TW201813095A - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TW201813095A
TW201813095A TW105142761A TW105142761A TW201813095A TW 201813095 A TW201813095 A TW 201813095A TW 105142761 A TW105142761 A TW 105142761A TW 105142761 A TW105142761 A TW 105142761A TW 201813095 A TW201813095 A TW 201813095A
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide layer
film
transistor
insulating film
Prior art date
Application number
TW105142761A
Other languages
English (en)
Inventor
山崎舜平
Original Assignee
半導體能源硏究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源硏究所股份有限公司 filed Critical 半導體能源硏究所股份有限公司
Publication of TW201813095A publication Critical patent/TW201813095A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Abstract

本發明的一個實施方式的目的是使使用金屬氧化物的電晶體具有高場效移動率。另外,提供使用該電晶體的可靠性高的顯示裝置。本發明的一個實施方式具有交替層疊兩層以上的具有第一能帶間隙的金屬氧化物層與具有第二能帶間隙的金屬氧化物層的結構。第一能帶間隙與第二能帶間隙之差較佳為0.3eV以上,更佳為0.4eV以上。載子流動起因於具有第二能帶間隙,亦即窄能帶間隙的In氧化物、In-Zn氧化物或者In-Ti-Zn氧化物。此時,載子從具有第二能帶間隙的氧化物溢出到具有第一能帶間隙,亦即寬能帶間隙的In-Ti-Ga-Zn氧化物。

Description

半導體裝置
本發明係關於一種使用金屬氧化物層的半導體裝置及其製造方法。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。本發明的一個實施方式尤其係關於一種金屬氧化物或者該金屬氧化物的製造方法。另外,本發明的一個實施方式係關於一種半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、蓄電裝置、記憶體裝置、它們的驅動方法或它們的製造方法。
注意,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。電晶體等半導體元件、半導體電路、算術裝置及記憶體裝置是半導體裝置的一個實施方式。攝像裝置、顯示裝置、液晶顯示裝置、發光裝置、電光裝置、發電裝置(包括薄膜太陽能電池或有機薄膜太陽能電池等)及電子裝置有時包括半導體裝置。
作為可用於電晶體的半導體材料,氧化物受到關注。例如,專利文獻1公開了包括In-Zn-Ga-O類氧化物、In-Zn-Ga-Mg-O類氧化物、 In-Zn-O類氧化物、In-Sn-O類氧化物、In-O類氧化物、In-Ga-O類氧化物和Sn-In-Zn-O類氧化物中的任一個非晶氧化物的場效應電晶體。
另外,在非專利文獻1中探討了作為電晶體的活性層包含In-Zn-O類氧化物和In-Ga-Zn-O類氧化物的兩層疊層的金屬氧化物的結構。
[專利文獻1]日本專利第5118810號公報
[非專利文獻1]John F. Wager, “Oxide TFTs: A Progress Report”, Information Display 1/16,SID 2016, Jan/Feb 2016, Vol.32,No.1, pp.16-21
本發明的一個實施方式的目的之一是提供一種具有優良的電特性的半導體裝置。本發明的一個實施方式的目的之一是提供一種能夠實現微型化或高集成化的半導體裝置。本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。
注意,這些目的的記載不妨礙其他目的的存在。此外,本發明的一個實施方式不需要實現所有上述目的。另外,說明書、圖式以及申請專利範圍等的記載中顯然存在上述目的以外的目的,可以從說明書、圖式以及申請專利範圍等的記載中衍生上述目的以外的目的。
本發明的一個實施方式具有將能帶間隙不同的金屬氧化物層交替層疊的結構。藉由交替層疊導帶底能階高的第一金屬氧化物層和其導帶底能階比該第一金屬氧化物層低的第二金屬氧化物層,可以提高導通狀態下的電晶體的通態電流(on-state current),且降低關閉狀態下的電晶體的關態電流(off-state current)。
藉由採用上述結構且將金屬氧化物層的側面直接接觸於源極區或汲極區(或者源極電極或汲極電極),可以降低接觸電阻,而可以實現高性能的電晶體。在下面進行詳細的說明。
本發明的一個實施方式是一種包括電晶體的半導體裝置,該電晶體包括:導帶底能階高的第一金屬氧化物層;第二金屬氧化物層;以及第三金屬氧化物層,其中,第二金屬氧化物層的導帶底能階低於第一金屬氧化物層及第三金屬氧化物層,層疊有第一金屬氧化物層、第二金屬氧化物層及第三金屬氧化物層,第二金屬氧化物層位於第一金屬氧化物層與第三金屬氧化物層之間,並且,第二金屬氧化物層的側面與源極電極或汲極電極接觸。
在上述結構中,第一金屬氧化物層及第三金屬氧化物層包含M1(M1為選自Al、Ga、Si、Mg、Zr、Be和B中的一種或多種)氧化物、In-M1-Zn氧化物或者In-M1-M2-Zn氧化物(M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種)。M1較佳為Ga。
當形成第一金屬氧化物層及第三金屬氧化物層時,作為濺射氣體使用氧或者氧和稀有氣體的混合氣體。用來形成金屬氧化物層的濺射氣體的氧流量比較佳為70%以上,更佳為80%以上,進一步較佳為100%。藉由提高濺射氣體所包含的氧的比例(流量比),可以提高金屬氧化物層的絕緣性。
當M1為Al或Si時,可以將可用於第一金屬氧化物層及第三金屬氧化物層的M1氧化物置換成M1氮化物。明確而言,可以將M1氧化物置換成氮化鋁或氮化矽。另外,在本說明書等中,有時將包含氮的金屬氧化物稱為金屬氧化物(metal oxide)。另外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
第一金屬氧化物層及第三金屬氧化物層的厚度為0.1nm以上且小於30nm,較佳為0.1nm以上且10nm以下,更佳為0.1nm以上且3nm以下。
在上述結構中,第二金屬氧化物層包含In氧化物、In-Zn氧化物、In-M2氧化物或者In-M2-Zn氧化物。M2較佳為Ti或Ge。另外,當M2為Ta時,可以將M2氧化物置換成M2氮化物。明確而言,可以將M2氧化物置換成氮化鉭。
第二金屬氧化物層的厚度為0.1nm以上且小於30nm,較佳為0.1nm以上且10nm以下,更佳為0.1nm以上且3nm以下。
另外,也可以增加層疊的總層數n(n為3以上,較佳為3以上且11以下)。
圖1示出五層結構的剖面的例子,其中三層為具有第一能帶間隙(寬能帶間隙)的金屬氧化物層116bw,兩層為具有第二能帶間隙(窄能帶間隙)的金屬氧化物層116bn。
圖2A示出圖1的X-X’剖面的金屬氧化物層的疊層結構的能帶圖的例子。
在實際的疊層結構中,具有第一能帶間隙的金屬氧化物層116bw與具有第二能帶間隙的金屬氧化物層116bn的接合部有時產生金屬氧化物層的聚集方式或組成的變動或者具有第一能帶間隙的金屬氧化物層116bw的一部分有時包括在具有第二能帶間隙的金屬氧化物層116bn中,因此如圖2B所示,能帶連續地變化,而不是不連續地變化。
在其通道形成區具有這種疊層結構的電晶體中,具有第一能帶間隙的金屬氧化物層116bw與具有第二能帶間隙的金屬氧化物層116bn在電性上發生相互作用,因此當使電晶體成為導通狀態的電位施加到被用作閘極電極的導電體114時,導帶底能階(Ec端)低的具有第二能帶間隙的金屬氧化物層116bn為主要傳導路徑,電子流過具有第二能帶間隙的金屬氧化物層116bn,同時還流過具有第一能帶間隙的金屬氧化物層116bw。這是因為具有第二能帶間隙的金屬氧化物層116bn的Ec比具有第一能帶間隙的金屬氧化物層116bw的Ec低得多。因此,可以提高導通狀態下的電晶體的電流驅動力,亦即可以實現高通態電流及高場效移動率。
具有第二能帶間隙的金屬氧化物層116bn例如較佳為使用以銦鋅氧化物為主要成分的移動率高的金屬氧化物。另外,金屬氧化物層116bn可以處於簡併狀態。
具有第一能帶間隙的金屬氧化物層116bw例如較佳為使用以銦鎵鋅氧化物為主要成分的金屬氧化物。
當對被用作閘極電極的導電體114施加低於臨界電壓的電壓時,具有第一能帶間隙的金屬氧化物層116bw起電介質(具有絕緣性的氧化物)的作用,因此金屬氧化物層116bw中的傳導路徑被阻擋。另外,由於具有第二能帶間隙的金屬氧化物層116bn與其上及其下的具有第一能帶間隙的金屬氧化物層116bw接觸,因此具有第一能帶間隙的金屬氧化物層116bw不但在電性上彼此發生相互作用,而且與具有第二能帶間隙的金屬氧化物層116bn在電性上發生相互作用,還阻擋具有第二能帶間隙的金屬氧化物層116bn中的傳導路徑。這是因為具有第一能帶間隙的金屬氧化物層116bw的Ec比具有第二能帶間隙的金屬氧化物層116bn的Ec高得多。於是,金屬氧化物層的疊層116b整體成為非導通狀態,而使電晶體成為關閉狀態。
在此,對用於該電晶體的金屬氧化物層的Ec的測定進行說明。圖3示出用於該電晶體的氧化物的能帶的例子。如圖3所示,可以從真空能階與價帶頂的能量之差的游離電位(游離能)Ip及能帶間隙Eg算出Ec。能帶間隙Eg可以使用光譜橢圓偏光計(HORIBA JOBIN YVON公司製造的UT-300)測定。另外,游離電位Ip可以使用紫外線光電子能譜(UPS:Ultraviolet Photoelectron Spectroscopy)裝置(PHI公司製造的VersaProbe)測定。
本發明的其他的一個實施方式是一種半導體裝置,該半導體裝置包括:導帶底能階高的第一金屬氧化物層;其導帶底能階比第一金屬氧化物層低的第二金屬氧化物層;其導帶底能階比第二金屬氧化物層高且比第一金屬氧化物層低的第三金屬氧化物層;其導帶底能階比第三金屬氧化物層低的第四金屬氧化物層;以及導帶底能階高的第五金屬氧化物層。
在上述結構中,第三金屬氧化物層使用其能帶與第一金屬氧化物層及第二金屬氧化物層不同的材料形成。明確而言,作為第三金屬氧化物層的材料適當地選擇其導帶底能階比第二金屬氧化物層高且比第一金屬氧化物層低的材料。第二、第三及第四金屬氧化物層的導帶底能階低於第一、第五金屬氧化物層的導帶底能階。
在上述結構中,第四金屬氧化物層適當地從上述第二金屬氧化物層的材料中選擇即可。第四金屬氧化物層的材料可以與第二金屬氧化物層相同或不同。在使用相同材料的情況下,可以使用相同的濺射靶材形成,所以生產率得到提高。
在上述結構中,第五金屬氧化物層適當地從上述第一金屬氧化物層的材料中選擇即可。第五金屬氧化物層的材料可以與第一金屬氧化 物層相同或不同。在使用相同材料的情況下,可以使用相同的濺射靶材形成,所以生產率得到提高。
注意,藉由在形成第一金屬氧化物層、第二金屬氧化物層、第三金屬氧化物層、第四金屬氧化物層或者第五金屬氧化物層之後引入雜質元素,可以改變電晶體的臨界電壓。雜質元素可以藉由利用離子植入法、離子摻雜法、電漿浸沒離子佈植技術或者使用包含雜質元素的氣體的電漿處理等來引入。
在上述結構中,由閘極電極圍繞第二金屬氧化物層的結構也是特徵之一,設置第一閘極電極、第二閘極電極以及其間的七層以上的金屬氧化物層也是特徵之一。
在本發明的一個實施方式的電晶體中,第二閘極電極在通道寬度方向的剖面上圍繞第二金屬氧化物層的側面且在電性上(在電場上)圍繞第二金屬氧化物層。藉由採用這種結構,可以提高電晶體的通態電流。將這種電晶體結構稱為Surrounded Channel(S-Channel)結構。在S-Channel結構中,電流流過整個第二金屬氧化物層(塊內)。明確而言,在n型電晶體中,亦即在積累型電晶體中,在通道形成區的雜質密度Nd為1E15cm-3以下的情況下,塊內電流(bulk current)流動。另外,即使是p型電晶體,亦即反轉型電晶體,在雜質密度Nd為1E15cm-3以下的情況下,塊內電流也流動。由於電流流過第二金屬氧化物層內部,因此不容易受到介面散射的影響,所以可以獲得很高的通態電流。另外,藉由增加金屬氧化物層的層數或厚度,可以提高通態電流。另外,藉由採用S-Channel結構,可以獲得優異的次臨界擺幅(以下,記為S值)。在Vth附近或其以下的汲極電流與閘極電壓的關係被稱為次臨界值特性,是決定作為切換元件的電晶體的性能的重要特性。表示該次臨界值特性的高低的常數為S值。S值越小,電晶體越能夠以高速且低功耗進行工作。
在半導體裝置中,可以提供一種具有金屬氧化物層的疊層且通態電流高的電晶體。另外,可以提供一種具有金屬氧化物層的疊層且關態電流低的電晶體。另外,可以提供一種功耗低的半導體裝置。
另外,可以提供一種新穎的半導體裝置。另外,可以提供一種包括該半導體裝置的模組。另外,可以提供一種包括該半導體裝置或者該模組的電子裝置。
100C‧‧‧電晶體
102‧‧‧基板
106‧‧‧導電膜
108‧‧‧金屬氧化物
114‧‧‧導電體
116b‧‧‧金屬氧化物層
116bn_1‧‧‧金屬氧化物層
116bn_2‧‧‧金屬氧化物層
116bw_1‧‧‧金屬氧化物層
116bw_2‧‧‧金屬氧化物層
116bw_3‧‧‧金屬氧化物層
200A‧‧‧電晶體
200C‧‧‧電晶體
200D‧‧‧電晶體
202‧‧‧基板
204‧‧‧絕緣膜
206‧‧‧導電膜
208‧‧‧金屬氧化物
210‧‧‧絕緣膜
216‧‧‧絕緣膜
218‧‧‧絕緣膜
220a‧‧‧導電膜
220b‧‧‧導電膜
240‧‧‧遮罩
241a‧‧‧開口部
241b‧‧‧開口部
243‧‧‧開口部
在圖式中:圖1為示出本發明的一個實施方式的金屬氧化物層的疊層結構的概念圖;圖2A和圖2B為本發明的一個實施方式的金屬氧化物層的疊層結構的能帶圖的例子;圖3為說明氧化物的能帶結構的圖;圖4A至圖4D為示出半導體裝置的一個實施方式的俯視圖、剖面圖及剖面放大圖;圖5A至圖5D為示出半導體裝置的製程的例子的剖面圖;圖6A至圖6C為示出半導體裝置的製程的例子的剖面圖;圖7A至圖7C為示出半導體裝置的製程的例子的剖面圖;圖8示出能帶結構的例子;圖9A至圖9D為示出半導體裝置的一個實施方式的俯視圖、剖面圖及剖面放大圖;圖10示出能帶結構的例子;圖11A至圖11D為示出半導體裝置的一個實施方式的俯視圖、剖面圖及剖面放大圖;圖12為說明顯示裝置的方塊圖; 圖13為說明像素電路的電路圖;圖14A和圖14B為說明顯示元件的顯示區域的示意圖;圖15A和圖15B為說明顯示裝置及像素電路的俯視圖;圖16為說明顯示裝置的剖面圖;圖17為說明顯示裝置的剖面圖;圖18為說明顯示裝置的剖面圖;圖19A和圖19B示出顯示模組的結構實例;圖20A至圖20C示出電子裝置的例子。
下面,參照圖式對本發明的實施方式進行詳細說明。但是,本發明不侷限於以下說明,所屬技術領域的通常知識者可以很容易地理解本發明的方式和詳細內容可進行各種變換。此外,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
在本說明書等中,電晶體是指至少包括閘極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區或汲極電極)與源極(源極端子、源極區或源極電極)之間具有通道區,並且電流能夠流過汲極、通道區以及源極。注意,在本說明書等中,通道區是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極和汲極的功能有時互相調換。因此,在本說明書等中,源極和汲極可以互相調換。
在本說明書等中,金屬氧化物(metal oxide)是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱 為OS)等。例如,在將金屬氧化物用於電晶體的活性層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,可以將OS FET稱為包含金屬氧化物或氧化物半導體的電晶體。
實施方式1
在本實施方式中,參照圖4A至圖7C對包含本發明的一個實施方式的金屬氧化物的半導體裝置及該半導體裝置的製造方法進行說明。
圖4A是作為本發明的一個實施方式的半導體裝置的電晶體200C的俯視圖,圖4B相當於沿著圖4A所示的點劃線X1-X2的剖面圖,圖4C相當於沿著圖4A所示的點劃線Y1-Y2的剖面圖。另外,圖4D為放大圖4B所示的區域P7的剖面放大圖。
注意,在圖4A中,為了方便起見,省略電晶體200C的組件的一部分(被用作閘極絕緣膜的絕緣膜等)。此外,有時將點劃線X1-X2方向稱為通道長度方向,將點劃線Y1-Y2方向稱為通道寬度方向。注意,有時在後面的電晶體的俯視圖中也與圖4A同樣地省略組件的一部分。
圖4A至圖4C所示的電晶體200C為所謂的頂閘極結構的電晶體。
電晶體200C包括基板202上的導電膜206、基板202及導電膜206上的絕緣膜204、絕緣膜204上的金屬氧化物208、金屬氧化物208上的絕緣膜210、絕緣膜210上的導電膜212、絕緣膜204、金屬氧化物208以及導電膜212上的絕緣膜216。
在圖4A至圖4C所示的電晶體200C中,金屬氧化物層具有多層結構。明確而言,電晶體200C所包括的金屬氧化物208包括區域208i_1、 區域208i_1上的區域208i_2n、區域208i_2n上的區域208i_3及與絕緣膜216重疊的區域208n。可以將區域208n稱為源極區或汲極區。
如圖4D的區域P7所示,區域208i_2n為三層疊層。金屬氧化物208所包括的區域208i_2n包括依次層疊的第一金屬氧化物層208_bw1、第二金屬氧化物層208_bn1及第三金屬氧化物層208_bw2。第一金屬氧化物層208_bw1及第三金屬氧化物層208_bw2為導帶底能階高的金屬氧化物層。第二金屬氧化物層208_bn1為其導帶底能階比第一金屬氧化物層低的金屬氧化物層。
第一金屬氧化物層208_bw1及第三金屬氧化物層208_bw2使用M1(M1為選自Al、Ga、Si、Mg、Zr、Be和B中的一種或多種)氧化物、In-M1-Zn氧化物或者In-M1-M2-Zn氧化物(M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種)形成。第一金屬氧化物層208_bw1及第三金屬氧化物層208_bw2較佳為以1atomic%至50atomic%包含M1的成分。另外,第一金屬氧化物層208_bw1及第三金屬氧化物層208_bw2較佳為以0.01atomic%至5atomic%包含M2的成分。第一金屬氧化物層208_bw1及第三金屬氧化物層208_bw2的載子密度為1×1010cm-3以上且1×1016cm-3以下,較佳為1×1015cm-3左右。在本實施方式中,第一金屬氧化物層208_bw1及第三金屬氧化物層208_bw2使用同一濺射靶材形成。
第一金屬氧化物層208_bw1例如可以包含寬能帶間隙材料的In-Ga-Ti-Zn氧化物(In:Ga:Ti:Zn=5:0.5:0.5:7[原子數比])。在In-Ga-Ti-Zn氧化物中,Ti的化合價大於In、Ga及Zn。明確而言,Zn為2價的,In及Ga為3價的,Ti為4價的。當金屬氧化物包含其化合價比In、Ga及Zn大的元素(在此,為Ti)時,該元素成為載子供應源,可以提高金屬氧化物的載子密度。另外,In、Ga及Zn具有離子鍵,Ti具有共價鍵。因此,當金屬氧化物包含Ti時,有時可以抑制氧缺陷的生成。因 此,藉由將本發明的一個實施方式的金屬氧化物用於電晶體的半導體層,可以提高電晶體的場效移動率且抑制氧缺陷,由此可以提供可靠性高的半導體裝置。
在第一金屬氧化物層208_bw1的結構中,對使用Ti的情況進行說明,但是也可以使用Ge、Sn、V、Ni、Mo、W及Ta代替Ti。例如,可以使用In:Ga:Ge:Zn=4:1:1:4[原子數比]、In:Ga:Ge:Zn=5:0.5:0.5:7[原子數比]或者其近似值的原子數比的金屬氧化物靶材形成In-Ga-Ge-Zn氧化物層。
作為第二金屬氧化物層208_bn1,例如可以舉出作為窄能帶間隙材料的In氧化物、In-Zn氧化物、In-M2(M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種)氧化物或者In-M2-Zn氧化物。第二金屬氧化物層208_bn1較佳為以0.01atomic%至5atomic%包含M2的成分。其中,In-Ti-Zn氧化物的能帶間隙有時比In氧化物及In-Zn氧化物窄。因此,藉由使用In-Ti-Zn氧化物,可以實現比In氧化物或In-Zn氧化物更高的載子密度。作為窄能帶間隙材料的第二金屬氧化物層208_bn1的載子密度較佳為1×1018cm-3以上且低於1×1021cm-3
圖8示出圖4B的Z-Z’剖面的氧化物的疊層結構的能帶圖的例子。
如圖4D的區域P7所示,區域208i_2n的側面與區域208n的側面接觸,因此可以降低接觸電阻。另外,由於金屬氧化物208所包括的區域208i_2n包括第二金屬氧化物層208_bn1,亦即導電性高的區域與區域208n(亦即源極區)接觸,因此可以進一步降低接觸電阻。注意,雖然未圖示,但是區域208i_2n的其他的側面與區域208n的側面的連接也與區域P7同樣。
由於本發明的一個實施方式的金屬氧化物包括第二金屬氧化物層208_bn1,因此其與源極區或汲極區的接觸電阻低。因此,可以提高包含該金屬氧化物的電晶體的場效移動率。
區域208n與絕緣膜216接觸。絕緣膜216包含氮或氫。因此,絕緣膜216中的氮或氫添加到區域208n中。當氮或氫從絕緣膜216添加到區域208n時,區域208n的載子密度得到提高。
電晶體200C也可以包括絕緣膜216上的絕緣膜218、藉由設置在絕緣膜216、218中的開口241a與區域208n電連接的導電膜220a、藉由設置在絕緣膜216、218中的開口241b與區域208n電連接的導電膜220b。
如圖4C所示,在絕緣膜204及絕緣膜210中設置有開口243。此外,導電膜206藉由開口243與導電膜212電連接。因此,相同電位被施加到導電膜206及導電膜212。此外,也可以不設置開口243,而對導電膜206、導電膜212施加不同電位。
導電膜206具有第一閘極電極(也稱為底閘極電極)的功能,且導電膜212具有第二閘極電極(也稱為頂閘極電極)的功能。此外,絕緣膜204具有第一閘極絕緣膜的功能,且絕緣膜210具有第二閘極絕緣膜的功能。
如此,圖4A至圖4C所示的電晶體200C具有在金屬氧化物208的上下包括被用作閘極電極的導電膜的結構。如電晶體200C所示,在本發明的一個實施方式的半導體裝置中,也可以設置兩個以上的閘極電極。
如圖4C所示,金屬氧化物208位於與被用作第一閘極電極的導電 膜206及被用作第二閘極電極的導電膜212的每一個相對的位置,夾在兩個被用作閘極電極的導電膜之間。
在通道寬度方向上,導電膜212的長度比金屬氧化物208長,並且導電膜212隔著絕緣膜210覆蓋金屬氧化物208整體。導電膜212和導電膜206藉由形成於絕緣膜204及絕緣膜210中的開口243連接,因此在通道寬度方向上,金屬氧化物208的一個側面隔著絕緣膜210與導電膜212相對。
換言之,在電晶體200C的通道寬度方向上,導電膜206及導電膜212藉由形成於絕緣膜204及絕緣膜210中的開口243連接,並隔著絕緣膜204及絕緣膜210圍繞金屬氧化物208。換言之,電晶體200C具有上述S-channel結構。
下面,對本實施方式的半導體裝置所包括的組件進行詳細說明。
[基板]
雖然對基板202的材料等沒有特別的限制,但是至少需要具有能夠承受後續的加熱處理的耐熱性。例如,作為基板202,可以使用玻璃基板、陶瓷基板、石英基板、藍寶石基板等。另外,還可以使用以矽或碳化矽為材料的單晶半導體基板或多晶半導體基板、以矽鍺等為材料的化合物半導體基板、SOI(Silicon On Insulator:絕緣層上覆矽)基板等,並且,也可以將在這些基板上設置有半導體元件的基板用作基板202。當作為基板202使用玻璃基板時,藉由使用第6代(1500mm×1850mm)、第7代(1870mm×2200mm)、第8代(2200mm×2400mm)、第9代(2400mm×2800mm)、第10代(2950mm×3400mm)等大面積基板,可以製造大型顯示裝置。
作為基板202,也可以使用撓性基板,並且在撓性基板上直接形成 電晶體。或者,也可以在基板202與電晶體之間設置剝離層。剝離層可以在如下情況下使用,亦即在剝離層上製造半導體裝置的一部分或全部,然後將其從基板202分離並轉置到其他基板上的情況。此時,也可以將電晶體轉置到耐熱性低的基板或撓性基板上。
[導電膜]
用作第一閘極電極的導電膜206、用作源極電極的導電膜220a、用作汲極電極的導電膜220b、用作第二閘極電極的導電膜212都可以使用選自鉻(Cr)、銅(Cu)、鋁(Al)、金(Au)、銀(Ag)、鋅(Zn)、鉬(Mo)、鉭(Ta)、鈦(Ti)、鎢(W)、錳(Mn)、鎳(Ni)、鐵(Fe)、鈷(Co)中的金屬元素、以上述金屬元素為成分的合金或者組合上述金屬元素的合金等形成。
此外,作為導電膜206、220a、220b、212可以使用包含銦和錫的氧化物、包含鎢和銦的氧化物、包含鎢和銦和鋅的氧化物、包含鈦和銦的氧化物、包含鈦和銦和錫的氧化物、包含銦和鋅的氧化物、包含矽和銦和錫的氧化物、包含銦和鎵和鋅的氧化物等氧化物導電體。
尤其是,作為導電膜212較佳為使用上述氧化物導電體。在本說明書等中,可以將氧化物導電體稱為OC(Oxide Conductor)。例如,當在氧化物半導體中形成氧缺陷且對該氧缺陷添加氫時,在導帶附近形成施體能階。其結果是,氧化物半導體的導電性增高,而成為導電體。可以將成為導電體的氧化物半導體稱為氧化物導電體。一般而言,由於氧化物半導體的能隙大,因此對可見光具有透光性。另一方面,氧化物導電體是在導帶附近具有施體能階的氧化物半導體。因此,氧化物導電體起因於該施體能階的吸收的影響小,而對可見光具有與氧化物半導體大致相同的透光性。
另外,作為導電膜206、220a、220b、212,也可以應用Cu-X合金 膜(X為Mn、Ni、Cr、Fe、Co、Mo、Ta或Ti)。藉由使用Cu-X合金膜,可以藉由濕蝕刻製程進行加工,從而可以抑制製造成本。
尤其是,上述Cu-X合金膜適用於導電膜220a、220b。作為Cu-X合金膜,尤其較佳為使用Cu-Mn合金膜。
[用作第一閘極絕緣膜的絕緣膜]
作為用作電晶體的第一閘極絕緣膜的絕緣膜204,可以使用藉由電漿增強化學氣相沉積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法、濺射法等形成的包括氧化矽膜、氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鋁膜、氧化鉿膜、氧化釔膜、氧化鋯膜、氧化鎵膜、氧化鉭膜、氧化鎂膜、氧化鑭膜、氧化鈰膜和氧化釹膜中的一種以上的絕緣層。注意,絕緣膜204可以使用選自上述材料中的單層的絕緣膜或兩層以上的絕緣膜。
作為接觸於用作電晶體的通道區的金屬氧化物208的絕緣膜較佳為使用氧化物絕緣膜,更佳為包括包含超過化學計量組成的氧的區域(氧過量區域)。
注意,不侷限於上述結構,作為接觸於金屬氧化物208的絕緣膜也可以使用氮化物絕緣膜。例如,可以舉出藉由形成氮化矽膜並對該氮化矽膜的表面進行氧電漿處理等來使氮化矽膜的表面氧化的結構。注意,在對氮化矽膜的表面進行氧電漿處理等的情況下,氮化矽膜的表面有可能在原子級上被氧化,因此有時藉由電晶體的剖面觀察等檢測不到氧。換言之,當觀察電晶體的剖面時,有時觀察到氮化矽膜接觸於金屬氧化物。
與氧化矽膜相比,氮化矽膜的相對介電常數較高且為了得到與氧化矽膜相等的靜電容量所需要的厚度較大,因此,藉由使電晶體的閘 極絕緣膜包括氮化矽膜,可以增加絕緣膜的厚度。因此,可以藉由抑制電晶體的絕緣耐壓的下降並提高絕緣耐壓來抑制電晶體的靜電破壞。
此外,當作為絕緣膜204使用氧化鉿時發揮如下效果。氧化鉿的相對介電常數比氧化矽或氧氮化矽高。因此,可以使絕緣膜204的厚度比使用氧化矽的情況大,由此,可以減少穿隧電流引起的洩漏電流。也就是說,可以實現關態電流低的電晶體。再者,與具有非晶結構的氧化鉿相比,具有結晶結構的氧化鉿的相對介電常數較高。因此,為了形成關態電流低的電晶體,較佳為使用具有結晶結構的氧化鉿。作為結晶結構的例子,可以舉出單斜晶系或立方晶系等。注意,本發明的一個實施方式不侷限於此。
[金屬氧化物]
作為金屬氧化物208,可以使用本發明的一個實施方式的金屬氧化物層的多層結構。
另外,較佳為適當地設定構成金屬氧化物的多層結構的各金屬氧化物層,明確而言,第一金屬氧化物層208_bw1、第二金屬氧化物層208_bn1、第三金屬氧化物層208_bw2的載子密度、雜質濃度、缺陷密度、金屬元素與氧的原子數比、密度等,以得到所需的電晶體的半導體特性。
[用作第二閘極絕緣膜的絕緣膜]
絕緣膜210被用作電晶體的第二閘極絕緣膜。另外,絕緣膜210具有對金屬氧化物208供應氧的功能。亦即,絕緣膜210包含氧。
絕緣膜218較佳為使用其氧含量超過化學計量組成的氧化物絕緣膜形成。其氧含量超過化學計量組成的氧化物絕緣膜由於被加熱而其 一部分的氧脫離。藉由TDS分析,其氧含量超過化學計量組成的氧化物絕緣膜換算為氧原子的氧的脫離量為1.0×1019atoms/cm3以上,較佳為3.0×1020atoms/cm3以上。注意,上述TDS分析時的膜的表面溫度較佳為100℃以上且700℃以下或100℃以上且500℃以下。
作為絕緣膜218可以使用厚度為30nm以上且500nm以下,較佳為50nm以上且400nm以下的氧化矽膜、氧氮化矽膜等。
此外,較佳為使絕緣膜218中的缺陷量較少,典型的是,藉由ESR測量的起因於矽的懸空鍵的g=2.001處呈現的信號的自旋密度低於1.5×1018spins/cm3,更佳為1×1018spins/cm3以下。
[用作保護絕緣膜的絕緣膜]
絕緣膜216被用作電晶體的保護絕緣膜。
絕緣膜216包含氫和氮中的一個或兩個。另外,絕緣膜216包含氮及矽。此外,絕緣膜216具有能夠阻擋氧、氫、水、鹼金屬、鹼土金屬等的功能。藉由設置絕緣膜216,能夠防止氧從金屬氧化物208擴散到外部,並且能夠防止絕緣膜210所包含的氧擴散到外部,還能夠防止氫、水等從外部侵入金屬氧化物208中。
作為絕緣膜216,例如可以使用氮化物絕緣膜。作為該氮化物絕緣膜,有氮化矽、氮氧化矽、氮化鋁、氮氧化鋁等。
雖然上述所記載的導電膜、絕緣膜、金屬氧化物及金屬膜等各種膜可以利用濺射法或PECVD法形成,但是也可以利用例如熱CVD(Chemical Vapor Deposition:有機金屬化學氣相沉積)法形成。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition: 原子層沉積)法等。
由於熱CVD法是不使用電漿的成膜方法,因此具有不產生因電漿損傷引起的缺陷的優點。
可以以如下方法進行利用熱CVD法的成膜:將源氣體及氧化劑同時供應到腔室內,將腔室內的壓力設定為大氣壓或減壓,使其在基板附近或在基板上產生反應而沉積在基板上。
另外,也可以以如下方法進行利用ALD法的成膜:將腔室內的壓力設定為大氣壓或減壓,將用於反應的源氣體依次引入腔室,然後按該順序反復地引入氣體。
藉由MOCVD法、ALD法等的熱CVD法可以形成本實施方式的導電膜、絕緣膜、金屬氧化物等各種膜。
〈半導體裝置的製造方法〉
接著,參照圖5A至圖7C對本發明的一個實施方式的半導體裝置的電晶體200C的製造方法進行說明。
圖5A至圖5D、圖6A至圖6C及圖7A至圖7C為說明半導體裝置的製造方法的剖面圖。在圖5A至圖5D、圖6A至圖6C及圖7A至圖7C中,左側示出通道長度方向上的剖面圖,右側示出通道寬度方向上的剖面圖。
首先,在基板202上形成導電膜206。接著,在基板202及導電膜206上形成絕緣膜204,在絕緣膜204上形成第一金屬氧化物層、第二金屬氧化物層及第三金屬氧化物層。然後,藉由將第一金屬氧化物層、第二金屬氧化物層及第三金屬氧化物層加工為島狀,來形成金屬氧化 物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a(參照圖5A)。為了簡化起見,在圖5A中,由單層表示金屬氧化物層208_2a,但是如圖4D所示,金屬氧化物層208_2a是三層(208_bw1、208_bn1、208_bw2)。
導電膜206可以選擇上述材料形成。在本實施方式中,作為導電膜206,使用濺射裝置形成50nm厚的鎢膜和400nm厚的銅膜的疊層膜。
作為成為導電膜206的導電膜的加工方法,可以利用濕蝕刻法和/或乾蝕刻法。在本實施方式中,利用濕蝕刻法對銅膜進行蝕刻,然後利用乾蝕刻法對鎢膜進行蝕刻,對導電膜進行加工而形成導電膜206。
藉由適當地利用濺射法、CVD法、蒸鍍法、脈衝雷射沉積(PLD)法、印刷法及塗佈法等,可以形成絕緣膜204。在本實施方式中,作為絕緣膜204利用PECVD設備形成厚度為400nm的氮化矽膜及厚度為50nm的氧氮化矽膜。
此外,也可以在形成絕緣膜204之後,對絕緣膜204添加氧。作為對絕緣膜204添加的氧,有氧自由基、氧原子、氧原子離子、氧分子離子等。作為添加方法,有離子摻雜法、離子植入法、電漿處理等。另外,也可以在絕緣膜204上形成抑制氧脫離的膜之後,經過該膜對絕緣膜204添加氧。
上述抑制氧脫離的膜可以使用具有銦、鋅、鎵、錫、鋁、鉻、鉭、鈦、鉬、鎳、鐵、鈷和鎢中的一種以上的導電膜或半導體膜形成。
當利用電漿處理添加氧時,藉由利用微波使氧激發而產生高密度的氧電漿,可以增加對絕緣膜204添加的氧量。
金屬氧化物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a較佳為利用濺射裝置在真空中連續地形成。藉由利用濺射裝置在真空中連續地形成金屬氧化物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a,可以抑制有可能附著於各介面的雜質(例如,氫、水等)。
較佳為以比金屬氧化物層208_1a和/或金屬氧化物層208_3a低的氧分壓形成金屬氧化物層208_2a。另外,當形成金屬氧化物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a時,可以對氧氣體混合惰性氣體(例如,氦氣體、氬氣體、氙氣體等)。在金屬氧化物層208_1a的沉積氣體整體中氧氣體所佔的比率(以下,也稱為氧流量比)為70%以上且100%以下,較佳為80%以上且100%以下,更佳為90%以上且100%以下。形成金屬氧化物層208_2a時的氧流量比為大於0%且30%以下,較佳為5%以上且15%以下。另外,形成金屬氧化物層208_3a時的氧流量比為70%以上且100%以下,較佳為80%以上且100%以下,更佳為90%以上且100%以下。
另外,也可以在比金屬氧化物層208_1a和/或金屬氧化物層208_3a低的基板溫度下形成金屬氧化物層208_2a。
金屬氧化物層208_1a的厚度為1nm以上且小於20nm,較佳為5nm以上且10nm以下即可。金屬氧化物層208_3a的厚度為1nm以上且小於20nm,較佳為5nm以上且15nm以下即可。
金屬氧化物層208_2a具有三層結構。三層結構中的各層的厚度為0.1nm以上且小於30nm,較佳為0.1nm以上且10nm以下,更佳為0.1nm以上且3nm以下。
藉由在加熱的同時形成金屬氧化物208,可以提高金屬氧化物208的結晶性。只要金屬氧化物208是具有非單晶結構的氧化物半導體, 就對其結晶結構沒有特別的限制。另一方面,當作為基板202使用大型玻璃基板(例如,第六代至第十代)時,在金屬氧化物208的成膜溫度為200℃以上且300℃以下的情況下,基板202有可能變形(應變或翹曲)。因此,在使用大型玻璃基板的情況下,藉由將金屬氧化物208的基板溫度設定為100℃以上且低於200℃,可以抑制玻璃基板的變形。
另外,需要進行濺射氣體的高度純化。例如,作為用作濺射氣體的氧氣體或氬氣體,使用露點為-40℃以下,較佳為-80℃以下,更佳為-100℃以下,進一步較佳為-120℃以下的高純度氣體,由此可以儘可能地防止水分等混入金屬氧化物。
另外,在藉由濺射法形成金屬氧化物的情況下,較佳為使用低溫泵等吸附式真空抽氣泵對濺射裝置的腔室進行高真空抽氣(抽空到5×10-7Pa至1×10-4Pa左右)以儘可能地去除對金屬氧化物來說是雜質的水等。尤其是,在濺射裝置的待機時腔室內的相當於H2O的氣體分子(相當於m/z=18的氣體分子)的分壓為1×10-4Pa以下,較佳為5×10-5Pa以下。
當將第一金屬氧化物層、第二金屬氧化物層及第三金屬氧化物層加工為金屬氧化物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a時,使用濕蝕刻法和/或乾蝕刻法即可。
另外,也可以在形成金屬氧化物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a之後進行加熱處理來實現金屬氧化物層208_1a、金屬氧化物層208_2a及金屬氧化物層208_3a的脫氫化或脫水化。作為加熱處理的溫度,典型地為150℃以上且低於基板的應變點、250℃以上且450℃以下或者300℃以上且450℃以下。
可以在包含氦、氖、氬、氙、氪等稀有氣體或包含氮的惰性氣體氛圍中進行加熱處理。或者,也可以在惰性氣體氛圍中進行加熱之後在氧氛圍中進行加熱。另外,上述惰性氣體氛圍及氧氛圍較佳為不包含氫、水等。處理時間可以是3分鐘以上且24小時以下。
該加熱處理可以使用電爐、RTA裝置等。藉由使用RTA裝置,可以限定於短時間內在基板的應變點以上的溫度下進行加熱處理。由此,可以縮短加熱處理時間。
邊對金屬氧化物進行加熱邊形成該金屬氧化物,或者在形成金屬氧化物之後進行加熱處理,由此,利用SIMS測得的金屬氧化物中的氫濃度可以為5×1019atoms/cm3以下,1×1019atoms/cm3以下,5×1018atoms/cm3以下,1×1018atoms/cm3以下,5×1017atoms/cm3以下或者1×1016atoms/cm3以下。
接著,在絕緣膜204及金屬氧化物208上形成絕緣膜210_0(參照圖5B)。
作為絕緣膜210_0,可以藉由使用電漿增強化學氣相沉積裝置(也稱為PECVD設備或者電漿CVD設備)形成氧化矽膜、氧氮化矽膜或氮化矽膜。此時,作為源氣體,較佳為使用包含矽的沉積氣體及氧化性氣體。作為包含矽的沉積氣體的典型例子,有矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化性氣體,有氧、臭氧、一氧化二氮、二氧化氮等。
另外,作為絕緣膜210_0,可以在如下條件下利用PECVD設備形成缺陷量少的氧氮化矽膜:相對於沉積氣體流量的氧化性氣體流量大於20倍且小於100倍,或者為40倍以上且80倍以下;並且腔室內的壓力低於100Pa,或為50Pa以下。
此外,作為絕緣膜210_0,可以在如下條件下形成緻密的氧化矽膜或氧氮化矽膜:將設置在PECVD設備的抽成真空的腔室內的基板保持在280℃以上且400℃以下的溫度,將源氣體引入腔室內而將腔室內的壓力設定為20Pa以上且250Pa以下,更佳為100Pa以上且250Pa以下,並對設置在腔室內的電極供應高頻功率。
另外,可以藉由使用微波的PECVD法形成絕緣膜210_0。微波是指300MHz至300GHz的頻率範圍。微波的電子溫度低,並且其電子能量小。此外,在被供應的電力中,用於加速電子的比例少,能夠用於更多分子的離解及電離,並且能夠使密度高的電漿(高密度電漿)激發。因此,電漿對被形成面及沉積物造成的損傷少,由此能夠形成缺陷少的絕緣膜210_0。
在本實施方式中,作為絕緣膜210_0,使用PECVD設備形成厚度為100nm的氧氮化矽膜。
接著,在利用光微影製程在絕緣膜210_0的所希望的位置上形成遮罩之後,對絕緣膜210_0的一部分及絕緣膜204的一部分進行蝕刻,由此形成到達導電膜206的開口243(參照圖5C)。
作為開口243的形成方法,可以使用濕蝕刻法和/或乾蝕刻法。在本實施方式中,利用乾蝕刻法形成開口243。
接著,以覆蓋開口243的方式在導電膜206及絕緣膜210_0上形成導電膜212_0。另外,例如在作為導電膜212_0使用金屬氧化膜的情況下,在形成導電膜212_0時有時氧被添加到絕緣膜210_0中(參照圖5D)。
在圖5D中,以箭頭示意性地示出被添加到絕緣膜210_0的氧。藉由以覆蓋開口243的方式形成導電膜212_0,使導電膜206與導電膜212_0電連接。
當作為導電膜212_0使用金屬氧化膜時,較佳為在包含氧氣體的氛圍下利用濺射法形成導電膜212_0。藉由在包含氧氣體的氛圍下形成導電膜212_0,可以將氧適當地添加到絕緣膜210_0中。另外,作為導電膜212_0的形成方法,不侷限於濺射法,也可以利用其他方法,例如ALD法。
在本實施方式中,作為導電膜212_0,利用濺射法形成100nm厚的In-Ga-Zn氧化物(In:Ga:Zn=4:2:4.1(原子數比))。另外,可以在形成導電膜212_0之前或之後對絕緣膜210_0進行氧添加處理。該氧添加處理可以與能夠在形成絕緣膜204之後進行的氧添加處理同樣地進行。
接著,在導電膜212_0的所希望的位置上藉由光微影製程形成遮罩240(參照圖6A)。
接著,藉由從遮罩240的上方進行蝕刻,對導電膜212_0及絕緣膜210_0進行加工。另外,在對導電膜212_0及絕緣膜210_0進行加工之後,去除遮罩240。藉由對導電膜212_0及絕緣膜210_0進行加工,形成島狀的導電膜212及島狀的絕緣膜210(參照圖6B)。
在本實施方式中,使用乾蝕刻法對導電膜212_0及絕緣膜210_0進行加工。
另外,當對導電膜212_0及絕緣膜210_0進行加工時,有時金屬氧化物208的不與導電膜212重疊的區域的厚度變小。另外,當對導電膜212_0及絕緣膜210_0進行加工時,有時絕緣膜204的不與金屬氧化物 208重疊的區域的厚度變小。另外,當對導電膜212_0及絕緣膜210_0進行加工時,有時蝕刻劑或蝕刻氣體(例如,氯等)被添加到金屬氧化物208中或者導電膜212_0及絕緣膜210_0的構成元素被添加到金屬氧化物208中。
接著,在絕緣膜204、金屬氧化物208及導電膜212上形成絕緣膜216。藉由形成絕緣膜216,金屬氧化物208的與絕緣膜216接觸的區域成為區域208n。另外,在金屬氧化物208的與導電膜212重疊的區域中形成區域208i_1、區域208i_2及區域208i_3。(參照圖6C)。
絕緣膜216可以選擇上述材料形成。在本實施方式中,作為絕緣膜216,使用PECVD設備形成100nm厚的氮氧化矽膜。另外,當形成該氮氧化矽膜時,以220℃進行電漿處理及成膜處理這兩個步驟。該電漿處理的條件為如下:在進行成膜之前將流量為100sccm的氬氣體及流量為1000sccm的氮氣體引入腔室內;將腔室內的壓力設定為40Pa;以RF電源(27.12MHz)供應1000W的功率。另外,該成膜處理的條件為如下:將流量為50sccm的矽烷氣體、流量為5000sccm的氮氣體以及流量為100sccm的氨氣體引入腔室內;將腔室內的壓力設定為100Pa;以RF電源(27.12MHz)供應1000W的功率。
藉由使用氮氧化矽膜作為絕緣膜216,可以對與絕緣膜216接觸的區域208n供應氮氧化矽膜中的氮或氫。另外,藉由以上述溫度形成絕緣膜216,可以抑制絕緣膜210所包含的過量氧釋放到外部。
接著,在絕緣膜216上形成絕緣膜218(參照圖7A)。
絕緣膜218可以選擇上述材料形成。在本實施方式中,作為絕緣膜218,使用PECVD設備形成300nm厚的氧氮化矽膜。
接著,在利用光微影製程在絕緣膜218的所希望的位置上形成遮罩之後,對絕緣膜218的一部分及絕緣膜216的一部分進行蝕刻,由此形成到達區域208n的開口241a、241b(參照圖7B)。
作為絕緣膜218及絕緣膜216的蝕刻方法,可以利用濕蝕刻法和/或乾蝕刻法。在本實施方式中,利用乾蝕刻法對絕緣膜218及絕緣膜216進行加工。
接著,以覆蓋開口241a及241b的方式在區域208n及絕緣膜218上形成導電膜,且將該導電膜加工為所希望的形狀,來形成導電膜220a及220b(參照圖7C)。
導電膜220a及220b可以選擇上述材料形成。在本實施方式中,作為導電膜220a及220b,使用濺射裝置形成50nm厚的鎢膜和400nm厚的銅膜的疊層膜。
作為成為導電膜220a及220b的導電膜的加工方法,可以利用濕蝕刻法和/或乾蝕刻法。在本實施方式中,利用濕蝕刻法對銅膜進行蝕刻,然後利用乾蝕刻法對鎢膜進行蝕刻,對導電膜進行加工而形成導電膜220a及220b。
藉由上述製程可以製造圖4A至圖4C所示的電晶體200C。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而實施。
實施方式2
在本實施方式中,參照圖9A至圖9D對實施方式1所示的電晶體 200C的變形例子進行說明。
圖9A至圖9C為電晶體100C的俯視圖及剖面圖。圖9D為圖9B所示的區域P3的剖面放大圖。
圖9A至圖9C所示的電晶體100C包括金屬氧化物108_1、金屬氧化物108_1上的金屬氧化物108_2n及金屬氧化物108_2n上的金屬氧化物108_3。
例如,作為金屬氧化物108所包括的金屬氧化物108_1使用導帶底能階高的第一金屬氧化物層,作為金屬氧化物108_2n的第一層使用其導帶底能階比第一金屬氧化物層低的第二金屬氧化物層,作為金屬氧化物108_2n的第二層使用其導帶底能階比第二金屬氧化物層高且比第一金屬氧化物層低的第三金屬氧化物層,作為金屬氧化物108_2n的第三層使用其導帶底能階比第三金屬氧化物層低的第四金屬氧化物層,作為金屬氧化物108_3使用導帶底能階高的第五金屬氧化物層。
圖10示出圖9B的M-M’剖面的氧化物的疊層結構的能帶圖的例子。
在此,比較圖8所示的能帶圖和圖10所示的能帶圖。圖8所示的相當於208_bn1的金屬氧化物層的導帶底能階在S2中最低。另一方面,圖10所示的相當於108_bm的金屬氧化物層的導帶底能階在S2中不是最低的。明確而言,在圖10所示的能帶圖中,相當於108_bm的金屬氧化物層的導帶底能階位於S1及S3的導帶底能階與相當於108_nb2及108_nb1的金屬氧化物層的導帶底能階之間。
例如,在形成具有圖8所示的能帶圖的多層結構的金屬氧化物層的情況下,先形成GI,再形成S1,然後形成作為寬能帶間隙材料的相 當於208_bw1的金屬氧化物層。此後,形成作為窄能帶間隙材料的相當於208_bn1的金屬氧化物層,並形成作為寬能帶間隙材料的相當於208_bw2的金屬氧化物層。然後,形成S3並形成GI。在此情況下,有時不能對作為窄能帶間隙材料的相當於208_bn1的金屬氧化物層供應過剰氧。
另一方面,在形成具有圖10所示的能帶圖的多層結構的金屬氧化物層的情況下,當形成相當於108_bm的金屬氧化物層時,例如,藉由在氧流量比高的條件(例如,在沉積氣體的流量中氧的流量所佔的比率為70%以上且低於100%的條件)下形成金屬氧化物層,可以對接觸於108_bm的金屬氧化物層(在此,為相當於108_nb2及108_nb1的金屬氧化物層)供應過剰氧。
藉由採用具有圖10所示的能帶圖的多層結構的金屬氧化物層,有時可以同時獲得具有高場效移動率的金屬氧化物層及氧缺陷少的可靠性高的金屬氧化物層,所以是較佳的。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而實施。
實施方式3
在本實施方式中,參照圖11A至圖11D對實施方式1所示的電晶體200C的變形例子進行說明。
圖11A至圖11C為圖4A至圖4C所示的電晶體200C的變形例子的電晶體200D的俯視圖及剖面圖。圖11D為圖11B所示的區域P8的剖面放大圖。
注意,圖11D所示的區域P8和圖4D所示的區域P7具有同樣的結構,因此省略說明。
電晶體200D所包括的金屬氧化物208與電晶體200C所包括的金屬氧化物208的不同之處在於區域208i_3的形狀。明確而言,在電晶體200D所包括的金屬氧化物208中,區域208i_1的側面及區域208i_2n的側面被區域208i_3覆蓋。藉由採用該形狀,可以實現區域208i_1的側面及區域208i_2n的側面不與絕緣膜210接觸的結構。藉由採用該結構,可以降低有可能進入區域208i_1及區域208i_2n(尤其是區域208i_2n)的雜質,因此可以提供可靠性高的半導體裝置。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而實施。
實施方式4
在本實施方式中,參照圖12至圖15B對使用實施方式1的電晶體的本發明的一個實施方式的顯示裝置進行說明。
首先,參照圖12說明顯示裝置的結構。圖12所示的顯示裝置500包括像素部502、配置在像素部502的外側的閘極驅動電路部504a、504b、配置在像素部502的外側的源極驅動電路部506。
像素部502包括配置為X行(X為2以上的自然數)、Y列(Y為2以上的自然數)的像素電路501(1,1)至501(X,Y)。像素電路501(1,1)至501(X,Y)包括兩個顯示元件,該兩個顯示元件具有彼此不同的功能。兩個顯示元件中的一個具有反射入射光的功能,另一個具有發射光的功能。注意,後面詳細地說明兩個顯示元件。
閘極驅動電路部504a、504b及源極驅動電路部506的一部分或全部與像素部502較佳為形成在同一基板上。由此,可以減少部件個數及端子個數。在閘極驅動電路部504a、504b及源極驅動電路部506的一部分或全部與像素部502不形成在同一基板上的情況下,也可以藉由COG(Chip On Glass:晶粒玻璃接合)或TAB(Tape Automated Bonding:捲帶式自動接合),將另行準備的驅動電路基板(例如,使用單晶半導體膜或多晶半導體膜形成的驅動電路基板)形成在顯示裝置500中。
閘極驅動電路部504a、504b具有輸出選擇像素電路501(1,1)至501(X,Y)的信號(掃描信號)的功能,源極驅動電路部506具有供應用來驅動像素電路501(1,1)至501(X,Y)所包括的顯示元件的信號(資料信號)的功能。
閘極驅動電路部504a具有控制被供應掃描信號的佈線(以下,稱為掃描線GE_1至gE_X)的電位的功能或供應初始化信號的功能。另外,閘極驅動電路部504b具有控制被供應掃描信號的佈線(以下,稱為掃描線GL_1至GL_X)的電位的功能或供應初始化信號的功能。注意,不侷限於此,閘極驅動電路部504a、504b也可以控制或供應其他信號。
在圖12中,示出作為閘極驅動電路部設置閘極驅動電路部504a及閘極驅動電路部504b這兩個閘極驅動電路部的結構,但是不侷限於此,也可以設置一個閘極驅動電路部或三個以上的閘極驅動電路部。
源極驅動電路部506具有根據影像信號產生寫入像素電路501(1,1)至501(X,Y)的資料信號的功能、控制被供應資料信號的佈線(以下,稱為信號線SL_1至SL_Y及信號線SE_1至SE_Y)的電位的功能或者供應初始化信號的功能。注意,不侷限於此,源極驅動電路部506也可以具有產生、控制或供應其他信號的功能。
源極驅動電路部506使用多個類比開關等來構成。源極驅動電路部506藉由依次使多個類比開關開啟而可以輸出對影像信號進行時間分割所得到的信號作為資料信號。
在圖12中,例示出設置一個源極驅動電路部506的結構,但是不侷限於此,也可以在顯示裝置500中設置多個源極驅動電路部。例如,也可以設置兩個源極驅動電路部,由一個源極驅動電路部控制信號線SL_1至SL_Y,由另一個源極驅動電路部控制信號線SE_1至SE_Y
對像素電路501(1,1)至501(X,Y)藉由掃描線GL_1至GL_X及掃描線GE_1至GE_X中的一個輸入脈衝信號,藉由信號線SL_1至SL_Y及信號線SE_1至SE_Y中的一個輸入資料信號。
例如,對第m行第n列(m表示X以下的自然數,n表示Y以下的自然數)的像素電路501(m,n)藉由掃描線GL_m及掃描線GE_m從閘極驅動電路部504a輸入脈衝信號,根據掃描線GL_m及掃描線GE_m的電位藉由信號線SL_n及信號線SE_n從源極驅動電路部506輸入資料信號。
如上所述,像素電路501(m,n)包括兩個顯示元件。掃描線GL_1至GL_X是控制施加到兩個顯示元件中的一個的脈衝信號的電位的佈線,掃描線GE_1至GE_X是控制施加到兩個顯示元件中的另一個的脈衝信號的電位的佈線。
信號線SL_1至SL_Y是控制供應到兩個顯示元件中的一個的資料信號的電位的佈線,信號線SE_1至SE_Y是控制供應到兩個顯示元件中的另一個的資料信號的電位的佈線。
顯示裝置500與外部電路508a、508b連接。此外,外部電路508a、508b也可以形成在顯示裝置500中。
如圖12所示,外部電路508a與被供應陽極電位的佈線(以下,稱為陽極線ANO_1至ANO_x)電連接,外部電路508b與被供應共用電位的佈線(以下,稱為公用線COM_1至COM_X)電連接。
接著,參照圖13說明像素電路501(m,n)的結構。
圖13是說明本發明的一個實施方式的顯示裝置500所包括的像素電路501(m,n)、在列方向上與像素電路501(m,n)相鄰的像素電路501(m,n+1)的電路圖。此外,在本說明書等中,列方向是指信號線SL_n(或信號線SE_n)的n增減的方向,行方向是指掃描線GL_m(或掃描線GE_m)的m增減的方向。
像素電路501(m,n)包括電晶體Tr1、電晶體Tr2、電晶體Tr3、電容元件C1、電容元件C2、顯示元件430、顯示元件630。像素電路501(m,n+1)也具有相同的結構。
像素電路501(m,n)與信號線SL_n、信號線SE_n、掃描線GL_m、掃描線GE_m、公用線COM_m、公用線VCOM1、公用線VCOM2及陽極線ANO_m電連接。此外,像素電路501(m,n+1)與信號線SL_n+1、信號線SE_n+1、掃描線GL_m、掃描線GE_m、公用線COM_m、公用線VCOM1、公用線VCOM2及陽極線ANO_m電連接。
信號線SL_n、信號線SL_n+1、掃描線GL_m、公用線COM_m及公用線VCOM1都是用來驅動顯示元件430的佈線,信號線SE_n、信號線SE_n+1、掃描線GE_m、公用線VCOM2及陽極線ANO_m都是用來驅動顯示元件630的佈線。
在供應到信號線SE_n及信號線SE_n+1的電位與供應到信號線SL_n及信 號線SL_n+1的電位不同的情況下,如圖13所示,較佳為使信號線SE_n與信號線SL_n+1遠離配置。換言之,較佳為使信號線SE_n與信號線SE_n+1相鄰配置。藉由採用這種配置,可以減少產生在信號線SL_n及信號線SL_n+1與信號線SE_n及信號線SE_n+1之間的電位差的影響。
顯示元件430具有控制光的反射或光的透過的功能。尤其是,作為顯示元件430較佳為採用控制光的反射的顯示元件,所謂反射型顯示元件。藉由作為顯示元件430採用反射型顯示元件,可以使用外光進行顯示,由此可以抑制顯示裝置的功耗。例如,作為顯示元件430可以採用組合反射膜、液晶元件、偏光板的結構或使用微機電系統(MEMS)的結構等。
顯示元件630具有發射光的功能,亦即具有發光的功能。因此,也可以將顯示元件630換稱為發光元件。例如,作為顯示元件630,可以使用電致發光元件(也稱為EL元件)或發光二極體等。
如此,在本發明的一個實施方式的顯示裝置中,如顯示元件430及顯示元件630所示,使用具有不同功能的顯示元件。例如,藉由作為顯示元件的一個使用反射型液晶元件,作為另一個使用透過型EL元件,可以提供一種方便性或可靠性優異的新穎的顯示裝置。此外,藉由在外光亮的環境下,使用反射型液晶元件,而在外光暗的環境下,使用透過型EL元件,可以提供功耗低且顯示品質高的顯示裝置。
下面,對顯示元件430及顯示元件630的驅動方法進行說明。注意,在如下說明中,作為顯示元件430使用液晶元件,作為顯示元件630使用發光元件。
在像素電路501(m,n)中,電晶體Tr1的閘極電極與掃描線GL_m電連接。此外,電晶體Tr1的源極電極和汲極電極中的一個與信號線 SL_n電連接,另一個與顯示元件430的一對電極中的一個電連接。電晶體Tr1具有藉由切換導通/關閉而控制資料信號的寫入的功能。
顯示元件430的一對電極中的另一個與公用線VCOM1電連接。
電容元件C1的一對電極中的一個與公用線COM_m電連接,另一個與電晶體Tr1的源極電極和汲極電極中的另一個及顯示元件430的一對電極中的一個電連接。電容元件C1具有保持寫入到像素電路501(m,n)的資料的功能。
例如,藉由圖12所示的閘極驅動電路部504b依次選擇各行的像素電路501(m,1)至像素電路501(m,Y),並使電晶體Tr1導通而寫入資料信號。被寫入資料的像素電路501(m,n)在電晶體Tr1被關閉時成為保持狀態。藉由按行依次進行上述步驟,可以顯示影像。
在像素電路501(m,n)中,電晶體Tr2的閘極電極與掃描線GE_m電連接。此外,電晶體Tr2的源極電極和汲極電極中的一個與信號線SE_n電連接,另一個與電晶體Tr3的閘極電極電連接。電晶體Tr2具有藉由切換導通/關閉而控制資料信號的寫入的功能。
電容元件C2的一對電極中的一個與陽極線ANO_m電連接,另一個與電晶體Tr2的源極電極和汲極電極中的另一個電連接。電容元件C2具有保持寫入到像素電路501(m,n)的資料的功能。
電晶體Tr3的閘極電極與電晶體Tr2的源極電極和汲極電極中的另一個電連接。此外,電晶體Tr3的源極電極和汲極電極中的一個與陽極線ANO_m電連接,另一個與顯示元件630的一對電極中的一個電連接。此外,在電晶體Tr3中設置有背閘極電極,該背閘極電極與電晶體Tr3的閘極電極電連接。
顯示元件630的一對電極中的另一個與公用線VCOM2電連接。
例如,藉由圖12所示的閘極驅動電路部504a依次選擇各行的像素電路501(m,1)至501(m,Y),並使電晶體Tr2導通而寫入資料信號。被寫入資料的像素電路501(m,n)在電晶體Tr2被關閉時成為保持狀態。並且,流過電晶體Tr3的源極電極與汲極電極之間的電流量根據被寫入的資料信號的電位被控制,顯示元件630以對應於該電流量的亮度發光。藉由按行依次進行上述步驟,可以顯示影像。
如此,在本發明的一個實施方式的顯示裝置中,可以藉由使用不同電晶體獨立地控制兩個顯示元件。因此,可以提供顯示品質高的顯示裝置。
用於本發明的一個實施方式的顯示裝置的電晶體(電晶體Tr1、Tr2、Tr3)包括金屬氧化物。由於包括金屬氧化物的電晶體可以得到較高的場效移動率,所以能夠實現高速驅動。此外,具有金屬氧化物的電晶體的關態電流極小。因此,即使降低顯示裝置的更新速率也可以保持顯示裝置的亮度,由此可以抑制功耗。
作為顯示元件430及顯示元件630的顯示方式,可以採用逐行掃描方式或隔行掃描方式等。另外,作為在進行彩色顯示時在像素中控制的顏色要素,可以舉出RGB(R是紅色、G是綠色、B是藍色)。注意,顏色要素不侷限於RGB的三種顏色。例如,對RGB追加黃色(yellow)、藍色(cyan)、洋紅色(magenta)、白色(white)等中的一種以上的顏色。另外,各個顏色要素的點的顯示區域的大小可以不同。注意,本發明的一個實施方式的顯示裝置不侷限於彩色顯示的顯示裝置,而也可以應用於黑白顯示的顯示裝置。
在此,參照圖14A和圖14B對顯示元件430及顯示元件630的像素電路501(m,n)中的顯示區域進行說明。
圖14A是說明像素電路501(m,n)、在列方向上與像素電路501(m,n)相鄰的像素電路501(m,n-1)及像素電路501(m,n+1)的顯示區域的示意圖。
圖14A所示的像素電路501(m,n)、像素電路501(m,n-1)及像素電路501(m,n+1)都包括:被用作顯示元件430的顯示區域的顯示區域430d;以及被用作顯示元件630的顯示區域的顯示區域630d。
例如,顯示區域430d具有使光反射的區域,顯示區域630d具有使光透過的區域。此外,如圖14A所示,在列方向上與像素電路501(m,n)相鄰的像素電路501(m,n-1)及像素電路501(m,n+1)較佳為在與像素電路501(m,n)中的顯示區域630d的位置不同的位置上包括顯示區域630d。
藉由採用如圖14A所示的顯示區域630d的配置,可以提高分別形成顯示元件630時的製造良率,或者,可以抑制相鄰的像素電路之間的顯示元件630所發射的光導致的干涉。
在圖14A中示出作為像素電路501(m,n-1)、像素電路501(m,n)及像素電路501(m,n+1)的配置採用列方向的條紋排列的例子,但是不侷限於此。例如,也可以採用圖14B所示的行方向的條紋排列。或者,雖然未圖示,但是也可以採用三角狀排列或PenTile排列。此外,圖14B是說明像素電路501(m,n)、在行方向上與像素電路501(m,n)相鄰的像素電路501(m-1,n)及像素電路501(m+1,n)的顯示區域的示意圖。
圖14B所示的像素電路501(m,n)、像素電路501(m-1,n)及像素電路501(m+1,n)都包括:被用作顯示元件430的顯示區域的顯示區域430d;以及被用作顯示元件630的顯示區域的顯示區域630d。作為顯示區域430d和顯示區域630d的結構,可以採用與圖14A所示的結構同樣的結構。
接著,參照圖15A至圖16說明圖12所示的顯示裝置500的具體結構例子。
圖15A是顯示裝置500的俯視圖。如上所述,顯示裝置500包括像素部502、配置在像素部502的外側的閘極驅動電路部504a、504b、配置在像素部502的外側的源極驅動電路部506。此外,圖15A示意性地示出像素部502所包括的像素電路501(m,n)。另外,在圖15A中,顯示裝置500與FPC(Flexible Printed Circuit:軟性印刷電路板)電連接。
圖15B是示意性地示出圖15A所示的像素電路501(m,n)、與像素電路501(m,n)相鄰地配置的像素電路501(m,n+1)的俯視圖。圖15B所示的信號線SL_n、SL_n+1、SE_n、SE_n+1、掃描線GL_m、GE_m、公用線COM_m及電晶體Tr1、Tr2、Tr3分別對應於圖13所示的圖式標號。此外,在圖15B中,顯示區域430d、顯示區域630d分別對應於圖14A所示的圖式標號。另外,圖15B所示的公用線COM_m+1表示與像素電路501(m,n)相鄰地配置的像素電路501(m+1,n)所包括的公用線。
下面,參照圖16說明顯示裝置500的剖面結構。
圖16是相當於沿著圖15A和圖15B所示的點劃線A1-A2、A3-A4、A5-A6、A7-A8、A9-A10、A11-A12的切斷面的剖面圖。
點劃線A1-A2的剖面相當於在顯示裝置500中安裝有FPC的區域, 點劃線A3-A4的剖面相當於設置有閘極驅動電路部504a的區域,點劃線A5-A6的剖面相當於設置有顯示元件430及顯示元件630的區域,點劃線A7-A8的剖面相當於設置有顯示元件430的區域,點劃線A9-A10的剖面相當於顯示裝置500的連接區域,點劃線A11-A12的剖面相當於顯示裝置500的端部附近的區域。
在圖16中,顯示裝置500在基板452與基板652之間包括顯示元件430、顯示元件630、電晶體Tr1、電晶體Tr3、電晶體Tr4。
如上所述,顯示元件430具有反射入射光的功能,顯示元件630具有發射光的功能。在圖16中以虛線的箭頭示意性地示出入射到顯示元件430的光及被反射的光。此外,以雙點劃線的箭頭示意性地示出顯示元件630所發射的光。
首先,參照圖17說明圖16所示的點劃線A5-A6及點劃線A7-A8的剖面的詳細內容。圖17相當於放大圖16所示的點劃線A5-A6及點劃線A7-A8的一部分的組件的剖面且使圖16倒過來的剖面圖。注意,在圖17中,為了簡化起見,有時省略組件的一部分。
顯示元件430包括導電膜403b、液晶層620、導電膜608。此外,導電膜403b具有像素電極的功能,導電膜608具有相對電極的功能。另外,導電膜403b與電晶體Tr1電連接。
顯示元件430包括與導電膜403b電連接的導電膜405b、405c。導電膜405b、405c具有反射入射光的功能。換言之,導電膜405b、405c具有反射膜的功能。此外,在該反射膜中設置有透過入射光的開口部450。在圖17中,藉由開口部450使用作反射膜的導電膜分離為島狀,在電晶體Tr1的下方配置有導電膜405c,在電晶體Tr3的下方配置有導電膜405b。此外,由於顯示元件630的光從開口部450射出,所以開 口部450相當於圖16所示的顯示區域630d。
顯示元件630具有向開口部450發射光的功能。在圖17中顯示元件630是所謂底面發射型(底部發射型)的發光元件。
顯示元件630包括導電膜417、EL層419、導電膜420。導電膜417被用作像素電極及陽極電極,導電膜420被用作相對電極及陰極電極。在本實施方式中,對導電膜417被用作陽極電極且導電膜420被用作陰極電極的結構進行說明,但是不侷限於此。例如,也可以將導電膜417用作陰極電極,將導電膜420用作陽極電極。
導電膜417與電晶體Tr3電連接。
電晶體Tr1及電晶體Tr3包含金屬氧化物。另外,被用作像素電極的導電膜403b、417包含電晶體Tr1、Tr3所包含的金屬氧化物所具有的金屬元素中的一個以上。
例如,藉由將金屬氧化物用於電晶體Tr1及電晶體Tr3的通道區,且將與用於通道區的金屬氧化物相同組成的金屬氧化物用於被用作像素電極的導電膜403b、417,可以降低製造成本。如圖17所示,在包括多個顯示元件及多個電晶體的顯示裝置中,需要多個絕緣膜、導電膜或半導體膜等,因此在不同製程中共同使用相同材料是重要的。
如圖17所示,電晶體Tr1及電晶體Tr3較佳為交錯型(也稱為頂閘極結構)電晶體。藉由採用具有交錯型結構的電晶體,可以降低產生在閘極電極與源極電極及汲極電極之間的寄生電容。
電晶體Tr1形成在絕緣膜406及絕緣膜408上,並包括絕緣膜408上的金屬氧化物膜409c、金屬氧化物膜409c上的絕緣膜410c、絕緣膜 410c上的金屬氧化物膜411c。絕緣膜410c被用作閘極絕緣膜,金屬氧化物膜411c被用作閘極電極。
在金屬氧化物膜409c及金屬氧化物膜411c上設置有絕緣膜412、413。此外,在絕緣膜412、413中設置有到達金屬氧化物膜409c的開口部,藉由該開口部,導電膜414f、414g與金屬氧化物膜409c電連接。導電膜414f、414g分別被用作電晶體Tr1的源極電極及汲極電極。
在電晶體Tr1上設置有絕緣膜416、418。
電晶體Tr3形成在絕緣膜406上,並包括絕緣膜406上的導電膜407b、導電膜407b上的絕緣膜408、絕緣膜408上的金屬氧化物膜409b、金屬氧化物膜409b上的絕緣膜410b、絕緣膜410b上的金屬氧化物膜411b。導電膜407b被用作第一閘極電極,絕緣膜408被用作第一閘極絕緣膜。此外,絕緣膜410b被用作第二閘極絕緣膜,金屬氧化物膜411b被用作第二閘極電極。
在金屬氧化物膜409b及金屬氧化物膜411b上設置有絕緣膜412、413。此外,在絕緣膜412、413中設置有到達金屬氧化物膜409b的開口部,藉由該開口部,導電膜414d、414e與金屬氧化物膜409b電連接。導電膜414d、414e分別被用作電晶體Tr3的源極電極及汲極電極。
導電膜414e藉由設置在絕緣膜408、412、413中的開口部與導電膜407f電連接。此外,導電膜407f與導電膜407b在同一製程中製造,被用作連接電極。
在電晶體Tr3上設置有絕緣膜416及導電膜417。此外,在絕緣膜416中設置有到達導電膜414d的開口部,藉由該開口部,導電膜414d與導電膜417電連接。
在導電膜417上設置有絕緣膜418、EL層419及導電膜420。此外,在絕緣膜418中設置有到達導電膜417的開口部,藉由該開口部,導電膜417與EL層419電連接。
導電膜420隔著密封劑454與基板452黏合。
在與基板452對置的基板652上設置有彩色膜604、絕緣膜606及導電膜608。此外,在基板652的下方設置有功能膜626。此外,被顯示元件430反射的光及從顯示元件630發射的光經過彩色膜604、功能膜626等取出到外部。
如圖17所示,顯示元件430包括與液晶層620接觸的配向膜618a、618b。此外,也可以不設置配向膜618a、618b。
如圖17所示,藉由使電晶體Tr1及電晶體Tr3的結構不同,可以縮小電路面積。明確而言,電晶體Tr1是設置有用作閘極電極的金屬氧化物膜411c的單閘極電晶體。另一方面,電晶體Tr3是設置有用作第一閘極電極的導電膜407b、用作第二閘極電極的金屬氧化物膜411b的多閘極電晶體。注意,用於本發明的一個實施方式的顯示裝置的電晶體結構不侷限於上述結構。例如,電晶體Tr1及電晶體Tr3也可以都是單閘極結構電晶體或多閘極結構電晶體。
接著,參照圖18詳細地說明圖16所示的點劃線A1-A2及點劃線A3-A4的剖面。圖18相當於放大圖16所示的點劃線A1-A2及點劃線A3-A4的組件的剖面且使圖16倒過來的剖面圖。注意,在圖18中,為了簡化起見,有時省略組件的一部分。
圖18所示的FPC藉由ACF(異方性導電膜(Anisotropic Conductive Film))與導電膜403a電連接。此外,在導電膜403a上設置有絕緣膜404。此外,在絕緣膜404中設置有到達導電膜403a的開口部,藉由該開口部,導電膜403a與導電膜405a電連接。
在導電膜405a上設置有絕緣膜406。此外,在絕緣膜406中設置有到達導電膜405a的開口部,藉由該開口部,導電膜405a與導電膜407a電連接。此外,在導電膜407a上設置有絕緣膜408、412、413。此外,在絕緣膜408、412、413中設置有到達導電膜407a的開口部,藉由該開口部,導電膜407a與導電膜414a電連接。
在絕緣膜413及導電膜414a上設置有絕緣膜416、418。絕緣膜418隔著密封劑454與基板452黏合。
圖18所示的電晶體Tr4相當於閘極驅動電路部504a所包括的電晶體。
電晶體Tr4形成在絕緣膜406上,並包括絕緣膜406上的導電膜407e、導電膜407e上的絕緣膜408、絕緣膜408上的金屬氧化物膜409a、金屬氧化物膜409a上的絕緣膜410a、絕緣膜410a上的金屬氧化物膜411a。導電膜407e被用作第一閘極電極。此外,絕緣膜410a被用作第二閘極絕緣膜,金屬氧化物膜411a具有第二閘極電極的功能。
在金屬氧化物膜409a及金屬氧化物膜411a上設置有絕緣膜412、413。此外,在絕緣膜412、413中設置有到達金屬氧化物膜409a的開口部,藉由該開口部,導電膜414b、414c與金屬氧化物膜409a電連接。導電膜414b、414c分別被用作電晶體Tr4的源極電極及汲極電極。
與上述電晶體Tr3同樣,電晶體Tr4是多閘極結構的電晶體。藉由在閘極驅動電路部504a中使用多閘極結構的電晶體,可以提高電流驅 動能力,所以是較佳的。此外,藉由使用多閘極結構的電晶體,可以提高電流驅動能力,所以可以使驅動電路的寬度變窄。
在電晶體Tr4上設置有絕緣膜416、418。此外,絕緣膜418隔著密封劑454與基板452黏合。
在與基板452對置的基板652上設置有遮光膜602、絕緣膜606及導電膜608。
在導電膜608上的與電晶體Tr4重疊的位置上形成有結構體610a。此外,結構體610a具有控制液晶層620的厚度的功能。此外,在圖18中,在結構體610a與絕緣膜404之間包括配向膜618a、618b。注意,也可以在結構體610a與絕緣膜404之間不形成配向膜618a、618b。
在基板652的端部設置有密封劑622。此外,密封劑622設置在基板652與導電膜403a之間。
接著,以下對圖16至圖18所例示的顯示裝置500的各組件進行說明。
可以將具有能夠承受製程中的加熱處理的程度的耐熱性的材料用於基板452、652。
明確而言,可以將無鹼玻璃、鈉鈣玻璃、鉀鈣玻璃、水晶玻璃、石英或藍寶石等用於基板452、652。另外,也可以使用無機絕緣膜。作為該無機絕緣膜,例如可以舉出氧化矽膜、氮化矽膜、氧氮化矽膜、氧化鋁膜等。
上述無鹼玻璃的厚度例如可以為0.2mm以上且0.7mm以下。或者, 可以藉由對無鹼玻璃進行拋光,實現上述厚度。
作為基板452、652,可以使用第六世代(1500mm×1850mm)、第七世代(1870mm×2200mm)、第八世代(2200mm×2400mm)、第九世代(2400mm×2800mm)、第十世代(2950mm×3400mm)等面積大的玻璃基板。由此,可以製造大型顯示裝置。
作為基板452、652也可以使用樹脂、樹脂薄膜或塑膠等有機材料。作為該樹脂薄膜,可舉出聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯、聚氨酯、丙烯酸樹脂、環氧樹脂、聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)或具有矽氧烷鍵合的樹脂等。作為絕緣膜404、406、408、410a、410b、410c、412、413、416、418、606,可以使用絕緣性無機材料、絕緣性有機材料或包含絕緣性無機材料和絕緣性有機材料的絕緣性複合材料。
作為上述絕緣性無機材料,可以舉出氧化矽膜、氮化矽膜、氧氮化矽膜、氮氧化矽膜、氧化鋁膜等。此外,也可以層疊多個上述無機材料。
作為上述絕緣性有機材料,例如可以使用包含聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯、聚氨酯、丙烯酸類樹脂、環氧類樹脂或具有矽氧烷鍵合的樹脂的材料。此外,作為上述絕緣性有機材料,也可以使用具有感光性的材料。
金屬氧化物膜409a、409b、409c具有多層結構,其中至少一層或者所有的層可以使用CAC(Cloud-Aligned Composite)-OS。
CAC-OS例如是指包含在氧化物半導體中的元素不均勻地分佈的 構成,其中包含不均勻地分佈的元素的材料的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸。注意,在下面也將在氧化物半導體中一個或多個金屬元素不均勻地分佈且包含該金屬元素的區域混合的狀態稱為馬賽克(mosaic)狀或補丁(patch)狀,該區域的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸。
另外,氧化物半導體較佳為至少包含銦。尤其較佳為包含銦及鋅。除此之外,也可以還包含選自鋁、鎵、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種。
例如,In-Ga-Zn氧化物中的CAC-OS(在CAC-OS中,可以將In-Ga-Zn氧化物特別稱為CAC-IGZO)是指其材料分成銦氧化物(以下,稱為InOX1(X1為大於0的實數))或銦鋅氧化物(以下,稱為InX2ZnY2OZ2(X2、Y2及Z2為大於0的實數))以及鎵氧化物(以下,稱為GaOX3(X3為大於0的實數))或鎵鋅氧化物(以下,稱為GaX4ZnY4OZ4(X4、Y4及Z4為大於0的實數))等而成為馬賽克狀,且馬賽克狀的InOX1或InX2ZnY2OZ2均勻地分佈在膜中的構成(以下,也稱為雲狀)。
換言之,CAC-OS是具有以GaOX3為主要成分的區域和以InX2ZnY2OZ2或InOX1為主要成分的區域混在一起的構成的複合氧化物半導體。在本說明書中,例如,當第一區域的In對元素M的原子數比大於第二區域的In對元素M的原子數比時,第一區域的In濃度高於第二區域。
注意,IGZO是通稱,有時是指包含In、Ga、Zn及O的化合物。作為典型例子,可以舉出以InGaO3(ZnO)m1(m1為自然數)或In(1+x0)Ga(1-x0)O3(ZnO)m0(-1x01,m0為任意數)表示的結晶性化合物。
上述結晶性化合物具有單晶結構、多晶結構或CAAC(C Axis Aligned Crystalline)結構。CAAC結構是多個IGZO奈米晶具有c軸配向性且在a-b面上以不配向的方式連接的結晶結構。
另一方面,CAC-OS與氧化物半導體的材料構成有關。CAC-OS是指在包含In、Ga、Zn及O的材料構成中部分地觀察到以Ga為主要成分的奈米粒子的區域和部分地觀察到以In為主要成分的奈米粒子的區域以馬賽克狀無規律地分散的構成。因此,在CAC-OS構成中,結晶結構是次要因素。
CAC-OS不包含組成不同的二種以上的膜的疊層結構。例如,不包含由以In為主要成分的膜與以Ga為主要成分的膜的兩層構成的結構。
注意,有時觀察不到以GaOX3為主要成分的區域與以InX2ZnY2OZ2或InOX1為主要成分的區域之間的明確的邊界。
在CAC-OS中包含選自鋁、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種以代替鎵的情況下,CAC-OS是指如下構成:一部分中觀察到以該金屬元素為主要成分的奈米粒子狀的區域,一部分中觀察到以In為主要成分的奈米粒子狀的區域,並且,這些區域以馬賽克狀無規律地分散。
CAC-OS例如可以在對基板不進行意圖性的加熱的條件下利用濺射法形成。當利用濺射法形成CAC-OS時,作為沉積氣體,可以使用選自惰性氣體(典型的是氬)、氧氣體和氮氣體中的一種或多種。成膜時的相對於沉積氣體總流量的氧氣體的流量比越低越好。例如,氧氣體的流量比較佳為0%以上且低於30%,更佳為0%以上且10%以下。
CAC-OS具有如下特徵:藉由利用X射線繞射(XRD:X-ray diffraction)測定法之一的Out-of-plane法的θ/2θ掃描進行測量時觀察不到明確的峰值。也就是說,根據X射線繞射,可知在測定區域中沒有a-b面方向及c軸方向上的配向。
另外,在藉由照射束徑為1nm的電子束(也稱為奈米束)而得到的CAC-OS的電子繞射圖案中,觀察到環狀的高亮度區域以及該環狀區域中的多個亮點。因此,根據電子繞射圖案,可知CAC-OS的結晶結構是在平面方向及剖面方向上沒有配向性的nc(nano-crystal)結構。
另外,例如在In-Ga-Zn氧化物的CAC-OS中,根據利用能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)取得的EDX面分析影像,可以確認到該CAC-OS具有以GaOX3為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域不均勻地分佈而混合的結構。
CAC-OS的結構與金屬元素均勻地分佈的IGZO化合物不同,由此CAC-OS具有與IGZO化合物不同的性質。換言之,CAC-OS具有以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域互相分離且以各元素為主要成分的區域為馬賽克狀的構成。
在此,以InX2ZnY2OZ2或InOX1為主要成分的區域的導電性高於以GaOX3等為主要成分的區域。換言之,當載子流過以InX2ZnY2OZ2或InOX1為主要成分的區域時,呈現氧化物半導體的導電性。因此,當以InX2ZnY2OZ2或InOX1為主要成分的區域在氧化物半導體中以雲狀分佈時,可以實現高場效移動率(μ)。
另一方面,以GaOX3等為主要成分的區域的絕緣性高於以InX2ZnY2OZ2或InOX1為主要成分的區域。換言之,當以GaOX3等為主要成分的區域 在氧化物半導體中分佈時,可以抑制洩漏電流而實現良好的切換工作。
因此,當將CAC-OS用於半導體元件時,起因於GaOX3等的絕緣性及起因於InX2ZnY2OZ2或InOX1的導電性的互補作用可以實現高通態電流(Ion)及高場效移動率(μ)。
另外,使用CAC-OS的半導體元件具有高可靠性。因此,CAC-OS適合於顯示器等各種半導體裝置。
在本實施方式中,金屬氧化物膜409a、409b、409c具有疊層結構,其中至少一個層或者所有的層包含CAC-OS即可。由於氧化物半導體膜具有疊層結構,因此,也可以採用組成不同的多個種類的CAC-OS的疊層結構。
作為液晶層620,可以舉出熱致液晶、低分子液晶、高分子液晶、聚合物分散液晶、鐵電液晶、反鐵電液晶等。或者,可以使用呈現膽固醇相、層列相、立方相、手性向列相、各向同性相等的液晶材料。或者,可以使用呈現藍相的液晶材料。
作為液晶層620的驅動方法,可以舉出IPS(In-Plane-Switching:平面內切換)模式、TN(Twisted Nematic:扭轉向列)模式、FFS(Fringe Field Switching:邊緣場切換)模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微胞)模式、OCB(Optically Compensated Birefringence:光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式、AFLC(AntiFerroelectric Liquid Crystal:反鐵電性液晶)模式等。此外,也可以使用垂直配向(VA)模式諸如MVA(Multi-Domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ECB(Electrically Controlled Birefringence:電控雙折射)模式、CPA(Continuous Pinwheel Alignment:連續焰火狀排列)模式、ASV(Advanced Super View:高級超視覺)模式等驅動方法。
EL層419至少包含發光材料。作為該發光材料,可以舉出有機化合物或量子點等無機化合物。
上述有機化合物及無機化合物例如可以利用蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、凹版印刷法等方法形成。
作為可以用於有機化合物的材料,可以舉出螢光性材料或磷光性材料等。從壽命的觀點來看,使用螢光材料即可,從效率的觀點來看,使用磷光材料即可。或者,也可以具有螢光材料及磷光材料的兩者。
量子點是其尺寸為幾nm的半導體奈米晶,並包括1×103個至1×106個左右的原子。量子點的能量移動依賴於其尺寸,因此,即使是包括相同的物質的量子點也根據尺寸具有互不相同的發光波長,所以藉由改變所使用的量子點的尺寸,可以容易改變發光波長。
此外,量子點的發射光譜的峰寬窄,因此,可以得到色純度高的發光。再者,量子點的理論上的內部量子效率被認為大約是100%,亦即,大幅度地超過呈現螢光發光的有機化合物的25%,且與呈現磷光發光的有機化合物相等。因此,藉由將量子點用作發光材料,可以獲得發光效率高的發光元件。而且,作為無機化合物的量子點在實質穩定性上也是優異的,因此,可以獲得壽命長的發光元件。
作為構成量子點的材料,可以舉出元素週期表中第十四族元素、元素週期表中第十五族元素、元素週期表中第十六族元素、包含多個元素週期表中第十四族元素的化合物、元素週期表中第四族至元素週 期表中第十四族的元素和元素週期表中第十六族元素的化合物、元素週期表中第二族元素和元素週期表中第十六族元素的化合物、元素週期表中第十三族元素和元素週期表中第十五族元素的化合物、元素週期表中第十三族元素和第元素週期表中第十七族元素的化合物、元素週期表中第十四族元素和元素週期表中第十五族元素的化合物、元素週期表中第十一族元素和元素週期表中第十七族元素的化合物、氧化鐵類、氧化鈦類、硫系尖晶石(spinel chalcogenide)類、各種半導體簇等。
明確而言,可以舉出硒化鎘、硫化鎘、碲化鎘、硒化鋅、氧化鋅、硫化鋅、碲化鋅、硫化汞、硒化汞、碲化汞、砷化銦、磷化銦、砷化鎵、磷化鎵、氮化銦、氮化鎵、銻化銦、銻化鎵、磷化鋁、砷化鋁、銻化鋁、硒化鉛、碲化鉛、硫化鉛、硒化銦、碲化銦、硫化銦、硒化鎵、硫化砷、硒化砷、碲化砷、硫化銻、硒化銻、碲化銻、硫化鉍、硒化鉍、碲化鉍、矽、碳化矽、鍺、錫、硒、碲、硼、碳、磷、氮化硼、磷化硼、砷化硼、氮化鋁、硫化鋁、硫化鋇、硒化鋇、碲化鋇、硫化鈣、硒化鈣、碲化鈣、硫化鈹、硒化鈹、碲化鈹、硫化鎂、硒化鎂、硫化鍺、硒化鍺、碲化鍺、硫化錫、硒化錫、碲化錫、氧化鉛、氟化銅、氯化銅、溴化銅、碘化銅、氧化銅、硒化銅、氧化鎳、氧化鈷、硫化鈷、四氧化三鐵、硫化鐵、氧化錳、硫化鉬、氧化釩、氧化鎢、氧化鉭、氧化鈦、氧化鋯、氮化矽、氮化鍺、氧化鋁、鈦酸鋇、硒鋅鎘的化合物、銦砷磷的化合物、鎘硒硫的化合物、鎘硒碲的化合物、銦鎵砷的化合物、銦鎵硒的化合物、銦硒硫的化合物、銅銦硫的化合物以及它們的組合等,但是不侷限於此。此外,也可以使用以任意數表示組成的所謂的合金型量子點。例如,因為鎘硒硫的合金型量子點可以藉由改變元素的含量比來改變發光波長,所以鎘硒硫的合金型量子點是有效於得到藍色發光的手段之一。
作為量子點的結構,有核型、核殼(Core Shell)型、核多殼(Core Multishell)型等。可以使用上述任一個,但是藉由使用覆蓋核且具有更寬的能帶間隙的其他無機材料來形成殼,可以減少存在於奈米晶表面上的缺陷或懸空鍵的影響,從而可以大幅度地提高發光的量子效率。由此,較佳為使用核殼型或核多殼型的量子點。作為殼的材料的例子,可以舉出硫化鋅或氧化鋅。
此外,在量子點中,由於表面原子的比例高,因此反應性高而容易發生聚集。因此,量子點的表面較佳為附著有保護劑或設置有保護基。由此可以防止聚集並提高對溶劑的溶解性。此外,還可以藉由降低反應性來提高電穩定性。作為保護劑(或保護基),例如可以舉出:月桂醇聚氧乙烯醚、聚氧乙烯硬脂酸酯(polyoxyethylene stearyl ether)、聚氧乙烯月桂醚(polyoxyethylene oleyl ether)等聚氧乙烯烷基醚類;三丙基膦、三丁基膦、三己基膦、三辛基膦等三烷基膦類;聚氧乙烯n-辛基苯基醚、聚氧乙烯n-壬基苯基醚等聚氧乙烯烷基苯基醚類;三(n-己基)胺、三(n-辛基)胺、三(n-癸基)胺等三級胺類;三丙基氧化膦、三丁基氧化膦、三己基氧化膦、三辛基氧化膦、三癸基氧化膦等有機磷化合物;聚乙二醇二月桂酸酯、聚乙二醇二硬脂酸酯等聚乙二醇二酯類;吡啶、二甲基吡啶、柯林鹼、喹啉類等含氮芳香化合物等有機氮化合物;己基胺、辛基胺、癸基胺、十二烷基胺、十四烷基胺、十六烷基胺、十八烷基胺等胺基鏈烷類;二丁基硫醚等二烷基硫醚類;二甲亞碸、二丁亞碸等二烷亞碸類;噻吩等含硫芳香化合物等有機硫化合物;棕櫚酸、硬脂酸、油酸等高級脂肪酸;乙醇類;失水山梨醇脂肪酸酯類;脂肪酸改性聚酯類;三級胺類改性聚氨酯類;聚乙烯亞胺類等。
量子點其尺寸越小能帶間隙越大,因此適當地調節其尺寸以獲得所希望的波長的光。結晶尺寸越小,量子點的發光越向藍色一側(亦即,高能量一側)遷移,因此,藉由改變量子點的尺寸,可以將發光波長調節為紫外區、可見光區和紅外區的光譜的波長區域。通常使用 的量子點的尺寸(直徑)為0.5nm至20nm,較佳為1nm至10nm。另外,量子點其尺寸分佈越小發射光譜越窄,因此可以獲得色純度高的發光。另外,對量子點的形狀沒有特別的限制,可以為球狀、棒狀、圓盤狀、其他的形狀。另外,作為棒狀量子點的量子杆呈現向c軸方向偏振的具有指向性的光,所以藉由將量子杆用作發光材料,可以得到外部量子效率更高的發光元件。
在EL元件中,通常藉由將發光材料分散在主體材料中來提高發光效率,並且主體材料需要具有發光材料以上的單重激發能階或三重激發能階。特別是,在使用藍色磷光材料時,要開發出具有藍色磷光材料以上的三重激發能且使用壽命長的主體材料是極困難的。另一方面,量子點即使在只使用量子點而不使用主體材料來形成發光層的情況下,也可以確保發光效率,因此可以得到使用壽命長的發光元件。在只使用量子點形成發光層時,量子點較佳為具有核殼型結構(包括核多殼型結構)。
配向膜618a、618b可以使用包含聚醯亞胺等的材料。例如,以在預定的方向上配向的方式對包含聚醯亞胺等的材料進行摩擦處理或光配向處理。
遮光膜602具有所謂黑矩陣的功能。作為遮光膜602,使用防止透光的材料即可。作為該防止透光的材料,可以舉出金屬材料或包含黑色顏料的有機樹脂材料等。
彩色膜604具有所謂濾色片的功能。作為彩色膜604,使用透過預定的顏色的光的材料(例如,使藍色光透過的材料、使綠色光透過的材料、使紅色光透過的材料、使黃色光透過的材料或使白色光透過的材料等)即可。
結構體610a具有在夾持結構體610a的結構之間設置預定的間隙的功能。作為結構體610a,可以使用有機材料、無機材料或有機材料和無機材料的複合材料。作為該無機材料及該有機材料,可以使用在絕緣膜404、406、408、410a、410b、410c、412、413、416、418、606的說明中舉出的材料。
作為功能膜626,可以使用偏光板、相位差板、擴散薄膜、防反射膜或聚光薄膜等。此外,也可以將抑制塵埃的附著的抗靜電膜、不容易被弄髒的具有拒水性的膜、抑制使用時的損傷的硬塗膜等用於功能膜626。
作為密封劑454,可以使用無機材料、有機材料或無機材料和有機材料的複合材料等。作為上述有機材料,例如可以舉出熱熔性樹脂或固化樹脂等有機材料。此外,作為密封劑454可以使用包含樹脂材料的黏合劑(反應固化型黏合劑、光固化型黏合劑、熱固性黏合劑、厭氧型黏合劑等)。作為上述樹脂材料,可以舉出環氧類樹脂、丙烯酸類樹脂、矽酮類樹脂、酚醛類樹脂、聚醯亞胺類樹脂、醯亞胺類樹脂、PVC(聚氯乙烯)類樹脂、PVB(聚乙烯醇縮丁醛)類樹脂、EVA(乙烯-醋酸乙烯酯)類樹脂等。
作為密封劑622,可以使用在密封劑454的說明中舉出的材料。此外,作為密封劑622,除了上述材料以外也可以使用玻璃粉等的材料。作為用於密封劑622的材料,較佳為使用不透過水分或氧的材料。
如上所述,本發明的一個實施方式的顯示裝置包括兩個顯示元件。此外,包括用來驅動該兩個顯示元件的兩個電晶體。藉由作為顯示元件的一個使用反射型液晶元件,作為另一個使用透過型EL元件,可以提供一種方便性或可靠性優異的新穎的顯示裝置。另外,藉由將金屬氧化物膜用於用來驅動上述顯示元件的電晶體的通道區和兩個顯示元 件所具有的一個電極,可以提供一種製造成本低的新穎的顯示裝置。另外,藉由使電晶體具有交錯型結構,可以降低閘極電極與源極電極及汲極電極之間的寄生電容,所以可以提供功耗低的新穎的顯示裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式5
在本實施方式中,對包括本發明的一個實施方式的顯示模組的可攜式資訊終端6000進行說明。
圖19A所示的包括顯示模組的可攜式資訊終端6000在上蓋6001與下蓋6002之間包括連接到FPC6005的顯示面板6006、框架6009、印刷電路板6010及電池6011。
例如,可以將上述使用本發明的一個實施方式製造的顯示裝置用於顯示面板6006。由此,可以以高良率製造可攜式資訊終端。
上蓋6001及下蓋6002可以根據顯示面板6006的尺寸適當地改變其形狀或尺寸。
可以與顯示面板6006重疊地設置觸控面板。觸控面板可以是電阻膜式觸控面板或靜電容量式觸控面板,並且可以與顯示面板6006重疊地設置。此外,也可以使顯示面板6006具有觸控面板功能,而不設置觸控面板。
框架6009具有保護顯示面板6006的功能,還具有阻擋因印刷電路 板6010的工作產生的電磁波的電磁屏蔽的功能。此外,框架6009也可以具有散熱板的功能。
印刷電路板6010包括電源電路以及用來輸出視訊信號及時脈信號的信號處理電路。作為對電源電路供應電力的電源,可以使用外部的商用電源,也可以使用利用另行設置的電池6011的電源。當使用商用電源時可以省略電池6011。
此外,在包括顯示模組的可攜式資訊終端6000中還可以設置偏光板、相位差板、稜鏡片等構件。
圖19B是包括具備光學觸控感測器的顯示模組的可攜式資訊終端6000的剖面示意圖。
包括顯示模組的可攜式資訊終端6000包括設置在印刷電路板6010上的發光部6015及受光部6016。另外,由上蓋6001與下蓋6002圍繞的區域設置有一對導光部(導光部6017a、導光部6017b)。
作為上蓋6001和下蓋6002例如可以使用塑膠。上蓋6001和下蓋6002的厚度可以為薄(例如0.5mm以上且5mm以下)。因此,可以使包括顯示模組的可攜式資訊終端6000的重量極輕。另外,可以用很少的材料製造上蓋6001和下蓋6002,因此可以降低製造成本。
顯示面板6006隔著框架6009與印刷電路板6010、電池6011重疊。作為電池6011使用經過層壓密封的薄型蓄電池。顯示面板6006及框架6009固定在導光部6017a、導光部6017b。
從發光部6015發射的光6018經過導光部6017a、顯示面板6006的頂部及導光部6017b到達受光部6016。例如,當光6018被指頭或觸控 筆等被檢測體阻擋時,可以檢測觸摸操作。
例如,多個發光部6015沿著顯示面板6006的相鄰的兩個邊設置。多個受光部6016配置在與發光部6015對置的位置。由此,可以取得觸摸操作的位置的資訊。
作為發光部6015例如可以使用LED元件等光源。尤其是,作為發光部6015,較佳為使用發射不被使用者看到且對使用者無害的紅外線的光源。
作為受光部6016可以使用接收發光部6015所發射的光且將其轉換為電信號的光電元件。較佳為使用能夠接收紅外線的光電二極體。
作為導光部6017a、導光部6017b可以使用至少透過光6018的構件。藉由使用導光部6017a及導光部6017b,可以將發光部6015及受光部6016配置在顯示面板6006的下側,可以抑制外光到達受光部6016而導致觸控感測器的錯誤工作。尤其較佳為使用吸收可見光且透過紅外線的樹脂。由此,更有效地抑制觸控感測器的錯誤工作。
實施方式6
在本實施方式中,對使用本發明的一個實施方式的顯示裝置的電子裝置的例子進行說明。
圖20A示出使用本發明的一個實施方式的顯示裝置的電子裝置的例子。圖20A為平板電腦型資訊終端6200,其包括外殼6221、顯示裝置6222、操作按鈕6223及揚聲器6224。可以對本發明的一個實施方式的顯示裝置6222附加位置輸入功能。
另外,可以藉由在顯示裝置中設置觸控面板來附加位置輸入功能。或者,也可以藉由在顯示裝置的像素部中設置被稱為光感測器的光電轉換元件來附加位置輸入功能。另外,可以將操作按鈕6223用作打開資訊終端6200的電源開關、操作資訊終端6200的應用程式的按鈕、音量調整按鈕或者開啟/關閉顯示裝置6222的開關等。另外,圖20A示出資訊終端6200包括三個操作按鈕6223的例子,但是資訊終端6200所具有的操作按鈕的個數及配置不侷限於此。藉由將本發明的一個實施方式的顯示裝置6222用於資訊終端6200,可以降低功耗。
另外,雖然未圖示,但是圖20A所示的資訊終端6200可以在外殼6221的內部設置感測器(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)。尤其是,藉由設置具有陀螺儀感測器或加速度感測器等測定傾斜度的感測器的測定裝置,可以判斷圖20A所示的資訊終端6200的方向(資訊終端相對於垂直方向朝向哪個方向)而將顯示裝置6222的畫面顯示根據資訊終端6200的方向自動切換。
另外,可以藉由組合外殼6221的傾斜度的資訊和光感測器所得到的外光的入射角度及照度的資訊,可以更準確地調節顯示裝置6222上顯示的影像資料的顏色及灰階級。此時,藉由在外殼6221中設置攝像感測器,取得相對於資訊終端6200的使用者的眼睛的位置(或者視線的方向)的資訊,來將其與外殼6221的傾斜度及外光的入射角度及照度的資訊組合,可以更準確地調節顯示裝置6222上顯示的影像的顏色及灰階級。
雖然未圖示,但是圖20A所示的資訊終端6200除了揚聲器以外還可以包括麥克風。藉由採用該結構,例如,可以對資訊終端6200附加 如行動電話般的通話功能。另外,如圖20A所示,資訊終端6200較佳為包括相機6226。雖然未圖示,但是圖20A所示的資訊終端6200也可以包括被用作閃光燈或照明的發光裝置。
另外,雖然未圖示,但是圖20A所示的資訊終端6200也可以包括取得指紋、靜脈、虹膜或聲紋等生物資訊的裝置。藉由採用該結構,可以實現具有生物識別功能的資訊終端6200。
另外,有時可以對圖20A所示的資訊終端6200附加語音解釋功能。藉由對資訊終端6200附加語音解釋功能,可以藉由語音辨識操作資訊終端6200或者識別聲音或會話來製作會話記錄等。由此,資訊終端6200例如可以用於會議等的會議記錄。
圖20B是行動電話,其包括具有曲面的外殼5901、本發明的一個實施方式的顯示裝置5902、麥克風5907、揚聲器5904、相機5903、外部連接部5906、操作用按鈕5905。藉由將本發明的一個實施方式的顯示裝置5902用於行動電話,可以降低功耗。
圖20C為平板電腦式個人電腦,其包括外殼5301、外殼5302、本發明的一個實施方式的顯示裝置5303、光感測器5304、光感測器5305、開關5306等。顯示裝置5303由外殼5301及外殼5302支撐。由於顯示裝置5303使用撓性基板形成,因此可以被彎曲。藉由利用鉸鏈5307及5308改變外殼5301與外殼5302之間的角度,可以以外殼5301與外殼5302重疊的方式折疊顯示裝置5303。雖然未圖示,但是也可以內置開閉感測器來將上述角度的變化用於顯示裝置5303的使用條件的資訊。光感測器5304設置於外殼5301,光感測器5305設置於外殼5302。藉由採用上述結構,可以將對顯示裝置5303的被外殼5301支撐的區域的外光的入射角度的資訊及對顯示裝置5303的被外殼5302支撐的區域的外光的入射角度的資訊用於顯示裝置5303的使用條件的資訊。藉由將 本發明的一個實施方式的顯示裝置5303用於平板電腦式個人電腦,可以降低功耗。
本實施方式可以與其他實施方式適當地組合而實施。

Claims (16)

  1. 一種包括電晶體的半導體裝置,該電晶體包括:第一金屬氧化物層;第二金屬氧化物層;以及第三金屬氧化物層,其中,層疊有該第一金屬氧化物層、該第二金屬氧化物層及該第三金屬氧化物層,該第二金屬氧化物層位於該第一金屬氧化物層與該第三金屬氧化物層之間,該第二金屬氧化物層的導帶底能階低於該第一金屬氧化物層的導帶底能階及該第三金屬氧化物層的導帶底能階,並且,該第二金屬氧化物層的側面與源極電極或汲極電極接觸。
  2. 根據申請專利範圍第1項之半導體裝置,其中該第一金屬氧化物層及該第三金屬氧化物層包含M1氧化物、In-M1-Zn氧化物或者In-M1-M2-Zn氧化物,M1為選自Al、Ga、Si、Mg、Zr、Be和B中的一種或多種,並且M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種。
  3. 根據申請專利範圍第1項之半導體裝置,其中該第二金屬氧化物層包含In氧化物、In-Zn氧化物、In-M2氧化物或者In-M2-Zn氧化物。
  4. 根據申請專利範圍第2項之半導體裝置,其中該第二金屬氧化物層包含In氧化物、In-Zn氧化物、In-M2氧化物或者In-M2-Zn氧化物。
  5. 根據申請專利範圍第1項之半導體裝置,還包括:第一閘極電極;以及第二閘極電極,其中該第一至該第三金屬氧化物層位於該第一閘極電極與該第二閘極電極之間。
  6. 根據申請專利範圍第2項之半導體裝置,還包括:第一閘極電極;以及第二閘極電極,其中該第一至該第三金屬氧化物層位於該第一閘極電極與該第二閘極電極之間。
  7. 一種半導體裝置,包括:第一金屬氧化物層;第二金屬氧化物層;第三金屬氧化物層;第四金屬氧化物層;以及第五金屬氧化物層,其中,依次層疊有該第一至該第五金屬氧化物層,該第三金屬氧化物層的導帶底能階低於該第二金屬氧化物層及該第四金屬氧化物層的每一個的導帶底能階,並且,該第二金屬氧化物層及該第四金屬氧化物層的每一個的該導帶底能階都低於該第一金屬氧化物層及該第五金屬氧化物層的每一個的導帶底能階。
  8. 根據申請專利範圍第7項之半導體裝置,其中該第一金屬氧化物層及該第五金屬氧化物層包含相同材料,該材料為M1氧化物、In-M1-Zn氧化物或者In-M1-M2-Zn氧化物,M1為選自Al、Ga、Si、Mg、Zr、Be和B中的一種或多種,並且M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種。
  9. 根據申請專利範圍第8項之半導體裝置,其中該第二金屬氧化物層及該第四金屬氧化物層包含相同材料,該材料為In氧化物、In-Zn氧化物、In-M2氧化物或者In-M2-Zn氧化物。
  10. 根據申請專利範圍第8項之半導體裝置,其中該第三金屬氧化物層包含與該第一金屬氧化物層的材料不同的材料,該材料為其他的M1氧化物、其他的In-M1-Zn氧化物或者其他的In-M1-M2-Zn氧化物, 該第三金屬氧化物層中的M1為選自Al、Ga、Si、Mg、Zr、Be和B中的一種或多種,並且該第三金屬氧化物層中的M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種。
  11. 根據申請專利範圍第7項之半導體裝置,其中該第二金屬氧化物層及該第四金屬氧化物層包含相同材料,該材料為In氧化物、In-Zn氧化物、In-M2氧化物或者In-M2-Zn氧化物。
  12. 根據申請專利範圍第7項之半導體裝置,其中該第三金屬氧化物層包含與該第一金屬氧化物層的材料不同的材料,該材料為M1氧化物、In-M1-Zn氧化物或者In-M1-M2-Zn氧化物,M1為選自Al、Ga、Si、Mg、Zr、Be和B中的一種或多種,並且M2為選自Ti、Ge、Sn、V、Ni、Mo、W和Ta中的一種或多種。
  13. 根據申請專利範圍第1項之半導體裝置,其中該第一金屬氧化物層的厚度為0.1nm以上且小於30nm、0.1nm以上且10nm以下或者0.1nm以上且3nm以下。
  14. 根據申請專利範圍第2項之半導體裝置,其中該第一金屬氧化物層的厚度為0.1nm以上且小於30nm、0.1nm以上且10nm以下或者0.1nm以上且3nm以下。
  15. 根據申請專利範圍第7項之半導體裝置,其中該第一金屬氧化物層的厚度為0.1nm以上且小於30nm、0.1nm以上且10nm以下或者0.1nm以上且3nm以下。
  16. 根據申請專利範圍第8項之半導體裝置,其中該第一金屬氧化物層的厚度為0.1nm以上且小於30nm、0.1nm以上且10nm以下或者0.1nm以上且3nm以下。
TW105142761A 2016-07-11 2016-12-22 半導體裝置 TW201813095A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137191 2016-07-11
JP2016-137191 2016-07-11

Publications (1)

Publication Number Publication Date
TW201813095A true TW201813095A (zh) 2018-04-01

Family

ID=60911034

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142761A TW201813095A (zh) 2016-07-11 2016-12-22 半導體裝置

Country Status (3)

Country Link
US (1) US20180013003A1 (zh)
JP (1) JP7032067B2 (zh)
TW (1) TW201813095A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190066A (zh) * 2019-05-14 2019-08-30 深圳市华星光电技术有限公司 阵列基板和阵列基板的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202343784A (zh) 2016-07-11 2023-11-01 日商半導體能源研究所股份有限公司 金屬氧化物及半導體裝置
TWI754542B (zh) 2016-07-11 2022-02-01 日商半導體能源研究所股份有限公司 濺射靶材及金屬氧化物
CN108878264B (zh) * 2018-06-29 2020-12-25 云南大学 一种金属氧化物叠层场效应材料的制备方法
CN109888019B (zh) * 2019-01-29 2021-04-02 中山大学 一种基于准调制掺杂效应的异质结构氧化物薄膜晶体管
US11721767B2 (en) * 2020-06-29 2023-08-08 Taiwan Semiconductor Manufacturing Company Limited Oxide semiconductor transistor structure in 3-D device and methods of forming the same
CN113809163B (zh) * 2021-09-17 2023-11-24 武汉天马微电子有限公司 金属氧化物晶体管、显示面板及显示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362635B2 (ja) * 2007-02-02 2009-11-11 ローム株式会社 ZnO系半導体素子
KR20080088284A (ko) * 2007-03-29 2008-10-02 삼성전자주식회사 플래시 메모리 소자
KR20090038242A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 전하를 트랩하는 광전 발생부를 포함하는 이미지 센서
JP5497417B2 (ja) * 2009-12-10 2014-05-21 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP2011138934A (ja) 2009-12-28 2011-07-14 Sony Corp 薄膜トランジスタ、表示装置および電子機器
WO2013061895A1 (en) 2011-10-28 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US20140027762A1 (en) * 2012-07-27 2014-01-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
KR102171650B1 (ko) * 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9263531B2 (en) * 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
TWI624949B (zh) * 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 半導體裝置
JP6329762B2 (ja) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 半導体装置
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6401483B2 (ja) * 2013-04-26 2018-10-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2015053477A (ja) 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP6386323B2 (ja) * 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 半導体装置
JP6523695B2 (ja) * 2014-02-05 2019-06-05 株式会社半導体エネルギー研究所 半導体装置
CN104916703B (zh) * 2015-05-07 2018-07-31 京东方科技集团股份有限公司 一种氧化物薄膜晶体管、阵列基板和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190066A (zh) * 2019-05-14 2019-08-30 深圳市华星光电技术有限公司 阵列基板和阵列基板的制备方法
US11037958B2 (en) 2019-05-14 2021-06-15 Tcl China Star Optoelectronics Technology Co., Ltd. Array substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP7032067B2 (ja) 2022-03-08
JP2018014496A (ja) 2018-01-25
US20180013003A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6220412B2 (ja) 半導体装置
TWI525839B (zh) 半導體裝置
TWI511304B (zh) 半導體裝置和其製造方法
JP7032067B2 (ja) 半導体装置
TWI508184B (zh) 半導體裝置及其製造方法
JP2022000896A (ja) 半導体装置
JP2022003691A (ja) 半導体装置
TWI471950B (zh) 包括電晶體的顯示裝置和其製造方法
TWI596781B (zh) 半導體裝置
TWI453885B (zh) 顯示裝置
TWI604594B (zh) 半導體裝置及包括該半導體裝置之電話、錶、和顯示裝置
TWI524535B (zh) 半導體裝置
TWI478307B (zh) 顯示裝置
JP2019096889A (ja) トランジスタ
TWI570925B (zh) 半導體裝置以及半導體裝置的製造方法
TW201027702A (en) Display device
JP2014033194A (ja) 半導体装置
TW201036166A (en) Semiconductor device and method for manufacturing the same
TW201131777A (en) Semiconductor device
TW201104864A (en) Semiconductor device and method for manufacturing the same
TWI651856B (zh) 半導體裝置
TW201044583A (en) Semiconductor device and manufacturing method thereof