TW201916415A - 壓電薄膜元件 - Google Patents

壓電薄膜元件 Download PDF

Info

Publication number
TW201916415A
TW201916415A TW107133290A TW107133290A TW201916415A TW 201916415 A TW201916415 A TW 201916415A TW 107133290 A TW107133290 A TW 107133290A TW 107133290 A TW107133290 A TW 107133290A TW 201916415 A TW201916415 A TW 201916415A
Authority
TW
Taiwan
Prior art keywords
chemical formula
thin film
electrode layer
piezoelectric thin
piezoelectric
Prior art date
Application number
TW107133290A
Other languages
English (en)
Other versions
TWI683461B (zh
Inventor
木村純一
Original Assignee
日商 Tdk 股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商 Tdk 股份有限公司 filed Critical 日商 Tdk 股份有限公司
Publication of TW201916415A publication Critical patent/TW201916415A/zh
Application granted granted Critical
Publication of TWI683461B publication Critical patent/TWI683461B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

本發明提供一種壓電薄膜與下部電極層(第一電極層)間之晶格失配減少之壓電薄膜元件。壓電薄膜元件10具備第一電極層6a、及直接積層於第一電極層6a之壓電薄膜2,第一電極層6a包含含有兩種以上之金屬元素之合金,第一電極層6a具有面心立方晶格構造,壓電薄膜2具有纖鋅礦型構造。

Description

壓電薄膜元件
本發明係關於一種壓電薄膜元件。
近年來,MEMS(Micro Electro Mechanical Systems,微機電系統)備受關注。所謂MEMS(微機電系統),係指利用微細加工技術使機械要素零件及電子電路等積體化於一個基板上而成之裝置。於具有感測器、濾波器、採集機、或致動器等功能之MEMS中利用壓電薄膜。於使用有壓電薄膜之MEMS之製造中,於矽或藍寶石等基板上積層下部電極層、壓電薄膜、及上部電極層。藉由歷經接下來之微細加工、圖案化、或蝕刻等後續步驟,獲得具有任意之特性之MEMS。藉由選擇特性優異之壓電薄膜,可實現MEMS等壓電薄膜元件之特性提高及小型化。
作為用於壓電薄膜元件之壓電薄膜,例如已知AlN(氮化鋁)、ZnO(氧化鋅)、CdS(硫化鎘)、LiNbO3 (鈮酸鋰)及PZT(鈦酸鋯酸鉛)等。AlN、ZnO及CdS等具有纖鋅礦型構造之壓電薄膜與具有鈣鈦礦型構造之PZT相比正壓電常數(d常數)較小,但介電常數(εr )較小。因此,對於設計上考慮壓電輸出係數(g常數=d/ε0 εr ,ε0 為真空之介電常數)之壓電薄膜元件而言,具有纖鋅礦型構造之壓電薄膜係有力之候補材料(參照下述非專利文獻1)。
(非專利文獻1) Rajan S. Naik et al., IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL, 2000, vol. 47, p. 292 - 296
然而,如下所述,於使用有具有纖鋅礦型構造之壓電薄膜之壓電薄膜元件中存在幾個問題。
最嚴重之問題為源自結晶配向性之壓電特性之劣化。具有纖鋅礦型構造之壓電薄膜之表現壓電特性之方位為纖鋅礦型構造之(001)面,但不僅是纖鋅礦型構造之非(001)面之存在,(001)面之配向之波動亦會使壓電特性劣化。因此,抑制具有纖鋅礦型構造之壓電薄膜之結晶配向性之波動而提高(001)面之配向性較為重要。
例如,於上述非專利文獻1所記載之AlN薄膜之製造方法中,為了提高AlN薄膜之結晶配向性,而變更對濺鍍靶之輸入功率及濺鍍裝置內之殘留氣體等諸條件。
然而,於如上述非專利文獻1所記載之AlN薄膜般將具有纖鋅礦型構造之壓電薄膜直接積層於下部電極層上之情形時,容易發生AlN薄膜與下部電極層間之晶格失配。晶格失配會使壓電薄膜之結晶配向性劣化。壓電薄膜之壓電特性亦會因結晶配向性之劣化而劣化。又,壓電薄膜中之殘留應力會因晶格失配而增加。殘留應力會引起壓電薄膜中之開裂(龜裂)。進而,晶格失配會使壓電薄膜之表面平滑性劣化。壓電薄膜之絕緣電阻會因表面平滑性之劣化而降低。
本發明係鑒於上述情況而完成者,其目的在於提供一種壓電薄膜與下部電極層(第一電極層)間之晶格失配減少之壓電薄膜元件。 [解決問題之技術手段]
本發明之一態樣之壓電薄膜元件具備第一電極層、及直接積層於第一電極層之壓電薄膜,且第一電極層包含含有兩種以上之金屬元素之合金,第一電極層具有面心立方晶格構造,壓電薄膜具有纖鋅礦型構造。
於本發明之一態樣中,合金可包含選自由Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu及Al所組成之群中之兩種以上之元素。
於本發明之一態樣中,合金可由下述化學式3A、化學式3B、化學式3C及化學式3D中之任一者表示,壓電薄膜可包含氮化鋁。 Pd(1-x) Nix 化學式3A [上述化學式3A中,0.03<x<0.46] Pd(1-x) Irx 化學式3B [上述化學式3B中,0.20<x<1.0] Ir(1-x) Nix 化學式3C [上述化學式3C中,0≦x≦0.35] Pt(1-x) Nix 化學式3D [上述化學式3D中,0.11<x<0.50]
於本發明之一態樣中,合金可由下述化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者表示,壓電薄膜可包含氧化鋅。 Ag(1-y) Pdy 化學式4A [上述化學式4A中,0.26<y<1.0] Ag(1-y) Niy 化學式4B [上述化學式4B中,0.09<y<0.37] Au(1-y) Pdy 化學式4C [上述化學式4C中,0.10<y<0.97] Au(1-y) Niy 化學式4D [上述化學式4D中,0.04<y<0.33] Pt(1-y) Pdy 化學式4E [上述化學式4E中,0<y<0.80] Pt(1-y) Niy 化學式4F [上述化學式4F中,0<y<0.07]
於本發明之一態樣中,合金可包含選自由Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu及Al所組成之群中之三種以上之元素。
於本發明之一態樣中,合金可由下述化學式6A及化學式6B中之任一者表示,壓電薄膜可包含氮化鋁。 Pdx Niy Irz 化學式6A [上述化學式6A中,0<x<0.97,0<y<0.46,0<z<1.0] Pdx Niy Ptz 化學式6B [上述化學式6B中,0<x<0.97,0.03<y<0.5,0<z<0.89]
於本發明之一態樣中,合金可由下述化學式7A、化學式7B及化學式7C中之任一者表示,壓電薄膜可包含氧化鋅。 Pdx Niy Ptz 化學式7A [上述化學式7A中,0<x<0.80,0<y<0.07,0.2<z<1.0] Pdx Niy Agz 化學式7B [上述化學式7B中,0<x<0.96,0<y<0.37,0.04<z<0.91] Pdx Niy Auz 化學式7C [上述化學式7C中,0<x<0.97,0<y<0.33,0.03<z<0.96]
於本發明之一態樣中,第一電極層之面心立方晶格構造之(111)面可於第一電極層與壓電薄膜間之界面之法線方向上配向。
於本發明之一態樣中,第一電極層與壓電薄膜間之晶格失配度可為0%以上且2%以下。
於本發明之一態樣中,第一電極層中之Al之含量可為0原子%以上且未達90原子%。
[發明之效果] 根據本發明,提供一種壓電薄膜與下部電極層(第一電極層)間之晶格失配減少之壓電薄膜元件。
以下,視情況參照圖式對本發明之較佳實施形態進行說明。但是,本發明並不受到下述實施形態之任何限定。於圖式中對相同或同等之構成要素標註相同之符號。
如圖1中之(a)所示,本實施形態之壓電薄膜元件10具備:基板12、積層於基板12之第一電極層6a、直接積層於第一電極層6a之壓電薄膜2、及積層於壓電薄膜2之第二電極層6b。其中,基板12及第二電極層6b對於本發明之壓電薄膜元件而言並非必需。第一電極層6a可換稱作下部電極層。第二電極層6b可換稱作上部電極層。
第一電極層6a包含含有兩種以上之金屬元素之合金,第一電極層6a具有面心立方晶格構造。換言之,第一電極層6a中包含之合金包含兩種以上之金屬元素,且具有面心立方晶格構造。第一電極層6a可僅由具有面心立方晶格構造之上述合金構成。
壓電薄膜2具有纖鋅礦型構造。即,壓電薄膜2可包含具有纖鋅礦型結晶構造之壓電組合物。壓電薄膜2中包含之壓電組合物例如可包含選自由AlN(氮化鋁)、ZnO(氧化鋅)、ZnS(硫化鋅)、ZnTe(碲化鋅)、CdS(硫化鎘)、CdSe(硒化鎘)及CdTe(碲化鎘)所組成之群中之至少一種壓電組合物。壓電薄膜2可僅由具有纖鋅礦型構造之上述壓電組合物構成。除構成壓電薄膜2之上述元素以外,壓電薄膜2亦可於不損害壓電薄膜2與第一電極層6a之晶格匹配之範圍內包含其他添加元素。壓電薄膜2可包含具有纖鋅礦型構造之複數種壓電層。亦可於壓電薄膜2與第一電極層6a之間配置具有纖鋅礦型構造之另一壓電薄膜。亦可於壓電薄膜2與第二電極層6b之間配置具有纖鋅礦型構造之另一壓電薄膜。第二電極層6b亦可直接積層於壓電薄膜2。
壓電薄膜2之纖鋅礦型構造容易與第一電極層6a之面心立方晶格構造匹配。例如,第一電極層6a與壓電薄膜2間之晶格失配度之絕對值可為0%以上且2%以下、或0.06%以上且1.51%以下。因此,具有纖鋅礦型構造之壓電薄膜2之表現壓電特性之(001)面(或(002)面)容易於基板12之表面之法線方向上配向,從而壓電薄膜2之結晶配向性提高。即,於本實施形態中,(001)面之配向之波動於基板12之表面之法線方向上得到抑制,從而該方向上之非(001)面之配向得到抑制。藉由壓電薄膜2之結晶配向性提高,而壓電薄膜2之壓電特性提高。所謂基板12之表面之法線方向,可換稱作第一電極層6a與壓電薄膜2間之界面之法線方向。再者,第一電極層6a與壓電薄膜2間之晶格失配度Δa/a係由下述式1進行定義。
<數式1>
數式1中,aele. 為壓電薄膜2之成膜溫度T℃(例如300℃)下之第一電極層6a之面心立方晶格構造的晶格常數。於室溫(27℃)下之第一電極層6a之面心立方晶格構造之晶格常數被表示為aele.0 ,且第一電極層6a之熱膨脹係數被表示為CTEele. 時,T℃下之aele. 等於aele.0 +CTEele. ×(T-27)。awurt. 為壓電薄膜2之成膜溫度(例如300℃)下之壓電薄膜2之纖鋅礦型構造的晶格常數。於室溫(27℃)下之壓電薄膜2之纖鋅礦型構造之晶格常數被表示為awurt.0 ,且壓電薄膜2之熱膨脹係數被表示為CTEwurt. 時,T℃下之awurt. 等於awurt.0 +CTEwurt. ×(T-27)。
壓電薄膜2之纖鋅礦型構造之(002)面之搖擺曲線的半峰全幅值(FWHM)可為0°以上且2.0°以下。第一電極層6a與壓電薄膜2間之晶格失配度之絕對值越小,則壓電薄膜2之(002)面越容易配向,搖擺曲線之半峰全幅值越小。並且有搖擺曲線之半峰全幅值越小,則壓電薄膜元件10之d33 越大之傾向。
第一電極層6a之面心立方晶格構造之(111)面可於第一電極層6a與壓電薄膜2間之界面之法線方向上配向。面心立方晶格構造之(111)面內之原子排列容易與纖鋅礦型構造之(001)面內之原子排列匹配。因此,壓電薄膜2之(001)面容易與第一電極層6a之(111)面平行地配向。例如,(001)面已配向之複數個壓電組合物之柱狀結晶容易於第一電極層6a之(111)面上一致地生長,壓電薄膜2整體之結晶配向性容易提高。
藉由第一電極層6a與壓電薄膜2間之晶格失配減少,而壓電薄膜2中之殘留應力亦降低。藉由殘留應力降低,而壓電薄膜2中之開裂亦得到抑制,從而壓電薄膜2之壓電特性提高。又,藉由壓電薄膜2中之開裂得到抑制,而壓電薄膜2自第一電極層6a之剝離得到抑制,或壓電薄膜2之製造之良率提高。作為參考例,基板12為Si基板,第一電極層為W,壓電薄膜為AlN之情形時之殘留應力σ(單位:GPa)係由下述數式2表示。但是,第一電極層僅由W構成之壓電薄膜元件處於本發明之技術範圍外。
<數式2>
數式2中之E為壓電薄膜2之楊式模數(單位:GPa)。ν為壓電薄膜2之帕松比。aele. 為第一電極層(W)之晶格常數。aAlN 為壓電薄膜(AlN)之晶格常數。(aele. -aAlN )/aele. 為第一電極層(W)與壓電薄膜(AlN)間之晶格失配度。αAlN 為壓電薄膜(AlN)之熱膨脹係數,約為4.2×10-6 /℃。αSi 為矽基板(Si)之熱膨脹係數,約為3.0×10-6 /℃。εmisfit 為源自第一電極層(W)與壓電薄膜(AlN)間之晶格失配度之因數。εthermal 為源自矽基板(Si)與壓電薄膜(AlN)間之熱膨脹係數之差之因數。如式2所示,藉由使第一電極層(W)與壓電薄膜(AlN)間之晶格失配減少,而壓電薄膜中之殘留應力σ減少。又,藉由使矽基板(Si)與壓電薄膜(AlN)間之熱膨脹係數之差降低,而壓電薄膜中之殘留應力σ減少。於假定於300℃下製作壓電薄膜之情形時,εmisfit 約為2.52%,εthermal 為3.28×10-4 %。該等數值暗示晶格失配及熱膨脹係數差中之晶格失配對於壓電薄膜之殘留應力而言為支配性之因素。
藉由第一電極層6a與壓電薄膜2間之晶格失配減少,而壓電薄膜2之表面容易變得平滑。此處,所謂壓電薄膜2之表面,係指壓電薄膜2之面對第二電極層6b之表面,壓電薄膜2之面對第一電極層6a之表面之背面。藉由壓電薄膜2之表面之平滑性提高,而壓電薄膜2之絕緣電阻提高。其理由如下所述。
於第一電極層6a與壓電薄膜2間之晶格失配度較大之情形時,藉由Volmer-Weber型之島狀生長形成壓電薄膜2,故而壓電薄膜2之表面變粗糙。於對表面粗糙之壓電薄膜2施加電場之情形時,壓電薄膜2之表面之電場分佈容易不均,壓電薄膜2之表面之局部(例如凸部)之電場強度容易變得過高。其結果,會發生壓電薄膜2中之絕緣破壞。另一方面,於第一電極層6a與壓電薄膜2間之晶格失配度較小之情形時,藉由Frank-Van der Merwe型之逐層生長形成壓電薄膜2,故而壓電薄膜2之表面容易變得平滑。於對表面平滑之壓電薄膜2施加電場之情形時,壓電薄膜2之表面之電場分佈容易變得均勻。其結果,不易發生壓電薄膜2中之絕緣破壞。
第一電極層6a中包含之合金可包含選自由Pt(鉑)、Ir(銥)、Au(金)、Rh(銠)、Pd(鈀)、Ag(銀)、Ni(鎳)、Cu(銅)及Al(鋁)所組成之群中之兩種以上之元素。於合金包含該等金屬元素之情形時,第一電極層6a容易具有面心立方晶格構造,壓電薄膜2與第一電極層6a之晶格失配容易減少。除構成合金之上述金屬以外,第一電極層6a亦可於不損害壓電薄膜2與第一電極層6a之晶格匹配之範圍內包含其他添加元素。第一電極層6a中之Al之含量可為0原子%以上且未達90原子%。於第一電極層6a中之Al之含量未達90原子%之情形時,有第一電極層6a之結晶構造之面心立方晶格構造不易受損,第一電極層6a與壓電薄膜2之晶格失配度容易變小之傾向。
於假設藉由對壓電薄膜2施加電場而使作為電荷之載子之氧(O2- )自第一電極層6a向壓電薄膜2內導入、擴散之情形時,容易經由壓電薄膜2中之氧(載子通路)產生漏電流,容易發生壓電薄膜2中之絕緣破壞。但是,於第一電極層6a中包含之合金包含選自由Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu及Al所組成之群中之兩種以上之元素之情形時,合金難以氧化。藉由難以氧化之合金構成第一電極層6a,而氧難以自第一電極層6a向壓電薄膜2內導入及擴散。其結果,壓電薄膜2中之漏電流得到抑制,不易發生壓電薄膜2中之絕緣破壞。
於壓電薄膜2包含氮化鋁之情形時,第一電極層6a中包含之合金可由下述化學式3A、化學式3B、化學式3C及化學式3D中之任一者表示。於第一電極層6a中包含之合金由下述化學式3A、化學式3B、化學式3C及化學式3D中之任一者表示之情形時,(001)面已配向之複數個AlN之柱狀結晶容易於第一電極層6a之(111)面上一致地生長,壓電薄膜2(AlN)與第一電極層6a之晶格失配容易減少,晶格失配度之絕對值容易成為2%以下。通常,合金之氧化反應中之自由能變化ΔG為負值,ΔG之絕對值越大,則合金越容易氧化。即,合金藉由氧化而熱力學上穩定。但是,化學式3A、化學式3B、化學式3C及化學式3D中之任一者所表示之合金之氧化反應中的自由能變化ΔG雖然為負值,但有ΔG之絕對值相對較小之傾向。因此,化學式3A、化學式3B、化學式3C及化學式3D中之任一者所表示之合金難以氧化,容易抑制壓電薄膜2中之絕緣破壞。化學式3A、化學式3B、化學式3C及化學式3D中之任一者所表示之合金之氧化反應中的自由能變化ΔG可由公知之埃林漢姆圖算出。 Pd(1-x) Nix 化學式3A [上述化學式3A中,0.03<x<0.46] Pd(1-x) Irx 化學式3B [上述化學式3B中,0.20<x<1.0] Ir(1-x) Nix 化學式3C [上述化學式3C中,0≦x≦0.35] Pt(1-x) Nix 化學式3D [上述化學式3D中,0.11<x<0.50]
於壓電薄膜2包含氧化鋅之情形時,第一電極層6a中包含之合金可由下述化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者表示。於第一電極層6a中包含之合金由下述化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者表示之情形時,(001)面已配向之複數個ZnO之柱狀結晶容易於第一電極層6a之(111)面上一致地生長,壓電薄膜2(ZnO)與第一電極層6a之晶格失配容易減少,晶格失配度之絕對值容易成為2%以下。又,化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者所表示之合金之氧化反應中的自由能變化ΔG雖然為負值,但有ΔG之絕對值相對較小之傾向。因此,化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者所表示之合金難以氧化,容易抑制壓電薄膜2中之絕緣破壞。化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者所表示之合金之氧化反應中的自由能變化ΔG可由公知之埃林漢姆圖算出。 Ag(1-y) Pdy 化學式4A [上述化學式4A中,0.26<y<1.0] Ag(1-y) Niy 化學式4B [上述化學式4B中,0.09<y<0.37] Au(1-y) Pdy 化學式4C [上述化學式4C中,0.10<y<0.97] Au(1-y) Niy 化學式4D [上述化學式4D中,0.04<y<0.33] Pt(1-y) Pdy 化學式4E [上述化學式4E中,0<y<0.80] Pt(1-y) Niy 化學式4F [上述化學式4F中,0<y<0.07]
第一電極層6a中包含之合金可包含選自由Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu及Al所組成之群中之三種以上之元素。
於壓電薄膜2包含氮化鋁之情形時,第一電極層6a中包含之合金可由下述化學式6A及化學式6B中之任一者表示。於第一電極層6a中包含之合金由下述化學式6A及化學式6B中之任一者表示之情形時,(001)面已配向之複數個AlN之柱狀結晶容易於第一電極層6a之(111)面上一致地生長,壓電薄膜2(AlN)與第一電極層6a之晶格失配容易減少,晶格失配度之絕對值容易成為2%以下。又,下述化學式6A及化學式6B中之任一者所表示之合金之氧化反應中的自由能變化ΔG雖然為負值,但有ΔG之絕對值相對較小之傾向。因此,下述化學式6A及化學式6B中之任一者所表示之合金難以氧化,容易抑制壓電薄膜2中之絕緣破壞。下述化學式6A及化學式6B中之任一者所表示之合金之氧化反應中的自由能變化ΔG可由公知之埃林漢姆圖算出。 Pdx Niy Irz 化學式6A [上述化學式6A中,0<x<0.97,0<y<0.46,0<z<1.0] Pdx Niy Ptz 化學式6B [上述化學式6B中,0<x<0.97,0.03<y<0.5,0<z<0.89]
於壓電薄膜2包含氧化鋅之情形時,第一電極層6a中包含之合金可由下述化學式7A、化學式7B及化學式7C中之任一者表示。於第一電極層6a中包含之合金由下述化學式7A、化學式7B及化學式7C中之任一者表示之情形時,(001)面已配向之複數個ZnO之柱狀結晶容易於第一電極層6a之(111)面上一致地生長,壓電薄膜2(ZnO)與第一電極層6a之晶格失配容易減少,晶格失配度之絕對值容易成為2%以下。又,下述化學式7A、化學式7B及化學式7C中之任一者所表示之合金之氧化反應中的自由能變化ΔG雖然為負值,但有ΔG之絕對值相對較小之傾向。因此,下述化學式7A、化學式7B及化學式7C中之任一者所表示之合金難以氧化,容易抑制壓電薄膜2中之絕緣破壞。下述化學式7A、化學式7B及化學式7C中之任一者所表示之合金之氧化反應中的自由能變化ΔG可由公知之埃林漢姆圖算出。 Pdx Niy Ptz 化學式7A [上述化學式7A中,0<x<0.80,0<y<0.07,0.2<z<1.0] Pdx Niy Agz 化學式7B [上述化學式7B中,0<x<0.96,0<y<0.37,0.04<z<0.91] Pdx Niy Auz 化學式7C [上述化學式7C中,0<x<0.97,0<y<0.33,0.03<z<0.96]
基板12例如可為半導體基板(矽基板或砷化鎵基板等)、光學結晶基板(藍寶石基板等)、絕緣體基板(玻璃基板或陶瓷基板等)或金屬基板。第一電極層6a例如可積層於基板12之(100)面。用於下述其他壓電薄膜元件之基板之組成可與圖1所示之基板12之組成相同。
第一電極層6a可直接積層於基板12。與第一電極層6a與基板12之間介存有其他電極層(例如具有體心立方晶格構造之電極層)之情形相比,直接積層於基板12之第一電極層6a之面心立方晶格構造不易受損,第一電極層6a與壓電薄膜2間之晶格失配容易減少。
第一電極層6a與基板12之間可介存有密接層。密接層可為選自由Mg(鎂)、Cu(銅)、Al(鋁)、Ni(鎳)、Cr(鉻)、Ti(鈦)、Hf(鉿)、Zr(鋯)、Nb(鈮)及Ta(鉭)所組成之群中之至少一種。密接層可為金屬單質、合金或化合物(氧化物等)。密接層亦可包含另一壓電薄膜、高分子、或陶瓷。藉由介存有密接層,而第一電極層6a之面心立方晶格構造之(111)面容易於基板12之法線方向上配向。又,密接層亦具有抑制由機械性衝擊等所導致之第一電極層6a之剝離之功能。密接層可換稱作支持層、緩衝層或中間層。
第二電極層6b可為金屬單質,亦可為合金。第二電極層6b可包含與第一電極層6a相同之金屬元素。第二電極層6b之組成可與第一電極層6a完全相同。第二電極層6b之組成亦可與第一電極層6a不同。例如,第二電極層6b可為選自由Pt(鉑)、Ir(銥)、Pd(鈀)、Au(金)、Mg(鎂)、Cu(銅)、Al(鋁)、Ni(鎳)、Cr(鉻)、Ti(鈦)、Hf(鉿)、Zr(鋯)、Nb(鈮)、Ta(鉭)、Mo(鉬)、W(鎢)及V(釩)所組成之群中之至少一種。
壓電薄膜2可包含選自由Sc(鈧)、Y(釔)及In(銦)所組成之群中之至少一種添加元素。壓電薄膜2可包含選自由Ti(鈦)、Zr(鋯)及Hf(鉿)所組成之群中之至少一種4價元素作為添加元素。除上述4價元素以外,壓電薄膜2亦可包含Mg(鎂)作為添加元素。壓電薄膜2亦可包含選自由V(釩)、Nb(鈮)及Ta(鉭)所組成之群中之至少一種5價元素作為添加元素。藉由壓電薄膜2包含一種或複數種上述添加元素,而存在如下情形:纖鋅礦型構造之晶格常數得到調整,具有纖鋅礦型構造之多種壓電組合物之柱狀結晶於第一電極層6上一致地生長而壓電薄膜2之壓電特性提高。
基板12之厚度例如可為50 μm以上且10000 μm以下。第一電極層6a之厚度例如可為0.01 μm以上且1 μm以下。壓電薄膜2之厚度例如可為0.1 μm以上且30 μm以下。第二電極層6b之厚度例如可為0.01 μm以上且1 μm以下。
第一電極層6a、壓電薄膜2及第二電極層6b各者例如可藉由使用複數個靶之濺鍍(共濺鍍或多道濺鍍)按照積層順序個別地形成。複數個靶可包含構成上述各層或壓電薄膜之元素中之至少一種。藉由選定及組合具有特定組成之靶,可個別地形成具有目標組成之第一電極層6a、壓電薄膜2及第二電極層6b各者。濺鍍之氛圍之組成亦影響第一電極層6a、壓電薄膜2及第二電極層6b各者之組成。例如,於壓電薄膜2為AlN之情形時,濺鍍之氛圍例如可為氮氣。濺鍍之氛圍亦可為包含稀有氣體(例如氬氣)及氮氣之混合氣體。賦予複數個靶各者之輸入功率(電力密度)亦為第一電極層6a、壓電薄膜2及第二電極層6b各者之組成及厚度之控制因數。靶可為金屬單質,亦可為合金。濺鍍之氛圍之全壓、氛圍中之原料氣體(例如氮氣)之分壓或濃度、各靶之濺鍍之持續時間、供壓電薄膜形成之基板表面之溫度、及基板偏壓等亦為第一電極層6a、壓電薄膜2及第二電極層6b各者之組成及厚度之控制因數。可藉由蝕刻(例如電漿蝕刻)形成具有所需之形狀或圖案之壓電薄膜。
第一電極層6a、壓電薄膜2及第二電極層6b各者之結晶構造可藉由X射線繞射(XRD)法進行特定。第一電極層6a、壓電薄膜2及第二電極層6b各者之組成可藉由螢光X射線分析法(XRF法)、能量分散型X射線分析法(EDX)、感應耦合電漿質譜法(ICP-MS)、雷射剝蝕感應耦合電漿質譜法(LA-ICP-MS)、及使用電子束微量分析儀(EPMA)之分析法中之至少任一種分析方法進行特定。
本實施形態之壓電薄膜元件10之用途多種多樣。壓電薄膜元件例如可為壓電擴音器、採集機、振盪器、共振器、或聲頻多層膜。壓電薄膜元件例如亦可為壓電致動器。壓電致動器例如可用於磁頭組件、磁頭臂組件、或硬碟驅動器。壓電致動器例如亦可用於列印頭、或噴墨印表機裝置。壓電致動器亦可用於壓電開關。壓電薄膜元件例如亦可為壓電感測器。壓電感測器例如可用於陀螺儀感測器、壓力感測器、脈波感測器、超音波感測器、或震動感測器。上述各壓電薄膜元件可為MEMS之一部分或全部。例如,圖1中之(a)、圖1中之(b)、及圖2所示之各壓電薄膜元件(10、10b、40)可為MEMS之一部分。
以下詳細地對壓電薄膜元件之各具體例進行說明。
圖1中之(b)所示之壓電薄膜元件10b可為具備基板12a、12b、設置於基板12a、12b上之第一電極層6a、積層於第一電極層6a之壓電薄膜2、及積層於壓電薄膜2之第二電極層6b的壓電擴音器。可於壓電薄膜2之下方設置聲頻用空腔12c。
圖2所示之壓電薄膜元件為壓電開關40。壓電開關40具備:基板12C、設置於基板12C之表面之第一開關18A、設置於第一開關18A之前端且面向基板12C之第一導電端子3A、設置於基板12C之表面且與第一導電端子3A面對面之第二導電端子3B、設置於基板12C之表面且與第一開關18A相隔之第二開關18B、設置於第二開關18B之前端且面向基板12C之第一導電端子3C、及設置於基板12C之表面且與第一導電端子3C面對面之第二導電端子3D。第一開關18A具有第一電極層6I、第二電極層6J、及夾於第一電極層6I及第二電極層6J之間之壓電薄膜2F。第二開關18B具有第一電極層6K、第二電極層6L、及夾於第一電極層6K及第二電極層6L之間之壓電薄膜2G。藉由第一開關18A之作動,壓電薄膜2F變形,第一開關18A之前端靠近基板12C之表面,第一導電端子3A與第二導電端子3B連接。藉由第二開關18B之作動,壓電薄膜2G變形,第二開關18B之前端靠近基板12C之表面,第一導電端子3C與第二導電端子3D連接。第一開關18A所具有之壓電薄膜2F之厚度與第二開關18B所具有之壓電薄膜2G之厚度相比較薄。因此,第一開關18A之閉動電壓與第二開關18B之閉動電壓不同。
實施例 以下,藉由實施例及比較例更加詳細地對本發明進行說明,但本發明不受該等例任何限定。
(實施例1) 藉由真空腔內之DC(Direct Current,直流)磁控濺鍍於矽之單晶基板之整個(100)面上直接形成包含氧化鈦之密接層。單晶基板之厚度為625 μm。密接層之厚度為5×10-3 μm。
藉由真空腔內之DC磁控濺鍍於密接層之整個表面上直接形成第一電極層。於DC磁控濺鍍中同時進行複數種金屬單質之靶之濺鍍。作為靶,使用下述表1所示之金屬元素EX及金屬元素EZ各者之單質。實施例1之情形時之金屬元素EX為Pt。實施例1之情形時之金屬元素EZ為Ni。實施例1中未使用金屬元素EY之靶。實施例1之第一電極層包含化學式Ptx Niz 所表示之合金,具有面心立方(FCC)晶格構造。x為化學式Ptx Niz 中之Pt之莫耳比。z為Ptx Niz 中之Ni之莫耳比。藉由調整對各靶之輸入功率,而將x及z調整為下述表1所示之值。
藉由真空腔內之RF(Radio Frequency,射頻)磁控濺鍍於第一電極層之整個表面上直接形成具有纖鋅礦型構造之包含AlN之壓電薄膜。RF磁控濺鍍中使用鋁單質之靶。RF磁控濺鍍中之輸入功率為9.87 W/cm2 。壓電薄膜之形成過程中之基板之溫度(成膜溫度)係維持為300℃。壓電薄膜之形成過程中之真空腔內之氛圍為氬氣及氮氣之混合氣體。真空腔內之混合氣體之氣壓係調整為0.30 Pa。壓電薄膜之厚度係調整為1.3 μm。
藉由與第一電極層之情形相同之方法於壓電薄膜之整個表面上直接形成第二電極層。第二電極層之組成與第一電極層之組成完全相同。第二電極層之厚度與第一電極層之厚度完全相同。
上述第一電極層及壓電薄膜各者之結晶構造係藉由X射線繞射(XRD)法進行特定。上述第一電極層、壓電薄膜及第二電極層各者之組成係藉由螢光X射線分析法(XRF法)及雷射剝蝕感應耦合電漿質譜法(LA-ICP-MS)進行分析。XRD法中使用Rigaku股份有限公司製造之多目的X射線繞射裝置(SmartLab)。XRF法中使用Rigaku股份有限公司製造之分析裝置(ZSX-100e)。LA-ICP-MS法中使用Agilent公司製造之分析裝置(7500s)。
如上所述般製作具備基板、直接積層於基板之密接層、直接積層於密接層之第一電極層、直接積層於第一電極層之壓電薄膜、及直接積層於壓電薄膜之第二電極層的積層體。繼而,藉由光微影法進行基板上之積層構造之圖案化。繼而,藉由利用切割將積層體整體切斷,而獲得四邊形之實施例1之壓電薄膜元件。壓電薄膜元件具備:基板、直接積層於基板之密接層、直接積層於密接層之第一電極層、直接積層於第一電極層之壓電薄膜、及直接積層於壓電薄膜之第二電極層。
[壓電薄膜元件之分析] 藉由以下方法對實施例1之壓電薄膜元件進行分析。
<晶格失配度Δa/a之算出> 算出第一電極層與壓電薄膜間之晶格失配度Δa/a。實施例1之Δa/a為下述表2所示之值。
<ΔG之算出> 由公知之埃林漢姆圖算出實施例1之構成第一電極層之Pt-Ni合金之氧化反應中的自由能變化ΔG。實施例1之ΔG為下述表2所示之值。
<搖擺曲線之測定> 測定用於實施例1之壓電薄膜元件之製作的矽之單晶基板之(400)面之搖擺曲線。測定時使用上述X射線繞射裝置。搖擺曲線之測定範圍為來自矽之(400)面之繞射波峰之最大值的繞射角±0.5°。測定間隔為0.01°。測定速度為2.0°/分鐘。矽之單晶基板之(400)面之搖擺曲線的半峰全幅值為0.05°。因此,可謂於下述壓電薄膜之(002)面之搖擺曲線之半峰全幅值為0.05°以上之情形時,壓電薄膜之搖擺曲線之半峰全幅值暗示壓電薄膜之(002)面之配向性。
測定形成第二電極層前之實施例1之壓電薄膜(AlN)之(002)面的搖擺曲線。搖擺曲線之測定範圍為來自AlN之(002)面之繞射波峰之最大值的繞射角(36°)±15°。除此以外,藉由與矽之(400)面之情形相同之方法測定實施例1之壓電薄膜之(002)面之搖擺曲線。實施例1之壓電薄膜之(002)面之搖擺曲線的半峰全幅值FWHM(wurt.)為下述表2所示之值。
<殘留應力σ之算出> 按照以下順序算出實施例1之壓電薄膜元件所具備之壓電薄膜之殘留應力σ。首先,測定形成壓電薄膜前之基板(即包含基板、密接層及第一電極層之積層體)之曲率半徑RBefore 。繼而,測定形成壓電薄膜後之基板(即包含基板、密接層、第一電極層及壓電薄膜之積層體)之曲率半徑RAfter 。測定RBefore 及RAfter 各者時使用KLA-Tencor公司製造之測定裝置(P-16輪廓分析儀)。並且,根據下述數式3(Stoney公式)算出實施例1之殘留應力σ。正殘留應力σ為拉伸應力,負殘留應力σ為壓縮應力。實施例1之殘留應力σ為下述表1所示之值。
<數式3>
數式3中之E為矽之單晶基板之楊式模數(單位:GPa)。ν為壓電薄膜之帕松比。tsub. 為矽之單晶基板之厚度。tfilm 為壓電薄膜之厚度。
<開裂率之測定> 將100 mm×100 mm之板狀之實施例1之壓電薄膜元件切斷而製作10 mm見方之100個樣品。利用光學顯微鏡對100個樣品中之壓電薄膜發生開裂之樣品之數量n進行計數。實施例1之開裂率(即n%)為下述表1所示之值。
<機電耦合係數kt 2 之算出> 測定實施例1之壓電薄膜元件之共振頻率fr 及反共振頻率fa 。共振頻率fr 為使用有壓電薄膜元件之共振電路之阻抗最小時之頻率。反共振頻率fa 為使用有壓電薄膜元件之共振電路之阻抗最大時之頻率。共振頻率fr 及反共振頻率fa 之測定之詳細情況如下所述。 測定裝置:Agilent Technologies公司製造之網路分析器(N5244A) 探針:GS500 μm(Cascade Microtech公司製造之ACP40-W-GS-500) 功率:-10 dBm 測定間距:0.25 MHz 電極面積:200×200 μm2 S11測定(反射測定)
根據下述數式4自共振頻率fr 及反共振頻率fa 之測定值算出機電耦合係數kt 2 (單位:%)。用於機電耦合係數kt 2 之算出之共振頻率fr 及反共振頻率fa 均為5點測定平均值。實施例1之機電耦合係數kt 2 為下述表1所示之值。
<數式4>
<壓電常數d33 之測定> 測定實施例1之壓電薄膜之壓電常數d33 (單位:pC/N)。壓電常數d33 之測定之詳細情況如下所述。實施例1之壓電常數d33 (3點測定點平均值)為下述表1所示之值。 測定裝置:中國科學院製造之d33 測定計(ZJ-4B) 頻率:110 Hz 夾持壓力:0.25 N
<絕緣電阻率IR之測定> 測定實施例1之壓電薄膜之絕緣電阻率IR。測定IR時使用ADVANTEST公司製造之測定裝置(R8340A)。測定絕緣電阻率IR時,對壓電薄膜施加1 V/μm之電場。如上所述,壓電薄膜之厚度為1.3 μm。第一電極層及第二電極層各者中施加有電場之部分之面積為600×600 μm2 。實施例1之絕緣電阻率IR為下述表1所示之值。
(實施例2~9) 於實施例2~9各者之第一電極層之製作中,如下述表1所示,使用金屬元素EX、EY及EZ中之至少兩種金屬單質之靶。各實施例之第一電極層係由通常之化學式EXx EYy EZz 表示。x為化學式EXx EYy EZz 中之金屬元素EX之莫耳比。y為化學式EXx EYy EZz 中之金屬元素EY之莫耳比。z為化學式EXx EYy EZz 中之金屬元素EZ之莫耳比。實施例2~9各者之第一電極層之組成係示於下述表1。實施例2~9各者之第一電極層均包含具有面心立方晶格構造之合金。實施例8及9中,於氧化氛圍中進行鋅單質之靶之濺鍍而製作包含ZnO之壓電薄膜。
除以上事項以外,藉由與實施例1相同之方法個別地製作實施例2~9各者之壓電薄膜元件。
藉由與實施例1相同之方法對實施例2~9各者之壓電薄膜元件進行分析。實施例2~9各者之分析結果係示於下述表2。
(比較例1~4) 於比較例1~4各者之第一電極層之製作中,如下述表1所示,僅使用金屬元素EX、EY及EZ中之一種金屬單質之靶。如下述表1所示,比較例1~4各者之第一電極層之組成為與靶相同之金屬單質。比較例1~4各者之第一電極層之結晶構造均為面心立方晶格(FCC)構造。比較例4中,於氧化氛圍中進行鋅單質之靶之濺鍍而製作包含ZnO之壓電薄膜。
除以上事項以外,藉由與實施例1相同之方法個別地製作比較例1~4各者之壓電薄膜元件。
藉由與實施例1相同之方法進行比較例1~4各者之壓電薄膜元件之評價。比較例1~4各者之評價結果係示於下述表2。
晶格失配度Δa/a較佳為作為目標值之2%以下。
搖擺曲線之半峰全幅值FWHM(wurt.)較佳為作為目標值之2.0°以下。
開裂率較佳為作為目標值之1%以下。
機電耦合係數kt 2 較佳為作為目標值之6%以上。
壓電常數d33 較佳為作為目標值之6.0 pC/N以上。
絕緣電阻率IR較佳為作為目標值之1.0×1013 Ω・cm以上。
所謂下述表2中之品質A,意指達成FWHM(wurt.)、開裂率、kt 2 、d33 及IR之5個評價項目之全部目標值。
所謂下述表2中之品質B,意指達成Δa/a、FWHM(wurt.)、開裂率、kt 2 、d33 及IR中之3個或4個評價項目之目標值。
所謂下述表2中之品質C,意指達成目標值之評價項目數為2以下。
[表1]
[表2]
[產業上之可利用性] 根據本發明,提供一種壓電薄膜與下部電極層(第一電極層)間之晶格失配減少之壓電薄膜元件(例如MEMS)。
2‧‧‧壓電薄膜
2F‧‧‧壓電薄膜
2G‧‧‧壓電薄膜
3A‧‧‧第一導電端子
3B‧‧‧第二導電端子
3C‧‧‧第一導電端子
3D‧‧‧第二導電端子
6a‧‧‧第一電極層
6b‧‧‧第二電極層
6I‧‧‧第一電極層
6J‧‧‧第二電極層
6K‧‧‧第一電極層
6L‧‧‧第二電極層
10‧‧‧壓電薄膜元件
10b‧‧‧壓電薄膜元件(壓電擴音器)
12‧‧‧基板
12a‧‧‧基板
12b‧‧‧基板
12c‧‧‧聲頻用空腔
12C‧‧‧基板
18A‧‧‧第一開關
18B‧‧‧第二開關
40‧‧‧壓電開關
圖1中之(a)係本發明之一實施形態之壓電薄膜元件之模式性剖視圖,圖1中之(b)係本發明之另一實施形態之壓電薄膜元件之模式性剖視圖。 圖2係本發明之一實施形態之壓電薄膜元件之模式性剖視圖。

Claims (10)

  1. 一種壓電薄膜元件,其具備第一電極層、及 直接積層於上述第一電極層之壓電薄膜,且 上述第一電極層包含含有兩種以上之金屬元素之合金, 上述第一電極層具有面心立方晶格構造, 上述壓電薄膜具有纖鋅礦型構造。
  2. 如請求項1之壓電薄膜元件,其中 上述合金包含選自由Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu及Al所組成之群中之兩種以上之元素。
  3. 如請求項2之壓電薄膜元件,其中 上述合金係由下述化學式3A、化學式3B、化學式3C及化學式3D中之任一者表示, 上述壓電薄膜包含氮化鋁, Pd(1-x) Nix 化學式3A [上述化學式3A中,0.03<x<0.46] Pd(1-x) Irx 化學式3B [上述化學式3B中,0.20<x<1.0] Ir(1-x) Nix 化學式3C [上述化學式3C中,0≦x≦0.35] Pt(1-x) Nix 化學式3D [上述化學式3D中,0.11<x<0.50]。
  4. 如請求項2之壓電薄膜元件,其中 上述合金係由下述化學式4A、化學式4B、化學式4C、化學式4D、化學式4E及化學式4F中之任一者表示, 上述壓電薄膜包含氧化鋅, Ag(1-y) Pdy 化學式4A [上述化學式4A中,0.26<y<1.0] Ag(1-y) Niy 化學式4B [上述化學式4B中,0.09<y<0.37] Au(1-y) Pdy 化學式4C [上述化學式4C中,0.10<y<0.97] Au(1-y) Niy 化學式4D [上述化學式4D中,0.04<y<0.33] Pt(1-y) Pdy 化學式4E [上述化學式4E中,0<y<0.80] Pt(1-y) Niy 化學式4F [上述化學式4F中,0<y<0.07]。
  5. 如請求項1之壓電薄膜元件,其中 上述合金包含選自由Pt、Ir、Au、Rh、Pd、Ag、Ni、Cu及Al所組成之群中之三種以上之元素。
  6. 如請求項5之壓電薄膜元件,其中 上述合金係由下述化學式6A及化學式6B中之任一者表示, 上述壓電薄膜包含氮化鋁, Pdx Niy Irz 化學式6A [上述化學式6A中,0<x<0.97,0<y<0.46,0<z<1.0] Pdx Niy Ptz 化學式6B [上述化學式6B中,0<x<0.97,0.03<y<0.5,0<z<0.89]。
  7. 如請求項5之壓電薄膜元件,其中 上述合金係由下述化學式7A、化學式7B及化學式7C中之任一者表示, 上述壓電薄膜包含氧化鋅, Pdx Niy Ptz 化學式7A [上述化學式7A中,0<x<0.80,0<y<0.07,0.2<z<1.0] Pdx Niy Agz 化學式7B [上述化學式7B中,0<x<0.96,0<y<0.37,0.04<z<0.91] Pdx Niy Auz 化學式7C [上述化學式7C中,0<x<0.97,0<y<0.33,0.03<z<0.96]。
  8. 如請求項1至7中任一項之壓電薄膜元件,其中 上述第一電極層之上述面心立方晶格構造之(111)面於上述第一電極層與上述壓電薄膜間之界面之法線方向上配向。
  9. 如請求項1至7中任一項之壓電薄膜元件,其中 上述第一電極層與上述壓電薄膜間之晶格失配度為0%以上且2%以下。
  10. 如請求項1至7中任一項之壓電薄膜元件,其中 上述第一電極層中之Al之含量為0原子%以上且未達90原子%。
TW107133290A 2017-09-22 2018-09-21 壓電薄膜元件 TWI683461B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-182720 2017-09-22
JP2017182720 2017-09-22

Publications (2)

Publication Number Publication Date
TW201916415A true TW201916415A (zh) 2019-04-16
TWI683461B TWI683461B (zh) 2020-01-21

Family

ID=65809685

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133290A TWI683461B (zh) 2017-09-22 2018-09-21 壓電薄膜元件

Country Status (5)

Country Link
US (1) US11678581B2 (zh)
JP (1) JP7215425B2 (zh)
CN (1) CN110832654B (zh)
TW (1) TWI683461B (zh)
WO (1) WO2019059050A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115257B2 (ja) * 2018-11-29 2022-08-09 Tdk株式会社 圧電薄膜素子
CN113438588B (zh) * 2021-07-28 2023-04-28 成都纤声科技有限公司 微机电系统麦克风、耳机和电子设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526048B1 (en) * 1991-07-18 1997-11-12 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element having ceramic substrate formed essentially of stabilized zirconia
JP3953315B2 (ja) * 2001-12-26 2007-08-08 宇部興産株式会社 窒化アルミニウム薄膜−金属電極積層体およびそれを用いた薄膜圧電共振子
JP4240445B2 (ja) * 2002-05-31 2009-03-18 独立行政法人産業技術総合研究所 超高配向窒化アルミニウム薄膜を用いた圧電素子とその製造方法
JP3947443B2 (ja) * 2002-08-30 2007-07-18 Tdk株式会社 電子デバイス用基板および電子デバイス
JP2004214282A (ja) * 2002-12-27 2004-07-29 Canon Inc 圧電素子
JP4186685B2 (ja) * 2003-04-10 2008-11-26 宇部興産株式会社 窒化アルミニウム薄膜及びそれを用いた圧電薄膜共振子
JP2005197983A (ja) * 2004-01-07 2005-07-21 Tdk Corp 薄膜バルク波共振器
JP2005198117A (ja) * 2004-01-09 2005-07-21 Tdk Corp 電子デバイス作製用構造体及びこれを用いた電子デバイスの製造方法
JP4373949B2 (ja) * 2004-04-20 2009-11-25 株式会社東芝 薄膜圧電共振器及びその製造方法
JP2006160566A (ja) * 2004-12-08 2006-06-22 Setsunan Univ 正方晶MgSiO3結晶及びその製造方法並びに圧電素子
US8114307B2 (en) 2006-09-15 2012-02-14 Canon Kabushiki Kaisha Piezoelectric body and liquid discharge head
JP5643472B2 (ja) * 2007-10-25 2014-12-17 パナソニック株式会社 圧電薄膜素子
JP5531635B2 (ja) * 2010-01-18 2014-06-25 日立金属株式会社 圧電薄膜素子及び圧電薄膜デバイス
JP2012234925A (ja) * 2011-04-28 2012-11-29 Hitachi Cable Ltd 圧電膜素子及びそれを用いたアクチュエータ並びに小型振動発電装置
JP5808262B2 (ja) * 2012-01-23 2015-11-10 株式会社サイオクス 圧電体素子及び圧電体デバイス
WO2014021850A1 (en) * 2012-07-31 2014-02-06 Hewlett-Packard Development Company, L.P. Thin film stack
JP6091281B2 (ja) * 2013-03-25 2017-03-08 住友化学株式会社 圧電体薄膜積層基板
US9136460B2 (en) * 2014-01-29 2015-09-15 Canon Kabushiki Kaisha Piezoelectric element, method for manufacturing piezoelectric element, and electronic apparatus
JP6179669B2 (ja) * 2014-05-19 2017-08-16 株式会社村田製作所 圧電薄膜及び圧電薄膜素子
JP6617268B2 (ja) 2015-03-27 2019-12-11 パナソニックIpマネジメント株式会社 圧電素子および圧電素子の製造方法
US20170263847A1 (en) * 2016-03-09 2017-09-14 Teledyne Dalsa Semiconductor, Inc. Piezoelectric Alloy Films

Also Published As

Publication number Publication date
CN110832654A (zh) 2020-02-21
US11678581B2 (en) 2023-06-13
JPWO2019059050A1 (ja) 2020-09-03
JP7215425B2 (ja) 2023-01-31
CN110832654B (zh) 2023-07-28
US20200274051A1 (en) 2020-08-27
TWI683461B (zh) 2020-01-21
WO2019059050A1 (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
CN111244263B (zh) 压电薄膜元件
JP5471612B2 (ja) 圧電性薄膜素子の製造方法及び圧電薄膜デバイスの製造方法
US7758979B2 (en) Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
JP4328853B2 (ja) 圧電素子およびその製造方法
US7173361B2 (en) Film bulk acoustic wave resonator
CN101325240A (zh) 压电体薄膜、压电体及其制造方法、以及压电体谐振子
JP7425960B2 (ja) 圧電薄膜素子
JP2011233817A (ja) 圧電体素子、その製造方法、及び圧電体デバイス
TW202002508A (zh) 接合體及彈性波元件
TWI699439B (zh) 壓電薄膜元件
TWI683461B (zh) 壓電薄膜元件
JP2005136115A (ja) 電子デバイス及びその製造方法
Fawzy et al. Piezoelectric thin film materials for acoustic mems devices
US20200028066A1 (en) Piezoelectric laminate, method of manufacturing the piezoelectric laminate and piezoelectric device
JP7572871B2 (ja) 圧電薄膜素子
KR102135522B1 (ko) 압전 공진기의 제조방법 및 압전 공진기
JP2011129774A (ja) 圧電体薄膜付き基板の製造方法
JP2022124810A (ja) 圧電薄膜素子
TW202423274A (zh) 壓電元件及電子設備
Soltani et al. Theoretical and experimental investigation of Lamb waves characteristics in AlN/TiN and AlN/TiN/NCD composite membranes
Riekkinen Fabrication and characterization of ferro-and piezoelectric multilayer devices for high frequency applications