TW201802064A - 純工廠母液溶劑萃取方法 - Google Patents

純工廠母液溶劑萃取方法 Download PDF

Info

Publication number
TW201802064A
TW201802064A TW106136135A TW106136135A TW201802064A TW 201802064 A TW201802064 A TW 201802064A TW 106136135 A TW106136135 A TW 106136135A TW 106136135 A TW106136135 A TW 106136135A TW 201802064 A TW201802064 A TW 201802064A
Authority
TW
Taiwan
Prior art keywords
stream
organic
temperature
ppml
mixture
Prior art date
Application number
TW106136135A
Other languages
English (en)
Inventor
傑拉德 麥當諾芬巴
雷 康諾哈利
葛活朗諾喬依
Original Assignee
英威達紡織(英國)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英威達紡織(英國)有限公司 filed Critical 英威達紡織(英國)有限公司
Publication of TW201802064A publication Critical patent/TW201802064A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/36Azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • C07C51/46Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by azeotropic distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明係關於製造對苯二甲酸及純化自該方法產生之母液之方法。可自該母液萃取有用化合物且可將經純化之母液返回用於該方法中。有利地,該母液純化方法之某些參數係經選擇以使得該純化與其他純化方法相比提供經濟益處。

Description

純工廠母液溶劑萃取方法
本發明係關於自製程流回收及純化母液之方法。其亦係關於實施該等方法之系統。
聚(對苯二甲酸乙二酯) (PET)樹脂廣泛地製造且用於(例如)飲料及食品容器、熱成型應用、織物中並用作工程樹脂。PET係由乙二醇與對苯二甲酸(或對苯二甲酸二甲酯)形成之聚合物。通常必須合成對苯二甲酸(1,4-苯二甲酸)以用作反應物。PET製造所需作為反應物之對苯二甲酸係稱為「經純化之對苯二甲酸」 (PTA)之對苯二甲酸形式,其通常含有超過99.97重量%對苯二甲酸及小於25 ppm 4-羧基苯甲醛(4-CBA)。 在商業規模上,適用於PET製造之經純化之對苯二甲酸(PTA)通常以包含對二甲苯氧化、隨後粗製氧化產物之純化之兩階段製程製備。首先氧化對二甲苯(例如,使用空氣)以提供粗製對苯二甲酸(CTA),例如闡述於(例如)頒予Saffer等人之美國專利第2,833,816號中,其以引用方式併入本文中。該氧化反應通常係在包含脂肪族羧酸(例如,乙酸)之溶劑中並在金屬觸媒(例如,鈷或錳鹽或化合物)存在下實施。 然後純化由此氧化反應製造之粗製對苯二甲酸,因為其通常被諸如4-羧基苯甲醛、對-甲苯甲酸等雜質及賦予對苯二甲酸淺黃色之各種彩色雜質污染。除至少一個物理程序(例如,結晶、洗滌等)以外,CTA之純化通常亦需要至少一個化學轉變。一個普通化學轉變係CTA之氫化,其可將CTA中之一種主要雜質4-羧基苯甲醛轉變成更易於去除之對-甲苯甲酸。因此,作為純化之第一步驟,通常將CTA溶解於水中並在VIII族貴金屬氫化觸媒(例如,經負載之鉑或鈀觸媒)存在下實施氫化。藉由一或多個物理程序來回收經純化之對苯二甲酸。舉例而言,通常經由自水結晶產物來獲得PTA,因大部分雜質(包括對-甲苯甲酸、乙酸及少量對苯二甲酸)留在溶液中。可藉由諸如過濾或離心等方式回收PTA並洗滌以提供純期望材料。剩餘溶液稱為「純工廠母液」 (PPML)。 在製造經純化之對苯二甲酸後剩餘之PPML通常包含某一濃度之雜質。儘管在商業規模上PPML可經處理以作為流出水釋放,但有益地可將其純化並再循環以用於製造更多對苯二甲酸。此外,該等雜質通常包括可經回收並純化之粗製對苯二甲酸以及可容易地轉化為對苯二甲酸之對-甲苯甲酸。
在此背景下,用於處理PPML之已知萃取方法存在某些缺點。舉例而言,水於常用於萃取之萃取劑中之溶解度導致系統內之水之大量再循環,此可能係不合意的。此外,在該製程之某些階段之固體沈澱會影響萃取之可操作性。另外,該等方法可能導致經再循環進入系統中之次要雜質增加,此可能導致該製程效率降低。有利的是,提供用於純化PPML及回收對苯二甲酸、中間體及副產物用於該製程各處之額外方法。 本發明提供用於製造純對苯二甲酸(PTA)之方法。其進一步提供用於純化自PTA製造產生之純工廠母液(PPML)之系統及方法。本發明特定而言係關於純工廠母液溶劑萃取(PPMLSX)方案。本發明者已發現與控制此萃取製程之某些參數相關之令人驚訝的經濟益處。 在本發明之一態樣中,提供用於在純對苯二甲酸(PTA)製造期間形成之純工廠母液(PPML)流之萃取製程,該製程包含:將該PPML與含有有機共沸添加劑之流組合以形成混合物,其中該PPML之溫度比該含有有機共沸添加劑之流之共沸溫度低至少約20℃;將該混合物分離成包含殘餘芳族羧酸之有機流及水性流;經由與來自蒸餾塔之流出物熱交換來加熱該有機流以形成經加熱之有機流;經由與來自回收塔之流出物熱交換來加熱該水性流以形成經加熱之水性流;將該經加熱之有機流進給至該蒸餾塔中;及將該經加熱之水性流之至少一部分進給至該回收塔中。 在另一態樣中,提供用於製造純對苯二甲酸(PTA)之方法,此藉由下列達成:在乙酸中氧化對伸苯基化合物,得到粗製對苯二甲酸;及純化該粗製對苯二甲酸,得到PTA及包含水及殘餘芳族羧酸之純工廠母液(PPML),該方法包含:將該PPML與含有有機共沸添加劑之流組合以形成混合物,其中該PPML之溫度比該含有有機共沸添加劑之流之共沸溫度低至少約20℃;將PPML與包含有機共沸添加劑之溶液之該混合物分離成包含該等殘餘芳族羧酸之有機流及水性流;將該有機流進給至蒸餾塔中;及將該水性流之至少一部分進給至回收塔中。 在某些實施例中,該有機共沸添加劑係選自由下列組成之群:甲苯、二甲苯、乙苯、甲基丁基酮、氯苯、乙基戊基醚、甲酸丁酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸戊酯、乙酸甲酯、丙酸正丁酯、丙酸異丁酯、丙醇、水及其混合物。在一些實施例中,該PPML之溫度比該含有有機共沸添加劑之流之共沸溫度低至少約25℃。舉例而言,在某些實施例中,該混合物之溫度低於約70℃或低於約65℃。 該方法可包含多個額外步驟;舉例而言,在一實施例中,該方法進一步包含將該水性流之第二部分進給至該蒸餾塔中。在某些實施例中,該方法進一步包含在該組合步驟之前冷卻該PPML流。在一些實施例中,該方法進一步包含在冷卻後但在該組合步驟之前過濾該PPML流以自其回收固體部份,可視情況將該固體部份引導至該PTA製造中。 在某些實施例中,該方法可進一步包含回收該等殘餘芳族羧酸之至少一部分以再用於PTA製造,此藉由下列達成:將其萃取至該蒸餾塔中之乙酸中,自該蒸餾塔去除該包含殘餘芳族羧酸之乙酸及將該包含殘餘芳族羧酸之乙酸引導至該PTA製造中。 在本發明之另一態樣中,提供用於萃取在純對苯二甲酸(PTA)製造期間形成之純工廠母液(PPML)之系統,該系統包含:混合器件,其適於混合包含該PPML之流與包含有機共沸添加劑之流;至少一個適於冷卻該PPML流之冷卻器件及適於冷卻該包含有機共沸添加劑之流之冷卻器件,以確保在該混合器件中PPML與包含有機共沸添加劑之溶液之該混合物之溫度比該混合物之共沸溫度低至少約20℃;分離器件,其適於將有機共沸添加劑與PPML之混合物分離成有機流及水性流;共沸蒸餾塔,其適於接收該有機流並輸出含乙酸流及該包含有機共沸添加劑之流;熱交換器,其適於經由與該含乙酸流熱交換來加熱該有機流;回收塔,其適於接收該水性流並輸出經汽提之水性流;及熱交換器,其適於經由與該經汽提之水性流熱交換來加熱該水性流。該系統之特定組件可變化。在一些實施例中,該混合器件包含靜態混合器。該系統可進一步包含適於自該PPML流過濾出固體部份之過濾器件。 在本發明之又一態樣中,提供在純對苯二甲酸(PTA)製造期間形成之純工廠母液(PPML)之萃取製程,該製程包含:將該PPML與包含有機共沸添加劑之溶液組合以形成混合物,該混合物之溫度比該混合物之共沸溫度低至少約20℃;將該混合物分離成包含殘餘芳族羧酸之有機流及水性流; 經由與來自蒸餾塔之流出物熱交換來加熱該有機流以形成經加熱之有機流;經由與來自回收塔之流出物熱交換來加熱該水性流以形成經加熱之水性流;將該經加熱之有機流進給至該蒸餾塔中;及將該經加熱之水性流之至少一部分進給至該回收塔中。 在本發明之再一態樣中,提供用於製造純對苯二甲酸(PTA)之方法,此藉由下列達成:在乙酸中氧化對二甲苯化合物,得到粗製對苯二甲酸及包含水及殘餘芳族羧酸之純工廠母液(PPML),該方法包含:將該PPML與包含有機共沸添加劑之溶液組合以形成混合物,該混合物之溫度比該混合物之共沸溫度低至少約20℃;將PPML與包含有機共沸添加劑之溶液之該混合物分離成包含該等殘餘芳族羧酸之有機流及水性流;將該有機流進給至第二蒸餾塔中;及將該水性流之至少一部分進給至回收塔中。 在本發明之又一態樣中,提供用於萃取在純對苯二甲酸(PTA)製造期間形成之純工廠母液(PPML)之改裝系統,該系統包含:第一分離器件,其適於分離第一有機共沸添加劑流與第一水性流;混合器件,其適於混合包含該PPML之流與該第一有機共沸添加劑流;至少一個適於冷卻該PPML流之冷卻器件及適於冷卻該包含該第一有機共沸添加劑之流之冷卻器件,以確保在該混合器件中PPML與包含有機共沸添加劑之溶液之該混合物之溫度比該混合物之共沸溫度低至少約20℃;第二分離器件,其適於將第一有機共沸添加劑與PPML之該混合物分離成第二有機流及第二水性流;共沸蒸餾塔,其適於接收該第二有機流並輸出含乙酸流及該包含該第一有機共沸添加劑之流;熱交換器,其適於經由與該含乙酸流熱交換來加熱該第二有機流;回收塔,其適於接收該第二水性流並輸出經汽提之水性流;及熱交換器,其適於經由與該經汽提之水性流熱交換來加熱該第二水性流。該系統之特定組件可變化。在一些實施例中,該混合器件包含靜態混合器。該系統可進一步包含適於自該PPML流過濾出固體部份之過濾器件。該改裝系統經設計以安裝於現有PTA製造設施上。 在本發明之再一態樣中,提供用於萃取在純對苯二甲酸(PTA)製造期間形成之純工廠母液(PPML)之改裝系統,該系統包含:第一分離器件,其適於分離第一有機共沸添加劑流與第一水性流;混合器件,其適於混合包含該PPML之流與該第一有機共沸添加劑流;至少一個適於冷卻該PPML流之冷卻器件及適於冷卻該包含該第一有機共沸添加劑之流之冷卻器件,以確保在該混合器件中PPML與包含有機共沸添加劑之溶液之該混合物之溫度比該混合物之共沸溫度低至少約20℃;第二分離器件,其適於將第一有機共沸添加劑與PPML之該混合物分離成第二有機流及第二水性流;共沸蒸餾塔,其適於接收該第二有機流並輸出含乙酸流及該包含該第一有機共沸添加劑之流;熱交換器,其適於加熱該第二有機流;回收塔,其適於接收該第二水性流並輸出經汽提之水性流;及熱交換器,其適於經由與該經汽提之水性流熱交換來加熱該第二水性流。該系統之特定組件可變化。在一些實施例中,該混合器件包含靜態混合器。該系統可進一步包含適於自該PPML流過濾出固體部份之過濾器件。該改裝系統經設計以安裝於現有PTA製造設施上。
現將在下文中參考隨附圖式更全面地闡述本發明,該等圖式中顯示本發明之一些但並非全部實施例。實際上,該等發明可以許多不同形式體現且不應視為受限於本文所述實施例;相反,提供該等實施例以使得本揭示內容將滿足適用之法規要求。通篇中相同編號指代相同元件。除非上下文明確指明其他含義,否則本說明書及隨附申請專利範圍中所用單數形式「一(a, an)」及「該(the)」包括複數含義。 簡言之,本發明提供用於製造經純化之對苯二甲酸(PTA)之系統及方法。更特定而言,本發明提供用於純化在PTA製造期間產生之純工廠母液(PPML)之系統及方法。在某些態樣中,本發明特定而言係關於自水性流回收有機組份(例如,反應中間體、副產物及溶劑)之純工廠母液溶劑萃取(PPMLSX)方案。本發明者已發現令人驚訝的與該萃取製程之某些組份之溫度控制相關之經濟益處。本發明主要針對經整合PTA製程(即,包含氧化階段及純化階段且在該純化階段之前未分離粗製產物之製程)進行闡述。然而,應注意,其亦可適用於習用兩階段製程(即,包含氧化階段及純化階段之製程,其中分離粗製產物並在純化前乾燥)。 PTA之商業製造通常始於對-伸苯基化合物之液相氧化,以得到粗製(即,不純的)對苯二甲酸。最常使用之對-伸苯基化合物係對二甲苯(對-二甲苯);然而,可使用取代基經歷氧化以在伸苯基之對位形成羧基之任一伸苯基。舉例而言,伸苯基上之例示性取代基可包括(但不限於)甲基、乙基、丙基、異丙基、甲醯基、乙醯基及其組合。該等取代基可相同或不同。 用於氧化反應之溶劑可變化,但通常包含乙酸,其可視情況含有水。氧化反應可在可獲得氧之任一條件下實施。舉例而言,該反應可在空氣中(其中空氣中之氧可充當氧化劑)及/或在富含純氧之環境(例如,全氧氛圍或添加某一濃度之氧之惰性氣體氛圍)中實施。通常使用過渡金屬觸媒及視情況共觸媒。氧化觸媒可變化,且在一些實施例中,可包含重金屬鹽或化合物(例如,含有鈷、錳、鐵、鉻及/或鎳之化合物或鹽、或其組合),如(例如)頒予Saffer等人之美國專利第2,833,816號中所述,其以引用方式併入本文中。亦可添加各種共觸媒及/或促進劑,包括(但不限於)含溴化合物、溴鹽、酮(例如,丁酮、三乙醯基甲烷、2,3-戊二酮、甲基乙基酮、乙醯丙酮或其組合)、金屬卟啉、鋯鹽或其組合。 氧化通常係在升高之溫度及/或升高之壓力下實施。通常,該溫度及壓力必須足以確保氧化反應進行,而且亦確保溶劑之至少一部分保留於液相中。因此,通常需要在升高之溫度及升高之壓力條件二者下實施氧化反應。氧化反應所需之溫度可隨觸媒及可選共觸媒及/或促進劑之選擇而變化。在某些實施例中,反應溫度係在約160℃至約220℃範圍內;然而,在一些實施例中,可維持溫度低於160℃,同時仍獲得氧化產物。 在氧化反應後,通常冷卻反應混合物(例如,藉由將該混合物轉移至一或多個結晶器單元中並降低壓力)。所得混合物通常包含可分離出粗製對苯二甲酸之漿液。分離粗製對苯二甲酸之方式可變化且可包含過濾、離心及或用於分離固相與液相之任一其他適宜方式。通常用新鮮水及/或乙酸洗滌固相以得到經分離之粗製對苯二甲酸晶體。在一些實施例中,可對液相(通常包含水、乙酸、乙酸甲酯及各種其他組份)實施處理以使得乙酸與水及其他低沸點組份分離。舉例而言,在一些實施例中,使液相之一部分汽化並將蒸氣運送至蒸餾裝置中(例如,其中其可經歷共沸蒸餾)。通常,共沸蒸餾可為分離乙酸與水之有效方法且係在在有機共沸添加劑存在下實施。通常,在共沸蒸餾裝置內,將形成主要包含乙酸之底部產物(在一些實施例中,可使其再循環至氧化反應中)。頂部產物可包含有機共沸添加劑、水及乙酸甲酯且隨後可經冷卻以形成冷凝物。 然後純化粗製對苯二甲酸以提供適用於製造聚(對苯二甲酸乙二酯)之PTA。在此階段在粗製對苯二甲酸中通常存在各種雜質。舉例而言,最常見污染物中之一者係4-羧基苯甲醛以及賦予粗製對苯二甲酸某種程度之色彩之化合物。除至少一個物理程序(例如,結晶、洗滌等)以外,CTA之純化通常需要至少一個化學轉變。化學轉變可包括各種製程,包括(但不限於)催化加氫處理、催化處理、氧化處理及/或重結晶。在商業上,最常使用之化學轉變係氫化,其可將CTA中之一種主要雜質4-羧基苯甲醛轉變成更易於去除之對-甲苯甲酸。 根據本發明可使用各種氫化條件。通常將CTA溶解於溶劑(例如,水)中。在一些實施例中,需要熱量及/或壓力來將CTA溶解於水中。然後在VIII族貴金屬氫化觸媒(例如,鉑、鈀、釕、或銠觸媒)或另一類型觸媒(例如,鎳觸媒)存在下對其實施氫化。觸媒可為均相觸媒或非均相觸媒且可以未經負載之形式提供或可負載於任一類型適用於此用途之材料上。舉例而言,用於純化粗製對苯二甲酸產物之非均相觸媒可為經負載之貴金屬觸媒,包括惰性碳載體上之鉑及/或鈀。載體材料通常為多孔材料,包括(但不限於)活性碳/炭、石英粉末或其組合。氫來源通常係氫氣,但此亦可變化。在某些情形下,儘管氫化製程可發生於大氣壓力及環境溫度下,但在商業規模上,通常施加熱量及/或壓力。舉例而言,在某些實施例中,溫度係約200℃至約374℃,例如,約250℃或更大。壓力通常足以維持CTA溶液呈液體形式(例如,約50 atm至約100 atm)。達成CTA氫化所需之氫氣之量通常超過還原經溶解雜質所需之量。氫化可發生於(例如)壓力容器、氫化器或塞流反應器中或可藉由流動氫化來達成,其中經溶解CTA係在氫氣存在下在固定床觸媒上方傳送。 藉由一或多個物理程序來回收經純化之對苯二甲酸。舉例而言,因為大部分雜質(包括對-甲苯甲酸、乙酸及少量對苯二甲酸)留在溶液中,故通常經由使產物自溶液(例如,水)結晶來獲得PTA。因此,在一些實施例中,使混合物通過一或多個結晶器並進行減壓(此通常冷卻混合物並蒸發掉一些水,得到PTA晶體之漿液)。可藉由諸如過濾及/或離心等方式回收PTA,洗滌並乾燥以提供純期望材料。剩餘溶液稱為純工廠母液(PPML)。實施PTA與PPML之此分離之溫度可變化;然而,其通常在約70℃至約160℃範圍內(例如,約100℃或更大)。 PPML通常包含水以及某一含量之對-甲苯甲酸、乙酸及少量不純對苯二甲酸。PPML亦可包含苯甲酸及其他中間體及副產物。根據本發明,藉助(例如)圖1及圖2中所例示之製程來純化PPML,其中相同標識指代相同組份或流。儘管圖1、圖2、圖3及圖4中之製程示意圖並非意欲限制本發明,但其代表可使用如本申請案中所述之步驟及特徵之例示性系統。簡言之,在一些實施例中,使PPML與共沸物形成劑接觸以自其萃取芳族羧酸(例如,對-甲苯甲酸及苯甲酸)。共沸物形成劑可呈各種形式且可自各種來源提供。共沸物形成劑有利地可包含用於蒸餾在對二甲苯之氧化反應後獲得之液相以製造粗製對苯二甲酸之有機共沸添加劑。 首先參照圖1,「OR 」代表對二甲苯之氧化反應,例如上文所概述者。該等反應之其他論述提供(例如)頒予Ohkashi等人之美國專利第5,705,682號;及頒予Parten之第6,143,926號及第6,150,553號中,其每一者以引用方式併入本文中。流B 代表在氧化反應期間形成之塔頂冷凝物以及在氧化反應及固體粗製對苯二甲酸去除後獲得之液相及蒸氣相。因此,流B 主要包含水及乙酸(以液體及/或蒸氣形式)。主要組份通常洗乙酸(例如,至少約50體積%)且該流之其餘部分通常係水,但在流B 中亦可存在少量(例如,小於約5%、小於約2%)有機組份(例如,乙酸甲酯)。在蒸餾塔30 中使含液體及/或蒸氣之流B 與有機共沸添加劑接觸。共沸添加劑可變化,但有利地係適用於乙酸與水之混合溶液之共沸蒸餾之物質。舉例而言,在某些實施例中,共沸添加劑包含甲苯、二甲苯、乙苯、甲基丁基酮、氯苯、乙基戊基醚、甲酸丁酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸戊酯、乙酸甲酯、丙酸正丁酯、丙酸二異丁酯、丙醇、水或該等中之任兩者或多者之組合或其他共沸添加劑。塔30 可為(例如)板式塔或填料塔。分離水與乙酸之共沸蒸餾製程之一般論述提供於(例如)頒予Parten等人之美國專利第5,980,696號中,其以引用方式併入本文中。 在塔30 內,使用有機共沸添加劑來分離乙酸與水。含乙酸相可作為流GJ 自塔底部去除。通常,流G 包含約95%乙酸及約5%水且不含大量共沸添加劑。使流G 經過再沸器60 再循環至塔30 中。通常,流J 亦包含約95%乙酸且使此流再循環至氧化製程OR 。在一些實施例中,流J 可進一步含有亦可再用於氧化製程OR 之羧酸(例如,對-甲苯甲酸、苯甲酸等)。 在塔30 內產生之蒸氣相通常包含有機共沸添加劑以及水及乙酸甲酯。有利地,儘量自塔30 去除乙酸甲酯,在一些實施例中,其干擾塔30 內之共沸分離。蒸氣相可作為流C 自蒸餾塔去除。可在冷凝器40 內冷凝此流以提供冷凝物流D 。冷凝物流D 通常包含有機共沸添加劑且可進一步包含水,水可自該混合物去除或作為冷凝物流D 之組份保留。冷凝物流D 之溫度可變化;然而,在例示性實施例中,流D 係介於約60℃與約100℃之間,例如介於約70℃與約90℃之間、介於約75℃與約82℃之間(例如,在某些實施例中約78℃或約80℃)。應注意,冷凝物之溫度應端視冷凝物流D 之組成(例如,所用特定共沸添加劑)稍作變化。 根據本發明之某些實施例,在混合器10 中使PPML流A 與流D 接觸。流A 對流D 之重量比可變化且可視需要向混合器中添加其他組份(例如,額外共沸添加劑或水)。在某些實施例中,流D 對流A 之比率為約1:1至約5:1 (例如,約1.7:1至約2.1:1)。混合器10 之性質可變化;在某些實施例中,其可包含萃取塔、靜態混合器、動態混合器(例如,攪動式混合器)、幫浦或振盪器。 所得流A 與流D 之混合物作為混合流E 離開混合器10 且傳送至傾析器20 中。傾析器可為可提供有機(例如,富含共沸添加劑)流F 與水性流K 之分離之任一組件。在本揭示內容之某些有利實施例中,可使用單一傾析器,其可減少系統之資本成本並減少共沸添加劑之水解程度。在某些實施例中,將最初存於PPML流A 中之某些有機雜質(例如,對-甲苯甲酸、苯甲酸等)萃取至有機相中且因此經由有機流F 去除。在某些實施例中,將乙酸甲酯(最初存於來自蒸餾塔30 之流C 中)分配於水性流K 中。 將有機流F 輸送至蒸餾塔30 。儘管圖式顯示流F 在蒸餾塔中間進入,但此並非意欲具有限制性;流F 可在蒸餾塔之頂部、中間或底部或在其之間之任一段進入塔。由於某些有機組份經由流F 進入,故應注意,此會影響離開蒸餾塔30 之流C 及流J 之組成。通常,在一些實施例中,經由流F 進入蒸餾塔之大部分有機組份之留在乙酸相中並經由流J 自塔30 去除。 可對水性流K 實施處理以允許水再用於該製程中(例如,再用於CTA之純化中)、出於其他目的再循環或作為廢水處置。在一些實施例中,可將可能存於水性流K 中之不合意乙酸甲酯自PPML萃取之水相汽提出來,在某些實施例中,藉由使水相K 通過回收塔70 ,該回收塔經設計以汽提出任一殘餘有機材料。應注意,在流K 中亦可存在少量有機相(例如,包含有機共沸添加劑者)且在一些實施例中,該殘餘有機材料亦可經由回收塔70 去除。通常,在一些實施例中,經由使水相流K 與進入塔70 之流(顯示為流M )接觸來達成有機材料自水相之汽提。另一選擇為,可使用塔70 上之再沸器來代替流M 。為有效地汽提有機組份,通常應將欲處理之流加熱至約40℃至約140℃,包括60℃至100℃,例如,約95℃。淨化水可(例如)在底部經由流L 離開塔。在一些實施例中,此水相之全部或一部分可再使用(例如,直接再循環至CTA純化步驟或在進一步處理後再循環)。回收塔70 可進一步配備有冷凝器50 ,其將回流返回至具有蒸氣吹掃及液體產物之塔之頂部。 根據本發明,經由在流A 進入圖1之系統之前冷卻並過濾PPML來達成某些經濟優點。本發明之一例示性系統顯示於圖2中,其包含某些額外組件。將根據圖2闡述本發明;然而,應注意,本發明不限於圖2之包含特定組件之系統。該系統可包括比圖2中所說明更多或更少個元件,同時仍獲益於本文所識別並闡述之發明性概念。因此,如對本文所論述系統之兩個或更多個改良之一個或任一組合可在單一系統中實施且應涵蓋於本揭示內容中。 特定地參照圖2,在本發明之系統及方法中,流A 之萃取有益地在比先前認為最有效之溫度低之溫度下實施。舉例而言,在一些實施例中,有益的是,將流A 與流D 組合以形成混合物,該混合之溫度比該混合物之共沸溫度低至少約20℃。混合物之溫度可變化,且在某些實施例中可比該混合物之共沸溫度低至少約25℃或至少約30℃。可藉由(例如)在組合該等流之前冷卻流A 或流D 來達成此溫度。 在某些實施例中,有利的是,進入混合器10 之流A 之溫度顯著小於流D 之溫度。鑒於在PTA純化後之PTA與PPML之萃取及分離通常係在升高之溫度下實施,在該實施例中,通常必須在PTA回收後冷卻PPML。舉例而言,在某些實施例中,流A 之溫度在比流D 之溫度低至少約20℃ (例如,至少約30℃)。在某些實施例中,流A 之溫度介於約45℃與約70℃之間、介於約48℃與約65℃之間或介於約50℃與約60℃之間。在一些實施例中,流A 之溫度低於約65℃、小於約60℃、小於約55℃、小於約50℃或小於約45℃。 冷卻(流A 或流D )之方法可變化;舉例而言,在某些實施例中,可經由與冷卻水(例如,溫度低於約75℃之水)熱交換來冷卻流。當該方法包含冷卻流A 時,有利地在與混合器10 中之共沸物形成劑接觸之前過濾經冷卻流A 。在一些實施例中,此過濾製程可提供可再循環至該PTA製程中之固體。在某些實施例中,此過濾步驟(例如)因減少蒸餾塔及/或熱交換器之結垢可達成系統之效率增加。 鑒於本發明10 中之混合物之溫度降低,PPML之萃取可在比通常所需溫度更低之溫度下實施。因此,有利地降低共沸添加劑之水解速率並降低水於共沸添加劑中之溶解度,從而可達成再沸器60 之加熱需求之減少。此外,在某些實施例中,由於萃取係在降低之溫度下實施,故藉由確保液/液界面之溫度高於飽和水相之溫度來減少固體在該界面處沈澱或聚集之可能性。 由於10 中之混合物之溫度較低且因此混合流E 之溫度較低,故根據本發明,傾析器20 可在比通常所需溫度更低之溫度下操作。因此,在某些實施例中,有機流F 及水性流K 二者之溫度均低於通常所觀察到之溫度。 除上述以外,在某些實施例中可藉由在該系統中提供一或多個熱交換器來提供其他經濟優點。舉例而言,經由熱交換器25 引入某些經濟效率。如圖2中所顯示,使離開塔30 之熱乙酸流J1 在傳送回氧化反應之前通過熱交換器25 。亦使離開傾析器20 之有機流F1 通過熱交換器25 以使得在其進入塔30 之前將來自乙酸流J1 之熱量轉移至有機流F1 中。因此,有機流F2 在相對於離開傾析器20 時之溫度增加之溫度下進入塔30 。 在另一實例中,在某些實施例中可藉由引入熱交換器65 來提供其他經濟效率。如圖2中所顯示,可使離開回收塔70 之經加熱之流出水L1 與離開傾析器20 之水性流K1 以熱交換關係通過熱交換器65 。因此,離開熱交換器65 之水性流K2 可在顯著增加之溫度下遞送至塔70 。在各實施例中,流K2 之溫度可變化,以使得流K2 可包含水性液相及/或蒸氣相。流K2 在增加之溫度下供應之有益之處在於可顯著減少必須引入塔70 中以有效地汽提有機組份之蒸汽(經由流M )之量。 令人驚訝的是,在本發明之某些態樣中,與在與冷凝物流D 之溫度相當之溫度下將PPML引入系統中之方法相比,降低之PPML之萃取溫度(其係甚低於PPML與共沸物形成劑之混合物之共沸溫度之溫度)提供總熱能需求之減少。在使用熱整合之實施例中可增強此減少,如圖2中所說明。 舉例而言,在圖2之實施例中,其中流A 在50℃之溫度下進入,再沸器負荷通常比流A 在70℃之溫度下進入之類似方法小(對於1 MM ktA (1,000,000公噸/年) PTA工廠而言小大約2百萬瓦)。此外,根據此實施例,由於PPML流之初始冷卻及過濾可增加芳族羧酸之回收以產生經冷卻之經過濾流A ,此使得自該流分離出比在過濾之前未冷卻PPML流時更大量之固體。儘管不欲受理論限制,但認為在降低之溫度下,某些化合物在PPML中之溶解度降低,且該降低之溶解度可引起所分離固體之增加。該等優點在下文所論述實驗中所提供之實例中更為明顯。 本發明之替代例示性改裝系統顯示於圖3及圖4中,其包含某些額外組件。將根據圖3及圖4闡述本發明之該等替代實施例;然而,應注意,本發明不限於圖3及圖4之包含特定組件之系統。該系統可包括比圖3及圖4中所說明更多或更少個元件,同時仍獲益於本文所識別並闡述之發明性概念。因此,如對本文所論述系統之兩個或更多個改良之一個或任一組合可在單一系統中實施且應涵蓋於本揭示內容中。 特定地參照圖3及圖4,在本發明之系統及方法中,流A 之萃取有益地在比先前認為最有效之溫度低之溫度下實施。舉例而言,在一些實施例中,有益的是,將流A 與流D2 組合以形成混合物,該混合之溫度比該混合物之共沸溫度低至少約20℃。混合物之溫度可變化,且在某些實施例中可比該混合物之共沸溫度低至少約25℃或至少約30℃。可藉由(例如)在組合該等流之前冷卻流A 或流D2 來達成此溫度。 在某些實施例中,在將流D1 與流A 混合之前,將流D1 進給至傾析器20a 中。傾析器20a 可為可提供有機(例如,富含共沸添加劑)流D2 與水性流K3 之分離之任一組件。在混合器10 中使PPML流A 與流D2 接觸。所得流A 與流D2 之混合物作為混合流E 離開混合器10 並傳送至傾析器20b 中。傾析器20b 可為可提供有機(例如,富含共沸添加劑)流F1 與水性流K1 之分離之任一組件。在某些實施例中,可將K3K1 組合以形成共同水性流K4 。在某些實施例中,將最初存於PPML流A 中之某些有機雜質(例如,對-甲苯甲酸、苯甲酸等)萃取至有機相中且因此經由有機流F1 去除。與本發明之其他實施例一樣,有利的是,進入混合器10 之流A 之溫度顯著小於流D2 之溫度。鑒於在PTA純化後之PTA與PPML之萃取及分離通常係在升高之溫度下實施,在該等實施例中,在PTA回收後通常必須冷卻PPML。舉例而言,在某些實施例中,流A 之溫度比流D2 之溫度低至少約20℃(例如,至少約30℃)。在某些實施例中,流A 之溫度介於 約45℃與約70℃之間、介於約48℃與約65℃之間或介於約50℃與約60℃之間。在一些實施例中,流A 之溫度低於約65℃、小於約60℃、小於約55℃、小於約50℃或小於約45℃。 冷卻(流A 或流D2 )之方法可變化;舉例而言,在某些實施例中,可經由與冷卻水(例如,溫度低於約75℃之水)熱交換來冷卻流。當該方法包含冷卻流A 時,有利地在與混合器10 中之共沸物形成劑接觸之前過濾經冷卻流A 。在一些實施例中,此過濾製程可提供可再循環至該PTA製程中之固體。在某些實施例中,此過濾步驟(例如)因減少蒸餾塔及/或熱交換器之結垢可達成系統之效率增加。 鑒於本發明10 中之混合物之溫度降低,PPML之萃取可在比通常所需溫度更低之溫度下實施。因此,有利地降低共沸添加劑之水解速率並降低水於共沸添加劑中之溶解度,從而可達成再沸器60 之加熱需求之減少。此外,在某些實施例中,由於萃取係在降低之溫度下實施,故藉由確保液/液界面之溫度高於飽和水相之溫度來減少固體在該界面處沈澱或聚集之可能性。 由於10 中之混合物之溫度較低且因此混合流E 之溫度較低,故根據本發明,傾析器20b 可在比通常所需溫度更低之溫度下操作。因此,在某些實施例中,有機流F1 及水性流K1 二者之溫度均低於通常所觀察到之溫度。 除上述以外,在某些實施例中可藉由在該系統中提供一或多個熱交換器來提供其他經濟優點。舉例而言,經由熱交換器25 引入某些經濟效率。如圖3中所顯示,使離開塔30 之熱乙酸流J1 在傳送回氧化反應之前通過熱交換器25 。亦使離開傾析器20b 之有機流F1 通過熱交換器25 以使得在其進入塔30 之前將來自乙酸流J1 之熱量轉移至有機流F1 中。因此,有機流F2 在相對於離開傾析器20 時之溫度增加之溫度下進入塔30 。 在另一實例中,在某些實施例中可藉由引入熱交換器65 來提供其他經濟效率。如圖3及圖4中所顯示,可使離開回收塔70 之經加熱之流出水L1 與該等水性流中之一者、較佳地經合併之水性流K4 以熱交換關係通過熱交換器65 。因此,可在顯著增加之溫度下將離開熱交換器65 之水性流K2 遞送至塔70 。在各實施例中,流K2 之溫度可變化以使得流K2 可包含水性液相及/或蒸氣相。流K2 在增加之溫度下供應之有益之處在於可顯著減少必須引入塔70 中以有效地汽提有機組份之蒸汽(經由流M )之量。 上文系統亦可包括水性流處理器件(圖5),故可使所得水性流L2 再循環返回PTA工廠(例如,參見美國申請案第61/825,135號,其以全文引用方式併入本中)。流L2 含有可溶有機酸及金屬鹽、以及懸浮有機酸固體,該等物質需要在再循環至PTA工廠之前去除。尤其因溶解酸之高濃度,流L2 之純反滲透不可行。因此,需要對流L2 上實施預RO製程步驟,故可使用習用RO製程來處理水性流。 此處,流L2 進入中和器100 ,在該中和器中使其與鹼接觸以形成pH經調節之流,將可溶性金屬鹽轉化為不溶性化合物,並將可溶性及不可溶性有機酸轉化為相應酸鹽。鹼可為氫氧化鈉、氫氧化鉀、氫氧化鈣、碳酸鈉、碳酸鉀、碳酸鈣及其混合物。經溶解並懸浮之羧酸(例如乙酸、對苯二甲酸、CBA、對-甲苯甲酸、苯甲酸)轉化為其各自的鹽。舉例而言,若使用氫氧化鈉作為鹼,則將乙酸轉化為乙酸鈉。將經溶解金屬(例如鈷、錳)轉化為金屬氫氧化物並於水性流中沈澱出來。鹼之濃度需要足夠充足以達到500 ppm至2000 ppm之鹼濃度。中和器100 可為達成流L2 與鹼之間充分接觸之任一器件。舉例而言,可使用逆流洗滌器、重力進給傾析器(例如當L2 垂直通過鹼溶液時)、靜態混合器、噴佈器。 然後使pH經調節之流通過過濾單元120 (包括超濾單元)以去除不溶性金屬化合物及剩餘不溶性組份。在傳送至過濾單元之前,可視情況使該流保持於儲存槽110 中。超濾單元較佳含有一或多個孔徑為約0.1微米之超濾膜(例如KMS HFMTM-180)。經超濾之流含有約< 0.05 ppm經溶解金屬(例如鈷及錳)於經處理之流中。使經超濾之流通過至少一個反滲透單元130 以去除有機鹽並平衡pH。可使用第二RO單元140 來進一步清潔該流。離開RO單元之去礦物質水流可用於整個PTA工廠中之其他製程。該等製程包括:粗製對苯二甲酸結晶、晶體水洗滌、對苯二甲酸純化、溶劑回收、蒸餾、分離及蒸汽產生。此外,可將去礦物質水流引入至廢水處理廠之標準廢水處理流中以供下游處理。 實驗 本文所提供之實驗數據係基於圖1及圖2所說明之實施例。提供基於該等實施例之電腦建模數據。在所有實例中,必要溫度係基於使用乙酸正丙酯作為共沸添加劑。實例 1 :在70℃下之PPML;未施加熱整合 檢測如本文所述與圖1相關之萃取方法,其中使在70℃之溫度下之流A 與在78℃之溫度下之冷凝物D 接觸。在混合後,傾析掉有機流及水性流。有機流F 係在74℃之溫度下並回流至蒸餾塔30 中。水性流K 係在74℃之溫度下並直接進給至塔70 中。將蒸汽流M 進給至塔中以確保有機組份自水性流汽提出來。實例 2 :在70℃下之PPML;施加熱整合 檢測如本文所述與圖2相關之萃取方法,其中使在70℃之溫度下之流A 與在78℃之溫度下之冷凝物D 接觸。在混合後,傾析掉有機流及水性流。有機流F1 係在74℃之溫度下並與乙酸流J1 (其係在119℃之溫度下)以熱交換關係通過熱交換器25 。充分加熱離開熱交換器25 之經加熱之有機流F2 以達成78℃之較佳溫度以再用於蒸餾塔30 中。水性流K1 係在74℃之溫度下並經由與離開回收塔70 之熱水流L1 (其係在約105℃之溫度下)以熱交換關係通過熱交換器65 加熱(例如,至95℃)。離開熱交換器之經加熱之水性流K2 藉此經充分加熱以能夠將塔70 中之有機組份汽提出來。因此,減少藉由蒸汽流M 所需之負荷。同時將離開熱交換器65 之冷端之廢水流L2 冷卻至83℃之溫度。實例 3 :在50℃下之PPML;施加熱整合 在上文實例2中所述條件下檢測萃取方法,只是將流A 以50℃之溫度提供至混合器10 中。由於此降低之溫度,有機流F1 及水性流K1 各自以65℃之溫度離開傾析器20 。此外,使有機流F1 通過熱交換器25 以提供在期望溫度(即,約78℃)下之經加熱之有機流F2 以再用於蒸餾塔30 中。同樣,使水性流K1 通過熱交換器65 以提供在足以能夠將塔70中之有機組份經濟地汽提出來之溫度下之經加熱之水性流K2 且因此減少蒸汽流M 所需之負荷。 來自實例1至3之建模結果匯總於下文所提供之表中。使用Aspen Plus 2006.5建模軟體來實施建模。建模數據係基於以下假設:在140 te/h PTA工廠中使用該系統,所產生蒸汽之價值係基於過剩蒸汽可導出使用(例如,用於蒸汽渦輪機以產生電)之假設,且可獲得$100/MWh之電價。使用簡捷方法利用HeatX塊對熱交換器25 進行建模,其中指定最小溫差為10℃。使用簡捷方法利用HeatX塊對熱交換器65 進行建模,其中指定最小溫差為8℃。據估計,至再沸器60 之蒸汽可產生122.5 kWe/Te之蒸汽,而至塔70 之較低壓力蒸汽可產生100.2 kW/Te之蒸汽。總蒸餾面積能量成本係指再沸器60 及塔70 中所需之蒸汽之價值。
Figure TW201802064AD00001
建模數據顯示,實例3之再沸器負荷與實例1及實例2二者相比顯著降低。儘管不欲受理論限制,但認為此令人驚訝的結果可能因為實例3之流之組成因傾析器之溫度降低而不同。在實例2及實例3中之每一者中,塔70 中所需之蒸汽流量顯著小於未納入熱量回收之實例(實例1)中所需之蒸汽流量。同樣,熱量回收於實例2及實例3中之納入顯示總能量成本與實例1相比顯著降低。此外,甚至與實例2相比,在實例3中降低之PPML進入溫度之影響增加提供總能量成本之進一步顯著降低。 獲益於前述說明所提供之教示,熟習此項技術者將聯想到本發明之許多修改及其他實施例。因此,應理解,本發明不受限於所揭示之特定實施例而意欲將該等修改及其他實施例皆包括在隨附申請專利範圍之範疇內。儘管本文使用特定術語,但其使用僅具有一般及敍述性意義且並非出於限制之目的。
10‧‧‧混合器
20‧‧‧傾析器
20a‧‧‧傾析器
20b‧‧‧傾析器
25‧‧‧熱交換器
30‧‧‧蒸餾塔
40‧‧‧冷凝器
50‧‧‧冷凝器
60‧‧‧再沸器
65‧‧‧熱交換器
70‧‧‧回收塔
100‧‧‧中和器
110‧‧‧儲存槽
120‧‧‧過濾單元
130‧‧‧反滲透單元
140‧‧‧第二反滲透單元
A‧‧‧純工廠母液流
B‧‧‧流
C‧‧‧流
D‧‧‧冷凝物流
D1‧‧‧流
D2‧‧‧有機流
E‧‧‧混合流
F‧‧‧有機流
F1‧‧‧有機流
F2‧‧‧有機流
G‧‧‧流
J‧‧‧流
J1‧‧‧熱乙酸流
K‧‧‧水性流
K1‧‧‧水性流
K2‧‧‧水性流
K3‧‧‧水性流
K4‧‧‧經合併之水性流
L‧‧‧流
L1‧‧‧經加熱之流出水
L2‧‧‧水性流
M‧‧‧蒸汽流
在已如此概括地闡述本發明之情況下,現將參照附圖,該等附圖不必按比例繪製,且其中: 圖1係用於純化自PTA製造產生之PPML之例示性系統之步驟之示意性製程圖;且 圖2係本揭示內容用於純化PPML之例示性系統之步驟之示意性製程圖,該PPML係自PTA製造產生。 圖3係本揭示內容用於純化PPML之第一替代改裝例示性系統之步驟之示意性製程圖,該PPML係自PTA製造產生。 圖4係本揭示內容用於純化PPML之第二替代改裝例示性系統之步驟之示意性製程圖,該PPML係自PTA製造產生。 圖5係PPMLSX水性流處理之步驟之示意性製程圖。
10‧‧‧混合器
20‧‧‧傾析器
25‧‧‧熱交換器
30‧‧‧蒸餾塔
40‧‧‧冷凝器
50‧‧‧冷凝器
60‧‧‧再沸器
65‧‧‧熱交換器
70‧‧‧回收塔
A‧‧‧純工廠母液流
B‧‧‧流
C‧‧‧流
D‧‧‧冷凝物流
E‧‧‧混合流
F1‧‧‧有機流
F2‧‧‧有機流
G‧‧‧流
J1‧‧‧熱乙酸流
K1‧‧‧水性流
K2‧‧‧水性流
L1‧‧‧經加熱之流出水
L2‧‧‧水性流
M‧‧‧蒸汽流

Claims (2)

  1. 一種用於在純對苯二甲酸(PTA)製造期間形成之純工廠母液(PPML)之萃取方法,該方法包含: 將該PPML與包含有機共沸添加劑之溶液組合以形成混合物,該混合物之溫度比該混合物之共沸溫度低至少20℃; 將該混合物分離成包含殘餘芳族羧酸之有機流及水性流; 經由與來自蒸餾塔之流出物熱交換來加熱該有機流以形成經加熱之有機流; 經由與來自回收塔之流出物熱交換來加熱該水性流以形成經加熱之水性流; 將該經加熱之有機流進給至該蒸餾塔中;及 將該經加熱之水性流之至少一部分進給至該回收塔中, 其中該方法進一步包含在該組合步驟之前冷卻該PPML流。
  2. 一種藉由下列步驟製造純對苯二甲酸(PTA)之方法:在乙酸中氧化對伸苯基化合物,得到粗製對苯二甲酸;及純化該粗製對苯二甲酸,得到PTA及包含水及殘餘芳族羧酸之純工廠母液(PPML),該方法包含: 將該PPML與包含有機共沸添加劑之溶液組合以形成混合物,該混合物之溫度比該混合物之共沸溫度低至少20℃; 將PPML與包含有機共沸添加劑之溶液之該混合物分離成包含該等殘餘芳族羧酸之有機流及水性流; 將該有機流進給至第二蒸餾塔中;及 將該水性流之至少一部分進給至回收塔中, 其中該方法進一步包含在該組合步驟之前冷卻該PPML流。
TW106136135A 2012-10-31 2013-10-31 純工廠母液溶劑萃取方法 TW201802064A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261720675P 2012-10-31 2012-10-31
US61/720,675 2012-10-31

Publications (1)

Publication Number Publication Date
TW201802064A true TW201802064A (zh) 2018-01-16

Family

ID=50547887

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106136135A TW201802064A (zh) 2012-10-31 2013-10-31 純工廠母液溶劑萃取方法
TW102139634A TW201422576A (zh) 2012-10-31 2013-10-31 純工廠母液溶劑萃取系統及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW102139634A TW201422576A (zh) 2012-10-31 2013-10-31 純工廠母液溶劑萃取系統及方法

Country Status (11)

Country Link
US (2) US20140121406A1 (zh)
EP (1) EP2914571A1 (zh)
JP (1) JP2015533381A (zh)
KR (1) KR20150138844A (zh)
CN (2) CN109456165A (zh)
BR (1) BR112015009900A2 (zh)
CA (1) CA2890259A1 (zh)
MX (1) MX2015005343A (zh)
RU (1) RU2015120269A (zh)
TW (2) TW201802064A (zh)
WO (1) WO2014070766A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349866B (zh) * 2015-11-16 2022-08-26 沙特基础工业全球技术有限公司 生产对苯二甲酸的方法
CN110078284B (zh) * 2019-04-25 2021-08-24 杭州多向流化学科技有限公司 用于制备对苯二甲酸的富水溶剂分级利用减排系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1075317B (it) * 1977-04-13 1985-04-22 Montedison Spa Metodo per l'anidrificazione del solvente e per il ricupero del sottoprodotto acetato di metile in un processo di sintesi dell'acido tereftalico
JP3729284B2 (ja) * 1995-09-22 2005-12-21 三菱瓦斯化学株式会社 高純度テレフタル酸の製造方法
US6150553A (en) * 1998-08-11 2000-11-21 E. I. Du Pont De Nemours And Company Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
TW483886B (en) * 1998-08-11 2002-04-21 Du Pont Method for recovering methyl acetate and residual acetic acid in the production of pure terephtalic acid
US6143926A (en) * 1999-09-21 2000-11-07 E. I. Du Pont De Nemours And Company Process for producing pure terephthalic acid with improved recovery of precursors, solvent and methyl acetate
US7485747B2 (en) * 2001-06-04 2009-02-03 Eastman Chemical Company Two stage oxidation process for the production of aromatic dicarboxylic acids
US8382961B2 (en) * 2010-06-07 2013-02-26 Amt International, Inc. System and method for reduction of water consumption in purified terephthalic acid production

Also Published As

Publication number Publication date
CN105164097A (zh) 2015-12-16
US20150315116A1 (en) 2015-11-05
TW201422576A (zh) 2014-06-16
US20140121406A1 (en) 2014-05-01
JP2015533381A (ja) 2015-11-24
BR112015009900A2 (pt) 2017-12-05
CA2890259A1 (en) 2014-05-08
WO2014070766A1 (en) 2014-05-08
MX2015005343A (es) 2016-02-25
RU2015120269A (ru) 2016-12-20
EP2914571A1 (en) 2015-09-09
KR20150138844A (ko) 2015-12-10
CN109456165A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN105001073B (zh) 低能耗物耗、少废物排放的pta生产方法和系统
US6150553A (en) Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
TWI694984B (zh) 芳族二羧酸之製造
TW201802064A (zh) 純工廠母液溶劑萃取方法
KR101943115B1 (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
EP1104396B1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
KR102592022B1 (ko) 산화에 의해 방향족 디카복실산을 제조하기 위한 에너지 및 환경적으로 통합된 방법
CN105985234B (zh) 芳族二羧酸的制备
GB2525989A (en) Combined PTA and PET plant waste water purification and recycle
TW201209031A (en) Process and system
KR101943116B1 (ko) 필터 공급 슬러리중 물의 백분율을 제어함으로써 테레프탈산 퍼지 여과 속도를 개선하는 방법
TW201502086A (zh) 純工廠廢水純化及回收
ES2559821T3 (es) Mejora de la velocidad de filtración de purga de ácido tereftálico mediante el control del % de agua en la suspensión de alimentación del filtro
CN110139849A (zh) 经纯化的对苯二甲酸(pta)排放蒸汽的利用
TW201544460A (zh) 純工廠廢水的純化及回收
TW201602078A (zh) 在經純化對苯二甲酸(pta)純化廠中最小化對-甲苯甲酸之回收
KR20190099507A (ko) 정제된 테레프탈산 (pta) 배출 건조기 증기 유출물 처리
JP7169241B2 (ja) 芳香族カルボン酸と脂肪族有機酸との混合物の製造方法
KR20130140091A (ko) 방향족 카르복실산의 제조
CN113527084A (zh) 芳族二羧酸的制备
JP2004269521A (ja) 芳香族カルボン酸の製造方法