TW201816371A - 用於高速旋轉機器之溫度感測器 - Google Patents

用於高速旋轉機器之溫度感測器 Download PDF

Info

Publication number
TW201816371A
TW201816371A TW106130369A TW106130369A TW201816371A TW 201816371 A TW201816371 A TW 201816371A TW 106130369 A TW106130369 A TW 106130369A TW 106130369 A TW106130369 A TW 106130369A TW 201816371 A TW201816371 A TW 201816371A
Authority
TW
Taiwan
Prior art keywords
infrared sensor
infrared
motor
rotor
sensor system
Prior art date
Application number
TW106130369A
Other languages
English (en)
Other versions
TWI766879B (zh
Inventor
布蘭特 哈斯雷特
安卓 葛蘭漢
詹姆士 亞力山德 海洛克
Original Assignee
英商愛德華有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商愛德華有限公司 filed Critical 英商愛德華有限公司
Publication of TW201816371A publication Critical patent/TW201816371A/zh
Application granted granted Critical
Publication of TWI766879B publication Critical patent/TWI766879B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0088Radiation pyrometry, e.g. infrared or optical thermometry in turbines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • G01J2005/063Heating; Thermostating

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Electric Motors In General (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

紅外線感測器通常用於渦輪分子泵中以偵測轉子或其他機械部件之溫度,且因此指示即將發生或潛在之運行故障。 由於沈積物積聚於該紅外線感測器上或經監測表面上,故由該感測器給出之讀數可能不是實際表面溫度之一真實表示,其可能會引起泵控制器無法及時停止該泵。 本發明提供一種用於藉由在保持該轉子處於環境溫度之同時在該感測器中建立一經判定溫度升高而校準該感測器之方法及裝置。特定言之,本發明使用馬達定子作為加熱器用於引起溫度增加。

Description

用於高速旋轉機器之溫度感測器
本發明係關於一種紅外線感測器系統,其經組態以量測一旋轉機器轉子之溫度,尤其諸如一渦輪分子真空泵轉子之一高速旋轉機器轉子;及一種包括該紅外線感測器系統之馬達。本發明亦係關於一種測試一紅外線感測器系統之操作效能之方法;及一種經組態以操作該方法之控制器。本發明進一步係關於一種校準待由一紅外線感測器監測之一表面之發射率的方法;及一種經組態以操作該方法之控制器。
許多旋轉機器利用紅外線感測器來偵測熱敏移動部件之溫度。接觸式感測器難以抵靠移動部件定位,且因此諸如一紅外線感測器之一非接觸式感測器係一理想解決方案。 如圖1中所繪示之已知紅外線感測器2通常包括一熱電堆4,其係與熱接面6串聯連接之複數個熱電偶,即,連接至諸如一極薄的膜8之一紅外線吸收材料(吸收器) 8之偵測接面6。吸收器8之小熱質量意味其快速回應於正量測之物件101之溫度TOB 的改變。 熱電堆4之冷接面10通常定位於一等溫區塊12中,使得其等全部處於相同溫度(參考溫度TREF )下。 當一待量測物件101位於感測器之IR吸收表面8之前方時,IR吸收表面8將經歷呈熱(紅外線)輻射形式之熱之一淨增益或損失,其取決於其是否處於分別比經量測物件更高或更低之一溫度。 與感測器2相比,由於物件101之表面溫度(TOB )升高,故熱接面6將開始吸收紅外線輻射且變得比參考溫度(TREF )更熱。此引起在熱電堆中產生與物件之表面溫度(TOB )成比例之一電壓。由紅外線感測器量測之溫度TOB 由一內部熱阻器溫度TREF (未展示)補償且獲得物件表面溫度之一準確讀數。 渦輪分子泵用於其中需要高真空(即低壓)之許多應用中。例如,半導體產業使用渦輪分子泵用於許多處理步驟,以便保持增加低缺陷裝置之良率所需之低壓。 在操作中,渦輪分子泵轉子以高旋轉速度旋轉。轉子葉片之尖端與泵殼體之內壁之間的容限或距離必須盡可能地小以便泵達成所需泵送效能。若泵在一所要溫度以上操作,則轉子葉片之所得膨脹可使得可歸因於轉子葉片與內部機構之固定部件(諸如定子葉片)碰撞而發生一災難性故障。因此,需要小心控制且監測內部泵溫度。此通常使用一紅外線溫度感測器達成。 由半導體產業利用之許多處理步驟產生腐蝕性及/或可凝結副產品,其等經輸送離開一處理腔室且通過包含渦輪分子泵之真空泵系統。此等程序會塗佈或腐蝕所採用之任何溫度感測器;或塗佈經監測轉子之表面,因此變更表面發射率至使其干擾尤其一紅外線感測器提供準確讀數之能力的程度。 因此,溫度感測器可能無法偵測泵內之一危險溫度升高。 本發明之一目的係克服或至少減小此等問題之效應。
在一第一態樣中,本發明提供一種測試一紅外線感測器系統之操作狀態之方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器,該方法包括以下步驟:將該紅外線感測器指向在該紅外線感測器外部具有一發射率E之該物件表面處;升高該加熱器之溫度以加熱該紅外線感測器而不顯著加熱該物件表面;量測由指向該表面之該紅外線感測器產生之電壓VG ;及比較由該紅外線感測器產生之該電壓與一預期經產生電壓VE 。 在一第二態樣中,本發明提供一種用於量測自一轉子表面發射之熱輻射的紅外線感測器系統,該紅外線感測器系統包括一紅外線感測器及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器。 本發明之其他較佳及/或選用態樣在隨附申請專利範圍中定義。
首先參考圖2,繪示根據本發明之一紅外線感測器系統20之一示意性截面。 感測器系統20包括:一紅外線感測器2,其具有實質上與如圖1中所繪示之一標準紅外線感測器2相同之特徵,具有一加熱器14之額外特徵;加熱器14,其經定位接近於該感測器;及一控制器16,其連接至紅外線感測器及加熱器裝置兩者。 控制器16經組態以操作根據本發明之紅外線感測器系統20。 加熱器14必須經定位接近於(其包含與其整合)紅外線感測器2,使得當控制器16操作加熱器14時,加熱器14加熱紅外線感測器2而不實質上加熱紅外線系統指向之表面101。在圖2中所繪示之實例中,表面係一真空泵轉子之表面101。加熱器14可與紅外線感測器2分離或與紅外線感測器2整合;其可係任何適合類型之加熱器14,例如一電阻加熱器。 在操作中,紅外線感測器系統控制器16能夠根據本發明之第一態樣運行一操作狀態檢查。 藉由此方法,可在真空泵轉子101處於室溫時(即,在已開始泵(未展示)之前)或在一穩定狀態操作期間(例如,在泵正以操作速度運行且無氣體通過入口時),判定紅外線感測器系統20之操作狀態。 當真空泵處於穩定狀態時(諸如當其非操作且處於室溫時),紅外線感測器2與轉子表面101之間之凈熱交換將為零,此係因為其等將實質上處於相同溫度。 接著,當加熱器14均等地加熱紅外線感測器熱電堆4之熱終端6及冷終端10兩者,且紅外線感測器吸收器窗口8清潔時,將存在對轉子表面101之一凈熱損失,轉子表面101現將處於比紅外線感測器2更低一溫度。因此,熱電堆中將仍產生將與預期經產生電壓VE 匹配之一負電壓VG 。因此,控制器16將指示紅外線系統20之操作狀態係理想的。 然而,若感測器吸收器窗口8塗佈有油脂或其他碎屑,則歸因於自碎屑絕緣且熱反射回至感測器,來自窗口8之熱損失速率將比預期低。因此,經產生電壓VG 將並非實質上等於預期經產生電壓VE 且控制器16將指示系統20需要維修。 控制器16亦經組態以根據本發明之一進一步態樣操作系統20,以提供一種以一預期發射率EE 量測一表面之初始發射率EI 的方法。 將一高發射率塗層施覆至待藉由紅外線感測器2量測其等溫度之轉子101之表面係尤其有利的。高發射率塗層確保可獲得一準確溫度讀數,此係因為其等確保無來自紅外線感測器2之熱量經反射離開表面101且由轉子101之表面產生之所有熱輻射經指向至紅外線感測器。已發現,將一碳纖維增強環氧樹脂套筒施覆至諸如渦輪分子泵之轉子以克服塗層隨時間損失之問題係尤其有利的。 然而,若套筒101之表面在初始製造泵期間變成塗佈有油脂,則套筒之初始發射率EI 將低於預期發射率EE ,從而導致針對泵操作之其餘部分之不準確讀數。 因此,藉由使用紅外線感測器系統20,可在製造之後(即,在使用之前)校準表面之初始發射率,使得可獲得準確讀數。方法包括以下步驟:升高加熱器14之溫度以加熱紅外線感測器而不顯著加熱表面101;量測由指向表面101之紅外線感測器2產生之電壓VG ;比較由紅外線感測器2產生之電壓VG 與一預期電壓VE ;及根據方程式EI = EE (VG /VE )計算表面EI 之初始發射率。 若表面之發射率如預期,則在測試期間產生之電壓VG 將實質上匹配預期經產生電壓VE 。然而,若轉子套筒101之表面不如預期,則在測試期間將由表面101吸收較少熱,且經產生電壓將成比例地不同,因此給出套筒表面之初始發射率。若發射率量測在一預定可接受範圍內(例如,0.9至0.97),則經計算初始發射率EI 由控制器16使用以在泵操作之同時校準未來溫度讀數。若經量測初始發射率落在預定可接受範圍之外,則將需要維修泵且更換套筒。 現參考圖3及圖4,繪示根據本發明之一進一步態樣之包括一馬達26的一渦輪分子泵1之一橫截面。泵1包括一外殼19,外殼19在其一上端處具有用於接收氣體之一入口3及在其一下端處具有用於排除透過使用中之泵1輸送之氣體的一出口5。轉子亦可包括接近於出口5之一系列分子拖曳或Holweck級13,其降低作為支持渦輪分子泵之前級泵之壓力需求。 在殼體19內提供一種包括數個徑向向外延伸之轉子葉片級9之轉子100。殼體19界定一定子組件,該定子組件包括以熟習渦輪分子泵設計領域者已知之一方式徑向向內延伸且定位於轉子葉片級9之各者之間的一系列定子葉片級11。 轉子100經支撐用於在分別具有軸承17及軸承15之其最上端及最低端處旋轉。最低軸承15包括一球型軸承配置及最上軸承17包括一被動磁性軸承配置。轉子之最上部分亦可由一組球型推力軸承(未展示)保護,以防在一被動磁性軸承17發生故障之情況下轉子與泵之固定部件碰撞。 轉子100連接至一馬達26。在所展示實例中,馬達係裝納於一定子28中之一同步雙極三相無刷24伏特DC馬達。馬達26包括均勻地分佈於馬達定子周圍之三組馬達線圈繞組44。馬達線圈繞組44裝納於諸如具有良好導熱性之一環氧樹脂之一灌封材料中。一馬達軸桿連接至轉子100以供其旋轉。 在正常使用中,使用一外部控制器16控制馬達轉子100之換向,取決於磁體之磁極之位置,外部控制器16依序開啟三個馬達繞組44之各者以使馬達軸桿且因此泵轉子100旋轉。 馬達26亦包括一整體紅外線感測器系統20,整體紅外線感測器系統20包括一紅外線感測器2。感測器經展示為裝納於線圈繞組灌封材料44內,但亦可定位於馬達定子外殼28中及/或上。如上文所描述,紅外線感測器2係一非接觸式表面溫度量測感測器,該非接觸式表面溫度量測感測器包括:一熱電堆,其用於藉由監測其紅外線輻射發射而量測一目標裝置表面(在此實例中一轉子)之溫度TOB ;及一熱阻器,其出於溫度補償之目的用於監測紅外線感測器殼體之溫度TREF 。 在正常使用中,紅外線感測器2監測自轉子100上之一目標區域101 (或圖4中之102)發射之紅外線輻射,如圖3中所展示。由紅外線感測器量測之溫度TOB 由一內部熱阻器溫度TREF 補償,且獲得轉子表面101之溫度之一準確讀數。在渦輪分子泵1之正常使用期間,若經泵送之氣體負載或出口5處之背襯壓力保持在設計泵之位準上方,則轉子溫度將升高。紅外線感測器2將指示物件轉子溫度之一信號傳遞至控制器16,且若物件轉子溫度高於一預定溫度,則升高警報及/或減慢泵以防止損壞或泵故障。 為改良由紅外線感測器獲得之轉子溫度讀數,轉子上之目標掃描區域101、102可具有諸如US5350275中所描述之經施覆之一高發射率塗層或較佳地一碳纖維增強環氧樹脂套筒101。目標掃描區域理想地位於轉子軸桿上,但其亦適於將紅外線感測器定位於馬達中,使得針對紅外線感測器之物件目標表面102係一定子葉片或拖曳泵機構。 如EP1348940中所揭示,針對紅外線感測器之先前嘗試之位置係在泵殼體19內或嵌入泵之基座部分中。然而,此等感測器受腐蝕及/或程序沈積影響,因此不能提供一致可靠溫度量測。 圖3及圖4中繪示之實施例藉由為一馬達26提供一整體紅外線感測器2而提供優於上文所描述之紅外線系統20之一進一步優點,以提供其中可檢查或測試感測器2之操作狀態之一裝置。在此實例中,馬達26充當加熱器裝置14,且方法包括以下步驟:將一直流電流施加至至少一個馬達繞組以升高馬達之溫度而不引起馬達之顯著旋轉,以加熱紅外線感測器而不顯著加熱物件表面;及接著量測由指向表面之紅外線感測器產生之電壓VG 以與一預期經產生電壓VE 比較。 當泵1處於室溫時,理想地測試泵1內部之感測器2之操作狀態。泵控制器16或一人為操作首先將一直流電流傳遞通過馬達線圈繞組44之至少一者,較佳地以比線圈繞組44之常用操作電流高之一電流,直至由感測器之熱阻器量測到一預定溫度升高。將一電流傳遞通過馬達線圈繞組44之至少一者或同時通過其等之任何數目意味泵繞組自身加熱但未接收一換向信號之轉子100則不旋轉。可最初發生一些微小旋轉,但其將實質上低於泵1之額定旋轉頻率。不具有換向信號,泵不能以全速旋轉且因此歸因於氣體壓縮,故轉子100中不產生或產生少量熱。 藉由將一馬達26加熱至一預定溫度,感測器2及控制器16應偵測在馬達26及感測器2溫度TREF 與物件轉子101在室溫下通常不存在之表面溫度TOB 之間的一差異。若感測器之操作效能未受程序副產品影響,則TREF 應大於TOB 達一已知值;即,由感測器產生之電壓VG 不應不同於預期經產生電壓VE 。然而,若感測器經塗佈或已以任何方式腐蝕或其他轉子表面101已經塗佈使得其發射率已經改變,則感測器2將不能量準確地量測轉子表面溫度,因此經產生電壓VG (即,經量測溫度差)將不如預期。 如上文所描述,藉由將直流電流傳遞通過馬達繞組之至少一者一設定時間段或直至感測器熱阻器偵測到已達成預定溫度升高而達成預定溫度升高。 例如,在測試中,將一15安培電流傳遞通過兩個馬達繞組線圈在3分鐘內提供自25℃至35℃之一溫度升高。若經量測溫度升高不如預期,例如,上文所描述之至少25℃之溫度升高,則操作者或控制器16將偵測紅外線感測器2之一問題或表面101之發射率,且產生一警報信號以維修泵。 在製造期間,當已知感測器操作正確,則不預期之物件溫度之一升高將歸因於低於來自IR目標之理想發射率。在此例項中,非預期升高將允許計算轉子表面之真實發射率,一旦泵經完全組裝,則實現IR系統之校準。 當然,根據本發明之另一態樣,可提供包括紅外線系統20之一渦輪分子泵1,紅外線系統20包括亦可如上文所描述般操作之一紅外線感測器2及接近16之加熱裝置。
1‧‧‧渦輪分子泵
2‧‧‧紅外線感測器
3‧‧‧入口
4‧‧‧紅外線感測器熱電堆
5‧‧‧出口
6‧‧‧熱接面/偵測接面/熱終端
8‧‧‧膜/紅外線吸收材料/吸收器/IR吸收表面/紅外線感測器吸收器窗口
9‧‧‧轉子葉片級
10‧‧‧冷接面/冷終端
11‧‧‧定子葉片級
12‧‧‧等溫區塊
13‧‧‧分子拖曳或Holweck級
14‧‧‧加熱器
15‧‧‧最低軸承
16‧‧‧外部控制器
17‧‧‧最上軸承
19‧‧‧外殼/殼體
20‧‧‧紅外線感測器系統
26‧‧‧馬達
28‧‧‧定子/馬達定子外殼
44‧‧‧馬達線圈繞組/馬達繞組/線圈繞組灌封材料
100‧‧‧轉子
101‧‧‧物件/轉子表面/真空泵轉子/轉子套筒/目標掃描區域/碳纖維增強環氧樹脂套筒/物件轉子
102‧‧‧目標掃描區域/物件目標表面
TREF‧‧‧ 參考溫度/內部熱阻器溫度
TOB‧‧‧溫度
VG‧‧‧經產生電壓
為可更好地瞭解本發明,現將參考附圖描述僅藉由實例給出之其實施例,其中: 圖1係一已知紅外線感測器之一示意性截面。 圖2係根據本發明之一第二態樣之一紅外線感測器系統的一示意性截面。 圖3係根據本發明之一進一步態樣之包括一紅外線感測器系統的渦輪分子泵之一橫截面。 圖4係根據本發明之一進一步態樣之包括一紅外線感測器系統的渦輪分子泵之一部分橫截面。

Claims (23)

  1. 一種使用一紅外線溫度感測器系統量測具有一預期發射率EE 之一表面之初始發射率EI 的方法,該紅外線溫度感測器系統包括指向該表面之一紅外線溫度感測器及經定位接近於該紅外線感測器用於加熱該感測器之一加熱器,該方法包括以下步驟: i. 升高該加熱器之溫度以加熱該紅外線感測器而不顯著加熱該表面; ii. 量測由指向該表面之該紅外線感測器產生之電壓VG ; iii. 比較由該紅外線感測器產生之該電壓與一預期電壓VE ;及 iv. 根據方程式EI = EE (VG /VE )計算該表面之該初始發射率EI
  2. 一種測試一紅外線感測器系統之操作狀態之方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器,該方法包括以下步驟: i. 將該紅外線感測器指向在該紅外線感測器外部具有一發射率E之物件表面; ii. 升高該加熱器之該溫度以加熱該紅外線感測器而不顯著加熱該物件表面; iii. 量測由指向該表面之該紅外線感測器產生之該電壓VG ;及 iv. 比較由該紅外線感測器產生之該電壓與一預期電壓VE
  3. 如請求項2之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器;其中該方法包括以下額外步驟: v. 若VG 並非實質上等於VE ,則判定該紅外線系統並非處於理想操作狀態。
  4. 如請求項2之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器;其中該方法包括以下額外步驟: v. 若VG 實質上等於VE ,則判定該紅外線系統處於理想操作狀態。
  5. 如請求項2至請求項4中任一項之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器;其中該紅外線感測器系統係定位於一旋轉機器中且該紅外線感測器經指向以量測自該旋轉機器之旋轉表面發射之熱輻射。
  6. 如請求項2至請求項4中任一項之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器;其中該紅外線感測器系統係定位於一真空泵中且經指向以量測自一真空泵轉子表面,尤其一渦輪分子泵轉子發射之該熱輻射。
  7. 如請求項6之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器;其中該方法係在該泵處於室溫時初始化。
  8. 如請求項6之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括一紅外線感測器;及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器;其中該方法係在該泵處於一穩定操作狀態時初始化。
  9. 一種測試一紅外線感測器系統之操作狀態之方法,該系統包括經定位接近於一馬達或與該馬達整合之一紅外線感測器;該方法包括以下步驟: i. 將該紅外線感測器指向在該紅外線感測器外部具有一發射率E之物件表面處; ii. 將一DC電流施加至至少一個馬達繞組以升高該馬達之溫度而不引起該馬達之顯著旋轉,以加熱該紅外線感測器而不顯著加熱該物件表面; iii. 量測由指向該表面之該紅外線感測器產生之電壓VG ;及 iv. 比較由該紅外線感測器產生之該電壓與一預期電壓VE
  10. 如請求項9之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括經定位接近於一馬達或與該馬達整合之一紅外線感測器;其中該方法包括以下額外步驟: v. 若VG 並非實質上等於VE ,則判定該紅外線系統並非處於理想操作狀態。
  11. 如請求項9之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括經定位接近於一馬達或與該馬達整合之一紅外線感測器;其中該方法包括以下額外步驟: v. 若VG 實質上等於VE ,則判定該紅外線系統處於理想操作狀態。
  12. 如請求項9至請求項11中任一項之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括經定位接近於一馬達或與該馬達整合之一紅外線感測器;其中該紅外線感測器系統及馬達係定位於一旋轉機器中且該紅外線感測器經指向以量測自該旋轉機器之該旋轉表面發射之該熱輻射。
  13. 如請求項9至請求項11中任一項之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括經定位接近於一馬達或與該馬達整合之一紅外線感測器;其中該紅外線感測器系統及馬達係定位於一真空泵中且經指向以量測自一真空泵轉子表面,尤其一渦輪分子泵轉子發射之該熱輻射。
  14. 如請求項13之測試一紅外線感測器系統之操作狀態的方法,該紅外線感測器系統包括經定位接近於一馬達或與該馬達整合之一紅外線感測器;其中該方法係在該泵處於室溫時初始化。
  15. 一種用於量測自一轉子之該表面發射之該熱輻射的紅外線感測器系統,該紅外線感測器系統包括一紅外線感測器及經定位接近於該紅外線感測器用於加熱該紅外線感測器之一加熱器。
  16. 如請求項15之紅外線感測器系統,其中該加熱器係與該紅外線感測器整合。
  17. 如請求項15或16之紅外線感測器系統,其中該加熱器係一電阻加熱器。
  18. 一種真空泵,尤其一渦輪分子泵,其包括如請求項15或16之紅外線系統且該紅外線系統經定位用於量測自該真空泵之一轉子表面發射之該熱輻射。
  19. 一種渦輪分子泵,該渦輪分子泵包括如請求項15或16之紅外線系統且該紅外線系統經定位用於量測自一渦輪分子轉子葉片、一渦輪分子定子葉片、一轉子軸桿及一分子拖曳泵轉子之至少一者之一表面發射的該熱輻射。
  20. 一種用於旋轉一轉子之馬達,該馬達包括如請求項15之紅外線系統,其中該紅外線感測器經定位接近於該等馬達繞組且經定位以在包括該轉子之一裝置中時,量測由該轉子之一表面發射之該熱輻射。
  21. 如請求項20之用於旋轉一轉子之馬達,其中該等馬達繞組囊封於一灌封材料中且該紅外線感測器安裝於該灌封材料中。
  22. 一種渦輪分子真空泵,該渦輪分子真空泵包括如請求項20或21之馬達,其中該紅外線感測器經指向以量測自一渦輪分子轉子葉片、一渦輪分子定子葉片、一轉子軸桿及一分子拖曳泵轉子之至少一者之該表面發射的該熱輻射。
  23. 如請求項22之渦輪分子泵,其中該紅外線感測器指向之該表面係一碳纖維增強套筒。
TW106130369A 2016-09-06 2017-09-06 用於高速旋轉機器之溫度感測器 TWI766879B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1615124.3 2016-09-06
GB1615124.3A GB2553374B (en) 2016-09-06 2016-09-06 Temperature sensor for a high speed rotating machine
??1615124.3 2016-09-06

Publications (2)

Publication Number Publication Date
TW201816371A true TW201816371A (zh) 2018-05-01
TWI766879B TWI766879B (zh) 2022-06-11

Family

ID=57139779

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130369A TWI766879B (zh) 2016-09-06 2017-09-06 用於高速旋轉機器之溫度感測器

Country Status (9)

Country Link
US (1) US10837836B2 (zh)
EP (1) EP3510369A1 (zh)
JP (1) JP7273712B2 (zh)
KR (1) KR102464713B1 (zh)
CN (1) CN109642826B (zh)
GB (1) GB2553374B (zh)
SG (1) SG11201901869SA (zh)
TW (1) TWI766879B (zh)
WO (1) WO2018046913A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI757158B (zh) * 2021-04-21 2022-03-01 致揚科技股份有限公司 高效率的渦輪分子泵裝置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230043515A1 (en) * 2018-05-02 2023-02-09 Elatronic Ag Remote temperature measurement of cookware through a ceramic glass plate using an infrared sensor
JP7187186B2 (ja) * 2018-06-27 2022-12-12 エドワーズ株式会社 真空ポンプ、ステータコラム、ベースおよび真空ポンプの排気システム
EP3557073A1 (de) * 2019-03-07 2019-10-23 Pfeiffer Vacuum Gmbh Vakuumpumpe
EP3636933B1 (de) 2019-09-11 2021-11-03 Pfeiffer Vacuum Gmbh Verfahren zum ermitteln einer temperatur mittels eines infrarot-sensors
EP3653885B1 (de) * 2019-11-06 2022-01-05 Pfeiffer Vacuum Gmbh Verfahren zum ermitteln einer zustandsinformation in einem vakuumgerät
TWI804846B (zh) * 2021-04-09 2023-06-11 致揚科技股份有限公司 高可靠性的渦輪分子泵及其系統
CN114320989B (zh) * 2021-12-31 2022-12-02 北京中科科仪股份有限公司 一种分子泵测温装置、测温方法及运转部件的测温装置
CN116231972B (zh) * 2023-01-17 2023-12-19 华南理工大学 绕线式感应水轮发电机转子绕组温度检测的系统与方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117712A (en) * 1976-01-23 1978-10-03 Armstrong Cork Company Emissimeter and method of measuring emissivity
FR2391466A1 (fr) * 1977-05-20 1978-12-15 Centre Nat Etd Spatiales Procede et appareil de mesure du facteur d'absorptivite ou d'emissivite infrarouge de materiaux
US4435093A (en) * 1981-12-08 1984-03-06 Bethlehem Steel Corporation Pyrometer with sighting window cleanliness monitor
JPS60169727A (ja) * 1984-02-13 1985-09-03 Agency Of Ind Science & Technol 簡易放射率計
JP2527398B2 (ja) 1992-06-05 1996-08-21 財団法人真空科学研究所 タ―ボ分子ポンプ
US5645349A (en) 1994-01-10 1997-07-08 Thermoscan Inc. Noncontact active temperature sensor
JPH11148487A (ja) 1997-11-18 1999-06-02 Shimadzu Corp ターボ分子ポンプ
JPH11264887A (ja) 1998-03-17 1999-09-28 Toshiba Corp 原子炉核計装システム、このシステムを備えた原子炉出力分布監視システムおよび原子炉出力分布監視方法
CN2368020Y (zh) 1998-10-21 2000-03-08 陈朝旺 红外线温度测量装置
JP2002202192A (ja) 2000-10-24 2002-07-19 Tokyo Electron Ltd 温度測定方法、熱処理装置及び方法、コンピュータプログラム、並びに、放射温度計
JP2003287463A (ja) 2002-03-28 2003-10-10 Boc Edwards Technologies Ltd 放射温度測定装置及び該放射温度測定装置を搭載したターボ分子ポンプ
JP2004085459A (ja) * 2002-08-28 2004-03-18 Bio Ekoonetto:Kk 赤外線温度センサーおよびそれを用いた温度測定回路並びにその測定方法
JP2004116316A (ja) * 2002-09-24 2004-04-15 Boc Edwards Technologies Ltd 真空ポンプ
GB0224709D0 (en) 2002-10-24 2002-12-04 Boc Group Plc Improvements in dry pumps
GB0225335D0 (en) * 2002-10-31 2002-12-11 Genevac Ltd Temperature sensing in centrifugal evaporators
US7220378B2 (en) * 2004-01-07 2007-05-22 Pressco Technology Inc. Method and apparatus for the measurement and control of both the inside and outside surface temperature of thermoplastic preforms during stretch blow molding operations
JP4528019B2 (ja) * 2004-04-27 2010-08-18 株式会社大阪真空機器製作所 分子ポンプの温度制御装置
JP4673011B2 (ja) * 2004-07-05 2011-04-20 株式会社島津製作所 ターボ分子ポンプの温度制御装置
JP2006037739A (ja) * 2004-07-22 2006-02-09 Koyo Seiko Co Ltd ターボ分子ポンプ装置
WO2009155954A1 (de) * 2008-06-26 2009-12-30 Siemens Aktiengesellschaft Anordnung mit einer elektrischen maschine sowie verfahren zum betreiben einer elektrischen maschine
ATE549610T1 (de) * 2008-07-16 2012-03-15 Siemens Ag Anordnung mit einer elektrischen maschine sowie verfahren zum betreiben einer elektrischen maschine
EP2317148A4 (en) 2008-08-19 2015-03-25 Edwards Japan Ltd VACUUM PUMP
RU2497262C1 (ru) * 2009-08-19 2013-10-27 Сименс Акциенгезелльшафт Система, снабженная электрической машиной, а также способ эксплуатации электрической машины
CN102004000B (zh) * 2010-10-21 2011-10-26 华中科技大学 用于高温高压容器内转动部件的表面温度检测系统
CN102150769B (zh) 2011-05-19 2013-08-14 邓海波 撞击流微波加热真空闪蒸脱水浓缩机
JP2013079602A (ja) * 2011-10-04 2013-05-02 Shimadzu Corp ターボ分子ポンプ
US9745989B2 (en) * 2012-09-24 2017-08-29 Shimadzu Corporation Turbo-molecular pump
DE102013112023A1 (de) * 2012-11-02 2014-05-08 Maxim Integrated Products, Inc. System und Verfahren zum Reduzieren der Umgebungslichtempfindlichkeit von Infrarotdetektoren (IR-Detektoren)
CN203837817U (zh) * 2014-06-04 2014-09-17 隆青强 一种红外测温系统探头校点装置
JP2016148706A (ja) 2015-02-10 2016-08-18 コニカミノルタ株式会社 画像形成装置および温度測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI757158B (zh) * 2021-04-21 2022-03-01 致揚科技股份有限公司 高效率的渦輪分子泵裝置

Also Published As

Publication number Publication date
JP2019529949A (ja) 2019-10-17
CN109642826B (zh) 2023-08-15
GB2553374A (en) 2018-03-07
GB2553374B (en) 2021-05-12
SG11201901869SA (en) 2019-03-28
KR102464713B1 (ko) 2022-11-07
CN109642826A (zh) 2019-04-16
US20190226914A1 (en) 2019-07-25
KR20190044074A (ko) 2019-04-29
JP7273712B2 (ja) 2023-05-15
WO2018046913A1 (en) 2018-03-15
EP3510369A1 (en) 2019-07-17
TWI766879B (zh) 2022-06-11
US10837836B2 (en) 2020-11-17
GB201615124D0 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
TWI766879B (zh) 用於高速旋轉機器之溫度感測器
JP2019529949A5 (zh)
US20110200460A1 (en) Vacuum pump
US9200529B2 (en) Method for adjusting the radial gaps which exist between blade airfoil tips or rotor blades and a passage wall
JP2011080407A (ja) 真空ポンプ
JP5634869B2 (ja) 熱負荷を受ける流体機械のロータの残り寿命を求める方法
CN114320989B (zh) 一种分子泵测温装置、测温方法及运转部件的测温装置
US20070127551A1 (en) Device for contactless measurement of rotor temperatures
KR20190109571A (ko) 로터 바 결함을 검출하기 위한 방법
JP2000018189A (ja) ターボ分子ポンプ
US20240213905A1 (en) Method of Updating a Thermal Model of an Electric Motor
US20180313706A1 (en) Wind speed measurement apparatus
JP2021043180A (ja) 温度を算出するための方法
Hudon et al. On-line rotor temperature measurements
KR102037076B1 (ko) 블레이드의 변형 여부를 판별하는 방법, 이를 위한 압축기 및 상기 압축기를 포함하는 가스터빈
KR20200014747A (ko) 진공 펌프와 그 가열 장치
CN114060304B (zh) 一种测温装置及方法
CN113348305A (zh) 真空泵以及真空泵的控制装置
KR20140134615A (ko) 진공 펌프
WO2022102556A1 (ja) 回転機械の監視装置、監視プログラム及び監視方法並びに回転機械設備
EP4106186A1 (en) Method of determining cooling efficiency of an electric motor
CN107528433A (zh) 监控永磁电机磁极温度的干燥控制方法、系统
EP3614897B1 (en) Method for controlling operation of a household appliance and a household appliance
CN117345526A (zh) 变桨电机的温度修正方法、控制器和风力发电机组
JP2015154653A (ja) 回転子温度測定装置およびそれを用いた回転電機