樣,但亦可將該等設置為一體。
第1控制電路7及第2控制電路17,是內藏在流量控制裝置100亦可,設置在流量控制裝置100的外部亦可。第1控制電路7及第2控制電路17,一般來說是藉由CPU、ROM或RAM等之記憶體(記憶裝置)M、A/D轉換器等所構成,且含有構成為實行後述之流量控制動作的電腦程式亦可。第1控制電路7及第2控制電路17,是由硬體及軟體的組合而可實現。
流量控制裝置100,是構成為:藉由第1控制電路7及第2控制電路17,來控制壓力控制閥6而使第1壓力感測器3所輸出的上游壓力P1 成為設定值,並且控制流量控制閥8之壓電元件10b的驅動,藉此控制往流量控制閥8之下游側流動之流體的流量。流量控制裝置100,特別是由以下原理來進行流量控制:在符合臨界膨脹條件P1 /P2 ≧約2(P1 :限縮部上游側的流體壓力(上游壓力),P2 :限縮部下游側的流體壓力(下游壓力))時,通過限縮部2或流量控制閥8之氣體的流量,是不看下游壓力P2 而是藉由上游壓力P1 來決定。
在符合臨界膨脹條件時,流量控制閥8之下游側的流量Q,是藉由Q=K1 ・Av・P1 (K1 是流體的種類與依存於流體溫度的常數)來賦予。流量Q,認為是大致比例於上游壓力P1 及流量控制閥8的閥開度Av。且,具備第2壓力感測器4的情況,即使是上游壓力P1 與下游壓力P2 的差變小,而沒有符合上述臨界膨脹條件的情況,亦可算出流量,根據由各壓力感測器所測量到的上游壓力P1 及下游側壓力P2 ,可由既定的計算式Q=K2 ・Av・P2 m (P1 -P2 )n (在此K2 為流體的種類與依存於流體溫度的常數,m、n為以實際的流量為基準所導出的指數)來算出流量Q。
圖7,是表示流量與流量控制閥8之壓電位移量之間關係的圖。但是,在圖7,表示隨著壓電位移量的增加而閥開度Av增加的情況(對應常閉式)。如上述般,在本實施形態的流量控制裝置100,是基於應變感測器輸出來檢測出壓電位移量(或閥開度Av)。
於圖7表示出,基於來自第1壓力感測器3的輸出來控制壓力控制閥6,藉此將上游壓力P1 分別控制成50kPa abs、100kPa abs、300kPa abs時的圖表B1~B3。如圖7所示般,使用壓力控制閥6來將上游壓力P1 控制在與所期望的流量範圍對應的固定值,並基於應變感測器輸出(壓電位移量)來控制流量控制閥8的閥開度,藉此可遍及廣範圍來適當地控制流量。特別是,基於應變感測器輸出來回授控制流量控制閥8的情況,與如以往般基於上游壓力P1 來回授控制控制閥的情況相較之下,可提升流量控制的反應性。如上述般,流量控制閥8,在本實施形態,具有將閥之閥座與閥體之間的距離作為開度而變更該開度的功能,可作為可變孔口(開度可變的限縮部)來使用。
且,在本實施形態的流量控制裝置100,開度為固定的限縮部2之最大設定流量,是設定成比開度為可變之流量控制閥8的最大設定流量還要大。此處,限縮部2的最大設定流量,是代表著流量控制裝置100中在臨界膨脹條件下使限縮部2之上游側的壓力成為最大設定壓力時流動於限縮部2的氣體流量,流量控制閥8的最大設定流量,是代表著在相同條件下將流量控制閥8開至最大設定開度時所流動的氣體流量。該情況時,一般來說,限縮部2的開口面積(亦即流路剖面積),是成為比流量控制閥8之最大設定開度的流路剖面積還大者。限縮部2,例如,藉由最大設定流量2000sccm(孔口徑:約300μm)的限流板所構成,流量控制閥8的控制流量是設定成2000sccm以下。又,上述之使流量控制閥8成為最大設定開度,是代表著在流量控制所使用的範圍內最大的開度,通常,是比流量控制閥8全開(無電壓施加)時的最大開度還要小的開度。
藉由如上述般構成,將開度為固定的限縮部2作為流量控制的主要素來使用而藉由壓力控制閥6來控制上游壓力P1 ,藉此可與以往的壓力式流量控制裝置同樣地進行流量控制,而且還可使用壓力控制閥6來將上游壓力P1 保持成固定,並進行流量控制閥8的開度調整,藉此亦可控制氣體流量。於是,可進行各種態樣的氣體流量控制,亦可對應於脈衝流量控制。
又,將開度為固定的限縮部2作為流量控制的主要素來使用的流量控制,是適合遍及比較長的期間來將流量控制維持在設定值的連續性流動的控制。另一方面,在未達開度為固定的限縮部2之最大設定流量的流量,是藉由流量控制閥8的開度來決定流量的流量控制,亦即,將流量控制閥8作為可變孔口(開度為可變的限縮部)來使用的流量控制,是適合斷續性流動的控制(脈衝流量控制等)。
此處,連續性流動的控制,是廣義代表著流體的流動為持續時之流體的控制,例如含有從以100%流量來使流體流動的狀態變更成以50%流量來使流體流動的狀態之情況等。且,使用開度為固定的限縮部2來進行連續性流動的控制時,流量控制閥8是成為全開(最大開度),或是至少維持在比開度為固定的限縮部2之開度還要大的開度為佳。
且,斷續性流動的控制,並不限於脈衝流量控制那般固定間隔之周期性的開閉控制,亦包含不定期進行的脈衝性開閉控制,或是脈衝的振幅不是固定而是變動之開閉控制的情況,且,亦包含脈衝寬度會變動的開閉控制。
圖8(a)及(b),是表示流量控制裝置100中,進行脈衝流量控制時的上游壓力P1 、賦予至流量控制閥8的開度控制訊號、流量輸出,於圖8(a)表示以2000sccm進行脈衝流量控制的情況,於圖8(b)表示以200sccm進行脈衝流量控制的情況。
如圖8(a)所示般來進行脈衝流量控制的情況,是使用壓力控制閥6及第1壓力感測器3,來進行上游壓力P1 的控制,使上游壓力P1 成為固定的設定值(在此為300kPa)。更具體來說,是對壓力控制閥6進行回授控制,而使壓力感測器3所輸出的測定值與設定值之差成為0,藉此可將上游壓力P1 維持在設定值。
而且,如上述般使上游壓力P1 維持成固定,並藉由脈衝狀的開度控制訊號來控制流量控制閥8的開度。此時,常開式的流量控制閥8,是在閉狀態時施加有最大驅動電壓,且在全開狀態時施加有最小驅動電壓。但是,所施加的最小驅動電壓沒有必要為0伏特,只要是能夠對應於,以開度為固定的限縮部2之最大設定流量以上的流量來使氣體流動於流量控制閥8的開度的電壓即可。如上述般脈衝性進行流量控制閥8的開閉動作,而可在以開度為固定的限縮部2之最大設定流量為準的流量(在此為2000sccm)進行脈衝性之氣體的流量控制。
另一方面,如圖8(b)所示般,在較小流量進行脈衝流量控制時,是使用壓力控制閥6及第1壓力感測器3,進行上游壓力P1 的控制來維持在較小之固定的設定值(在此為100kPa),並以比開度為固定的限縮部2還小的設定開度來脈衝地進行流量控制閥8的開閉動作。藉此,可在開度為可變的限縮部亦即流量控制閥8的設定開度所對應的流量來進行脈衝性的氣體供給。
此時,流量控制閥8的開度,是基於應變感測器的輸出來控制壓電致動器的驅動電壓,藉此可精度良好地控制。更具體來說說明的話,是基於應變感測器的輸出來檢測出實際的壓電致動器之伸長量,並回授控制往壓電致動器的施加驅動電壓,而使所檢測出的伸長量與對應所期望之流量的伸長量(在圖8所示的態樣為6.6μm位置)成為一致,藉此可將流量控制閥8控制成適合所期望之流量的開度。
如上述般進行脈衝流量控制之後,關閉壓力控制閥6藉此使上游壓力P1 降低,例如圖8(a)及(b)所示般下降至0KPa,藉此可使流量成為0。此時,流量控制閥8,例如是維持在對應上述之最大設定開度的最小驅動電壓之開度,亦即,維持在開度控制的原點位置亦可。
如以上所說明般,根據本實施形態的流量控制裝置100,可進行反應性提升的流量控制,其亦可對應於脈衝流量控制等。在脈衝流量控制,可基於應變感測器的輸出,來以正確的開度反覆進行流量控制閥8的開閉,故可用提高後的流量精度來脈衝地供給流體。
且,由於是使用應變感測器20而可監測壓電元件10b的伸長量,故例如在全閉狀態的伸長量比預先設定的閾值還低時,或是儘管對壓電致動器供給有驅動電壓,伸長量卻依然未達預定值時等,認為有異常的傾向時,可判斷為壓電致動器發生異常(到達使用極限)。藉此,可在壓電致動器完全故障之前進行交換,而不會使用到故障之狀態的閥。
以下,針對本實施形態之流量控制裝置的變形例進行說明。
圖9,是表示第1變形例之流量控制裝置110的構造。流量控制裝置110與圖1所示之流量控制裝置100的相異點,是開度為固定的限縮部2’設在流量控制閥8之下游側這點。
流量控制裝置110中,也是基於應變感測器20的輸出來控制流量控制閥8的驅動電壓,藉此可用正確的開度來進行流量控制閥8的脈衝性開閉動作,可在所期望的流量進行脈衝流量控制。且,亦可使用開度為固定的限縮部2’來進行流量控制。
圖10,是表示第2變形例之流量控制裝置120的構造。流量控制裝置120與圖1所示之流量控制裝置100的相異點,是在開度為固定的限縮部2與流量控制閥8之間進一步設有第3壓力感測器9這點。
使用第3壓力感測器9的話,可測量限縮部2與流量控制閥8之間的壓力,故可更高精度地進行流量控制。例如,在上述藉由流量控制閥8的開度調整來進行流量控制的情況,是基於第1壓力感測器3所檢測出的上游壓力P1 與流量控制閥8的閥開度來求出演算流量,但亦可基於第3壓力感測器9所檢測出的壓力P3 與流量控制閥8的閥開度Av來求出演算流量。如此一來,有著更正確地求出演算流量的可能性。
且,作為其他的變形例,如圖9所示般,將開度為固定的限縮部2’設在流量控制閥8的下游側,並設置測量流量控制閥8與限縮部2’之間壓力的第3壓力感測器亦可。
此外,如圖11所示之第3變形例的流量控制裝置130那般,不僅在流量控制閥8,在壓力控制閥6亦設置應變感測器20’亦可。應變感測器20’,例如,是用來檢測構成壓力控制閥6的壓電致動器之特性變化或動作異常。基於應變感測器20’的輸出來監測壓電元件的伸長量,藉此可進行壓力控制閥6之異常發生的預先保護。
以上,雖說明了本發明的實施形態,但亦可有各種的改變。例如,在應變計輸出與壓電致動器的位移之間的關係為非線性的情況等,事先做出應變計輸出與壓電致動器的位移之間的變換表亦可。變換表,例如,是事先儲存於設在控制電路的記憶裝置,在壓電致動器的位移檢測時,使用讀取出的變換表,而可由應變計輸出來正確地得知閥開度。
且,本發明之實施形態的流量控制裝置中,流量控制閥,是常閉式的壓電元件驅動式閥亦可,在該情況也是,基於應變感測器輸出來控制流量控制閥的驅動電壓,藉此可用良好的精度及反應性來進行流量控制。
且,使用限流板來作為開度為固定之限縮部2的情況,上述的流量控制閥8與限流板,是以公知的內藏孔口閥的態樣來設置成一體亦可。作為內藏孔口閥來設置的情況,是在流量控制閥8之安裝用的孔部,配置有限流板及閥座體,在其上方固定有流量控制閥8的閥本體(閥體或致動器等)。如此一來,是將限流板與流量控制閥8的閥體予以近接配置,而可使該等之間的容積變小,可提升流量控制的反應性。此時也一樣,流量控制閥8可如上述般發揮壓力式流量控制裝置之開度為可變的限縮部般的功能。

[產業上的可利用性]
本發明之實施形態的流量控制裝置,是適合利用在半導體製造製程中要求流量控制之高速反應性的情況。
1‧‧‧流路
2‧‧‧限縮部
3‧‧‧第1壓力感測器
4‧‧‧第2壓力感測器
5‧‧‧流入壓力感測器
6‧‧‧壓力控制閥
7‧‧‧第1控制電路
8‧‧‧流量控制閥
9‧‧‧第3壓力感測器
10‧‧‧壓電致動器
17‧‧‧第2控制電路
20‧‧‧應變感測器
20z‧‧‧第1應變計
20x‧‧‧第2應變計
100、110、120、130‧‧‧流量控制裝置
圖1為表示本發明之實施形態之流量控制裝置之構造的示意圖。
圖2為表示本發明之實施形態所使用之流量控制閥及第2壓力感測器的剖面圖。
圖3為表示本發明之實施形態所使用之壓電致動器的圖,(a)是表示收容在筒體及內部的壓電疊堆,(b)是表示連接部。
圖4為表示本發明之實施形態所使用之用來得到應變感測器輸出之範例的橋式電路的圖。
圖5為表示縱向1計的情況與正交2計的情況下之應變感測器之輸出的圖表。
圖6為表示縱向1計的情況與正交2計的情況下之應變感測器之輸出之溫度影響性的圖表,(a)是表示縱向1計的情況,(b)是表示正交2計的情況。
圖7為表示流量與流量控制閥之壓電位移量(應變感測器輸出)之間關係的圖,表示出將上游壓力P1 設為不同時的3個圖表。
圖8為表示脈衝流量控制之態樣的圖,(a)是藉由限縮部來決定流量的脈衝流量控制,(b)是藉由流量控制閥的開度來決定流量的脈衝流量控制。
圖9為表示本發明之實施形態之變形例之流量控制裝置之構造的示意圖。
圖10為表示本發明之實施形態之別種變形例之流量控制裝置之構造的示意圖。
圖11為表示本發明之實施形態之另外一種變形例之流量控制裝置之構造的示意圖。

Claims (12)

  1. 一種流量控制裝置,是具備:設在流路的壓力控制閥、 設在前述壓力控制閥之下游側的流量控制閥、 測量前述壓力控制閥之下游側且前述流量控制閥之上游側之壓力的第1壓力感測器、 開度為固定的限縮部, 前述流量控制閥,是具有:與閥座接離的閥體、為了使前述閥體接離於前述閥座而使前述閥體移動用的壓電元件、設置在前述壓電元件之側面的應變感測器, 將前述流量控制閥所具有之前述閥座與前述閥體之間的距離作為開度,前述流量控制閥,是使用來作為可變更前述開度的限縮部, 基於由前述第1壓力感測器所輸出的訊號來控制前述壓力控制閥,並基於由前述應變感測器所輸出的訊號來控制前述壓電元件的驅動, 在進行連續流動的控制時,使用前述開度為固定的限縮部來進行流量控制,在進行斷續流量的控制時,是使用前述流量控制閥作為可變更前述開度的限縮部來進行流量控制。
  2. 如請求項1所述之流量控制裝置,其中,在使用前述開度為固定的限縮部來進行前述連續流動的控制時,使前述流體控制閥成為全開。
  3. 如請求項1所述之流量控制裝置,其中,前述開度為固定的限縮部,是設在前述流量控制閥的上游側。
  4. 如請求項3所述之流量控制裝置,其進一步具備測量前述流量控制閥之下游側之壓力的第2壓力感測器。
  5. 如請求項1所述之流量控制裝置,其中,前述開度為固定的限縮部,是設在前述流量控制閥的下游側。
  6. 如請求項5所述之流量控制裝置,其進一步具備測量前述開度為固定之限縮部之下游側之壓力的第2壓力感測器。
  7. 如請求項1至6中任一項所述之流量控制裝置,其進一步具備測量前述流量控制閥與前述開度為固定之限縮部之間之壓力的第3壓力感測器。
  8. 如請求項1至6中任一項所述之流量控制裝置,其中,前述開度為固定的限縮部的最大設定流量,是比前述流量控制閥的最大設定流量還大。
  9. 如請求項1至6中任一項所述之流量控制裝置,其中,在前述流量控制閥之上游側的壓力與前述流量控制閥之下游側的壓力符合臨界膨脹條件的狀態下進行流量控制。
  10. 如請求項1至6中任一項所述之流量控制裝置,其中,前述應變感測器,是含有:用來檢測前述壓電元件之伸長方向之應變的第1應變計、用來檢測與前述壓電元件之前述伸長方向正交之方向之應變的第2應變計。
  11. 如請求項1至6中任一項所述之流量控制裝置,其中,前述流量控制閥是常開式的閥,其構成為具備壓電致動器,該壓電致動器具有:含有安裝有前述應變感測器的前述壓電元件的複數個壓電元件、將前述複數個壓電元件收容成一列的筒體,藉由對前述壓電致動器施加電壓,而使作為前述閥體之金屬隔膜閥體往閥座的方向移動。
  12. 如請求項1至6中任一項所述之流量控制裝置,其中,前述流量控制閥是常開式的閥,其構成為具備壓電致動器,該壓電致動器具有:安裝有前述應變感測器的前述壓電元件、將前述壓電元件予以收容的筒體,藉由對前述壓電致動器施加電壓,而使作為前述閥體之金屬隔膜閥體往閥座的方向移動。
TW107142369A 2017-11-30 2018-11-28 流量控制裝置 TWI679297B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230538 2017-11-30
JP2017230538 2017-11-30

Publications (2)

Publication Number Publication Date
TW201928107A true TW201928107A (zh) 2019-07-16
TWI679297B TWI679297B (zh) 2019-12-11

Family

ID=66664781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142369A TWI679297B (zh) 2017-11-30 2018-11-28 流量控制裝置

Country Status (6)

Country Link
US (1) US11079774B2 (zh)
JP (1) JP7216425B2 (zh)
KR (1) KR102314330B1 (zh)
CN (1) CN111406243A (zh)
TW (1) TWI679297B (zh)
WO (1) WO2019107215A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770792B (zh) * 2020-03-05 2022-07-11 日商富士金股份有限公司 流量控制裝置以及流量控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7190186B2 (ja) * 2017-11-30 2022-12-15 株式会社フジキン 流量制御装置の自己診断方法
US11269362B2 (en) * 2018-04-27 2022-03-08 Fujikin Incorporated Flow rate control method and flow rate control device
WO2020004183A1 (ja) * 2018-06-26 2020-01-02 株式会社フジキン 流量制御方法および流量制御装置
US11404290B2 (en) * 2019-04-05 2022-08-02 Mks Instruments, Inc. Method and apparatus for pulse gas delivery
KR20240052061A (ko) * 2019-04-25 2024-04-22 가부시키가이샤 후지킨 유량 제어 장치
KR20220058536A (ko) * 2019-09-05 2022-05-09 가부시키가이샤 호리바 에스텍 유량 제어 밸브 또는 유량 제어 장치
US20230021102A1 (en) 2019-12-27 2023-01-19 Fujikin Incorporated Flow rate control device, and flow rate control method
DE102020000267A1 (de) * 2020-01-17 2021-07-22 Drägerwerk AG & Co. KGaA Anästhesiemittdosievorrichtung und Verfahren zum Einstellen einer Anästhesemittelkonzentration
JP7412747B2 (ja) 2020-01-30 2024-01-15 株式会社フジキン 圧電素子駆動式バルブ、圧力式流量制御装置及び気化供給装置
CN111963689B (zh) * 2020-08-07 2022-02-11 广州万佳智能设备有限公司 一种电磁阀和调压器一体化装置
WO2023228555A1 (ja) * 2022-05-26 2023-11-30 株式会社フジキン 流体制御装置、流体制御システムおよびバルブ制御装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586075B2 (ja) * 1997-08-15 2004-11-10 忠弘 大見 圧力式流量制御装置
TW384365B (en) * 1998-10-07 2000-03-11 Tokyo Electron Ltd Pressure type flow rate control apparatus
US6526839B1 (en) * 1998-12-08 2003-03-04 Emerson Electric Co. Coriolis mass flow controller and capacitive pick off sensor
EP1016573B1 (en) * 1998-12-28 2006-11-02 Kelsey-Hayes Company Drucksensor für ein hydraulisches Steuersystem und Montageverfahren für den Sensor
US6170526B1 (en) * 1999-05-18 2001-01-09 Caterpillar Inc. Piezoelectric actuated poppet valve to modulate pilot pressures and control main valve activation
JP2001317646A (ja) * 2000-05-08 2001-11-16 Smc Corp 圧電式流体制御弁
JP4102564B2 (ja) * 2001-12-28 2008-06-18 忠弘 大見 改良型圧力式流量制御装置
JP4082901B2 (ja) * 2001-12-28 2008-04-30 忠弘 大見 圧力センサ、圧力制御装置及び圧力式流量制御装置の温度ドリフト補正装置
JP2003232658A (ja) * 2002-02-07 2003-08-22 Toyo Valve Co Ltd 流量調整弁、流量測定装置、流量制御装置及び流量測定方法
JP4669193B2 (ja) 2002-10-16 2011-04-13 忠弘 大見 圧力式流量制御装置の温度測定装置
JP2004157719A (ja) * 2002-11-06 2004-06-03 Stec Inc マスフローコントローラ
US7295933B2 (en) * 2003-07-15 2007-11-13 Cidra Corporation Configurable multi-function flow measurement apparatus having an array of sensors
JP2005241279A (ja) * 2004-02-24 2005-09-08 Fujikin Inc 耐食金属製流体用センサ及びこれを用いた流体供給機器
JP4856905B2 (ja) * 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
US9383758B2 (en) * 2005-06-27 2016-07-05 Fujikin Incorporated Flow rate range variable type flow rate control apparatus
JP4743763B2 (ja) 2006-01-18 2011-08-10 株式会社フジキン 圧電素子駆動式金属ダイヤフラム型制御弁
US20070205384A1 (en) * 2006-03-02 2007-09-06 Smc Kabushiki Kaisha Flow Rate Control Apparatus
JP2008008356A (ja) * 2006-06-28 2008-01-17 Noiberuku Kk 圧電駆動装置、バルブおよびブレーキ装置
CN100449185C (zh) * 2007-03-15 2009-01-07 上海交通大学 流量可测控电磁阀
JP4933936B2 (ja) 2007-03-30 2012-05-16 株式会社フジキン 圧電素子駆動式制御弁
JP5669384B2 (ja) * 2009-12-01 2015-02-12 株式会社フジキン 圧電駆動式バルブ及び圧電駆動式流量制御装置
WO2011067877A1 (ja) * 2009-12-01 2011-06-09 株式会社フジキン 圧力式流量制御装置
JP5562712B2 (ja) * 2010-04-30 2014-07-30 東京エレクトロン株式会社 半導体製造装置用のガス供給装置
CN102287572B (zh) * 2011-07-22 2012-08-22 中环天仪股份有限公司 一种智能阀门定位器的脉冲控制方法
JP5175965B2 (ja) * 2011-10-03 2013-04-03 国立大学法人東北大学 流量レンジ可変型流量制御装置
JP5803552B2 (ja) * 2011-10-14 2015-11-04 東京エレクトロン株式会社 処理装置
US9557059B2 (en) * 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
JP5665793B2 (ja) * 2012-04-26 2015-02-04 株式会社フジキン 可変オリフィス型圧力制御式流量制御器
US9454158B2 (en) * 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
JP5797246B2 (ja) 2013-10-28 2015-10-21 株式会社フジキン 流量計及びそれを備えた流量制御装置
JP6771772B2 (ja) * 2015-09-24 2020-10-21 株式会社フジキン 圧力式流量制御装置及びその異常検知方法
WO2017188129A1 (ja) * 2016-04-28 2017-11-02 株式会社フジキン 流体制御装置、流体制御装置の制御方法、および、流体制御システム
US10665430B2 (en) * 2016-07-11 2020-05-26 Tokyo Electron Limited Gas supply system, substrate processing system and gas supply method
KR102208101B1 (ko) * 2016-10-14 2021-01-27 가부시키가이샤 후지킨 유체 제어 장치
KR102162045B1 (ko) * 2016-12-26 2020-10-06 가부시키가이샤 후지킨 압전 소자 구동식 밸브 및 유량 제어 장치
US11416011B2 (en) * 2017-03-28 2022-08-16 Fujikin Incorporated Pressure-type flow control device and flow control method
CN110914470A (zh) * 2017-07-25 2020-03-24 株式会社富士金 流体控制装置
JP7190186B2 (ja) * 2017-11-30 2022-12-15 株式会社フジキン 流量制御装置の自己診断方法
US10649471B2 (en) * 2018-02-02 2020-05-12 Mks Instruments, Inc. Method and apparatus for pulse gas delivery with isolation valves
JP2020021176A (ja) * 2018-07-30 2020-02-06 株式会社堀場エステック 流量制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770792B (zh) * 2020-03-05 2022-07-11 日商富士金股份有限公司 流量控制裝置以及流量控制方法

Also Published As

Publication number Publication date
KR102314330B1 (ko) 2021-10-19
KR20200049871A (ko) 2020-05-08
WO2019107215A1 (ja) 2019-06-06
US11079774B2 (en) 2021-08-03
US20200348704A1 (en) 2020-11-05
JP7216425B2 (ja) 2023-02-01
JPWO2019107215A1 (ja) 2020-11-26
TWI679297B (zh) 2019-12-11
CN111406243A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
TWI679297B (zh) 流量控制裝置
TWI684844B (zh) 流量控制裝置的自我診斷方法
JP6892687B2 (ja) 流量制御装置および流量制御装置を用いる異常検知方法
JP6064599B2 (ja) ガス・フロー制御のための方法及び装置
TWI666797B (zh) 壓電元件驅動式閥及流量控制裝置
TWI654508B (zh) 壓力式流量控制裝置
US10013002B2 (en) Fluid flow regulator device, comprising a valve member and a valve seat defining a fluid flow surface area, as well as method of using the same
JP7244940B2 (ja) 流量制御システム及び流量測定方法
TWI765472B (zh) 流量控制裝置以及流量控制方法
JP7495732B2 (ja) 流量制御装置
CN118151685A (zh) 用于气体流量控制的方法和设备