TW201739699A - 選透性氧化石墨烯膜 - Google Patents

選透性氧化石墨烯膜 Download PDF

Info

Publication number
TW201739699A
TW201739699A TW105141782A TW105141782A TW201739699A TW 201739699 A TW201739699 A TW 201739699A TW 105141782 A TW105141782 A TW 105141782A TW 105141782 A TW105141782 A TW 105141782A TW 201739699 A TW201739699 A TW 201739699A
Authority
TW
Taiwan
Prior art keywords
graphene oxide
optionally substituted
film
substrate
coating
Prior art date
Application number
TW105141782A
Other languages
English (en)
Other versions
TWI725090B (zh
Inventor
鄭世俊
北原勇
小泓誠
王鵬
克拉格 羅德 巴提勒斯
山代祐司
廣瀬雅彥
能見俊祐
偉平 林
Original Assignee
日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工股份有限公司 filed Critical 日東電工股份有限公司
Publication of TW201739699A publication Critical patent/TW201739699A/zh
Application granted granted Critical
Publication of TWI725090B publication Critical patent/TWI725090B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00416Inorganic membrane manufacture by agglomeration of particles in the dry state by deposition by filtration through a support or base layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0044Inorganic membrane manufacture by chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

在本文中所描述者為一種基於石墨烯材料的膜,其在提供透水性時能提供對溶質或氣體的選擇性阻力;也描述一種選透性膜,其含有氧化石墨烯、經還原的氧化石墨烯,且還在石墨烯之間進行官能基化或交聯,其能提供從水中將鹽分離的提高或抗透氣性;以及描述製備此等膜的方法,還有使用該膜脫水或從水中將溶質除去的方法。

Description

選透性氧化石墨烯膜 【相關申請案之交叉引用】
本申請案主張於2015年12月17日提申之美國臨時專利申請案號62/268,835,以及於2016年5月20日提申之美國臨時專利申請案號62/339,589之優先權,其全部內容以引用方式併入本文中。
本發明之具體實例係關於聚合物膜,包括含石墨烯材料的膜,用於諸如:水處理、鹽水淡化或除水等用途。
由於人口和用水量的增加,加上地球上的淡水資源有限,能提供可靠淡水之技術(諸如:海水淡化和水處理/回收)對我們的社會變得更加重要。使用逆滲透(RO)膜的淡化方法是從鹽水中生產淡水的領先技術,大多數現有的商業RO膜採用薄膜複合物(TFC)構型,其由微孔基質頂部上方的薄芳族聚醯胺選擇層所組成,通常為非織造聚酯上的聚碸膜。雖然這些RO膜可提供絕佳的脫鹽率,但仍然需要有水通量更高、更薄及更親水的膜來進一步提高RO的效能,因此,非常需要新的膜材料和合成方法來達成如上所述的所需性質。
本發明揭示之內容係關於適用在高水通量應用的GO膜組 成物,可藉由使用水溶性交聯劑來製備GO膜組成物,水溶性交聯劑可以是一種與反滲透膜之聚醯胺塗層相容的交聯劑;還描述了能有效且經濟地製備這些GO膜組成物的方法,可用水作為溶劑來製備這些GO膜組成物,其使得膜製備之方法更為環境友善且更具成本效益。
有一些具體實例包括選透性聚合物膜,諸如:含高水通量GO膜組成物的膜,用於鹽水的水處理和淡化;有一些具體實例包括:含多孔性基質的GO-MPD(間苯二胺)膜和一種氧化石墨烯層,其含有與多孔性基材流體相連通、視需要經取代之交聯氧化石墨烯,其中該視需要經取代之交聯氧化石墨烯含有視需要經取代之氧化石墨烯和交聯鍊,其以式I或式1M表示:
其中R為H,或者是有機酸基團或其鹽,諸如:CO2H、CO2Li、CO2Na或CO2K。在一些具體實例中,如本文所述之含GO-MPD複合物的所得膜進一步包含脫鹽層及/或保護層。
有一些具體實例包括一種使未加工流體脫水的方法,其包含使未加工流體接觸上述膜;或者是從未加工溶液中除去溶質(諸如淡化), 其包含使未加工溶液接觸或通過前述膜。在一些具體實例中,藉由在膜上施加壓力梯度來達成使未加工溶液穿過膜。
有一些具體實例包括一種製備膜(諸如:脫水膜或淡化膜)的方法,其包含將視需要經取代的氧化石墨烯(GO)和交聯劑(諸如視需要經取代的間苯二胺)混合以得到水溶液,隨後靜置得到塗層混合物且將塗層混合物施加於基質,並固化基質上的GO和交聯劑到它們進行共價鍵結為止。有一些具體實例包括將視需要經取代的GO水溶液和視需要經取代的間苯二胺交聯劑水溶液分別施加於基質,隨後進行相同的固化步驟和條件到它們進行共價鍵結為止;在一些實施方案中,該方法進一步包含施加脫鹽層及/或保護層。
圖1為顯示GO-MPD膜之石墨烯氧化物層的圖。
圖2A-2B為無脫鹽層或保護塗層之膜的兩個可能具體實例敘述。
圖3A-3B為無脫鹽層但有保護塗層之膜的兩個可能具體實例敘述。
圖4A-4B為有脫鹽層但無保護塗層之膜的兩個可能具體實例敘述。
圖5A-5B為有脫鹽層和保護塗層之膜的兩個可能具體實例敘述。
圖6為用於製造膜之方法-逐層堆疊法的可能具體實例敘述。
圖7為用於製造膜之方法-過濾法的可能具體實例敘述。
圖8為用於製造膜之方法-混和物塗層法的可能具體實例敘述。
圖9顯示膜的SEM數據,其顯示基質、GO-MPD層及保護塗層(樹脂)。
圖10為載玻片上每個GO和GO-MPD之XRD數據圖,以及每個載玻片的對照組(control plots)。
圖11為顯示GO和GO-MPD之紅外線(IR)光譜比較圖。
圖12為敘述水蒸氣穿透度和氣體洩漏試驗之實驗裝置圖。
I. 通則:
選透膜包括對一種材料為相對可滲透,且對另一種材料為相對不可滲透的一種膜。舉例而言,膜可對水或水蒸汽為相對可滲透,且對有機液體或者是氧氣或氮氣為相對不可滲透。
本文中所用之術語「靜置」、「將…靜置」或「經靜置」包括使溶液在室溫和大氣壓力下、特定時間內不受干擾的行為。
除非另有說明,當指出化合物或化學結構(例如氧化石墨烯或苯二胺)為「視情況經取代」時,其包括沒有取代基(即未取代)或具有一個或多個取代基(即經取代)的化合物或化學結構,術語「取代基」具有所屬技術領域中習知的最廣泛意涵,且包括一種部分,其取代了與母體化合物或結構相連接之一個或多個氫原子。在一些具體實例中,取代基可為能夠存在於有機化合物結構中的任何類型基團,其可以具有15-50 g/mol、15-100g/mol、15-150g/mol、15-200g/mol、15-300g/mol或15-500g/mol的分子量(即取代基中原子的原子質量總和);在一些具體實例中,取代基含有以下原子,或者是由其所組成:0-30、0-20、0-10或0-5個碳原子;還有0-30、0-20、0-10或0-5個雜原子,其中每個雜原子可獨立地為:N、O、S、Si、F、Cl、Br或I,條件是取代基包括一個C、N、O、S、Si、F、Cl、Br或I原子;取代基的實例包括(但不限於)烷基、烯基、炔基、雜烷基、雜烯基、雜炔基、芳基、雜芳基、羥基、烷氧基、芳氧基、醯基、醯氧基、烷基羧酸酯、硫醇、烷硫基、氰基、鹵基(halo)、硫羰基、O-胺基甲醯基、N-胺基甲醯基、O-硫胺基甲醯基、N-胺基甲醯基、C-醯胺基、N-醯胺基、S-磺醯胺基、N-磺醯胺基、異氰酸基、氰硫基、異硫氰酸基、硝基、矽基、碸烯基、亞磺醯基、磺醯基、鹵基烷基、鹵基烷氧基、三鹵基甲磺醯基、三鹵基甲磺醯胺基及胺基等。
為了方便起見,關於分子的部分或一部分(part),即使其可能不是完整的分子,仍使用術語「分子量」來指出分子的部分或一部分中,原子的原子質量總和。
本文中所用之術語「流體」包括在所施加的剪切應力下,連續變形或流動的任何物質,此等流體的非限制性實例包括牛頓流體及/或非牛頓流體。在一些具體實例中,牛頓流體的實例可為氣體、液體及/或電漿;在一些具體實例中,非牛頓流體可為可塑性固體(例如:玉米澱粉水溶液、牙膏)。
本文中所用之術語「流體相連通」意指可穿過第一成份,並行經第二成份或更多成份的流體,而不管它們是否物理相連通或其排列的 順序。
II. 膜
本發明揭示之內容係關於水分離膜,其中具低有機化合物滲透性,以及高機械和化學穩定性的高親水性膜可用於逆滲透(RO)膜中,以支撐聚醯胺脫鹽層。這種膜材料可適用於從未加工流體中除去溶質,舉例而言,將鹽水淡化或淨化飲用水,諸如廢水處理;這種膜材料可適用於從未加工流體中脫水或除去水/水蒸氣。本文中所述的一些選擇性透水膜為具有高水通量的GO-MPD膜,其可以改善RO膜的效能,並提高水回收/分離的效率。透水性GO-MPD膜含有視情況經取代之氧化石墨烯(GO),其與視情況經取代之亞芳基二胺交聯,諸如視情況經取代之水溶性金屬苯二胺(MPD),因此,使用親水性GO材料和水溶性交聯劑(諸如MPD)可為膜提供廣泛的應用,其中具高滲透選擇性的高透水性是重要的;也可用水作為溶劑來製備這些GO-MPD膜,其可使得製造過程更加地環境友善且具成本效益。
在一些具體實例中,選透膜進一步包含多孔性基質或載體,諸如含聚合物或中空纖維的多孔載體。對於一些膜而言,GO-MPD層或膜係經配置在多孔載體上,GO-MPD層或膜可進一步與基質流體相連通,還可以包括另外視需要之層,諸如配置在GO-MPD層上的脫鹽層和保護層等;在一些具體實例中,保護層可含有親水性聚合物。在一些實施例中,穿過膜的流體行經所有成份,而不管它們是否物理相連通或其排列的順序。
基質可為任何合適材料和任何合適形式,其上方可沉積或配置一層,諸如GO-MBD膜之層。在一些具體實例中,基質可含有多孔材料, 諸如聚合物或中空纖維;在一些具體實例中,聚合物可為聚乙烯(PE)、聚丙烯(PP)、聚碸(PSF)、聚醚碸(PES)、聚偏二氟亞乙烯(PVDF)、聚醯胺(尼龍)、聚醯亞胺及/或其混合物;在一些具體實例中,聚合物可為聚碸;在一些具體實例中,多孔材料可含有基於聚碸的超濾膜;在一些具體實例中,多孔材料可包含中空纖維,中空纖維可經鑄造或擠出,舉例而言,可如以下之描述來製造中空纖維:美國專利案號4,900,626、6,805,730及美國專利申請案公開號2015/0165389,其關於製備中空纖維之方法以引用方式併入本文中。
有一些膜進一步包含脫鹽層,例如經配置於GO-MPD層上。脫鹽層可含有適用於防止鹽通過的任何材料,有一些脫鹽層含有聚合物,例如:聚醯胺或聚醯胺的混合物,在一些具體實例中,可由胺(例如:間苯二胺、對苯二胺、鄰苯二胺、哌、聚伸乙亞胺、聚乙烯胺或其類似物)和醯氯(例如:均苯三甲醯氯、間苯二甲醯氯或其類似物)來製造聚醯胺;在一些具體實例中,胺可為間苯二胺;在一些具體實例中,醯氯可為均苯三甲醯氯;在一些具體實例中,可由間苯二胺和均苯三甲醯氯來製造聚醯胺(例如藉由間苯二胺及/或均苯三甲醯氯之聚合);在一些具體實例中,若使脫鹽層具有跟經配置於其上之GO-MPD膜(亦由MPD所製造)相同類型的結構特徵,則可以避免兩層間的不利交互作用。
如上所提及,有一些膜可進一步包含保護塗層。舉例而言,可在膜的頂部上方配置保護塗層以保護其免受環境影響,保護塗層可具有適用於保護膜免受環境影響的任何組合物,有許多聚合物適用於保護塗層,諸如:一種親水性聚合物或親水性聚合物的混合物,例如:聚乙烯醇 (PVA)、聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、聚環氧乙烷(PEO)、聚氧乙烯(POE)、聚丙烯酸(PAA)、聚甲基丙烯酸(PMMA)和聚丙烯醯胺(PAM)、聚伸乙亞胺(PEI)、聚(2-唑啉)、聚醚碸(PES)、甲基纖維素(MC)、聚葡萄胺糖、聚(烯丙胺鹽酸鹽)(PAH)及聚(4-苯乙烯磺酸鈉)(PSS),還有其任何組合;在一些具體實例中,保護塗層可含有PVA。
可如圖2A、2B、3A及3B所示來配置無脫鹽層之膜100的一些非限制性實例。膜100可至少包含基質120和經交聯石墨烯材料層110,在一些具體實例中,如圖3A和3B所示,該膜可進一步包含保護塗層140;在一些具體實例中,如圖2A和2B所示,該膜可不具有該保護塗層;在一些具體實例中,該經交聯石墨烯材料層110可在最初被建構為具氧化石墨烯111和交聯劑112的替代層;在一些具體實例中,該經交聯石墨烯材料層可包含單一的氧化石墨烯和交聯劑混合物層113;在一些具體實例中,可在兩個前述膜之間夾著該基質;在一些具體實例中,該膜可以允許水及/或水蒸汽通過,但阻止氣體通過;在一些具體實例中,由於該等層,該膜可提供從控制體積中除去水的手段,其藉由使水蒸汽穿過但排除其它氣體穿過,導致被動的脫水。
在一些具體實例中,該膜可用於從控制體積中除去水或水蒸汽,同時阻礙溶質或其它流體(例如氣體)的通過;在一些具體實例中,可將膜配置在流體相連通的第一流體貯存器和第二流體貯存器之間,或與其分離;在一些具體實例中,第一貯存器可在該膜的上游及/或該膜中含有進料流體;在一些具體實例中,上游流體可包含氣體和水蒸氣;在一些具體實例中,第二儲存器可在該膜的下游及/或在該膜中含有加工流體;在一 些具體實例中,下游流體的濕度可比第一儲存器中流體的濕度更低;在一些具體實例中,該膜選擇性地使水或水蒸氣穿過,同時阻止氣體、溶質或液體材料穿過。在一些具體實例中,該膜可以提供過濾器以選擇性地從進料流體中除去溶質及/或經懸浮的污染物;在一些具體實例中,該膜具有所需流速;在一些具體實例中,該膜可包含超濾材料。
在一些具體實例中,該膜可展現約15-100μg.m-2.s-1.Pa-1、約20-90μg.m-2.s-1.Pa-1、約25-90μg.m-2.s-1.Pa-1、約30-60μg.m-2.s-1.Pa-1、約30-40μg.m-2.s-1.Pa-1、約40-60μg.m-2.s-1.Pa-1、約40-50μg.m-2.s-1.Pa-1或約50-60μg.m-2.s-1.Pa-1的水蒸氣穿透度;在一些具體實例中,該膜亦可具有約1000cc/min、約500cc/min、約100cc/min、約40cc/min、約25cc/min、約5cc/min、小於10cc/min或小於5cc/min的最大N2洩漏速率。
可如圖4A、4B、5A及5B所示來配置含脫鹽層130之膜200的一些非限制性實例。在一些具體實例中,膜200可以包括至少一個基質120、經交聯石墨烯材料層110及脫鹽層130;在一些具體實例中,可在該經交聯石墨烯材料層110頂部上方配置該脫鹽層130;在一些具體實例中,如圖5A和5B所示,該膜可進一步包含保護塗層140,其中該保護塗層可保護膜的成份免受惡劣環境;在一些具體實例中,如圖4A和4B所示,該膜可不具有保護塗層;在一些具體實例中,該經交聯石墨烯材料層110可在最初被建構為具石墨烯材料111和交聯劑112的替代層;在一些具體實例中,該經交聯石墨烯材料層可包含單一的石墨烯材料和交聯劑混合物層113;在一些具體實例中,可在含GO-MPD的兩層之間夾著該基質。
在一些具體實例中,該膜選擇性地使水或水蒸氣穿過,同時 避免氣體、溶質或液體材料穿過;在一些具體實例中,由於該等層,該膜可提供耐用的淡化系統,其可選擇性地對水為可滲透的,且對鹽為較不可滲透的;在一些具體實例中,由於該等層,該膜可提供耐用的逆滲透系統,其可有效地過濾鹽水、污水或進料流體。
在一些具體實例中,該膜展現約10-1000gal.ft-2.day-1.bar-1、約20-750gal.ft-2.day-1.bar-1、約100-500gal.ft-2.day-1.bar-1、約200-400gal.ft-2.day-1.bar-1、至少約10gal.ft-2.day-1.bar-1、約20gal.ft-2.day-1.bar-1、約100gal.ft-2.day-1.bar-1及約200gal.ft-2.day-1.bar-1的標準體積水流速,或者是任何這些值所限定之範圍內的標準體積水流速。
在一些具體實例中,經交聯石墨烯氧化物層可具有平均直徑為約0.01μm(10nm)至約0.1μm(100nm)及/或約0.01μm(10nm)至約0.05μm(50nm)的平均孔徑或流體通道。
在一些具體實例中,膜可為選透性的;在一些具體實例中,該膜可為滲透膜;在一些具體實例中,該膜可為水分離膜;在一些具體實例中,含有石墨烯材料(諸如氧化石墨烯)的透水膜及/或不透溶質膜可提供所需的選擇性氣體、液體及/或水蒸氣滲透性阻力;在一些具體實例中,該膜可為逆滲透(RO)膜;在一些具體實例中,選透膜可包含多層,其中至少一層含有石墨烯材料。
III. 經交聯的GO
本文中所述的膜具有經交聯之視情況經取代的氧化石墨烯,這些視情況經取代的經交聯石墨烯氧化物包括一種視情況經取代的石 墨烯,其與水溶性交聯劑交聯,或者是一種氧化石墨烯與水溶性交聯劑交聯的產物。
A. 氧化石墨烯
石墨烯材料具有許多有吸引人的性質,諸如具非常高機械強度和奈米級厚度的二維片狀結構;可用低成本量產氧化石墨烯(GO)-一種石墨烯的頁狀氧化物;因為高度氧化,氧化石墨烯具有高透水性,且還展現了因藉由許多官能團(例如胺或醇)進行官能化,而形成各種膜結構的多功能性,不像傳統的膜係透過材料的孔隙來傳輸水,在石墨烯氧化物膜中,水的傳輸可以在層間之空間中進行;氧化石墨烯的毛細效應可導致長的水微渠道(water slip lengths),其能提供快速的水運輸速率,此外,可藉由調整石墨烯片的層間距離來控制膜的選擇性和水通量。
可藉由GO水溶液的真空過濾加工來組裝具層片狀結構的層狀GO膜,但該膜在高通量下可能會高度易於被分散在水性環境中,為解決此問題,可以牢固地交聯GO片以承受水通量,同時維持層片狀結構。
據信在GO的底面上可能為大量(~30%)的環氧基團,其在高溫下可易於與胺基反應;亦據信GO片具有非常高的縱橫比,與其它材料相比,其提供了大的、可用的氣體/水擴散表面,且其具有降低任何基質支撐材料之有效孔徑的能力,以使污染物浸漬最小化,同時保持通量速率;亦據信環氧基或羥基團增加了材料的親水性,並因而有助於提高膜的水蒸氣穿透度和選擇性。
在一些具體實例中,視情況經取代的氧化石墨烯可為片狀、平面或薄片形式;在一些具體實例中,石墨烯材料可具有約100m2/g至約 5000m2/g、約150m2/g至約4000m2/g、約200m2/g至約1000m2/g、約500m2/g至1000m2/g、約1000m2/g至約2500m2/g、約2000m2/g至約3000m2/g、約100m2/g至500m2/g及約400m2/g至約500m2/g的表面積,或者是任何這些值所限定之範圍內的任何表面積。
在一些具體實例中,氧化石墨烯可為具有1、2或3個維度的薄層(platelet),每個維度的大小獨立地在奈米至微米範圍內;在一些具體實例中,石墨烯可在任一維度上具有薄層的大小,或者是以下薄層最大表面的面積平方根:約0.05-100μm、約0.05-50μm、約0.1-50μm、約0.5-10μm、約1-5μm、約0.1-2μm、約1-3μm、約2-4μm、約3-5μm、約4-6μm、約5-7μm、約6-8μm、約7-10μm、約10-15μm、約15-20μm、約50-100μm、約60-80μm、約50-60μm及約25-50μm,或者是任何這些值所限定之範圍內的任何薄層大小。
在一些具體實例中,石墨烯材料可包含至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%或至少99%之具有分子量為約5000道耳吞至約200,000道耳吞的石墨烯材料。
在一些具體實例中,視情況經取代的氧化石墨烯可未經取代;在一些具體實例中,視情況經取代的氧化石墨烯可包含未經官能基化之基質;在一些具體實例中,石墨烯材料可包含經官能基化之基質。經官能基化之基質包括一或多個未出現於氧化石墨烯中的官能基團,諸如非OH、COOH或環氧基團的官能基團,其直接連接到石墨烯基質的C-原子上,可出現於經官能基化之石墨烯的官能基團實例包括鹵素、烯烴、炔烴、CN、酯、醯胺或胺。
氧化石墨烯包括具有環氧基取代基漢堡和碳原子的任何石墨烯。在一些具體實例中,石墨烯材料,諸如視情況經取代的氧化石墨烯,可包含經官能基化的石墨烯基質;在一些具體實例中,可官能基化多於約90%、約80%、約70%、約60%、約50%、約40%、約30%、約20%或約10%之視情況經取代的氧化石墨烯;在其它具體實例中,可官能基化大部分情況經取代的氧化石墨烯;在另外其它具體實例中,基本上可官能基化所有情況經取代的氧化石墨烯;在一些具體實例中,經官能基化的氧化石墨烯可包含石墨烯基質和官能基化合物;在一些具體實例中,石墨烯基質可為氧化石墨烯(GO)、經還原的氧化石墨烯(RGO)、經官能基化的氧化石墨烯、經官能化和還原的氧化石墨烯或其任何組合。
在一些具體實例中,經官能化的石墨烯在至少一個環氧化物基團之外還含有多種類型的官能基團;在一些具體實例中,在經官能基化的石墨烯中僅有一種類型的官能基團。
在一些具體實例中,環氧化物基團可為石墨烯氧化之副產物以創造出氧化石墨烯;在一些具體實例中,藉由另外的化學反應來在石墨烯基質表面上形成環氧化物基團;在一些具體實例中,在氧化和另外的化學反應期間形成環氧化物基團。
在一些具體實例中,石墨烯基質相對於含石墨烯層總組合物的質量百分比可為約1wt%至約95wt%、約10wt%至約95wt%、約30wt%至約80wt%、約20-50wt%、約30-50wt%、約40-60wt%、約60-80wt%或80-95wt%。
在一些具體實例中,選滲膜可包含經交聯、視情況經取代的 氧化石墨烯;在一些具體實例中,經交聯、視情況經取代的氧化石墨烯包含交聯基團,其共價鍵結至相鄰之視情況經取代的氧化石墨烯;在一些具體實例中,視情況經取代的石墨烯材料可為經交聯的石墨烯,其中可藉由交聯劑材料/橋來將該石墨烯材料與至少一種其它石墨烯基質進行交聯。據信,將石墨烯材料進行交聯可增強膜的機械強度和透水性質,其係藉由在石墨烯薄層間創造出強化學鍵結和廣泛通道以使水輕易地穿薄片;在一些具體實例中,石墨烯材料可包含在石墨烯基質上的經交聯石墨烯材料,其具有至少約1%、約5%、約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%,或者是全部的經交聯石墨烯材料;在一些具體實例中,可將大部分的石墨烯材料進行交聯;在一些具體實例中,可將一些石墨烯材料與至少5%的經交聯(與其它石墨烯材料)石墨烯材料進行交聯,當與石墨烯材料的總量相較之後,可基於交聯劑的重量來估計交聯數量;在一些具體實例中,也可官能基化經交聯的一個或多個石墨烯基質;在一些具體實例中,石墨烯材料可同時包含經交聯和未經交聯的石墨烯,以及經交聯、官能基化,以及經官能化且未經交聯的石墨烯。
在一些具體實例中,相鄰之視情況經取代的氧化石墨烯可藉由視情況經取代的苯二胺交聯劑而彼此互相共價鍵結,所得的經交聯氧化石墨烯可表示如下: 其中GO表示視情況經取代的氧化石墨烯,且Ph表示視情況經取代的伸苯基。
在一些具體實例中,該苯二胺交聯劑為視情況經取代的間苯 二胺,如式2所示: 其中R為H,或者是視情況經取代的羧酸;在一些具體實例中,取代基可為Na、K或Li;在一些具體實例中,R為H、CO2H、CO2Li、CO2Na及/或CO2K,舉例而言,該視情況經取代的間苯二胺可為:,及/或
當交聯劑為諸如鈉鹽、鉀鹽或鋰鹽的鹽時,可增加所得GO膜的親水性,從而增加總水通量。
在一些具體實例中,藉由環氧基團(在各個視情況經取代的氧化石墨烯上)和2個胺基團(在各個苯二胺交聯劑中)的開環反應,可產生含兩個C-N鍵〔在視情況經取代的氧化石墨烯類(GOs)之間〕的交聯。反應之實例示於下方流程1當中,其中所使用者為未經取代的間苯二胺。
在一些具體實例中,視情況經取代的間苯二胺和視情況經取代的氧化石墨烯之間的反應可在兩個垂直堆疊的氧化石墨烯之間形成交聯,如下方流程2所表示。
在一些具體實例中,視情況經取代的苯二胺(如經取代的間苯二胺或未經取代的間苯二胺)交聯劑會與第一視情況經取代的薄層面上之第一內部碳原子,還有第二視情況經取代的薄層面上之第二內部碳原子進行交聯。視情況經取代的薄層面上之內部碳原子為不在視情況經取代的氧化石墨烯薄層外邊界上的碳原子,舉例而言,在下方所描述的氧化石墨烯薄層中,以粗體來顯示在GO面上之內部碳原子,剩餘碳原子則在GO的 外邊界上。描述下方結構僅是為了說明何謂內部碳原子,而並未限制氧化石墨烯的結構。
由於羧基主要是在氧化石墨烯的邊緣上,而非如上所述,位於大多數環氧基團所在的石墨烯本體或平面內部,故據信若透過與交聯劑的反應、用環氧基官能團來形成C-N鍵(而非用GOs上的羧酸基團來形成醯胺鍵)時,可導致垂直堆疊之氧化石墨烯間的較高度交聯(例如在石墨烯表面進行交聯);此外,相鄰石墨烯材料之間的這種平面內結合可使層片狀的層狀GO結構抵抗其在水中之分散,而不需要除了交聯劑以外的聚合物。
在一些具體實例中,MPD/GO的重量比(重量比=間苯二胺交聯劑之重量÷視情況經取代的氧化石墨烯之重量)可為約0.05-100、約0.1-100、約0.2-50、約1-10、約1-5、約5-10、約5-8、約6-10、約6-8或約7(例如:7mg之間苯二胺交聯劑和1mg之視情況經取代的氧化石墨烯),或者是任何這些值所限定之範圍內的比例。
在一些具體實例中,與經取代的苯二胺(諸如經取代的間苯二胺)或未經取代的苯二胺(諸如未經取代的間苯二胺)進行交聯之視情況經取代的氧化石墨烯可具有以下原子%的氧原子:約5-60原子%、約5-10原子%、約10-15原子%、約15-25原子%、約15-25原子%、約20-40原子%、約20-25原子%、約30-35原子%及約40-60原子%;至少:約5原子%、約7原子%、約10原子%、約12原子%、約14原子%、約15原子%、約16原子%、約17原子%、約18原子%及約19原子%;或者是約20原子%、約21原子%、約34%或約33%;或者是在任何這些值所限定之範圍內、任何原子%的氧原子。可藉由X射線光電子光譜(XPS)來測定交聯的百分比。
在一些具體實例中,與經取代的苯二胺(諸如經取代的間苯二胺)或未經取代的苯二胺(諸如未經取代的間苯二胺)進行交聯之視情況經取代的氧化石墨烯可具有以下原子%的碳原子:約20-90原子%、約30-80原子%、約40-75原子%、約60-75原子%、約60-70原子%、約50-70原子%、約60-65原子%、約68%及約63%,或者是任何這些值所限定之範圍內的任何原子%。可藉由X射線光電子光譜(XPS)來測定碳原子的百分比。
在一些具體實例中,與經取代的苯二胺(諸如經取代的間苯二胺)或未經取代的苯二胺(諸如未經取代的間苯二胺)進行交聯之視情況經取代的氧化石墨烯可具有以下碳與氧(C/O)的原子比例:約1-5.5、約1.5-5、約1-5、約1-4、約1-3、約2-5、約2-4、約2-3、約1.6-4、約1.7-3.5、約1.8-3.3、約3-4、約3-3.5、約1-2、約1.5-2、約3.2或約1.9,或者是任何這些值所限定之範圍內的任何C/O原子比例。
在一些具體實例中,與經取代的苯二胺(諸如經取代的間苯 二胺)或未經取代的苯二胺(諸如未經取代的間苯二胺)進行交聯之視情況經取代的氧化石墨烯可具有以下原子%的氮原子:少於約20原子%、少於約15原子%、少於約13原子%、少於11.5原子%、少於約11原子%、少於約10原子%,約10-11原子%、約10.9原子%、約1-20原子%、約3-6原子%、約5-15原子%、約9-13原子%、約10-12原子%,或者是任何這些值所限定之範圍內的任何百分比%。可藉由XPS來測定氮原子的百分比,其可反映GO-MPD膜中的交聯程度。
在一些具體實例中,與經取代的苯二胺(諸如經取代的間苯二胺)或未經取代的苯二胺(諸如未經取代的間苯二胺)進行交聯之視情況經取代的氧化石墨烯可具有以下層間距離或晶格面距(d-spacing):約0.5-3nm、約0.6-2nm、約0.7-1.7nm、約0.8-1.5nm、約0.9-1.5nm、約1.4-1.5nm、約0.9-1nm、約1.4nm、約1.43、約0.9nm、約0.93nm,或者是任何這些值所限定之範圍內的任何距離。可藉由X射線粉末繞射(XRD)來測定晶格面距。
GO-MPD層可具有任何合適的厚度。舉例言,一些GO-MPD層可具有約5-200nm、10-100nm、約10-50nm、約10-20nm、約20-30nm、約30-40nm、約40-50nm、約50-70nm、約70-100nm、約10nm、12nm、約20nm、約30nm、約40nm、約50nm、約60nm、約80nm、約100nm,或者是任何這些值所限定之範圍內的任何厚度。
IV. 控制水含量或溶質含量的方法
一些具體實例包括了在流體中控制水含量的方法。在一些具體實例中,該流體可包含液體;在一些具體實例中,該流體可包含氣體; 在一些具體實例中,該氣體可包含多種氣體,包括水蒸氣;在一些具體實例中,該方法控制氣體中的水蒸氣濃度;在一些具體實例中,該方法控制液體中的水濃度;在一些具體實例中,該含高水濃度之流體可為未加工流體;在一些具體實例中,該方法可提供從未加工流體中去除水或脫水,以到達未加工流體所需的水濃度,從而產生經加工的流體。
在一些具體實例中,將未加工流體脫水的方法包含使未加工流體與一或多個上述之膜相接觸;在一些具體實例中,使未加工流體與膜進行接觸可導致使水穿過該膜而至第二流體或流出物;在一些具體實例中,將未加工流體暴露於膜能進一步使水有足夠的時間穿過膜,以至於經加工的流體達到所需的水濃度;在一些具體實例中,未加工流體係處於氣相中,其中被除去的水為水蒸氣;在一些具體實例中,未加工流體係處於液相中,其中被除去的水為液態水;在一些具體實例中,該方法包含使水蒸汽穿過膜;在一些具體實例中,該方法包含使液態水穿過膜;在一些具體實例中,該方法包含使水蒸氣和液態水之組合穿過膜。所需的水濃度可為在封閉空間中的水蒸氣含量濃度(但不限於此),其低於會導致食物冷凝、黴菌生長及/或變質(spoliation)的水準。
在一些具體實例中,可藉由滲透,或者是在滲透壓幫助下讓水穿過膜;在一些具體實例中,該方法進一步包含提供遍及膜各處的壓力梯度,以迫使水穿過膜而克服滲透的反壓。
在一些具體實例中描述了從含已溶解之溶質的水溶液中萃取液態水的方法,以用於諸如:污染物去除或淡化之應用;在一些具體實例中,用於從未加工溶液中除去溶質的方法可包含使未加工溶液與一或多 個上述之膜相接觸;在一些具體實例中,該方法進一步包含讓溶液穿過膜;在一些具體實例中,可藉由提供頭壓的裝置來實現讓含水溶質通過膜;在一些具體實例中,頭壓可足以克服滲透的反壓;在一些具體實例中,該方法包含藉由膜來保留溶質並使水穿過,從而降低水的溶質含量;在一些具體實例中,該方法可進一步包含提供遍及膜各處的壓力梯度。
在一些具體實例中,可藉由在第一儲存器中產生正壓、在第二儲存器中產生負壓,或者是在第一儲存器中產生正壓且在第二儲存器中產生負壓,以達到提供遍及膜各處的壓力梯度;在一些具體實例中,可藉由使用以下裝置來完成在第一儲存器中產生正壓:活塞、泵、重力落下及/或液壓頂桿;在一些具體實例中,可藉由施加真空或抽出流體來實現在第二儲存器中產生負壓。
V. 製作膜的方法
一些具體實例包括了製造膜的方法,其包含:製備氧化石墨烯和交聯劑之溶液、將溶液施加至基質上以及在基質上固化該混合物;在一些具體實例中係使用逐層堆疊法,其中將溶液施加至基質上包含將多個氧化石墨烯和交聯劑的交替層逐層施加至基質上,圖6所示為一個非限制性實例;在一些具體實例中係使用過濾法,其中將溶液施加至基質上包含施加一層經混合的氧化石墨烯和交聯劑溶液,接著過濾所得塗層溶液,使其通過預先處理的基質。圖7所示為一個非限制性實例;在一些具體實例中係使用混合物塗層法,其中將一層或多層經混合的氧化石墨烯和交聯劑塗層溶液施加至預先處理的基質上,以形成一或多層,圖8所示為一個非限制性實例;在一些具體實例中,該氧化石墨烯包含視情況經取代的氧化 石墨烯;在一些具體實例中,該交聯劑包含視情況經取代的間苯二胺。
在一些具體實例中,製造膜的方法包含:(a)混合視情況經取代的氧化石墨烯和交聯劑以得到水溶液;(b)將溶液靜置30分鐘至12小時以創造出塗層混合物;(c)將該塗層混合物施加至基質上;(d)若需要則重複步驟(c)以達到所需的厚度或層數;以及(e)在50℃至120℃下、於該基質上對該視情況經取代的氧化石墨烯和交聯劑進行固化15分鐘至2小時,以至於該視情況經取代的氧化石墨烯和交聯劑進行共價鍵結;在一些具體實例中,可藉由以下方式來將塗層混合物施加至基質上:先將基質浸入塗層混合物中,接著藉由施加遍及基質各處的負壓梯度來將溶液拉伸至基質上,直至可達到所需的塗層厚度為止;在一些具體實例中,可藉由以下方式來實現將塗層混合物施加至基質上:刮塗、噴塗、浸塗或旋塗;在一些具體實例中,該方法可進一步包含在施加塗層混合物之後用去離子水來潤洗基質;在一些具體實例中,該方法可進一步包含施加脫鹽層。
一些具體實例包括了從視情況經取代的間苯二胺交聯劑和視情況經取代的氧化石墨烯來製備膜的方法,其包含:(a)分別將視情況經取代的氧化石墨烯水溶液和視情況經取代的間苯二胺交聯劑溶液施加至基質上;(b)若需要則重複步驟(a)以達到所需的厚度或層數;及(c)在50-120℃下、於該基質上對該視情況經取代的氧化石墨烯和交聯劑進行固化15分鐘至2小時,以至於該視情況經取代的氧化石墨烯和視情況經取代的間苯二胺交聯劑可進行共價鍵結。可藉由以下方式來實現將水溶液施加至基質上,諸如:刮塗、噴塗、浸塗或旋塗等等,有一些方法可進一步包含在每次施加視情況經取代的間苯二胺水溶液,或者是視情況經取代的氧化 石墨烯水溶液之後,用去離子水來潤洗基質;在一些具體實例中,該方法可進一步包含施加脫鹽層。
在一些具體實例中,該方法包含視情況地預先處理基質,以協助將氧化石墨烯黏附至基質上;在一些具體實例中,預先處理基質包含用多巴胺溶液處理基質;在一些具體實例中,可將多巴胺溶液聚合以在基質上形成聚多巴胺;在一些具體實例中,該方法包含在約40-90℃下乾燥預先處理的基質;在一些具體實例中,可在約65℃下乾燥預先處理的基質。
在一些具體實例中,該方法包含將氧化石墨烯水溶液和交聯劑水溶液施加至基質上;在一些具體實例中,可藉由以下方法來實現將氧化石墨烯水溶液和交聯劑水溶液施加至基質上:逐層堆疊法、過濾法或混合物塗層法,其產生經塗佈之基質;在一些具體實例中,可重複施加程序,直至達到氧化石墨烯和交聯劑所需的厚度或層數為止;在一些具體實例中,厚度或層數係經限定,以至於所得膜能滿足上述之膜的性能標準;在一些具體實例中,膜的預期厚度可在約5-2000nm、約5-1000nm、約1000-2000nm、約10-500nm、約500-1000nm、約50-300nm、約10-200nm、約10-100nm、約10-50nm、約20-50nm或約50-100nm範圍內;在一些具體實例中,層數可在1至250、1至100、1至50、1至20、1至15、1至10或1至5範圍內。此方法會產生經完整塗佈的基質;在一些具體實例中,該方法進一步包含加熱經完整塗佈的基質,以促進氧化石墨烯和交聯劑的交聯或形成共價鍵結;在一些具體實例中,可在烘箱內、在以下溫度時加熱經完整塗佈的基質:約50-120℃、約40-150℃、約50-100℃、約80-90℃、約40-60℃、約120℃、約50℃、或約80℃;在一些具體實例中,可將經完整塗佈 的基質加熱以下時間以得到膜:約15分鐘至約2小時、約0.5-1小時、約1小時或約30分鐘。
在一些具體實例中,組裝膜的方法進一步包含將脫鹽層施加至膜或經固化基質上,以產生具有脫鹽層的膜;在一些具體實例中,可藉由將經固化基質浸漬於前驅物溶液(混合溶劑)中來施加脫鹽層;在一些具體實例中,該前驅物可包含胺和醯氯;在一些具體實例中,該前驅物可包含間苯二胺和均苯三甲醯氯;在一些具體實例中,間苯二胺的濃度可在約0.01-10wt%、約0.1-5wt%、約5-10wt%、約1-5wt%、約2-4wt%、約4wt%、約2wt%或約3wt%範圍內;在一些具體實例中,均苯三甲醯氯的濃度可在約0.001vol%至約1vol%、約0.01-1vol%、約0.1-0.5vol%、約0.1-0.3vol%、約0.2-0.3vol%、約0.1-0.2vol%、或約0.14vol%範圍內;在一些具體實例中,可使間苯二胺和均苯三甲醯氯之混合物靜置足夠長的時間,以至於可在浸漬發生之前進行聚合;在一些具體實例中,該方法包含在室溫下將該混合物靜置約1-6小時、約5小時、約2小時或約3小時;在一些具體實例中,該方法包含將經固化基質浸漬於塗層混合物中約15秒至約15分鐘、約5秒至約5分鐘、約10秒至約10分鐘、約5-15分鐘、約10-15分鐘、約5-10分鐘或約10-15秒。
在一些具體實例中,可藉由分別在水性間苯二胺水溶液和均苯三甲醯氯溶液(有機溶劑)中塗佈經固化基質來施加脫鹽層;在一些具體實例中,該間苯二胺溶液可具有約0.01-10wt%、約0.1-5wt%、約5-10wt%、約1-5wt%、約2-4wt%、約4wt%、約2wt%或約3wt%範圍內之濃度;在一些具體實例中,該均苯三甲醯氯溶液可具有約0.001-1vol%、約0.01-1 vol%、約0.1-0.5vol%、約0.1-0.3vol%、約0.2-0.3vol%、約0.1-0.2vol%或約0.14vol%範圍內之濃度;在一些具體實例中,該方法包含將經固化基質浸漬於水性間苯二胺中達以下時間:約1秒至約30分鐘、約15秒至約15分鐘或約10秒至約10分鐘;在一些具體實例中,該方法接著包含從經固化基質上除去過量的間苯二胺;在一些具體實例中,該方法接著包含將經固化基質浸漬於均苯三甲酰氯溶液中達以下時間:約30秒至約10分鐘、約45秒至約2.5分鐘或約1分鐘的時間;在一些具體實例中,該方法包含隨後在烘箱中乾燥經固化基質以產出具有脫鹽層的膜;在一些具體實例中,可乾燥經固化基質達以下溫度和時間:在約45℃至約200℃下約5分鐘至約20分鐘、在約75℃至約120℃下約5分鐘至約15分鐘,或者是在約90℃下約10分鐘。此加工會產生具有脫鹽層的膜。
在一些具體實例中,用於組裝膜的方法進一步包含隨後在膜上施加保護塗層;在一些具體實例中,施加保護性塗層包含添加親水性聚合物層;在一些具體實例中,施加保護塗層包含用PVA水溶液來塗佈膜,可藉由以下方式來實現施加保護層,諸如:刮塗、噴塗、浸塗或旋塗等等;在一些具體實例中,可藉由在保護塗層溶液中對膜進行浸塗以下時間來實現施加保護層:約1分鐘至約10分鐘、約1-5分鐘、約5分鐘或約2分鐘;在一些具體實例中,該方法進一步包含乾燥該膜達以下溫度和時間:在約75℃至約120℃下約5分鐘至約15分鐘,或者是在約90℃下約10分鐘,此會產生具有保護塗層的膜。
在下文中更詳細地描述了將視情況經取代的氧化石墨烯(GO)和交聯劑(諸如視情況經取代的間苯二胺)施加至基質上的三種方法。
1. 逐層堆疊法
在一些具體實例中,用逐層堆疊法來將氧化石墨烯水溶液和交聯劑水溶液(諸如視情況經取代的間苯二胺)施加至基質上,其中該方法包含分別逐層施加該溶液以形成多個層;在一些具體實例中,層數可在1-100、1-50、1-20、1-15、1-10或1-5範圍內,或者為10,其中將氧化石墨烯塗層和視情況經取代的間苯二胺交聯劑塗層視作單層;在一些具體實例中,水性氧化石墨烯溶液可具有0.0001-0.01wt%範圍內之濃度;在一些具體實例中,視情況經取代的間苯二胺交聯劑水溶液可具有0.0001-0.01wt%範圍內之濃度;在一些具體實例中,可在施加視情況經取代的間苯二胺交聯劑水溶液之後施加氧化石墨烯水溶液;在其他具體實例中,可在施加氧化石墨烯水溶液之後施加視情況經取代的間苯二胺交聯劑水溶液;在一些具體實例中,可藉由以下方式而單獨實現施加水溶液:刮塗、噴塗、浸塗、旋塗,或者是所屬技術領域中習知的其它方法;在一些具體實例中,可藉由在個別溶液中對基質進行浸塗以下時間來完成施加該溶液:約1分鐘至約10分鐘、約1-5分鐘或約5分鐘。
在一些具體實例中,逐層堆疊法進一步包含在去離子(DI)水中潤洗基質,以在施加氧化石墨烯水溶液及/或視情況經取代的間苯二胺交聯劑水溶液之後除去多餘的材料,產生經塗佈之基質。
2. 過濾法
在一些具體實例中,用過濾法來將氧化石墨烯水溶液和交聯劑水溶液施加至基質上,其中該方法包含創造出經混合的塗層溶液、靜置該塗層溶液以形成塗層混合物,以及接著過濾該塗層混合物,使其通過基 質以產生經塗佈之基質。
在一些具體實例中,創造出經混合的塗層溶液包含藉由混合氧化石墨烯水溶液和交聯劑水溶液來製備單一經混合的塗層溶液;在一些具體實例中,創造出經混合的塗層溶液包含混合以下物質以產生塗層溶液:濃度為約0.0001-0.01wt%的氧化石墨烯水溶液和濃度為約0.0001-0.01wt%的交聯劑水溶液。
在一些具體實例中,過濾法包含在約室溫下靜置該塗層溶液以下時間:約30分鐘至約12小時、約1-6小時、約2-5小時、2-4小時、約5小時或約3小時。據信靜置塗層溶液可使氧化石墨烯和交聯劑開始進行共價鍵給,以促進產生最終的交聯層;在一些具體實例中,過濾法包含將基質浸入塗層混合物中;在一些具體實例中,該方法進一步包含藉由施加遍及基質各處的負壓梯度來將塗層混合物拉伸至基質上。據信藉由迫使塗層混合物液體移動通過基質,可將塗層混合物的一些部分配置在基質表面上,導致層厚度與混合物移動通過基質的持續時間成正比;在一些具體實例中,可藉由真空而在基質的一側上施加負壓梯度;在一些具體實例中,可改變混合物拉伸的持續時間,以至於達到所得塗層之所需總厚度,例如:約10-100nm、約10-50nm、約10nm、12nm、約20nm、約30nm、約40nm、約50nm或約100nm。
在一些具體實例中,過濾法進一步包含用去離子(DI)水來潤洗基質,以在施加塗層混合物之後除去多餘的材料,產生經塗佈之基質。
3. 混合物塗層法
在一些具體實例中,用混合物塗層法來將氧化石墨烯水溶液 和交聯劑水溶液施加至基質上,其中該方法包含創造出經混合的塗層溶液、靜置該塗層溶液以形成塗層混合物,以及接著施加該塗層混合物以在基質上形成多個層;在一些具體實例中,層數可在1至約100範圍內,其中將單一混合層視作單層。
在一些具體實例中,創造出經混合的塗層溶液包含藉由混合氧化石墨烯水溶液和交聯劑水溶液來創造出單一經混合的塗層溶液;在一些具體實例中,創造出經混合的塗層溶液包含混合以下物質以產生塗層溶液:濃度為約0.0001-0.01wt%的氧化石墨烯溶液和濃度為約0.0001-0.01wt%的交聯劑水溶液。
在一些具體實例中,混合物塗層法包含在約室溫下靜置該塗層溶液以下時間:約30分鐘至約12小時、約1-6小時、約5小時或約3小時。據信靜置塗層溶液能使氧化石墨烯和交聯劑開始進行共價鍵結,以促進產生最終的交聯層。
在一些具體實例中,混合物塗層法進一步包含將塗層混合物施加至基質上;在一些具體實例中,可藉由以下方式來完成將塗層混合物施加至基質上:刮塗、噴塗、浸塗、旋塗,或者是所屬技術領域中習知的其它方法;在一些具體實例中,可藉由對基質進行噴塗來施加塗層混合物。
在一些具體實例中,混合物塗層法視情況包含在施加塗層混合物之後用DI水來潤洗所得基質,以除去多餘的材料,產生經塗佈之基質。
具體實例
應特別考慮以下具體實例:
具體實例1 一種膜,其包含: 多孔性基質,以及氧化石墨烯層,其包含與該多孔性基質流體相連通之視情況經取代的交聯氧化石墨烯;其中該視情況經取代的交聯氧化石墨烯包含視情況經取代的氧化石墨烯和交聯鍊,其以式1表示: 其中R為H、CO2H、CO2Li、CO2Na或CO2K。
具體實例2 具體實例1之膜,其中該交聯鍊為: or
具體實例3 具體實例1或2之膜,其中該多孔性基質包含聚合物或中空纖維。
具體實例4 具體實例1、2或3之膜,其中該視情況經取代的氧化石墨烯包含薄層。
具體實例5 具體實例4之膜,其中該薄層之大小為約0.05μm至約50μm。
具體實例6 具體實例1、2、3、4或5之膜,其中該視情況經取代的交聯氧化石墨烯含約20atom%至約90atom%的碳。
具體實例7 具體實例1、2、3、4或5之膜,其中該視情況經取代 的交聯氧化石墨烯材料含約1atom%至約20atom%的氮。
具體實例8 具體實例1、2、3、4或5之膜,其中該視情況經取代的交聯氧化石墨烯材料含約3atom%至約6atom%的氮。
具體實例9 具體實例1、2、3、4或5之膜,其中該視情況經取代的交聯氧化石墨烯材料含約5atom%至約15atom%的氮。
具體實例10 具體實例1、2、3、4或5之膜,其中該視情況經取代的交聯氧化石墨烯材料含約9atom%至約13atom%的氮。
具體實例11 具體實例1、2、3、4或5之膜,其中該視情況經取代的交聯氧化石墨烯材料含約10atom%至約12atom%的氮。
具體實例12 具體實例1、2、3、4、5、6、7、8、9、10或11之膜,其中係藉由使視情況經取代的間苯二胺(MPD)與視情況經取代的氧化石墨烯(GO)反應來製備該視情況經取代的交聯氧化石墨烯,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)在約0.1至約100範圍內。
具體實例13 具體實例12之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)在1至10範圍內。
具體實例14 具體實例13之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)為約1、約3或約7。
具體實例15 具體實例13之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)為約3,或約7。
具體實例16 具體實例13之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)為約7。
具體實例17 具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16之膜,其中該視情況經取代的氧化石墨烯為未經官能基化的氧化石墨烯、經還原的氧化石墨烯、經官能基化的氧化石墨烯、經官能基化和還原的氧化石墨烯或其組合。
具體實例18 具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16之膜,其進一步包含脫鹽層。
具體實例19 具體實例18之膜,其中該脫鹽層經配置於該氧化石墨烯層上。
具體實例20 具體實例18或19之膜,其中該脫鹽層包含藉由使間苯二胺與均苯三甲醯氯反應而製備的聚醯胺。
具體實例21 具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20之膜,其中該膜進一步包含保護層,其中該保護層包含親水性聚合物。
具體實例22 具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或21之膜,其中該氧化石墨烯的厚度為約5nm至約200nm。
具體實例23 具體實例22之膜,其中該氧化石墨烯的厚度為約10nm至約100nm。
具體實例24 具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或23之膜,其包含1至約100個氧化石墨烯層。
具體實例25 具體實例19之膜,其包含1層至10層的GO和MPD塗 層。
具體實例26 一種使未加工流體脫水的方法,其包含將該未加工流體暴露於具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25之膜。
具體實例27˙ 一種從未加工溶液中除去溶質的方法,其包含將該未加工溶液暴露於具體實例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25之膜。
具體實例28 具體實例27之方法,其進一步包含使該未加工溶液穿過該膜。
具體實例29 具體實例28之方法,其中可藉由施加遍及膜各處的壓力梯度來實現使該未加工溶液穿過該膜。
具體實例30 一種製造膜的方法,其包含:(a)將包含視情況經取代的氧化石墨烯和水溶性交聯劑之溶液靜置約30分鐘至約12小時以產生塗層混合物;(b)將塗層混合物施加至基質上;(c)若需要則重複步驟(b)以達到所需厚度或層數;以及(d)在約50℃至約120℃下、於該基質上對該視情況經取代的氧化石墨烯和該水溶性交聯劑進行固化約15分鐘至約2小時,以至於該視情況經取代的氧化石墨烯和該水溶性交聯劑進行共價鍵結。
具體實例31 具體實例30之方法,其中將該塗層混合物施加至該基質上包含將該基質浸入該塗層混合物中,接著藉由施加遍及該基質各處 的負壓梯度來將該塗層混合物拉伸至該基質上,直至達到所需的塗層厚度為止。
具體實例32 具體實例30之方法,其中將該塗層混合物施加至該基質上包含刮塗、噴塗、浸塗或旋塗。
具體實例33 具體實例30、31或32之方法,其進一步包含在施加該塗層混合物之後用去離子水來潤洗基質。
具體實例34 一種從視情況經取代的間苯二胺交聯劑和視情況經取代的氧化石墨烯來製造膜的方法,其包含。(a)分別將以下物質施加至基質上:1)一種視情況經取代的氧化石墨烯之水溶液,以及2)一種情況經取代的間苯二胺交聯劑之水溶液;(b)若需要則重複步驟(a)以達到所需厚度或層數;以及(c)在約50℃至約120℃下、於該基質上對該視情況經取代的氧化石墨烯和該交聯劑進行固化約15分鐘至約2小時,直至該視情況經取代的氧化石墨烯和該視情況經取代的間苯二胺交聯劑進行共價鍵結為止。
具體實例35 具體實例34之方法,其中可藉由以下方式來實現步驟(a):刮塗、噴塗、浸塗或旋塗一種該水溶液,或者是兩種該水溶液都塗。
具體實例36 具體實例34或35之方法,其進一步包含在個別施加該水溶液之後用去離子水來潤洗基質。
具體實例37 具體實例30、31、32、33、34、35或36之方法,其進 一步包含施加脫鹽層。
具體實例38 具體實例37之方法,其中該脫鹽層包含藉由以下方法 所製備的聚醯胺:包含使間苯二胺和均苯三甲醯氯反應的方法。
實施例
已發現到與其它選透膜相較之下,本文中所述之選透膜的具體實例對以下物質具有經提高的滲透性阻力:氧氣和具可接受材料性質之蒸氣。可藉由以下實施例來證明此等益處,這些實施例意欲說明本發明所揭示之內容,但並非意欲以任何方式來限制其範圍或基本原理。
實施例1.1.1:氧化石墨烯分散液(GC-1)的合成
GO的製備:用改進過的Hummers法而從石墨來製備GO。在50℃下、於2.0g NaNO3(Aldrich)、10g KMnO4(Aldrich)及96mL濃H2SO4(Aldrich,98%)的混合物中氧化石墨片(2.0g)(Sigma Aldrich,St.Louis,MO,USA,篩孔100)15小時;將所得類糊狀混合物倒入400g的冰中,接著加入30mL的過氧化氫(Aldrich,30%),接著在室溫下攪拌所得溶液2小時以還原二氧化錳,接著以濾紙將其過濾並用去離子水來進行洗滌;收集固體,接著透過攪拌將其分散於去離子水中,以6300rpm離心40分鐘,並傾析水層;接著再次將剩餘固體分散於DI水中,並重複洗滌加工4次,接著進行超音波處理(20W的功率)2.5小時以將經純化的GO分散於去離子水中,得到GO分散液(0.4wt%)GC-1
實施例2.1.1:氧化石墨烯分散液(GC-1)的製備
基質的預先處理:用支撐膜聚醯胺(尼龍)(0.1μm的孔隙,Aldrich)作為基質;並在pH 8.5的多巴胺溶液〔2g/L多巴胺(Aldrich)和 1.3g/L Trizma鹼緩衝液(Aldrich)〕中將其進行浸塗;該多巴胺經聚合以在基質上形成聚多巴胺;接著在65℃下、於烘箱(DX400,Yamato Scientific Co.,Ltd.Thoyo,Japan)中乾燥經聚多巴胺塗佈的基質,此方法會產生預先處理的基質。
GO-MPD的施加/過濾法:首先,用DI水來稀釋GO分散液GC-1以產生0.1wt%的GO水溶液;第二,藉由將適量的MPD(Aldrich)溶解於DI中來製備0.1wt%的間苯二胺(MPD)水溶液;接著用以下方法創造出塗層混合物:以1:1的重量比將0.1wt%的MPD水溶液和0.1wt%的GO水溶液溶解於去離子水中,接著將所得溶液靜置約3小時,或通常直至GO和胺完成反應為止;接著過濾所得塗層混合物,使其通過預先處理的基質,以將溶液拉過基質,在以基質將溶劑過濾之後,接著在80℃下將所得膜(具有混合物沉積在其表面上)放置於烘箱(DX400,Yamato Scientific)中30分鐘以促進進一步的交聯,此加工會產生沒有脫鹽層的膜(MD-1.1.1.1.1)。
實施例2.1.1.1:藉由過濾來製備另外的膜
用類似於實施例2.1.1的方法來構建另外的膜MD-1.1.1.1.2至MD-1.1.2.1.4,不同的是改變特定膜的參數,如表1所示。具體來說,基材〔例如:聚碸(PSF)、聚醚碸(PES)、聚醯胺(尼龍)、聚醯亞胺(PI)或聚二氟亞乙烯(PVDF)]、層厚度及交聯劑〔例如:MPD或3,5-二胺基苯甲酸(MPD w/COOH)(Aldrich)〕,並且改變交聯劑與GO的質量比。
J=1-無脫鹽層;2-脫鹽層
K=1-藉由過濾法;2-藉由混合物塗層法,3-藉由逐層推疊法
L=1-MPD;2-MPD w/COOH;M=1-無保護塗層;2-具有保護塗層
N=分類中的膜#
〔2〕所有的PP和PVA/PP基質為大約30μm厚;而尼龍基質的變化則為65至125μm厚。
〔3〕(Prop.)-指出推薦之實施例。
實施例2.1.2:藉由混合物塗層來製備膜(推薦)
可用與實施例2.1.1相同的方法來製備GO和製備基質,不同的是GO-MPD的製備方法,其改變如下所描述。
GO-MPD的施加/過濾方法(浸塗):首先,用DI水來稀釋GO分散液GC-1以產生0.1wt%的GO水溶液;第二,可藉由將適量的MPD(Aldrich)溶解於DI水中來製備0.1wt%的MPD水溶液;接著可用以下方法創造出塗層溶液:以1:1的重量比將0.1wt%的GO水溶液和0.1wt%的MPD水溶液溶解於去離子水中,可將所得塗層溶液靜置約3小時,或通常直至GO和胺已預先反應為止,此加工可產生塗層混合物。
藉由將基質浸漬於塗層混合物中,可接著以上述塗層混合物來塗佈經聚多巴胺塗佈的基質;接下來,可在DI水中徹底潤洗該基質以除去任何多餘的顆粒;可重複上述加工,即將基質浸漬於塗層混合物中,並接著用DI水循環潤洗多次,以獲得GO和MPD的所需層數或厚度;可接著在80℃下將所得膜維持於烘箱(DX400,Yamato Scientific)中30分鐘以促 進進一步的交聯,此加工可產生沒有脫鹽層的膜(MD-1.1.1.1.1)。
實施例2.1.3:透過施加逐層堆疊來製備膜(MD-1.3.1.1.1)
可用與實施例2.1.1相同的方法來製備GO和製備基質,不同的是GO-MPD施加方法的改變如下所描述,且使用聚碸(PSF)做為基質。
GO-MPD的施加/逐層堆疊法:藉由將適量的MPD(Aldrich)溶解於DI中來製備0.1wt%的MPD水溶液;藉由在DI水中稀釋GO分散液來製造0.1wt%的GO水溶液;接著將經聚多巴胺塗佈的基質浸泡在0.1wt% MPD水溶液中5分鐘、用DI水徹底潤洗,以及隨後在0.1wt%GO溶液中浸泡5分鐘,以令第一層的GO附著;接下來,用去DI水潤洗膜以除去多餘的GO,可重複此加工,交替地將基質浸漬於MPD和GO溶液中多次,以獲得GO和MPD的所需層數;在此特定實施例中製備具有一層的膜,可接著在80℃下將所得膜維持於烘箱(DX400,Yamato Scientific)中30分鐘以促進進一步的交聯,此加工可產生沒有脫鹽層的膜(MD-1.3.1.1.1)。
實施例2.1.3.1:透過施加逐層堆疊來製備另外的膜
驗證層數的敏感度。對於膜MD-1.3.1.1.2MD-1.3.1.1.3而言,使用的方法與實施例2.1.3中所用者相同,不同的是層數變化如圖2所示,或具體言之分別從1層至最多10層。
實施例2.2.1:添加脫鹽層至膜上
為了增強膜的脫鹽能力,另外用聚醯胺脫鹽層來塗佈MD-1.1.1.1.1。藉由在DI水中稀釋適量的MPD(Aldrich)來製備3.0wt%的MPD水溶液,藉由在異烷烴溶劑(Isopar E & G,Exxon Mobil Chemical,Houston TX,USA)中稀釋適量的均苯三甲醯氯(Aldrich)來製備0.14vol%的均苯三 甲醯氯溶液,接著將經GO-MPD塗佈的膜浸漬於MPD(Aldrich)的3.0wt%水溶液中10秒至10分鐘(取決於基質)並接著取出;接著藉由空氣乾燥來除去留在膜上的多餘溶液,接著將膜浸漬於0.14vol%的均苯三甲醯氯溶液中10秒並取出;接著在120℃下、於烘箱(DX400,Yamato Scientific)中乾燥所得總成3分鐘,此加工會產生沒有脫鹽層的膜(MD-2.1.1.1.1)。
實施例2.2.1.1:添加脫鹽層至另外的膜上
用類似於實施例2.2.1中所用的程序來將脫鹽層塗佈至另外的膜MD-1.1.1.1.2MD-1.1.1.1.7MD-1.1.2.1.1MD-1.1.2.1.2MD-2.3.1.1.3上,表2呈現了所創造出之所得新膜的組態。
〔1〕編號方式為MD-J.K.L.M.N,其中J=1-無脫鹽層;2-脫鹽層
K=1-過濾法;2-混合物塗層法,3-逐層推疊法
L=1-MPD;2-MPD w/COOH;M=1-無保護塗層;2-保護塗層
N=分類中的膜#
〔2〕所有的PP和PVA/PP基質為大約30μm厚;而尼龍基質的厚度變化則為65至125μm。
〔3〕(Prop.)-表示推薦之實施例。
實施例2.2.2:製備具有保護塗層的膜
如圖9所示,將保護性樹脂塗佈在樣品MD-1.3.1.1.3(透過在PSF基質上逐層推疊地塗佈GO和MPD所製備之10層的膜)上產生MD-1.3.1.2.3,藉由所屬技術領域中習知的方法來製造此塗層。
可在其它經選擇的膜上塗佈保護層。首先,可藉由以下方式來製備2.0wt%的PVA溶液:在90℃下、於1L的DI水中攪拌20g的PVA(Aldrich)20分鐘,直至所有顆粒溶解為止;接著將溶液冷卻至室溫,可將經選擇的基底浸入溶液中10分鐘並接著取出,可接著用紙巾除去殘留在膜上的多餘溶液;可接著在90℃下、於烘箱(DX400,Yamato Scientific)中乾燥所得總成30分鐘,可因此獲得具有保護塗層的膜。
比較實施例2.1.1:製備比較膜
用市售可得的基質成分聚碸膜(PSF)(Sterlitech Corporation,Kent,WA,USA)和聚丙烯(PP)過濾膜(Celgard LLC,Charlotte,North Carolina, USA)。來創造出比較膜CMD-1.1CMD-1.2。藉由以下方式創造出PVA/PP膜CMD-1.3:將PP過濾膜浸入PVA/水的溶液(Aldrich)中10分鐘,並接著在90℃下、於烘箱(DX400,Yamato Scientific)中乾燥所得膜約30分鐘。
比較實施例2.1.2:製備另外的比較膜
用類似於實施例2.1.1中所用的方法來製造比較膜MD-2.1.1MD-2.2.2,此處之方法具有表3中所概述之變化。
實施例3.1:膜的特性化
TEM分析:用穿透式電子顯微鏡(TEM)來分析膜 MD-1.1.1.1.1,TEM的程序類似於所屬領域中習知者。圖9所示為GO-MPD膜的TEM橫截面分析,膜厚度為約5-10nm,且沿著基質為連續的。
XPS分析:用X射線光電子光譜儀(XPS)分析膜MD-1.1.1.1.1以測定原子光譜的相對分佈,XPS的程序類似於所屬領域中習知者。如表4所示,XPS分析指出氮在GO-MPD膜中的顯著增加,其係由於MPD與GO的交聯,還有當環氧化物顯著減少時,氧的部分還原。
XPS分析:如圖10所示,藉由X射線繞射(XRD)來特性化代表性MD-1.1.1.1.1膜中的基本GO-MPD膜結構。該結構與MD-1.1.1.1.1相同,不同的是基質為尼龍基質以便於測試,藉由布拉格方程式來計算晶格的d間距:2dsin θ=n λ,其顯示GO-MPD具有比未經修飾之GO更長的層間距離(參見表5),層間距離的增加可能是由於MPD交聯的效應。
IR分析:用所屬領域中習知的方法來操作MD-1.1.1.1.1膜中之GO-MPD結構的紅外光(IR)分析。如圖11所示,GO和GO-MPD的IR皆指出C-N鍵和N-H鍵的形成,C-N鍵和N-H鍵的存在表明已發生交聯。
實施例4.1:經選擇之膜的脫水/水分離測試
脫水特徵-水蒸氣穿透度測試:測試膜的水蒸氣穿透度,至於氣體的洩漏,選擇以氮氣模擬空氣。
圖12顯示裝置的樣品圖。測試裝置由交叉流動測試池(CF016A,Sterlitech)所組成,其在任一側形成兩個增壓室,其中每個具有自己的入口和出口,將被測量的膜放置在45mm×45mm的測試腔體中,並夾在測試池的兩個半部之間,以在殼體能配合時創造出兩個密封的增壓室,其中每個增壓室僅透過膜而流體相連通;接著選擇入口和出口,以至於每個增壓室中的流體流為逆流組態,從濕側(第一側)將潮濕N2氣體送入裝置中,並接著將其與滲出膜樣品的一些殘餘水蒸氣和氣體送出至第二側(乾側),將吹掃或乾燥的N2氣體送入裝置中,並接著將其與從膜中所夾帶出來的潮濕氣體排出;用濕度/溫度傳送器(RHXL3SD,Omega Engineering,Inc.,Stamford,CT,USA)在三處位置測量濕度和溫度:在潮濕N2氣體側的入口和出口,還有乾燥N2氣體側的出口;此外,也藉由兩個空氣流量感測器 (FLR1204-D,Omega)來測量濕側和乾側兩處的流速;也藉由兩個數位壓力計(Media Gauge MGA-30-A-9V-R,SSI Technologies,Inc.,Janesville,WI,USA)而在濕側和乾側兩處測量氣壓。
對於該測量而言,將經選擇的膜置於裝置中,並將濕側入口設置為約80%至約90%的相對濕度,乾側入口的相對濕度為0%,將潮濕氣流的上游壓力設定為0.13psig,將乾燥氣流的上游壓力設定為0.03psig,從該儀器可知,三個測量地的水蒸汽壓力和絕對濕度係由測得的溫度和濕度數據所導出/計算,接著由絕對濕度、流速及膜的暴露面積差異來導出水蒸汽透過率;最後,由水蒸氣透過率和兩個增壓室之間的水蒸氣壓力差來導出水蒸氣穿透度,氮氣流速係由以下所導出:乾燥N2出口和潮濕N2入口,還有水蒸氣透過率。
脫水特徵-氮氣洩漏測試:測試膜的氣體洩漏,選擇以氮氣模擬空氣。對於這些測試而言,使用與水蒸氣穿透度測試中所用的相同測試裝置,不同的是關閉乾燥N2空氣入口,並將乾燥N2出口排向具有標準測試槽(20cc至6LPM,Sensidyne)或低流量測試槽(1cc/min至250cc/min,Sensidyne)的流量測量儀器(D800286 Gilibrator-2標準空氣流量校準器;Sensidyne,St.Petersburg,FL,USA),而非排向大氣,以測量透過膜的流量洩漏。對於約1cc/min或更低的N2流速而言,則使用0.5mL的手動泡沫流量計(其具有約0.03cc/min至約5cc/min的範圍)來測定洩漏速率(# 23771,Aldrich),而非使用上述的流量測量儀器。
對於該測量而言,將經選擇的膜置於裝置中,並將濕側入口設置為約80%至約90%的相對濕度,關閉乾側入口以密封流量測量儀器的 上游部分,以至於僅洩漏透過膜的氣體能到達流量測量儀器,將潮濕氣流的上游壓力設定為0.13psig,並測量透過膜的N2洩漏。
如圖6所示,可用更大的基質孔隙來維持水穿透度,另外,對於較大的基質而言,可藉由增加GO-MPD層的厚度來最小化由於大孔徑的缺陷效應,導致排除了其它氣體的高水蒸氣穿透度。
如表7所示,當厚度高於16nm時,經GO-MPD塗佈的PP基質展現出除了水以外、其它氣體(諸如N2)之滲透性的明顯下降,另外,未經塗覆之基質(CMD-1.2或CMD-1.3膜)的水蒸氣穿透度保持在至少50%,說明了該膜的以下能力:排除其它氣體,同時維持穿過膜的水蒸氣通量。
實施例4.2:經選擇的膜之逆滲透表現測試
水通量和脫鹽測試:已發現到經塗佈於各種多孔性基質上之GO-MPD膜的水通量非常高,其目前逆滲透膜中所廣泛使用的聚碸基質相當。
對於藉由逐層堆疊法所製造的膜而言,已研究了關係到膜中層數之水通量的敏感度,並在表8中顯示該結果。如表8所示,依照增加 GO-MPD層數的結果,並無可察覺到的水通量變化。
對於過濾法而言,檢查所創造出的各種膜以觀察在相同壓頭下的水通量變化,在表9中表示該結果,其顯示對於膜(ME-1.1.1.1.2)而 言,即使具有GO-MPD基質的塗層,水通量仍可超過未經塗佈的PSF膜(CMD-1.1)。
為了測試脫鹽能力,首先測試包含10層經GO-MPD塗佈之基底(ME-3C)的逆滲透膜,以測定膜的以下能力:脫鹽和保留足夠的水通量。如表10,該膜表現出高NaCl脫鹽度和良好的水通量,此外,也測試了具有各種交聯劑之膜的脫鹽能力,以確定不同交聯劑材料的效應,並將其與比較實施例進行比較,以確定新交聯劑材料的相對效應。
所收集的數據顯示,具有間苯二胺(MPD)交聯劑的GO在以下方面優於可比擬之GO膜〔具有乙二胺(EDA)或對苯二胺(PPD)交聯劑〕:在具有可比擬之水通量速率時的脫鹽,此外,GO-MPD w/COOH膜 (MD-2.1.2.1.1)顯示出比無取代基之GO-MPD(CMD-2.2.1)更高的脫鹽和高水通量。
除非另有說明,否則本文中所使用之表示成分的量、性質(諸如分子量)及反應條件等等的所有數字應被理解為在所有情況下藉由術語「約」所修飾,每個數值參數應至少根據所報導之有效位數的數目、並藉由應用普通的四捨五入技術來進行解釋,因此,除非有相反的指示,否則可根據尋求實現的所需性質來修飾該數字參數,且其因而應被視作本發明所揭示之內容的一部分,至少,本文所示實施例僅用於說明,而並非意圖限製本所揭示之內容的範圍。
在描述本發明所揭示之內容的上下文中(特別是在申請專利範圍的上下文中),除非是在本文中另有說明或與上下文明顯矛盾,否則應將所使用之術語「一(a/an)」、「該(the)」及類似指明對象解釋為包括單數和多數。除非本文中另有說明或除非與上下文明顯矛盾,否則可用任何合適的順序來操作本文中所述的所有方法。本文中所提供的任何(所有)實施例或例示性用語(例如「諸如」)之使用僅意欲更佳地說明本發明所揭示之內容的具體實例,而並未對任何請求項的範圍構成限制。不應將說明書中的用語解釋為:指出任何未經主張之要素,其為實施本發明所揭示之內容的具體實例所必需。
不應將本文中所揭示之替代要素或具體實例的群組解釋為其限制。每個群組成員可被單獨地被提到和主張,或者是與群組的其它成員(或可見於本文中的其它要素)進行任何組合。經預期為了方便性及/或可專利性之原因,可在群組中包括的一或多個群組成員,或者是將其從群 組中刪除。
在本文描述了某些具體實例,包括本發明人所習知用於執行具體實例的最佳模式。當然,在閱讀了先前的描述之後,這些經描述之具體實例的變化對於一般技藝人士而言將變得顯而易見,本發明人希望熟諳此技藝者適當地採用此等變化,且本發明人意欲已不同於本文中所具體描述的方式來實施本發明所揭示之內容的具體實例。因此,申請專利範圍包括了適用法律所允許的、申請專利範圍中所記載之標的的所有修飾和其等同物,此外,除非在本文中另有說明或除非與上下文明顯矛盾,否則應以所有可能的變化來考慮上述要素的任何組合。
總結,應理解本發明所揭示之內容的具體實例為申請專利範圍之起源的說明,可運用在申請專利範圍之範疇內的其它修飾,因而可根據本發明之教示而應用替代性具體實例作為實施例(但其非限制因素),因此,申請專利範圍並未明確地受限於如已顯示和已描述之該等具體實例。

Claims (38)

  1. 一種膜,其包含:多孔性基質,以及氧化石墨烯層,其包含與該多孔性基質流體相連通之視情況經取代的交聯氧化石墨烯;其中該視情況經取代的交聯氧化石墨烯包含視情況經取代的氧化石墨烯和交聯鍊,其以下式表示: 其中R為H、CO2H、CO2Li、CO2Na或CO2K。
  2. 根據申請專利範圍第1項之膜,其中該交聯鍊為:
  3. 根據申請專利範圍第1或2項之膜,其中該多孔性基質包含聚合物或中空纖維。
  4. 根據申請專利範圍第1、2或3項之膜,其中該視情況經取代的氧化石墨烯包含薄層。
  5. 根據申請專利範圍第4項之膜,其中該薄層之大小為約0.05μm至約50μm。
  6. 根據申請專利範圍第1、2、3、4或5項之膜,其中該視情況經取代的交聯氧化石墨烯含約20atom%至約90atom%的碳。
  7. 根據申請專利範圍第1、2、3、4或5項之膜,其中該視情況經取代的交聯氧化石墨烯材料含約1atom%至約20atom%的氮。
  8. 根據申請專利範圍第1、2、3、4或5項之膜,其中該視情況經取代的交聯氧化石墨烯材料含約3atom%至約6atom%的氮。
  9. 根據申請專利範圍第1、2、3、4或5項之膜,其中該視情況經取代的交聯氧化石墨烯材料含約5atom%至約15atom%的氮。
  10. 根據申請專利範圍第1、2、3、4或5項之膜,其中該視情況經取代的交聯氧化石墨烯材料含約9atom%至約13atom%的氮。
  11. 根據申請專利範圍第1、2、3、4或5項之膜,其中該視情況經取代的交聯氧化石墨烯材料含約10atom%至約12atom%的氮。
  12. 根據申請專利範圍第1、2、3、4、5、6、7、8、9、10或11項之膜,其中係藉由使視情況經取代的間苯二胺(MPD)與視情況經取代的氧化石墨烯(GO)反應來製備該視情況經取代的交聯氧化石墨烯,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)在約0.1至約100範圍內。
  13. 根據申請專利範圍第12項之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)在1至10範圍內。
  14. 根據申請專利範圍第13項之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)為約1、約3或約7。
  15. 根據申請專利範圍第13項之膜,其中該視情況經取代的間苯二胺與該視情況經取代的氧化石墨烯之重量比(MPD/GO)為約3,或約7。
  16. 根據申請專利範圍第13項之膜,其中該視情況經取代的間苯二胺與該 視情況經取代的氧化石墨烯之重量比(MPD/GO)為約7。
  17. 根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16項之膜,其中該視情況經取代的氧化石墨烯為未經官能基化的氧化石墨烯、經還原的氧化石墨烯、經官能基化的氧化石墨烯、經官能基化和還原的氧化石墨烯或其組合。
  18. 根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16項之膜,其進一步包含脫鹽層。
  19. 根據申請專利範圍第18項之膜,其中該脫鹽層經配置於該氧化石墨烯層上。
  20. 根據申請專利範圍第18或19項之膜,其中該脫鹽層包含藉由使間苯二胺與均苯三甲醯氯反應而製備的聚醯胺。
  21. 根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20項之膜,其中該膜進一步包含保護層,其中該保護層包含親水性聚合物。
  22. 根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或21項之膜,其中該氧化石墨烯的厚度為約5nm至約200nm。
  23. 根據申請專利範圍第22項之膜,其中該氧化石墨烯的厚度為約10nm至約100nm。
  24. 根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或23項之膜,其包含1至約100個氧化石墨烯層。
  25. 根據申請專利範圍第24項之膜,其包含1層至10層的GO和MPD塗層。
  26. 一種使未加工流體脫水的方法,其包含將該未加工流體暴露於根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25項之膜。
  27. 一種從未加工溶液中除去溶質的方法,其包含將該未加工溶液暴露於根據申請專利範圍第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25之膜。
  28. 根據申請專利範圍第27項之方法,其進一步包含使該未加工溶液穿過該膜。
  29. 根據申請專利範圍第28項之方法,其中可藉由施加遍及膜各處的壓力梯度來實現使該未加工溶液穿過該膜。
  30. 一種製造膜的方法,其包含:(a)將包含視情況經取代的氧化石墨烯和水溶性交聯劑之溶液靜置約30分鐘至約12小時以產生塗層混合物;(b)將塗層混合物施加至基質上;(c)若需要則重複步驟(b)以達到所需厚度或層數;以及(d)在約50℃至約120℃下、於該基質上對該視情況經取代的氧化石墨烯和該水溶性交聯劑進行固化約15分鐘至約2小時,以至於該視情況經取代的氧化石墨烯和該水溶性交聯劑進行共價鍵結。
  31. 根據申請專利範圍第30項之方法,其中將該塗層混合物施加至該基質上包含將該基質浸入該塗層混合物中,接著藉由施加遍及該基質各處 的負壓梯度來將該塗層混合物拉伸至該基質上,直至達到所需的塗層厚度為止。
  32. 根據申請專利範圍第30項之方法,其中將該塗層混合物施加至該基質上包含刮塗、噴塗、浸塗或旋塗。
  33. 根據申請專利範圍第30、31或32項之方法,其進一步包含在施加該塗層混合物之後用去離子水來潤洗基質。
  34. 一種從視情況經取代的間苯二胺交聯劑和視情況經取代的氧化石墨烯來製造膜的方法,其包含(a)分別將以下物質施加至基質上:1)一種視情況經取代的氧化石墨烯之水溶液,以及2)一種情況經取代的間苯二胺交聯劑之水溶液;(b)若需要則重複步驟(a)以達到所需厚度或層數;以及(c)在約50℃至約120℃下、於該基質上對該視情況經取代的氧化石墨烯和該交聯劑進行固化約15分鐘至約2小時,直至該視情況經取代的氧化石墨烯和該視情況經取代的間苯二胺交聯劑進行共價鍵結為止。
  35. 根據申請專利範圍第34項之方法,其中可藉由以下方式來實現步驟(a):刮塗、噴塗、浸塗或旋塗一種該水溶液,或者是兩種該水溶液都塗。
  36. 根據申請專利範圍第34或35項之方法,其進一步包含在個別施加該水溶液之後用去離子水來潤洗基質。
  37. 根據申請專利範圍第30、31、32、33、34、35或36項之方法,其進一步包含施加脫鹽層。
  38. 根據申請專利範圍第37項之方法,其中該脫鹽層包含藉由以下方法所製備的聚醯胺:包含使間苯二胺和均苯三甲醯氯反應的方法。
TW105141782A 2015-12-17 2016-12-16 選透性氧化石墨烯膜 TWI725090B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562268835P 2015-12-17 2015-12-17
US62/268,835 2015-12-17
US201662339589P 2016-05-20 2016-05-20
US62/339,589 2016-05-20

Publications (2)

Publication Number Publication Date
TW201739699A true TW201739699A (zh) 2017-11-16
TWI725090B TWI725090B (zh) 2021-04-21

Family

ID=57750636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141782A TWI725090B (zh) 2015-12-17 2016-12-16 選透性氧化石墨烯膜

Country Status (9)

Country Link
US (2) US10442709B2 (zh)
EP (2) EP3389836B1 (zh)
JP (1) JP6750017B2 (zh)
KR (1) KR102108667B1 (zh)
CN (1) CN109219479B (zh)
CA (1) CA3008827C (zh)
ES (1) ES2788169T3 (zh)
TW (1) TWI725090B (zh)
WO (1) WO2017106540A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758926A (zh) * 2018-10-31 2019-05-17 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
TWI727552B (zh) * 2018-12-17 2021-05-11 日商日東電工股份有限公司 選擇性滲透之聚合物膜

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
WO2017106540A1 (en) * 2015-12-17 2017-06-22 Nitto Denko Corporation Selectively permeable graphene oxide membrane
EP3454979A4 (en) 2016-05-11 2020-01-01 Massachusetts Institute of Technology GRAPHENOXIDE MEMBRANE AND RELATED METHODS
CA3039166A1 (en) * 2016-10-03 2018-04-12 Nitto Denko Corporation Graphene oxide anti-microbial element
US20200261861A1 (en) * 2017-03-01 2020-08-20 Nitto Denko Corporation Selectively permeable graphene oxide membrane
CN109224888A (zh) * 2017-07-10 2019-01-18 浙江工业大学 一种氧化石墨烯框架改性聚酰胺反渗透膜及其应用
KR102329604B1 (ko) * 2017-08-04 2021-11-22 닛토덴코 가부시키가이샤 선택적 투과성 그래핀 옥시드 멤브레인
CN107555566B (zh) * 2017-08-31 2020-11-24 华南理工大学 磺化石墨烯与阳离子聚丙烯酰胺乳液协同处理重金属污染水的方法
US20200376442A1 (en) * 2017-12-21 2020-12-03 Nitto Denko Corporation Graphene oxide membrane protective coating
CN208078031U (zh) * 2017-12-29 2018-11-09 云谷(固安)科技有限公司 封装结构及包括封装结构的显示装置
US20210060522A1 (en) * 2018-01-08 2021-03-04 Virginia Commonwealth University Graphene-based materials for the efficient removal of pollutants from water
CN108097059A (zh) * 2018-01-15 2018-06-01 哈尔滨工业大学 一种利用二硫化钼建立水通道增强聚酰胺反渗透膜水通量的改性方法
WO2019155946A1 (ja) * 2018-02-07 2019-08-15 国立大学法人神戸大学 複合分離膜
US11420164B2 (en) * 2018-03-01 2022-08-23 King Fahd University Of Petroleum And Minerals Method of deionizing saline water with a diffusion barrier
US20190314769A1 (en) * 2018-04-13 2019-10-17 University Of Florida Research Foundation, Inc. Bilayer 2d material laminates for highly selective and ultra-high throughput filtration
SG11202011956TA (en) * 2018-06-08 2020-12-30 Nitto Denko Corp Selectively permeable graphene oxide membrane
AU2019288482A1 (en) * 2018-06-21 2021-01-14 Nitto Denko Corporation Selectively permeable graphene oxide membrane for dehydration of a gas
EP3810312A4 (en) 2018-06-25 2022-04-13 2599218 Ontario Inc. GRAPHENE MEMBRANES AND METHODS OF MAKING GRAPHENE MEMBRANES
WO2020055970A1 (en) * 2018-09-11 2020-03-19 Via Separations, LLC Systems and methods for concentrating fluid components via distillation and membrane filtration
KR102097533B1 (ko) * 2018-09-20 2020-04-07 광주과학기술원 산화 그래핀 멤브레인 필름 및 그 제조방법
CN109277003B (zh) * 2018-09-22 2021-10-15 浙江工业大学 一种石墨烯超滤膜及其制备方法
CN111715078B (zh) * 2019-03-20 2022-05-24 暨南大学 一种具有固定层间距的三明治氧化石墨烯中空纤维膜及其制备方法与应用
CN111715082A (zh) * 2019-03-21 2020-09-29 南京林业大学 一种高效的超亲油纳米纤维膜的简易制备方法及纳米纤维膜
US11015128B1 (en) * 2019-04-26 2021-05-25 Precision Combustion, Inc. Process of removing a metal from a fluid hydrocarbon
US11203721B1 (en) * 2019-04-26 2021-12-21 Precision Combustion, Inc. Process of removing a metal from a fluid hydrocarbon
EP3969158A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
EP3969157A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Durable graphene oxide membranes
CN114144253A (zh) * 2019-06-12 2022-03-04 新南创新私人有限公司 过滤膜以及其生产方法
SG11202110488PA (en) 2019-06-13 2021-10-28 2599218 Ontario Inc Apparatuses, methods, and systems for fabricating graphene membranes
US11058997B2 (en) 2019-08-16 2021-07-13 2599218 Ontario Inc. Graphene membrane and method for making graphene membrane
US11167250B1 (en) * 2019-09-19 2021-11-09 National Technology & Engineering Solutions Of Sandia, Llc Filtration membranes
GB2602225B (en) * 2019-10-11 2024-04-10 Halliburton Energy Services Inc Treating fluids recovered from well operations using a graphene oxide coated membrane
US11332374B2 (en) 2020-03-06 2022-05-17 2599218 Ontario Inc. Graphene membrane and method for making graphene membrane
CN113797772A (zh) * 2020-06-12 2021-12-17 三达膜科技(厦门)有限公司 一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法
CN112852006B (zh) * 2021-01-13 2022-05-13 北京大学 一种改善废弃聚氨酯载体表面生物相容性的方法
US20220332606A1 (en) * 2021-04-05 2022-10-20 Florida State University Research Foundation, Inc. Plasma activated water production with membrane concentration
KR102333293B1 (ko) * 2021-05-28 2021-12-01 국방과학연구소 탄소계 지지체 및 분리층을 포함하는 선택투과성 분리막의 제조방법
WO2023044641A1 (en) * 2021-09-23 2023-03-30 Shanghai Tetrels Material Technology Co., Ltd. A vapor permeation device and methods of the same
EP4440717A1 (en) 2021-11-29 2024-10-09 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration
CN114618313B (zh) * 2021-12-13 2022-12-16 宁波水艺膜科技发展有限公司 一种高通量抗污染反渗透复合膜及其制备方法
CN114744917B (zh) * 2022-04-24 2023-08-11 广东墨睿科技有限公司 一种石墨烯发电器件及其制备方法和应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457171A (en) 1967-02-13 1969-07-22 Westinghouse Electric Corp Graphitic oxide memberane for desalinating water
US4900626A (en) 1987-07-28 1990-02-13 Rhone-Poulenc Recherches Hollow composite fibers selectively permeable to water vapor
AU2003209418A1 (en) 2002-01-29 2003-09-02 Amersham Biosciences Membrane Separations Corp. Spiraled surface hollow fiber membranes
WO2011066332A2 (en) 2009-11-24 2011-06-03 Rensselaer Polytechnic Institute Graphene dispersion, and graphene membrane and devices incorporating the same
GB201000743D0 (en) * 2010-01-18 2010-03-03 Univ Manchester Graphene polymer composite
US8361321B2 (en) 2010-08-25 2013-01-29 Lockheed Martin Corporation Perforated graphene deionization or desalination
WO2012047359A1 (en) 2010-09-30 2012-04-12 General Electric Company Thin film composite membranes incorporating carbon nanotubes
KR101440773B1 (ko) 2010-12-13 2014-09-18 엘지디스플레이 주식회사 유기 발광 표시 장치의 구동 장치 및 그의 구동 방법
WO2012102678A1 (en) 2011-01-24 2012-08-02 Nano-Mem Pte. Ltd. A forward osmosis membrane
EP2720772A2 (en) 2011-06-17 2014-04-23 Battelle Memorial Institute Forward osmosis, reverse osmosis, and nano/micro filtration membrane structures
KR101432218B1 (ko) * 2011-06-20 2014-09-19 주식회사 엘지화학 염제거율 및 투과유량 특성이 우수한 역삼투 분리막 및 그 제조방법
US8895104B2 (en) * 2011-07-01 2014-11-25 International Business Machines Corporation Thin film composite membranes embedded with molecular cage compounds
US20140370246A1 (en) 2012-01-20 2014-12-18 Brown University Substrate with Graphene-based Layer
GB201204170D0 (en) 2012-03-09 2012-04-25 Bio Nano Consulting Cross-linked graphene networks
GB201214565D0 (en) 2012-08-15 2012-09-26 Univ Manchester Membrane
US20150280217A1 (en) 2013-03-11 2015-10-01 William Marsh Rice University Three-dimensional graphene-backboned architectures and methods of making the same
US20160354729A1 (en) 2013-04-12 2016-12-08 General Electric Company Membranes comprising graphene
JP2016522079A (ja) * 2013-04-19 2016-07-28 フリンダーズ ユニバーシティ オブ サウス オーストラリアFlinders University of South Australia 生物付着防止性膜及び製造方法
CN103589152A (zh) * 2013-10-21 2014-02-19 江苏大学 一种聚酰亚胺/氧化石墨烯纳米复合薄膜的制备方法
CN106413859B (zh) * 2013-11-01 2019-07-05 麻省理工学院 减轻膜中的渗漏
GB201320564D0 (en) 2013-11-21 2014-01-08 Univ Manchester Water Purification
CN103768960B (zh) 2014-01-06 2016-02-10 北京化工大学 一种石墨烯基膜的制备方法及其在油水分离中的应用
CN106102884B (zh) * 2014-03-12 2020-11-17 汉阳大学校产学协力团 包含氧化石墨烯涂层的复合膜、包含其的多孔聚合物支撑体及其制备方法
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
WO2015142938A1 (en) * 2014-03-17 2015-09-24 Washington University Composite nanostructures having a crumpled graphene oxide shell
US20150344666A1 (en) 2014-05-29 2015-12-03 Reagents Of The University Of Minnesota Laminates Comprising Oligomer-Grafted Nanofillers and Advanced Composite Materials
US10456754B2 (en) * 2014-08-08 2019-10-29 University Of Southern California High performance membranes for water reclamation using polymeric and nanomaterials
CN107530642B (zh) * 2015-04-20 2021-05-07 义安理工学院 官能化单层石墨烯基薄膜复合材料及其制造方法
GB201510761D0 (en) * 2015-06-18 2015-08-05 Imp Innovations Ltd 2-dimensional carbon material
WO2017106540A1 (en) * 2015-12-17 2017-06-22 Nitto Denko Corporation Selectively permeable graphene oxide membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109758926A (zh) * 2018-10-31 2019-05-17 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
CN109758926B (zh) * 2018-10-31 2022-02-11 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
TWI727552B (zh) * 2018-12-17 2021-05-11 日商日東電工股份有限公司 選擇性滲透之聚合物膜

Also Published As

Publication number Publication date
KR102108667B1 (ko) 2020-05-07
KR20180095048A (ko) 2018-08-24
CN109219479A (zh) 2019-01-15
CN109219479B (zh) 2022-01-04
CA3008827C (en) 2021-05-18
WO2017106540A1 (en) 2017-06-22
EP3389836A1 (en) 2018-10-24
ES2788169T3 (es) 2020-10-20
CA3008827A1 (en) 2017-06-22
US10442709B2 (en) 2019-10-15
EP3677330A1 (en) 2020-07-08
US20170174537A1 (en) 2017-06-22
JP2019500212A (ja) 2019-01-10
US20200017377A1 (en) 2020-01-16
TWI725090B (zh) 2021-04-21
JP6750017B2 (ja) 2020-09-02
EP3389836B1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
TW201739699A (zh) 選透性氧化石墨烯膜
JP7256152B2 (ja) 選択透過性酸化グラフェン膜
Li et al. Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents
KR102282787B1 (ko) 선택적 투과성 그래핀 옥시드 멤브레인
CN111225735A (zh) 选择性渗透的氧化石墨烯膜
KR20160027196A (ko) 다채널막
KR101936924B1 (ko) 분리막, 및 상기 분리막을 포함하는 수처리 장치
WO2016002821A1 (ja) 複合半透膜
EP2962748A1 (en) Composite semipermeable membrane and production thereof
KR102278939B1 (ko) 선택적 투과성 그래핀 옥시드 멤브레인
KR20170113450A (ko) 폴리아미드 계면중합용 조성물 및 이를 이용한 역삼투막의 제조방법
Gao et al. NGO/PA layer with disordered arrangement hybrid PPS composite membrane for desalination
WO2018187588A1 (en) Selectively gas permeable graphene oxide membrane element
WO2016136966A1 (ja) 複合半透膜
KR20120077997A (ko) 폴리아마이드계 역삼투 분리막의 제조방법 및 그에 의해 제조된 폴리아마이드계 역삼투 분리막
KR20170092132A (ko) 수직정렬 탄소나노튜브 복합 초박형 분리막 및 이의 제조방법 및 제조장치
KR102524361B1 (ko) 분리막의 제조방법, 분리막 및 수처리 모듈
KR101735552B1 (ko) 수직정렬 탄소나노튜브 복합 초박형 분리막 및 이의 제조방법 및 제조장치
Lim Development of hollow fiber membranes for solvent resistant nanofiltration
이재우 Preparation and Characterization of Graphene Oxide Modified Membranes for Water Treatment