TW201908498A - 無方向性電磁鋼板 - Google Patents

無方向性電磁鋼板

Info

Publication number
TW201908498A
TW201908498A TW107125000A TW107125000A TW201908498A TW 201908498 A TW201908498 A TW 201908498A TW 107125000 A TW107125000 A TW 107125000A TW 107125000 A TW107125000 A TW 107125000A TW 201908498 A TW201908498 A TW 201908498A
Authority
TW
Taiwan
Prior art keywords
steel sheet
less
annealing
oriented electrical
electrical steel
Prior art date
Application number
TW107125000A
Other languages
English (en)
Other versions
TWI683009B (zh
Inventor
名取義顯
竹田和年
屋鋪裕義
富田美穗
藤村浩志
脇坂岳顯
村川鐵州
松本卓也
堀弘樹
鄉元佑哉
宇山應
Original Assignee
日商新日鐵住金股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65015231&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201908498(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商新日鐵住金股份有限公司 filed Critical 日商新日鐵住金股份有限公司
Publication of TW201908498A publication Critical patent/TW201908498A/zh
Application granted granted Critical
Publication of TWI683009B publication Critical patent/TWI683009B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一種無方向性電磁鋼板,其化學組成以質量%計含有:C:0.0015%~0.0040%、Si:3.5%~4.5%、Al:0.65%以下、Mn:0.2%~2.0%、Sn:0%~0.20%、Sb:0%~0.20%、P:0.005%~0.150%、S:0.0001%~0.0030%、Ti:0.0030%以下、Nb:0.0050%以下、Zr:0.0030%以下、Mo:0.030%以下、V:0.0030%以下、N:0.0010%~0.0030%、O:0.0010%~0.0500%、Cu:小於0.10%及Ni:小於0.50%,且剩餘部分由Fe及不純物所構成;並且,製品板厚為0.10mm~0.30mm,平均結晶粒徑為10μm~40μm,鐵損W10/800為50W/Kg以下,拉伸強度為580MPa~700MPa,且降伏比為0.82以上。

Description

無方向性電磁鋼板
本發明是關於無方向性電磁鋼板。 本案是依據已於2017年7月19日於日本提申之日本特願2017-139765號主張優先權,並於此援引其內容。
發明背景 近來,地球環境問題備受矚目,對節省能源之對策的要求也愈發提高。其中,尤以電氣設備之高效率化在近幾年受到強烈要求。因此,就作為馬達或發電機等的鐵芯材料而受到廣泛使用之無方向性電磁鋼板而言,對於提升磁特性的要求亦更加增強。在電動汽車或動力混合車用的馬達、以及壓縮機用馬達中,該傾向十分顯著。
如上所述之各種馬達的馬達鐵芯是由靜定子即定子(stator)以及轉動子即轉子(rotor)所構成。構成馬達鐵芯的定子及轉子所要求的特性,彼此並不相同。對於定子,尤會要求優異磁特性(鐵損及磁通密度),相對於此,對於轉子則是要求優異機械特性(拉伸強度及降伏比)。
定子和轉子所要求的特性不同。因此,只要將定子用無方向性電磁鋼板與轉子用無方向性電磁鋼板區分並製造,便能實現各自所欲之特性。但是,準備2種無方向性電磁鋼板會導致產率降低。於是,為了實現轉子所要求之優異強度與定子所要求之低鐵損,迄今已就強度優異且磁特性亦優異之無方向性電磁鋼板進行了研討。
例如,在以下專利文獻1~專利文獻3中提案有以下技術:為了實現定子所要求的優異磁特性,並實現轉子所要求的優異強度,而就鋼板的化學成分,使其含有大量的矽(Si)並且刻意添加鎳(Ni)或銅(Cu)這類有助於高強度化的元素。
先前技術文獻 專利文獻 專利文獻1:日本專利特開2004-300535號公報 專利文獻2:日本專利特開2004-315956號公報 專利文獻3:日本專利特開2008-50686號公報
發明概要 發明欲解決之課題 但是,為了實現近年來電動汽車或動力混合車的馬達所要求的節能特性,以上述專利文獻1~專利文獻3中揭示之技術而言,作為定子胚材之低鐵損化並不充分。
並且,如上述專利文獻1~專利文獻3中揭示的Ni或Cu等類促進高強度化的元素價格昂貴,若積極添加該等元素,則無方向性電磁鋼板之製造成本會增多。
並且,近年來,對於電動汽車及動力混合車用之馬達,變得頻繁施行藉由使馬達轉數高速化以獲取馬達轉矩的設計,而強烈地要求轉子之更高強度化。為了確保馬達的安全性,不僅應避免以拉伸強度表示之破壞的極限特性,還應避免因疲勞引起的破壞。為此,不單僅是拉伸強度,獲得高降伏應力(亦即獲得高降伏比)也很重要。但是,即便使用了上述專利文獻1~專利文獻3所揭示之技術,仍難以謀求轉子之更高強度化及高降伏比化。
本發明是有鑑於上述問題而作成。本發明的目的在於提供一種無方向性電磁鋼板,其製造成本已獲抑制,且其為高強度且高降伏比。 較理想的是提供一種無方向性電磁鋼板,其是將所得之高強度且降伏比之無方向性電磁鋼板衝孔成所欲之馬達鐵芯形狀(轉子形狀及定子形狀)後,積層多數片經衝孔後之無方向性電磁鋼板以形成所欲之馬達鐵芯形狀(轉子形狀及定子形狀),且其中在對已積層成定子形狀之物實施了退火時,可顯示出更加優異的磁特性。
用以解決課題之手段 為了解決上述課題,本發明人等進行了精闢研討。具體而言,是就以下手段進行了精闢研討:從相同的無方向性電磁鋼板衝孔出轉子及定子用之構件後,針對轉子用構件,在積層成所欲轉子形狀後,就算不對積層體進行退火也可具有更優異的機械特性,並且針對定子用構件,在積層成所欲定子形狀後,藉由對積層體進行退火以實現更優異的磁特性。
以下,是將如以下實施之退火稱為「鐵芯退火」:將無方向性電磁鋼板衝孔成所欲定子形狀以作為定子用構件,並將衝孔後之定子用構件積層成所欲定子形狀後,對於所得之積層體實施退火。
為了在具有同等拉伸強度之無方向性電磁鋼板中,以提升疲勞強度為目的來實現高降伏比,可能可考慮使無方向性電磁鋼板具有上降伏點。 本發明人等著眼於活用碳(C)之應變時效,來控制使無方向性電磁鋼板具有上降伏點。但是,一般製造出之無方向性電磁鋼板為高純度,會成為應變時效之原因的C含量低。特別是在Si含量為3%以上之無方向性電磁鋼板中,因Si會抑制碳化物之生成而不具有上降伏點。並且,在單以高強度化為目標而刻意含有C、鈦(Ti)、鈮(Nb)等元素之無方向性電磁鋼板中,即使藉由含有大量之C而產生了降伏現象,由於碳化物會使鐵芯退火時之晶粒成長大幅劣化,故鐵芯退火後之磁特性不會提升。 因此,目前為止,要獲得具有上降伏點且在鐵芯退火後之磁特性優異之無方向性電磁鋼板是為困難。
基於所述觀點,本發明人等進行了更進一步的研討。其結果發現到:在刻意不含有成本高之元素且具有高Si含量之無方向性電磁鋼板中,利用謀求結晶粒徑之更進一步微細化以實現降伏現象,藉此便可獲得更加優異之機械特性。並且,終至得到以下知識見解:在此無方向性電磁鋼板中,只要能抑制含有會阻礙鐵芯退火時之晶粒成長的元素,便可在鐵芯退火後同時使優異磁特性更加提升。 基於上述知識見解而完成之本發明的主旨如下。
[1]本發明一態樣之無方向性電磁鋼板,其化學組成以質量%計含有:C:0.0015%~0.0040%、Si:3.5%~4.5%、Al:0.65%以下、Mn:0.2%~2.0%、Sn:0%~0.20%、Sb:0%~0.20%、P:0.005%~0.150%、S:0.0001%~0.0030%、Ti:0.0030%以下、Nb:0.0050%以下、Zr:0.0030%以下、Mo:0.030%以下、V:0.0030%以下、N:0.0010%~0.0030%、O:0.0010%~0.0500%、Cu:小於0.10%及Ni:小於0.50%,且剩餘部分由Fe及不純物所構成;並且,製品板厚為0.10mm~0.30mm,平均結晶粒徑為10μm~40μm,鐵損W10/800為50W/Kg以下,拉伸強度為580MPa~700MPa,且降伏比為0.82以上。 [2]如上述[1]之無方向性電磁鋼板,其中C、Ti、Nb、Zr及V含量亦可滿足以下式(1)所示條件。 [C]×([Ti]+[Nb]+[Zr]+[V])<0.000010・・・(1) 此處,上述式(1)中,[X]之表現係表示元素X之含量(單位:質量%)。 [3]如上述[1]或[2]之無方向性電磁鋼板,其亦可藉由在退火溫度750℃以上且900℃以下、均熱時間10分鐘~180分鐘之範圍內的退火條件下進行退火,而使平均結晶粒徑成為60μm~150μm,且鐵損W10/400成為11W/Kg以下。 [4]如上述[1]~[3]中任1項之無方向性電磁鋼板,其具有上降伏點及下降伏點,且上降伏點亦可較下降伏點高5MPa以上。 [5]如上述[1]~[4]中任1項之無方向性電磁鋼板,其中前述化學組成以質量%計亦可含有以下元素之任一者或兩者:Sn:0.01%~0.20%、Sb:0.01%~0.20%。 [6]如上述[1]~[5]中任1項之無方向性電磁鋼板,其亦可於表面更具有絕緣被膜。
發明效果 依據本發明之上述態樣,可製得一種無方向性電磁鋼板,其製造成本已獲抑制,且其機械特性及鐵芯退火後之磁特性更為優異。
發明實施形態 以下,參照所附圖式並且詳細說明本發明之較佳實施形態。在本說明書及圖式中,針對實質上具有相同之機能構成的構成要素,附加相同符號以省略重複說明。
(關於無方向性電磁鋼板) 首先,參考圖1~圖5,針對本發明一實施形態之無方向性電磁鋼板(本實施形態之無方向性電磁鋼板),進行詳細說明。 圖1是示意顯示本實施形態之無方向性電磁鋼板的構造之說明圖。圖2是用以說明本實施形態之無方向性電磁鋼板之說明圖。圖3是用以說明本實施形態之無方向性電磁鋼板所顯示的應力-應變曲線之說明圖。圖4是顯示無方向性電磁鋼板所顯示之應力-應變曲線之一例的圖。圖5是顯示本實施形態之無方向性電磁鋼板的製造方法的流程之一例的流程圖。
本實施形態之無方向性電磁鋼板10,是適合作為製造定子及轉子兩者時的胚材之無方向性電磁鋼板10。如圖1所示意顯示,本實施形態之無方向性電磁鋼板10具有基鐵11,該基鐵11含有預定化學成分,並且表現出預定機械特性及磁特性。並且,本實施形態之無方向性電磁鋼板10,宜在基鐵11之表面更具有絕緣被膜13。
以下,首先詳細說明本實施形態之無方向性電磁鋼板10的基鐵11。
<關於基鐵的化學成分> 本實施形態之無方向性電磁鋼板10的基鐵11,以質量%計含有:C:0.0015%~0.0040%、Si:3.5%~4.5%、Al:0.65%以下、Mn:0.2%~2.0%、P:0.005%~0.150%、S:0.0001%~0.0030%、Ti:0.0030%以下、Nb:0.0050%以下、Zr:0.0030%以下、Mo:0.030%以下、V:0.0030%以下、N:0.0010%~0.0030%、O:0.0010%~0.0500%、Cu:小於0.10%及Ni:小於0.50%,視需要更分別含有0.01質量%以上且0.2質量%以下之Sn或Sb中之一種或兩種,且剩餘部分由Fe及不純物所構成。
基鐵11為譬如熱軋鋼板或冷軋鋼板等鋼板。
以下,針對如上述規定本實施形態之基鐵11的化學組成的理由,進行詳細說明。以下,只要無特別說明,則「%」表示「質量%」。
[C:0.0015%~0.0040%] C(碳)是一種會引起鐵損劣化之元素。當C含量大於0.0040%時,在無方向性電磁鋼板中會產生鐵損劣化,而無法獲得良好之磁特性。因此,本實施形態之無方向性電磁鋼板10是將C含量設為0.0040%以下。且C含量宜在0.0035%以下,較佳是在0.0030%以下。 另一方面,當C含量小於0.0015%時,在無方向性電磁鋼板10中不會產生上降伏點,而無法獲得良好之降伏比。因此,本實施形態之無方向性電磁鋼板10是將C含量設為0.0015%以上。本實施形態之無方向性電磁鋼板中,C含量宜為0.0020%以上,較佳是在0.0025%以上。
[Si:3.5%~4.5%] Si(矽)是一種使鋼之電阻上升以減低渦電流損耗並改善高頻鐵損之元素。並且,由於Si之固溶強化能力大,因此對無方向性電磁鋼板10之高強度化而言亦為有效元素。為了充分發揮上述效果,必須含有3.5%以上的Si。且較理想是在3.6%以上。 另一方面,當Si含量大於4.5%時,加工性會明顯劣化而變得難以實施冷軋延。因此,Si含量是設為4.5%以下。且Si含量宜在4.0%以下,較佳是在3.9%以下。
[Al:0.65%以下] Al(鋁)在藉由使無方向性電磁鋼板之電阻上升以減低渦電流損耗並改善高頻鐵損之方面為有效元素。另一方面,Al亦有使鋼板製造過程中之加工性與製品之磁通密度降低之影響。故,將Al含量設為0.65%以下。 並且,為了要在鐵芯退火後獲得良好之磁特性,抑制固溶Ti之不良影響實為重要,但若Al含量高,作為氮化物並不會析出TiN而是析出AlN,而固溶Ti會增加。當Al含量大於0.50%時,無方向性電磁鋼板之磁通密度會明顯降低,並且會脆化而導致變得難以實施冷軋延,且鐵芯退火後之磁特性會變差。因此,考慮到鐵芯退火後之磁特性,Al含量宜設為0.50%以下。且Al含量較佳為0.40%以下,在0.35%以下更佳。 另一方面,Al含量之下限值並未特別規定且亦可為0%,惟若要將Al含量設為小於0.0005%,製鋼時之負荷高而會導致成本增加。因此,Al含量宜設為0.0005%以上。並且,若要獲得改善高頻鐵損之效果,Al含量宜為0.10%以上,較佳是在0.20%以上。
[Mn:0.2%~2.0%] Mn(錳)在使鋼之電阻上升以減低渦電流損耗並改善高頻鐵損之方面為有效元素。為了充分發揮上述效果,必須含有0.2%以上的Mn。並且,當Mn含量小於0.2%時,會因微細硫化物(MnS)析出,而使鐵芯退火時之晶粒成長性劣化,故不佳。Mn含量宜在0.4%以上,較佳是在0.5%以上。 另一方面,當Mn含量大於2.0%時,磁通密度會明顯降低。因此,Mn含量是設為2.0%以下。且Mn含量宜在1.7%以下,較佳是在1.5%以下。
[P:0.005%~0.150%] P(磷)是一種固溶強化能力大,且還具有會使有利於提升磁特性之{100}集合組織增加的效果之元素,且是在兼顧高強度與高磁通密度之方面極為有效之元素。此外,{100}集合組織之增加亦有助於減低在無方向性電磁鋼板10之板面內的機械特性之各向異性,故P還具有改善無方向性電磁鋼板10在衝孔加工時之尺寸精度的效果。為了獲得上述改善強度、磁特性及尺寸精度的效果,必須將P含量設為0.005%以上。且P含量宜在0.010%以上,較佳是在0.020%以上。 另一方面,當P含量大於0.150%時,無方向性電磁鋼板10之延展性會明顯降低。因此,P含量是設為0.150%以下。且P含量宜在0.100%以下,較佳是在0.080%以下。
[S:0.0001%~0.0030%] S(硫)是一種會因形成MnS的微細析出物,而使鐵損增加並使無方向性電磁鋼板10之磁特性劣化的元素。因此,S含量必須設為0.0030%以下。且S含量宜在0.0020%以下,較佳是在0.0010%以下。 另一方面,若欲使S含量減低至較0.0001%更低,只會徒然招致成本增加。因此,S含量是設為0.0001%以上。且S含量宜在0.0003%以上,較佳是在0.0005%以上。
[Ti:0.0030%以下] Ti(鈦)是一種無法避免地會混入到鋼中之元素,且是一種會與碳或氮結合而形成夾雜物(碳化物、氮化物)之元素。當形成有碳化物時,在鐵芯退火中之晶粒成長會受到阻礙,而磁特性劣化。因此,Ti含量是設為0.0030%以下。且Ti含量宜在0.0015%以下,較佳是在0.0010%以下。 另一方面,雖然Ti含量亦可為0%,但若要減低至較0.0005%更低,就會徒然招致成本增加。因此,Ti含量宜設為0.0005%以上。
[Nb:0.0050%以下] Nb(鈮)是一種會與碳或氮結合而形成夾雜物(碳化物、氮化物),藉此而有助於高強度化之元素。但是,Nb是價格昂貴之元素,而將其含量設為0.0050%以下。此外,Nb亦為一種會阻礙鐵芯退火中之晶粒成長而使磁特性劣化之元素。因此,若考慮到鐵芯退火後之磁特性,則Nb含量宜設為0.0030%以下。且Nb含量宜在0.0010%以下,較佳是在檢測極限以下(tr.)(包含0%)。
[Zr:0.0030%以下] Zr(鋯)是一種會與碳或氮結合而形成夾雜物(碳化物、氮化物),藉此而有助於高強度化之元素。但是,Zr亦為一種會阻礙鐵芯退火中之晶粒成長而使磁特性劣化之元素。因此,Zr含量是設為0.0030%以下。且Zr含量宜在0.0010%以下,較佳是在檢測極限以下(tr.)(包含0%)。
[Mo:0.030%以下] Mo(鉬)是一種無法避免地會混入之元素,且是一種會與碳結合而形成夾雜物(碳化物)之元素。然而,Mo在如實施鐵芯退火之750℃以上的溫度下容易固溶化,因此些許混入是可被容許的。但若混入量過度增加,便會阻礙晶粒成長而使磁特性劣化,故Mo含量是設為0.030%以下。且Mo含量宜在0.020%以下,較佳是在0.015%以下,亦可在檢測極限以下(tr.)(包含0%)。 另一方面,若欲使Mo含量減低至較0.0005%更低,就會徒然招致成本增加。因此,基於製造成本的觀點,Mo含量宜設為0.0005%以上。且Mo含量較佳為0.0010%以上。
[V:0.0030%以下] V(釩)是一種會與碳或氮結合而形成夾雜物(碳化物、氮化物),藉此而有助於高強度化之元素。但是,V也是一種會阻礙鐵芯退火中之晶粒成長而使磁特性劣化之元素。因此,V含量是設為0.0030%以下。且V含量宜在0.0010%以下,較佳是在檢測極限以下(tr.)(包含0%)。
[N:0.0010%~0.0030%] N(氮)是一種無法避免地會混入之元素,也是一種會引起磁老化而使鐵損增加且使無方向性電磁鋼板10之磁特性劣化之元素。因此,N含量必須設為0.0030%以下。且N含量宜在0.0025%以下,較佳是在0.0020%以下。 另一方面,若欲使N含量減低至較0.0010%更低,就會徒然招致成本增加。因此,N含量是設為0.0010%以上。
[O:0.0010%~0.0500%] O(氧)是一種無法避免地會混入之元素,且是一種會因形成氧化物而使鐵損增加且使無方向性電磁鋼板10之磁特性劣化之元素。因此,O含量必須設為0.0500%以下。O也會在退火步驟中混入,故在鋼胚階段(亦即澆桶取樣分析值)宜設為0.0050%以下。 另一方面,若欲使O含量減低至較0.0010%更低,就會徒然招致成本增加。因此,O含量是設為0.0010%以上。
[Cu:小於0.10%] [Ni:小於0.50%] Cu(銅)及Ni(鎳)是無法避免地會混入之元素。刻意添加Cu及Ni會使無方向性電磁鋼板10之製造成本增加。因此,在本實施形態之無方向性電磁鋼板10中無須添加。 Cu含量是設為在製造步驟中無法避免地會混入之最大值,即設為小於0.10%。 另一方面,尤其Ni是會使無方向性電磁鋼板10之強度提升之元素,而亦可刻意添加含有。然而,由於Ni價格昂貴,故就算是在刻意含有的情況下,也會將其含量上限設為小於0.50%。 Cu含量及Ni含量之下限雖無特別規定且亦可為0%,但若欲使Cu含量及Ni含量減低至較0.005%更低,就會徒然招致成本增加。因此,Cu含量及Ni含量皆宜設為0.005%以上。且Cu含量及Ni含量宜各為0.01%以上且0.09%以下,較佳是各為0.02%以上且0.06%以下。
[Sn:0%~0.20%] [Sb:0%~0.20%] Sn(錫)及Sb(銻)在藉由於鋼板表面偏析而抑制退火中之氧化以確保低鐵損之方面為有用之任意添加元素。因此,在本實施形態之無方向性電磁鋼板中,為了獲得上述效果,亦可使基鐵中含有Sn或Sb中之至少任一種作為任意添加元素。為了充分發揮上述效果,Sn含量或Sb含量宜分別設為0.01%以上。且較佳是在0.03%以上。 另一方面,當Sn含量或Sb含量分別大於0.20%時,會有基鐵之延展性降低而冷軋延變得困難的可能性。因此,就算含有,Sn含量或Sb含量也宜分別設為0.20%以下。當使基鐵中含有Sn或Sb時,Sn含量或Sb含量以0.10%以下較佳。
[[C]×([Ti]+[Nb]+[Zr]+[V])<0.000010] 本實施形態之無方向性電磁鋼板10之基鐵11含有如以上說明之化學成分,惟基鐵11之C、Ti、Nb、Zr及V之含量宜更滿足以下式(1)所示條件。
[C]×([Ti]+[Nb]+[Zr]+[V])<0.000010・・・(1) 此處,上述式(1)中,[X]之表現是表示元素X之含量(單位:質量%),亦即譬如為[C]的話是表示以質量%計之C含量。
若基鐵11中存在有C,在基鐵11中便可形成與C含量對應之碳化物。並且,如先前所說明,Ti、Nb、Zr、V是與碳之間會形成碳化物之元素,藉由在基鐵11中存在該等元素,碳化物會變得更容易形成。因此,上述式(1)之左邊,可視為是顯示本實施形態之無方向性電磁鋼板10之基鐵11中形成碳化物之能力的指標。
本發明人等使基鐵11中之化學成分含量變化,並且針對基鐵11中之碳化物之形成的情形進行了精闢研討,結果明白可知:當上述式(1)之左邊所給出的值在0.000010以上時,會因碳化物形成而阻礙鐵芯退火中之晶粒成長,而變得容易使鐵芯退火後之磁特性劣化。因此,在本實施形態之無方向性電磁鋼板10中,就C、Ti、Nb、Zr、V之含量而言,宜設為使上述式(1)之左邊所給出的值小於0.000010。上述式(1)之左邊所給出的值較佳是在0.000006以下,在0.000004以下更佳。 上述式(1)之左邊所給出的值越小越好,其下限值並無特別規定,但根據本實施形態之基鐵11之上述元素的下限值,0.00000075之數值會是實質下限值。
以上,詳細說明了本實施形態之無方向性電磁鋼板之基鐵的化學成分。 除上述元素外,就算在0.0001%~0.0050%的範圍內含有Pb、Bi、As、B、Se、Mg、Ca、La、Ce等元素作為不純物,也不會損害本實施形態之無方向性電磁鋼板的效果。
要測定無方向性電磁鋼板10之基鐵11的化學成分時可利用周知之各種測定法,只要適當利用例如ICP-MS(感應耦合電漿質量分析)法等即可。
<關於基鐵的平均結晶粒徑> 本實施形態之無方向性電磁鋼板10中,在歷經以下詳述之完工退火後(尚未進行鐵芯退火之狀態)之時間點上,基鐵11之平均結晶粒徑是成為10μm~40μm之經微細化後之狀態。基鐵11之平均結晶粒徑被微細化至10μm~40μm的範圍內,藉此可使基鐵11中晶界之比例增加,而可使應變時效現象產生。 如上述之經微細化後之平均結晶粒徑可藉由在以下詳述之完工退火步驟中,在特定氣體環境下進行特定退火溫度及均熱時間之退火後,以特定冷卻速度來進行冷卻而被實現。基鐵11之平均結晶粒徑可藉由變更完工退火時之熱處理條件來控制。
當完工退火後(尚未進行鐵芯退火之狀態)之基鐵11之平均結晶粒徑小於10μm時,即使將Si含量設為最大值並且進行了鐵芯退火,無方向性電磁鋼板所要求之重要磁特性之一即鐵損仍會變大,故不佳。 另一方面,當完工退火後(尚未進行鐵芯退火之狀態)之基鐵11之平均結晶粒徑大於40μm時,因平均結晶粒徑變得過大,結果變得無法獲得轉子所要求之優異強度及降伏比,故不佳。基鐵11之平均結晶粒徑宜在15μm~30μm之範圍內,較佳係在20μm~25μm之範圍內。
又,在本實施形態之無方向性電磁鋼板10中,若施行在製造定子時會實施之鐵芯退火,則基鐵11之晶粒會成長,平均結晶粒徑會粗大化。這是因為會阻礙晶粒成長之元素即C、Ti、Nb、Zr及V含量被控制成在上述範圍內。較理想的是藉由進行預定條件之鐵芯退火,使鐵芯退火後之粗大化基鐵11之平均粒徑成為60μm~150μm。在本實施形態中,「鐵芯退火」是以促進基鐵11之晶粒的晶粒成長為目的而實施之退火。
所謂鐵芯退火之預定條件,是視電磁鋼板之板厚或鐵芯退火前之粒徑等,而從退火溫度750℃~900℃、均熱時間10分鐘~180分鐘之範圍內適當選擇之條件。較佳退火溫度為775℃~850℃,較佳均熱時間為30分鐘~150分鐘。退火氣體環境之露點雖然只要視退火爐之種類及性能來適當設定即可,而只要在例如-40℃以上且20℃以下之範圍內作設定即可。更具體而言,可在例如露點-40℃之氮氣環境中,設為退火溫度800℃、均熱時間120分鐘。
當施行預定鐵芯退火後基鐵11之平均結晶粒徑小於60μm時,即使已將Si含量設為最大值,無方向性電磁鋼板所要求之重要磁特性之一即鐵損仍會變大,故不佳。並且,當施行預定鐵芯退火後基鐵11之平均結晶粒徑大於150μm時,晶粒會過度成長,結果鐵損也會變大,故不佳。施行預定鐵芯退火後基鐵11之平均結晶粒徑較佳係在65μm~120μm之範圍內,在70μm~100μm之範圍內更佳。
如以上所說明,本實施形態之無方向性電磁鋼板10若實施預定條件之鐵芯退火,基鐵11之平均結晶粒徑便會大幅變化。藉由利用上述特徵,以本實施形態之無方向性電磁鋼板10而言,便可從一塊無方向性電磁鋼板製造出轉子和定子兩者,其結果就能抑制產率降低。
圖2係顯示使用本實施形態之無方向性電磁鋼板10來製造轉子及定子之情況的流程之一例的流程圖。 如以上所說明,本實施形態之無方向性電磁鋼板10,在尚未實施鐵芯退火之狀態下,其基鐵11之平均結晶粒徑在10μm~40μm之範圍內,且其晶粒是呈已微細化後之狀態。使用該無方向性電磁鋼板10來衝孔成轉子及定子形狀(步驟1),藉此可製造出用以製造轉子及定子之構件。接著,將所製出之轉子製造用構件及定子製造用構件分別積層(步驟2)。歷經衝孔步驟及積層步驟後,經積層而成之各構件中基鐵11之平均結晶粒徑仍是在10μm~40μm之範圍內。
如圖2所示,使用經積層而成之轉子製造用構件(不經鐵芯退火),便可製造出轉子。所製出之轉子由於基鐵11之平均結晶粒徑為10μm~40μm而仍是經微細化後之狀態,故具有轉子所要求之優異強度(例如,拉伸強度580MPa以上之強度),並且還具有高降伏比(0.82以上)。
並且,如圖2所示,藉由對經積層而成之定子製造用構件施行鐵芯退火(步驟3),便可製造出定子。本實施形態之無方向性電磁鋼板10,其基鐵11之晶粒會因鐵芯退火而大幅成長,例如只要進行預定條件之鐵芯退火即會成為在如上述之60μm~150μm之範圍內,而可實現優異鐵損及磁通密度。
如上述之基鐵11之平均結晶粒徑可藉由譬如:對於板厚方向中心之Z截面組織,根據JIS G0551「鋼-結晶粒度之顯微鏡試驗方法」之切斷法來求取。
<關於機械特性> 本實施形態之無方向性電磁鋼板10具有上述化學組成,並且完工退火後(尚未進行鐵芯退火之狀態)基鐵11之平均結晶粒徑被微細化為10μm~40μm。其結果,拉伸強度成為580MPa~700MPa。
並且,本實施形態之無方向性電磁鋼板10,於製造時,在特定氣體環境下進行特定退火溫度及均熱時間之退火後,會以特定冷卻速度進行冷卻。其結果,產生降伏現象,而變成會顯示出上降伏點以及下降伏點。 在本實施形態中,所謂上降伏點是定義為:如圖3之A點這種在拉伸強度前(較顯示拉伸強度之位置更左側)之微小應變區域中,應力顯示出最大值之點。所謂下降伏點則是經過上降伏點後應力值降低之點。由於在無方向性電磁鋼板中不易成為如可在其他鋼種中觀察到之固定值,故在本實施形態中是將下降伏點定義為:如圖3之B點這種在從上降伏點到顯示拉伸強度的點之間,應力顯示出最小值之點。
本實施形態之無方向性電磁鋼板10中,降伏比為0.82以上。因降伏比成為0.82以上,而本實施形態之無方向性電磁鋼板10作為轉子變得會顯示出更優異之機械特性。降伏比宜為0.84以上。降伏比之上限值並無特別規定且越大越好,但實際上0.90左右會是上限。 並且,本實施形態之無方向性電磁鋼板10中,上降伏點(圖3之點A)之應力值與下降伏點(圖3之點B)之應力值的差(圖3之Δσ )宜成為5MPa以上。只要Δσ 在5MPa以上,就會變得容易獲得0.82以上的降伏比。
圖4是顯示以下狀況之應力-應變曲線之測定結果之一例:將具有如先前所說明之化學組成的鋼在以下詳述之退火氣體環境下,並將均熱時間固定為20秒後,使退火溫度變化成5種。 若將退火溫度設為一般之無方向性電磁鋼板的完工退火溫度即950℃、1000℃,於950℃時基鐵11之平均結晶粒徑成為54μm,於1000℃時則成為77μm。另一方面,若將退火溫度設為如以下詳述之本實施形態之完工退火溫度的範圍內即800℃、850℃或900℃,於800℃時基鐵11之平均結晶粒徑成為16μm,於850℃時成為25μm,於900℃時則成為37μm。 所獲得之5種無方向性電磁鋼板10之應力-應變曲線之測定結果是如圖4所示。
如圖4所示,平均結晶粒徑成為16μm、25μm及37μm之本實施形態之無方向性電磁鋼板,其應力-應變曲線展現出可觀測到上降伏點及下降伏點之類的降伏現象。另一方面,平均結晶粒徑成為54μm、77μm之無方向性電磁鋼板,其應力-應變曲線並不存在上降伏點及下降伏點。
如上述之拉伸強度及降伏點可藉由在製作JIS Z2201所規定之試驗片後,利用拉伸試驗機進行拉伸試驗來測定。
<關於基鐵的板厚> 本實施形態之無方向性電磁鋼板10之基鐵11的板厚(圖1之厚度t,可理解為無方向性電磁鋼板10之製品板厚)必須設為0.30mm以下,以減低高頻鐵損。另一方面,當基鐵11之板厚t小於0.10mm時,因板厚較薄,而會有退火生產線之通板變得困難的可能性。因此,無方向性電磁鋼板10之基鐵11的板厚t是設為0.10mm以上且0.30mm以下。且無方向性電磁鋼板10之基鐵11的板厚t宜為0.15mm以上且0.25mm以下。
<關於完工退火後及鐵芯退火前之磁特性> 本實施形態之無方向性電磁鋼板10中,完工退火後(尚未進行鐵芯退火之狀態)鐵損W10/800為50W/kg以下。且鐵損W10/800宜為48W/kg以下,較佳是在45W/kg以下。
<關於鐵芯退火後之磁特性> 本實施形態之無方向性電磁鋼板10藉由施行如上所述之預定鐵芯退火,基鐵11之晶粒便會成長,而變得會顯示出更加優異的鐵損。本實施形態之無方向性電磁鋼板10,其鐵損W10/400宜成為11W/Kg以下。且鐵損W10/400在10W/Kg以下較佳。此處,鐵芯退火的條件可設為例如在露點-40℃之氮氣環境中,退火溫度為800℃且均熱時間為120分鐘。
本實施形態之無方向性電磁鋼板10之各種磁特性可依據JIS C2550所規定之愛普斯坦法、或JIS C2556所規定之單板磁特性測定法(Single Sheet Tester:SST)來測定。
<關於絕緣被膜> 再次回到圖1,簡單說明本實施形態之無方向性電磁鋼板10宜具有之絕緣被膜13。
無方向性電磁鋼板是在衝孔出鐵芯毛胚後被積層而使用。因此,藉由在基鐵11表面設置絕緣被膜13,便可減低板間之渦電流,而能減低渦電流損耗來作為鐵芯。
本實施形態之無方向性電磁鋼板10之絕緣被膜13,只要是可作為無方向性電磁鋼板之絕緣被膜使用之物則無特別限定,可使用周知之絕緣被膜。上述絕緣被膜可舉例譬如以無機物為主體且更含有有機物的複合絕緣被膜。此處,所謂複合絕緣被膜是譬如以鉻酸金屬鹽、磷酸金屬鹽或是膠質氧化矽、Zr化合物、Ti化合物等無機物中之至少任一者為主體,且有微細有機樹脂粒子分散的絕緣被膜。尤其,基於近年需求逐漸高漲之減低製造時的環境負荷之觀點,宜採用使用有磷酸金屬鹽或者是Zr或Ti之耦合劑,或者將該等之碳酸鹽及銨鹽用作起始物質的絕緣被膜。
如上述之絕緣被膜13的附著量並無特別限定,但宜設為譬如每單面在400mg/m2 以上且1200mg/m2 以下左右,較佳是設為每單面在800mg/m2 以上且1000mg/m2 以下。藉由以成為上述附著量之方式來形成絕緣被膜13,便能保持優異均勻性。當測定絕緣被膜13之附著量時,可利用周知之各種測定法,例如只要適當利用測定浸漬氫氧化鈉水溶液之前與之後的質量差之方法、或使用有校正曲線法之螢光X射線法等即可。
(關於無方向性電磁鋼板的製造方法) 接著,參照圖5,並且就如以上說明之本實施形態之無方向性電磁鋼板10之製造方法,進行詳細說明。圖5是顯示本實施形態之無方向性電磁鋼板的製造方法的流程之一例的流程圖。
本實施形態之無方向性電磁鋼板10的製造方法中,對於具有如以上說明之預定化學組成的鋼塊,依序實施熱軋延、熱軋板退火、酸洗、冷軋延及完工退火。並且,若要將絕緣被膜13形成於基鐵11表面,則是在上述完工退火後形成絕緣被膜。以下,針對本實施形態之無方向性電磁鋼板10的製造方法中所實施之各步驟進行詳細說明。
<熱軋延步驟> 本實施形態之無方向性電磁鋼板10的製造方法中,首先,加熱具有上述化學組成的鋼塊(鋼胚),並對加熱後之鋼塊進行熱軋延,以製得熱軋板(熱軋鋼板)(製程S101)。供於熱軋延時之鋼塊的加熱溫度並無特別規定,但宜設為例如1050℃以上且1200℃以下。又,熱軋延後之熱軋板板厚亦無特別規定,但考慮到基鐵之最終板厚,則宜設為譬如1.5mm~3.0mm左右。藉由對鋼塊施行如以上之熱軋延,在基鐵11表面便會生成以Fe之氧化物為主體之鏽皮。
<熱軋板退火步驟> 在上述熱軋延之後,實施熱軋板退火(製程S103)。在熱軋板退火中,宜例如將退火氣體環境中之露點設為-20℃以上且50℃以下,將退火溫度設為850℃以上且1100℃以下,並且將均熱時間設為10秒以上且150秒以下。所謂均熱時間,是指供於熱軋板退火之熱軋板溫度成為最高到達板溫±5℃的範圍內之時間。
將露點控制在低於-20℃會招致過多的成本增加,故不佳。另一方面,若露點高於50℃,便會因基鐵之Fe的氧化進行,致使板厚因之後的酸洗而過度減少,而發生產率惡化,故不佳。退火氣體環境中之露點宜為-10℃以上且40℃以下,較佳為-10℃以上且20℃以下。
當退火溫度低於850℃時或當均熱時間小於10秒時,由於磁通密度B50會劣化,故不佳。 另一方面,當退火溫度高於1100℃時或當均熱時間大於150秒時,會有在後段之冷軋延步驟中基鐵斷裂的可能性產生,故不佳。 退火溫度宜為900℃以上且1050℃以下,較佳為950℃以上且1050℃以下。並且,均熱時間宜為20秒以上且100秒以下,較佳為30秒以上且80秒以下。
並且,在熱軋板退火之冷卻過程中,為了更確實地實現0.82以上之降伏比,宜將800℃~500℃為止之溫度區域中的平均冷卻速度設為10℃/秒~100℃/秒,更宜設為25℃/秒以上。 若在800℃~500℃為止之溫度區域中的冷卻速度小於10℃/秒,便無法充分獲得固溶C所帶來之應變時效,而變得難以產生上降伏點,降伏比會降低。要設為平均冷卻速度在10℃/秒以上之強冷卻,可藉由從後段起增加流入之氣體量等來達成。 另一方面,雖然以機械特性之觀點而言,板溫800℃~500℃為止之平均冷卻速度越高越好,但若平均冷卻速度過快,板形狀便會劣化而損害生產性與鋼板品質,因此將上限設為100℃/秒。
<酸洗步驟> 在上述熱軋板退火之後,實施酸洗(製程S105),以除去已生成於基鐵11表面的鏽皮層。酸洗所用之酸濃度、酸洗所用之促進劑濃度、酸洗液之溫度等酸洗條件並未特別限定,可設為周知之酸洗條件。
<冷軋延步驟> 在上述酸洗之後,實施冷軋延(製程S107)。 冷軋延中,以使基鐵之最終板厚成為0.10mm以上且0.30mm以下的軋縮率來軋延經除去鏽皮層後之酸洗板。透過冷軋延,基鐵11之金屬組織會成為藉由冷軋延而獲得之冷軋組織。
<完工退火步驟> 在上述冷軋延之後,實施完工退火(製程S109)。 本實施形態之無方向性電磁鋼板的製造方法中,完工退火步驟是用以實現如上述基鐵11之平均結晶粒徑並且使降伏現象產生之重要步驟。完工退火步驟中,退火氣體環境是設為露點為-20℃~50℃之濕潤氣體環境,退火溫度是設為750℃以上且900℃以下,均熱時間則是設為10秒以上且小於100秒。所謂均熱時間,是指供於完工退火之冷軋鋼板溫度成為最高到達板溫±5℃之範圍內的時間。在上述退火條件下進行完工退火,並進行如後述之冷卻,藉此便可實現如上述之基鐵11之平均結晶粒徑,並且可使降伏現象產生。
若退火氣體環境之露點低於-20℃,鐵芯退火時表層附近之晶粒成長性會劣化,而鐵損會變差,故不佳。另一方面,若退火氣體環境之露點高於50℃,由於會產生內部氧化而鐵損劣化,故不佳。又,若退火溫度低於750℃,因退火時間變得過長,而生產性降低之可能性變高,故不佳。另一方面,若退火溫度高於900℃,會變得難以控制完工退火後之結晶粒徑,故不佳。又,若均熱時間小於10秒,會無法進行充分之完工退火,導致變得難以使基鐵11中適切產生種晶,故不佳。另一方面,若均熱時間大於100秒,基鐵11中產生之種晶之平均結晶粒徑會超出先前所提及之範圍外的可能性提高,故不佳。
退火氣體環境之露點宜為-10℃以上且20℃以下,較佳為0℃以上且10℃以下。並且,退火氣體環境之氧勢(將H2 O之分壓PH2O 除以H2 之分壓PH2 而得之值:PH2O /PH2 )宜為0.01~0.30之還原氣體環境。
退火溫度宜為800℃以上且850℃以下,較佳為800℃以上且825℃以下。且均熱時間宜為10秒以上且30秒以下。
如先前所提及,為了更確實地實現10μm~40μm之基鐵11之平均結晶粒徑以及0.82以上之降伏比,宜將板溫為750℃至600℃為止的平均冷卻速度設為25℃/秒以上之強冷卻。並且,板溫為400℃至100℃為止的冷卻速度,以在該期間之任何時間點上設為20℃/秒以下之緩冷卻更佳。 當板溫750℃至600℃為止的冷卻速度成為小於25℃/秒時,冷卻速度變得過慢導致無法將基鐵11之晶粒充分微細化,而有可能無法實現如上述之10μm~40μm之平均結晶粒徑。並且,當板溫750℃至600℃為止的冷卻速度成為小於25℃/秒時,在冷卻過程中會發生TiC等的碳化物之析出,導致固溶C減少,因此無法充分獲得固溶C所帶來之應變時效,而變得難以產生上降伏點,降伏比會降低。另一方面,板溫750℃至600℃為止的冷卻速度之上限值並無特別規定,但實際上100℃/秒左右會是上限。板溫750℃至600℃為止的冷卻速度宜為30℃/秒以上且60℃/秒以下。 又,於板溫為400℃至100℃之間,在至少一部分之溫度區間中進行冷卻速度為20℃/秒以下之緩冷卻(包含瞬間冷卻速度成為20℃/秒以下之情況),藉此固溶C所帶來之應變時效會進行,而變得更容易產生上降伏點。較理想的是藉由在至少一部分之溫度區間中進行緩冷卻,鋼板會在400℃~100℃之溫度範圍中滯留16秒以上。
在完工退火中,板溫750℃以上且900℃以下之溫度區域為止之加熱速度宜設為例如20℃/秒~1000℃/秒。藉由將加熱速度設為20℃/秒以上,可使無方向性電磁鋼板之磁特性變得更為良好。另一方面,就算將加熱速度提高到大於1000℃/秒,提升磁特性之效果也還是會飽和。在完工退火之板溫750℃以上且900℃以下之溫度區域中,加熱速度較佳為50℃/秒~200℃/秒。
藉由歷經如上述之各步驟,即可製造本實施形態之無方向性電磁鋼板10。
<絕緣被膜形成步驟> 於上述完工退火後,視需要可實施形成絕緣被膜的步驟(製程S111)。此處,關於形成絕緣被膜的步驟並無特別限定,只要使用如上述之周知絕緣被膜處理液,並以周知方法進行處理液之塗佈及乾燥即可。
欲形成絕緣被膜之基鐵表面,可在塗佈處理液之前施行以鹼等進行之脫脂處理、或以鹽酸、硫酸及磷酸等進行之酸洗處理等任意之前置處理,亦可不施行該等前置處理而為仍是完工退火之狀態的表面。
以上,已參照圖5詳細說明了本實施形態之無方向性電磁鋼板的製造方法。
(關於馬達鐵芯之製造方法) 接著,再次參照圖2,並且針對使用了如以上所說明之本實施形態之無方向性電磁鋼板的馬達鐵芯(轉子/定子)之製造方法,進行簡單說明。
可從本實施形態之無方向性電磁鋼板獲得的馬達鐵芯之製造方法中,首先將本實施形態之無方向性電磁鋼板10衝孔成鐵芯形狀(轉子形狀/定子形狀)(步驟1)後,積層所獲得之各構件(步驟2)以形成所欲馬達鐵芯形狀(亦即,所欲轉子形狀及定子形狀)。為了積層經衝孔成鐵芯形狀之無方向性電磁鋼板,用來製造馬達鐵芯之無方向性電磁鋼板10為已在基鐵11表面形成有絕緣被膜13者是為重要。
之後,對已積層成所欲定子形狀後之無方向性電磁鋼板,實施退火(鐵芯退火)(步驟3)。鐵芯退火宜在含有70體積%以上氮之氣體環境中實施。並且,鐵芯退火之退火溫度宜為750℃以上且900℃以下。藉由以上述退火條件來實施退火,便會從存在於無方向性電磁鋼板10之基鐵11中的再結晶組織進行晶粒成長。其結果,即可獲得顯示出所欲磁特性之定子。
當氣體環境中的氮比率小於70體積%時,會招致鐵芯退火之成本增加,故不佳。氣體環境中的氮比率較佳為80體積%以上,更佳為90體積%~100體積%,且以97體積%~100體積%尤佳。氮之外之氣體環境氣體並無特別限定,一般來說可使用由氫、二氧化碳、一氧化碳、水蒸氣及甲烷等所構成之還原性混合氣體。為了獲得該等氣體,一般會採用使丙烷氣體或天然氣燃燒以獲得之方法。
並且,當鐵芯退火之退火溫度低於750℃時,會無法實現充分的晶粒成長,故不佳。另一方面,當鐵芯退火之退火溫度高於900℃時,再結晶組織之晶粒成長會過度進行,雖然磁滯損失會降低,渦電流損失卻增加,以結果而言總鐵損會增加,故不佳。鐵芯退火之退火溫度宜為775℃以上且850℃以下。
實施鐵芯退火之均熱時間只要隨著上述退火溫度之不同來適當設定即可,而可設為例如10分鐘~180分鐘。當均熱時間小於10分鐘時,會有無法充分實現晶粒成長的情況。另一方面,當均熱時間大於180分鐘時,退火時間會變得過長,而導致生產性降低之可能性高。均熱時間較佳為30分鐘~150分鐘。
並且,鐵芯退火中,500℃以上且750℃以下之溫度區域中的加熱速度宜設為50℃/Hr~300℃/Hr。其是因為藉由將加熱速度設為50℃/Hr~300℃/Hr,而可使定子之各種特性變得更加良好,且因為就算將加熱速度提升到大於300℃/Hr,提升各種特性之效果也還是會飽和。鐵芯退火中,500℃以上且750℃以下之溫度區域中的加熱速度較佳為80℃/Hr~150℃/Hr。
並且,在750℃以下且500℃以上之溫度區域中之冷卻速度宜設為50℃/Hr~500℃/Hr。其是因為藉由將冷卻速度設為50℃/Hr以上,可使定子之各種特性變得更加良好,另一方面,是由於就算將冷卻速度設為大於500℃/Hr,也會有因發生冷卻不均勻反而導致因熱應力所造成之應變變得容易被導入,而造成產生鐵損劣化的可能性。鐵芯退火中,在750℃以下且500℃以上之溫度區域中之冷卻速度較佳為80℃/Hr~200℃/Hr。
藉由歷經如上述之各步驟,即可製造馬達鐵芯。
以上,已簡單說明了本實施形態之馬達鐵芯之製造方法。 實施例
以下,顯示實施例及比較例,並具體說明本發明之無方向性電磁鋼板。以下所示實施例僅為本發明之無方向性電磁鋼板之一例,本發明之無方向性電磁鋼板並不限於下述示例。
在將具有以下表1所示化學組成之鋼胚加熱至1150℃後,以完工溫度850℃且完工板厚2.0mm來實施熱軋延,並在650℃下進行捲取而作成熱軋鋼板。 對所獲得之熱軋鋼板,在露點10℃之氣體環境中進行了1000℃×50秒之熱軋板退火。熱軋板退火後之800~500℃之平均冷卻速度,No.6為7.0℃/秒,其他則為35℃/秒。熱軋板退火後,藉由酸洗除去了表面的鏽皮。 利用冷軋延,將以上述方式而製得之酸洗板(酸洗後之熱軋鋼板)作成厚度0.25mm之冷軋鋼板。且進一步在氫10%、氮90%且露點0℃之混合氣體環境中,以成為如以下表2A、表2B所示之平均結晶粒徑之方式改變完工退火條件(退火溫度以及均熱時間)並進行了退火。具體而言,當控制使平均結晶粒徑變大時,是使完工退火溫度變得更高、及/或使均熱時間變得更長。並且,當控制使平均結晶粒徑變小時,則設為與上述相反。 完工退火時在750℃以上且900℃以下之溫度區域為止之加熱速度皆為100℃/秒。並且,完工退火後之從750℃至600℃為止之溫度區域中之冷卻速度,僅No.7及No.13為10℃/秒,其他為35℃/秒。 完工退火時之400~100℃之冷卻速度最小值如表2A、表2B所示。在發明例中,400~100℃之冷卻速度最小值皆在20℃/秒以下,400~100℃之間的停留時間也在16秒以上。
然後,塗佈絕緣被膜,而製成無方向性電磁鋼板。絕緣被膜是藉由以成為預定附著量之方式塗佈由磷酸鋁及粒徑0.2μm之丙烯酸-苯乙烯共聚物樹脂乳液所構成之絕緣被膜後,在大氣中以350℃燒附而形成。
將所獲得之無方向性電磁鋼板之一部分在露點-40℃之氮氣環境(氣體環境中的氮比率為99.9體積%以上)中施行了800℃×120分鐘之退火(因未對鐵芯進行加工,故在本實驗例中僅稱為「退火」,但其與鐵芯退火相當。以下,稱之為「準鐵芯退火」)。
準鐵芯退火之在500℃以上且700℃以下之加熱速度及冷卻速度分別為100℃/Hr、及100℃/Hr。
[表1]
針對準鐵芯退火之前與之後之無方向性電磁鋼板,依據JIS G0551「鋼-結晶粒度之顯微鏡試驗方法」之切斷法,觀察板厚中心部之Z截面組織,並測量基鐵之平均結晶粒徑。並且,針對準鐵芯退火之前與之後之無方向性電磁鋼板,在軋延方向及寬度方向上採取愛普斯坦試驗片後,藉由以JIS C2550為準據之愛普斯坦試驗,評價了磁特性(就完工退火後及準鐵芯退火前是鐵損W10/800,就準鐵芯退火後是鐵損W10/400)。 此外,從完工退火後及準鐵芯退火前之無方向性電磁鋼板依據JIS Z2241在軋延方向上採取拉伸試驗片後,進行拉伸試驗,並測量降伏點、拉伸強度(TS)及降伏比。於以下表​​2A、表2B彙整顯示以上述方式測得之各種特性。
[表2A]
[表2B]
從上述表2A、表2B明白可知:本發明例No.2、4、11、12、15、18、24、25、28、31、32、34、36、37、39~41、45~47、50、51,已適當控制了成分與完工退火條件,因此獲得了0.82以上之高降伏比。並且,分別產生了上降伏點和及下降伏點,且上降伏點與下降伏點之差成為5MPa以上。
但,No.18所使用之鋼種C的「C×(Ti+Nb+Zr+V)」之值大於0.000010,故準鐵芯退火前之各特性雖為優異,但準鐵芯退火後之平均結晶粒徑小,且因碳化物之形成而導致屬較佳特性之鐵損W10/400大於11W/kg。
並且,No.24、No.25因Al含量大於0.50%,故Ti並未被以氮化物之形態固定,其結果,碳化物增加,而使準鐵芯退火後之鐵損W10/400大於11W/kg。
並且,No.28之Nb含量大於0.0030質量%,故因碳化物之形成而導致鐵損W10/400大於11W/kg。 在其他發明例中,就準鐵芯退火後之磁特性則亦獲得了良好結果。
另一方面,No.1之完工退火後之平均結晶粒徑小於10μm,故完工退火後之鐵損W10/800大於50W/kg。
就No.8~10、16、17、26、27、29、30、35、38、43、44、48、49、53、54而言,其等因完工退火溫度等之影響造成完工退火後之平均結晶粒徑大於40μm,而未明確產生上降伏點,降伏比變低。
No.3、5、14、42及52之降伏比低於0.82。於該些鋼中,雖然完工退火後之結晶粒徑為40μm以下,但上降伏點-下降伏點低。因在完工退火之400℃~100℃之冷卻過程整體進行了20℃/秒以上之急冷,故認為碳所帶來的時效效果並未充分發揮作用。
No.6之降伏比低於0.82。其被認為是由於在上述鋼中,熱軋板退火後之800~500℃之平均冷卻速度與其他鋼種相較之下為慢,故在該期間中固溶碳會作為碳化物析出,而喪失了於完工退火後之再結晶後有助於應變時效之固溶碳。
No.7、13之降伏比低於0.82。其被認為是在該等鋼中,完工退火之從750℃至600℃之冷卻速度與其他相較之下為緩冷,在高溫下碳化物開始析出而成為過時效,因此上降伏點降低。
針對No.19~23,因所使用之鋼種D其C含量少而上降伏點未明確產生,降伏比低。
以上,已參照所附圖式詳細說明本發明的適當實施形態,惟本發明不受該等示例限定。且顯而易見地,只要是具有本發明所屬技術領域之通識人士,皆可在申請專利範圍中所記載之技術思想範疇內思及各種變更例或修正例,並知悉該等亦理當歸屬本發明之技術範圍。
產業上之可利用性 根據本發明,可製得一種無方向性電磁鋼板,其製造成本已獲抑制,且其機械特性及鐵芯退火後之磁特性更為優異。因此,產業上的可利用性高。
10‧‧‧無方向性電磁鋼板
11‧‧‧基鐵
13‧‧‧絕緣被膜
圖1是示意顯示本發明實施形態之無方向性電磁鋼板的構造之說明圖。 圖2是用以說明該實施形態之無方向性電磁鋼板之說明圖。 圖3是用以說明該實施形態之無方向性電磁鋼板所顯示的應力-應變曲線之說明圖。 圖4是顯示無方向性電磁鋼板所顯示的應力-應變曲線之一例的圖。 圖5是顯示該實施形態之無方向性電磁鋼板的製造方法的流程之一例的流程圖。

Claims (6)

  1. 一種無方向性電磁鋼板,其化學組成以質量%計含有: C:0.0015%~0.0040%、 Si:3.5%~4.5%、 Al:0.65%以下、 Mn:0.2%~2.0%、 Sn:0%~0.20%、 Sb:0%~0.20%、 P:0.005%~0.150%、 S:0.0001%~0.0030%、 Ti:0.0030%以下、 Nb:0.0050%以下、 Zr:0.0030%以下、 Mo:0.030%以下、 V:0.0030%以下、 N:0.0010%~0.0030%、 O:0.0010%~0.0500%、 Cu:小於0.10%及 Ni:小於0.50%,且 剩餘部分由Fe及不純物所構成;並且, 製品板厚為0.10mm~0.30mm, 平均結晶粒徑為10μm~40μm, 鐵損W10/800為50W/Kg以下, 拉伸強度為580MPa~700MPa,且 降伏比為0.82以上。
  2. 如請求項1之無方向性電磁鋼板,其中C、Ti、Nb、Zr及V含量滿足以下式(1)所示條件, [C]×([Ti]+[Nb]+[Zr]+[V])<0.000010・・・(1) 此處,上述式(1)中,[X]之表現係表示元素X之含量(單位:質量%)。
  3. 如請求項1或2之無方向性電磁鋼板,其藉由在退火溫度750℃以上且900℃以下、均熱時間10分鐘~180分鐘之範圍內的退火條件下進行退火,而使平均結晶粒徑成為60μm~150μm,且鐵損W10/400成為11W/Kg以下。
  4. 如請求項1至3中任一項之無方向性電磁鋼板,其具有上降伏點及下降伏點,且上降伏點較下降伏點高5MPa以上。
  5. 如請求項1至4中任一項之無方向性電磁鋼板,其中前述化學組成以質量%計含有以下元素之任一者或兩者: Sn:0.01%~0.20%、 Sb:0.01%~0.20%。
  6. 如請求項1至5中任一項之無方向性電磁鋼板,其於表面更具有絕緣被膜。
TW107125000A 2017-07-19 2018-07-19 無方向性電磁鋼板 TWI683009B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017139765 2017-07-19
JP2017-139765 2017-07-19

Publications (2)

Publication Number Publication Date
TW201908498A true TW201908498A (zh) 2019-03-01
TWI683009B TWI683009B (zh) 2020-01-21

Family

ID=65015231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107125000A TWI683009B (zh) 2017-07-19 2018-07-19 無方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11279985B2 (zh)
EP (1) EP3656885A4 (zh)
JP (1) JP6478004B1 (zh)
KR (1) KR102107439B1 (zh)
CN (1) CN110573643B (zh)
BR (1) BR112019021222B1 (zh)
TW (1) TWI683009B (zh)
WO (1) WO2019017426A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688658B (zh) * 2019-03-20 2020-03-21 日商新日鐵住金股份有限公司 無方向性電磁鋼板
TWI718973B (zh) * 2019-07-11 2021-02-11 日商杰富意鋼鐵股份有限公司 無方向性電磁鋼板及其製造方法及電動機芯
TWI740474B (zh) * 2020-04-28 2021-09-21 中國鋼鐵股份有限公司 非方向性電磁鋼片及其製造方法
TWI767210B (zh) * 2020-04-06 2022-06-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法
TWI777498B (zh) * 2020-04-16 2022-09-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513299A (zh) * 2018-11-02 2021-03-16 日本制铁株式会社 无取向电磁钢板
CN112654723B (zh) * 2018-11-02 2023-04-04 日本制铁株式会社 无取向电磁钢板
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
CN114008224A (zh) * 2019-06-28 2022-02-01 杰富意钢铁株式会社 无方向性电磁钢板的制造方法和马达铁芯的制造方法以及马达铁芯
CN112430775A (zh) 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
KR20220062605A (ko) * 2019-12-09 2022-05-17 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판과 모터 코어 그리고 그들의 제조 방법
KR102325005B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102325011B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102353673B1 (ko) * 2019-12-20 2022-01-20 주식회사 포스코 무방향성 전기강판 및 그 제조방법
US20230013043A1 (en) * 2020-02-20 2023-01-19 Nippon Steel Corporation Hot-rolled steel sheet for non-oriented electromagnetic steel sheets
CN115398012A (zh) * 2020-04-02 2022-11-25 日本制铁株式会社 无取向电磁钢板及其制造方法
US20230139246A1 (en) * 2020-04-16 2023-05-04 Nippon Steel Corporation Non-oriented electrical steel sheet and method of manufacturing the same
TWI796955B (zh) 2021-02-17 2023-03-21 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法
CN116888295B (zh) * 2021-03-31 2024-03-19 日本制铁株式会社 无取向性电磁钢板、电机铁芯、无取向性电磁钢板的制造方法及电机铁芯的制造方法
US20240096531A1 (en) * 2021-03-31 2024-03-21 Nippon Steel Corporation Non-oriented electrical steel sheet, motor core, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing motor core
US20240084415A1 (en) 2021-04-02 2024-03-14 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
KR20230023103A (ko) * 2021-08-09 2023-02-17 주식회사 포스코 무방향성 전기강판 및 그 제조 방법
KR20240015427A (ko) * 2022-07-27 2024-02-05 현대제철 주식회사 무방향성 전기강판 및 그 제조 방법
KR20240045883A (ko) * 2022-09-30 2024-04-08 현대제철 주식회사 무방향성 전기 강판 및 그 제조 방법
WO2024095665A1 (ja) * 2022-10-31 2024-05-10 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228379B2 (zh) 1972-03-08 1977-07-26
RU2092605C1 (ru) 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
JP4018790B2 (ja) * 1998-02-10 2007-12-05 新日本製鐵株式会社 高周波用無方向性電磁鋼板およびその製造方法
JP4380199B2 (ja) 2003-03-31 2009-12-09 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP4341386B2 (ja) 2003-03-31 2009-10-07 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN102226251B (zh) * 2005-12-15 2012-12-12 杰富意钢铁株式会社 高强度无方向性电磁钢板及其制造方法
CN100999050A (zh) * 2006-01-11 2007-07-18 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
KR101177161B1 (ko) 2006-06-16 2012-08-24 신닛뽄세이테쯔 카부시키카이샤 고강도 전자기 강판 및 그 제조 방법
JP5228379B2 (ja) 2006-07-27 2013-07-03 新日鐵住金株式会社 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
JP5423175B2 (ja) 2009-06-23 2014-02-19 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
CN104532119B (zh) * 2009-09-03 2018-01-02 新日铁住金株式会社 无方向性电磁钢板的制造方法
JP5699601B2 (ja) * 2010-12-28 2015-04-15 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN102151695B (zh) * 2011-01-18 2013-05-01 东北大学 一种冷轧无取向高硅钢薄带的制造方法
BR112013020657B1 (pt) 2011-02-24 2019-07-09 Jfe Steel Corporation Chapa de aço elétrico não orientado e método para produção da mesma
US8540081B2 (en) 2011-03-16 2013-09-24 Markel Corporation Fluoropolymer hollow fiber membrane with fluoro-copolymer and fluoro-terpolymer bonded end portion(s) and method to fabricate
CN103173678A (zh) 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
US20150318093A1 (en) * 2012-01-12 2015-11-05 Nucor Corporation Electrical steel processing without a post cold-rolling intermediate anneal
WO2013125223A1 (ja) * 2012-02-23 2013-08-29 Jfeスチール株式会社 電磁鋼板の製造方法
CN103290190A (zh) * 2012-03-02 2013-09-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN102634729B (zh) * 2012-04-01 2013-07-17 首钢总公司 一种低铁损高磁感高牌号无取向硅钢的制备方法
KR101628193B1 (ko) 2012-08-08 2016-06-08 제이에프이 스틸 가부시키가이샤 고강도 전자 강판 및 그의 제조 방법
CN102925816B (zh) * 2012-11-21 2015-05-20 武汉钢铁(集团)公司 电驱动电机用无取向硅钢及其生产方法
CN103849810A (zh) * 2012-12-03 2014-06-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
JP5825494B2 (ja) 2013-03-06 2015-12-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6176181B2 (ja) * 2014-04-22 2017-08-09 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
KR101945132B1 (ko) * 2014-07-31 2019-02-01 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판과 그 제조 방법 그리고 모터 코어와 그 제조 방법
US20170283903A1 (en) * 2014-10-15 2017-10-05 Sms Group Gmbh Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
JP6269971B2 (ja) 2015-01-28 2018-01-31 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP6048699B2 (ja) * 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6682853B2 (ja) 2015-12-28 2020-04-15 日本製鉄株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
JP2017139765A (ja) 2016-02-04 2017-08-10 カシオ計算機株式会社 画像確認装置、画像確認方法、及びプログラム
CN105950960B (zh) * 2016-05-04 2018-09-14 武汉钢铁有限公司 电动汽车驱动电机用无取向硅钢及其制备方法
CN106435356B (zh) * 2016-09-13 2019-06-04 北京首钢股份有限公司 一种生产冲压用无取向带钢的方法
CN106282871A (zh) 2016-10-08 2017-01-04 周峰 一种钢铁板热镀锌工艺流程
CN106435358B (zh) 2016-10-11 2018-05-04 东北大学 一种新能源汽车驱动电机用高强度无取向硅钢的制造方法
CN106282781B (zh) * 2016-10-11 2018-03-13 东北大学 一种基于纳米Cu析出强化制备高强度无取向硅钢的方法
CN109890994A (zh) * 2016-10-27 2019-06-14 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
KR101918720B1 (ko) * 2016-12-19 2018-11-14 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6624393B2 (ja) * 2016-12-28 2019-12-25 Jfeスチール株式会社 リサイクル性に優れる無方向性電磁鋼板
BR112019017229B1 (pt) * 2017-03-07 2023-03-28 Nippon Steel Corporation Chapa de aço elétrica não orientada e método de fabricação de chapa de aço elétrica não orientada

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688658B (zh) * 2019-03-20 2020-03-21 日商新日鐵住金股份有限公司 無方向性電磁鋼板
TWI718973B (zh) * 2019-07-11 2021-02-11 日商杰富意鋼鐵股份有限公司 無方向性電磁鋼板及其製造方法及電動機芯
TWI767210B (zh) * 2020-04-06 2022-06-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法
TWI777498B (zh) * 2020-04-16 2022-09-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法
TWI740474B (zh) * 2020-04-28 2021-09-21 中國鋼鐵股份有限公司 非方向性電磁鋼片及其製造方法

Also Published As

Publication number Publication date
US20200040423A1 (en) 2020-02-06
KR102107439B1 (ko) 2020-05-07
EP3656885A1 (en) 2020-05-27
KR20190127964A (ko) 2019-11-13
JPWO2019017426A1 (ja) 2019-07-18
BR112019021222B1 (pt) 2023-10-31
EP3656885A4 (en) 2021-04-14
WO2019017426A1 (ja) 2019-01-24
BR112019021222A2 (pt) 2020-04-28
US11279985B2 (en) 2022-03-22
TWI683009B (zh) 2020-01-21
CN110573643B (zh) 2020-10-27
CN110573643A (zh) 2019-12-13
JP6478004B1 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
TWI683009B (zh) 無方向性電磁鋼板
JP6461798B2 (ja) 高磁束密度汎用方向性ケイ素鋼の製造方法
JP5076510B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2011084761A (ja) 回転子用無方向性電磁鋼板およびその製造方法
TWI445828B (zh) High strength non - directional electromagnetic steel plate
JP2017222898A (ja) 方向性電磁鋼板の製造方法
TWI499677B (zh) A non-oriented electrical steel sheet, a manufacturing method thereof, a laminate for a motor core, and a method of manufacturing the same
TWI654317B (zh) 無方向性電磁鋼板
TWI683912B (zh) 無方向性電磁鋼板
JP2020509184A (ja) 無方向性電磁鋼板およびその製造方法
JPWO2018131710A1 (ja) 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
JP2019183185A (ja) 無方向性電磁鋼板
TW201343928A (zh) 電磁鋼板
TW202024357A (zh) 無方向性電磁鋼板
TWI722636B (zh) 無方向性電磁鋼板
BR112020003655A2 (pt) aço laminado a frio, aço de laminagem e método para fabricar aço laminado a frio
JP2023554123A (ja) 無方向性電磁鋼板およびその製造方法
TWI809799B (zh) 無方向性電磁鋼板及其製造方法
JP7001210B1 (ja) 無方向性電磁鋼板およびその製造方法
TWI796983B (zh) 無方向性電磁鋼板、馬達鐵芯、無方向性電磁鋼板的製造方法及馬達鐵芯的製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
TWI688658B (zh) 無方向性電磁鋼板