TW201733778A - 高耐熱性聚萘二甲酸乙二酯薄片 - Google Patents

高耐熱性聚萘二甲酸乙二酯薄片 Download PDF

Info

Publication number
TW201733778A
TW201733778A TW106105952A TW106105952A TW201733778A TW 201733778 A TW201733778 A TW 201733778A TW 106105952 A TW106105952 A TW 106105952A TW 106105952 A TW106105952 A TW 106105952A TW 201733778 A TW201733778 A TW 201733778A
Authority
TW
Taiwan
Prior art keywords
polyethylene naphthalate
sheet
sample
naphthalate sheet
noc
Prior art date
Application number
TW106105952A
Other languages
English (en)
Inventor
彦坂正道
岡田聖香
田中良敬
Original Assignee
國立大學法人廣島大學
帝人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人廣島大學, 帝人股份有限公司 filed Critical 國立大學法人廣島大學
Publication of TW201733778A publication Critical patent/TW201733778A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明提供高耐熱性聚萘二甲酸乙二酯薄片(高耐熱性聚萘二甲酸乙二酯薄膜)。本發明之一樣態之聚萘二甲酸乙二酯薄片係含有聚萘二甲酸乙二酯結晶之聚萘二甲酸乙二酯薄片,含有高分子鏈高配向且結晶尺寸為50nm以下之聚萘二甲酸乙二酯的結晶之奈米配向結晶,耐熱溫度為280℃以上。

Description

高耐熱性聚萘二甲酸乙二酯薄片
本發明係關於高耐熱性聚萘二甲酸乙二酯薄片(或高耐熱性聚萘二甲酸乙二酯薄膜)。更具體而言,本發明之高耐熱性聚萘二甲酸乙二酯薄片(或高耐熱性聚萘二甲酸乙二酯薄膜)係包含聚萘二甲酸乙二酯之奈米配向結晶之薄片狀(或薄膜狀)之高分子材料。
聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)或聚對苯二甲酸丁二酯(polybutylene terephthalate,PBT)或聚萘二甲酸乙二酯(polyethylene naphthalate,PEN)等之源自石油之聚酯(以下稱為「聚酯」)已知係力學特性、耐熱性、透明性等比廣泛使用之塑膠的聚烯烴更優異之高性能.高機能塑膠。尤其PET由於便宜,故已大量使用於各種瓶子、容器、工業用製品、工業用零件等(日本國內年產量:約710萬噸),且亦作為可回收物質而有名。且PBT或PEN等係分類為高性能樹脂的工程塑膠。此處,工程塑膠定義 為耐熱溫度為100℃以上,拉伸強度為50MPa以上,拉伸彈性率為2.5GPa以上之樹脂。再者耐熱溫度為150℃以上之工程塑膠稱為「超級工程塑膠」,在電子機器等之要求更高耐熱性之領域中其需求日益提高。
為了提高PET等之聚酯的機械特性(拉伸強度、拉伸彈性率等)或耐熱性,而利用將聚酯進行延伸處理之聚酯薄片或聚酯薄膜(延伸薄片或延伸薄膜)。然而,以往之聚酯延伸薄片製品或聚酯延伸薄膜製品之現狀是無法充分實現聚酯本來之高性能。其理由為以往之聚酯延伸薄片製品或聚酯延伸薄膜其構造係摺疊鏈結晶(Folded chain crystals,FCC)與非晶層合而成之層合層狀構造,且低性能之非晶含有50%以上之故。例如,以往之PET單軸延伸薄片於室溫下之拉伸強度(σ)為230MPa、拉伸彈性率(Et)為2.3GPa,但耐熱溫度(Th)為約120℃,PET之熔點(Tm)250~265℃或平衡熔點(Tm 0)顯著低於310℃,而難以利用於要求高耐熱性之領域。此將阻礙PET朝工業製品之真正展開。
此處,專利文獻1及2、以及非專利文獻1~3中,記載與PET等之聚酯之單軸延伸薄片有關之技術。然而,上述文獻中記載之聚酯單軸延伸薄片均由上述層合層狀構造所成。非專利文獻1之圖4及6中,顯示表示自單軸延伸PET之小角X線散射圖型(SAXS圖型)之層合層狀構造的典型4點像,且非專利文獻1之圖8中示意性顯示PET之單軸延伸薄片係非晶與結晶層合而成之層合 層狀構造。且非專利文獻3之圖5亦顯示單軸延伸PET之小角X線散射圖型(SAXS圖型),顯示層合層狀構造之典型4點像。
[先前技術文獻] [專利文獻]
[專利文獻1] 日本公開專利公報「特開平7-329170號公報(1995年12月19日公開)」
[專利文獻2] 日本公開專利公報「專利第3804023號公報(2006年8月2日公開)」
[非專利文獻]
[非專利文獻1] T. Uchiyama et al., Polymer 48(2007), 542-555
[非專利文獻2] TOSHIO KUNUGI et. al., Journal of Applied Polymer Science, Vol. 31, 429-439(1986)
[非專利文獻3] M. EVSTATIEV et. al., POLYMER ENGINEERING AND SCIENCE, JULY 1992, Vol. 32, No. 14
如上述,聚酯薄片或聚酯薄膜儘管比較便宜 且機械特性亦優異,但由於耐熱性不足,故難以真正朝工業製品展開。
因此,本發明之一樣態之目的係提供對於聚酯中尤其是聚萘二甲酸乙二酯賦予耐熱性之高耐熱性聚萘二甲酸乙二酯薄片(高耐熱性聚萘二甲酸乙二酯薄膜)。
本發明人等為解決上述課題而積極檢討之結果,首次成功地藉由以臨界伸長變形速度以上的速度邊使聚萘二甲酸乙二酯熔液伸長邊進行結晶化,而取得含有聚萘二甲酸乙二酯之奈米配向結晶(Nano-oriented crystals,NOC)之聚萘二甲酸乙二酯薄片。而且發現含有聚萘二甲酸乙二酯之奈米配向結晶之聚萘二甲酸乙二酯薄片,與以往之單軸延伸薄片相比,係具備高的耐熱溫度(Th≒309℃)與高的熔點(Tm≒309℃)者,因而完成本發明(即使聚萘二甲酸乙二酯之其他例,亦具有高的耐熱溫度(Th≒291℃)與高的熔點(Tm≒306℃))。
亦即本發明之一樣態係一種聚萘二甲酸乙二酯薄片,其係含有聚萘二甲酸乙二酯結晶之聚萘二甲酸乙二酯薄片,其特徵係
上述結晶為含有高分子之分子鏈經配向且結晶尺寸為50nm以下之聚萘二甲酸乙二酯的結晶(亦稱為奈米結晶(nano crystal,NC))之奈米配向結晶,
耐熱溫度為280℃以上。
且本發明一樣態之聚萘二甲酸乙二酯薄片,亦可熔點為285℃以上。
且本發明一樣態之聚萘二甲酸乙二酯薄片,亦可上述奈米配向結晶係由紡錘狀之結晶連結成念珠狀之構造所成。
且本發明一樣態之聚萘二甲酸乙二酯薄片,亦可上述奈米配向結晶之結晶形態為單斜晶。
且本發明一樣態之聚萘二甲酸乙二酯薄片,亦可係用於高溫加工之聚萘二甲酸乙二酯薄片。
且本發明一樣態之聚萘二甲酸乙二酯薄片,亦可係用於附透明導電層之層合體之基材的聚萘二甲酸乙二酯薄片。
且本發明一樣態之聚萘二甲酸乙二酯薄片,亦可係用於軟性電路基板之基材的聚萘二甲酸乙二酯薄片。
且本發明之一樣態係一種軟性電路基材,其係將本發明一樣態之聚萘二甲酸乙二酯薄片作為基材。
本發明一樣態之聚萘二甲酸乙二酯薄片比以往之聚萘二甲酸乙二酯薄片具備更高的耐熱性及更高熔點。因此,依據本發明,可將因耐熱性不充分而難以作為超級工程塑膠加以利用之聚萘二甲酸乙二酯薄片利用於要求耐熱性之工業製品。
1‧‧‧過冷卻熔液
2a‧‧‧擠出機
2b‧‧‧冷卻轉接器
3‧‧‧挾持輥
10‧‧‧輥壓延伸長結晶化裝置
圖1(a)及(b)係表示實施例之試料的偏光顯微鏡像(自穿透方向之觀察結果)之圖。
圖2係實施例之試料的小角X線散射影像的圖,(a)表示自穿透方向之觀察結果,(b)表示自邊緣方向觀察之結果,(c)表示自末端方向觀察之結果。
圖3係實施例之試料的廣角X線散射影像的圖,(a)表示自穿透方向之觀察結果,(b)表示自邊緣方向觀察之結果,(c)表示自末端方向觀察之結果。
圖4係顯示圖2之(b)所示之SAXS中自邊緣方向之觀察結果中標附反射指數之圖。
圖5係顯示構成實施例之試料的NOC構造之示意圖。
圖6係顯示針對實施例之試料檢討耐熱溫度之結果的作圖。
圖7係顯示針對實施例之試料檢討耐熱溫度之結果的作圖。
圖8係顯示針對比較例之試料檢討耐熱溫度之結果的作圖。
圖9係顯示圖2之(b)所示之SAXS中自邊緣方向之觀察結果的構造解析例的圖。A*、B*及C*(圖式中以粗字表示,以下本說明書中亦同)係NOC之逆晶格向 量,β*NC係A*與C*所成之角度。獨特軸(Unique axis)係B*//TD。ψ係C*與MD所成之角度,Φ係A*與ND所成之角度,順時針為正。
圖10係顯示ONC之三次元(3D)型態模型與NC之尺寸的示意圖。A、B及C(圖式中以粗字表示,以下本說明書中亦同)係與NC尺寸對應之NOC之單斜晶晶格向量,βNC係A與C所成之角度且βNC=98.7。
圖11係實施例之試料製作所用之輥壓延伸長結晶化裝置之示意圖。
以下,針對本發明詳細說明,但本發明之範圍不侷限於該等說明,針對以下例示以外,在不損及本發明主旨之範圍內可適當變更實施。又,本說明書中記載之習知文獻全文作為參考原用於本說明書中。又,本說明書中,表示範圍的「~」只要未特別指明,則表示「以上、以下」。例如若表示為「A~B」,則意指「A以上、B以下」。
(1)本發明之聚萘二甲酸乙二酯薄片
本發明係關於具備高耐熱溫度及高熔點之包含聚萘二甲酸乙二酯結晶之聚萘二甲酸乙二酯薄片。上述「聚萘二甲酸乙二酯薄片」不僅意指平均厚度為0.15mm以上之薄片狀的聚萘二甲酸乙二酯,亦意指包含平均厚度未達 0.15mm之薄膜狀之聚萘二甲酸乙二酯。又,上述平均厚度並未特別限制,只要根據所用目的以適當擠出量調整即可。具體之平均厚度舉例為1μm~10mm之範圍,進而為2μm~5mm之範圍,特佳為3μm~1mm之範圍。此處上述所謂「厚度」意指在一定靜荷重下測定之高分子之單面與另一面之距離。且所謂「平均厚度」意指高分子薄片之厚度最大值與最小值之平均值。又高分子薄片之厚度係使用微米計或使用以光學式實體顯微鏡(OLYMPUS股份有限公司製,SZX10-3141)與接物微米計校正之尺規而測定而得。
上述「聚萘二甲酸乙二酯」(polyethylene naphthalate,PEN)意指2,6-萘二甲酸與乙二醇之聚縮合物。本發明之聚萘二甲酸乙二酯可藉由獲得使2,6-萘二甲酸二甲酯與乙二醇進行酯交換反應而得的單體之雙羥基伸乙基-2,6-萘二甲酸酯後,使該單體聚縮合反應而製作。本發明之聚萘二甲酸乙二酯不僅為均聚物,亦可為共聚物。詳細將於後述,但本發明之聚萘二甲酸乙二酯薄片係包含聚萘二甲酸乙二酯之奈米配向結晶(nano-oriented crystals,NOC)者。本發明之聚萘二甲酸乙二酯薄片可藉由例如使熔液狀態之聚萘二甲酸乙二酯壓延伸長並結晶化(固化)而製造。
本發明之聚萘二甲酸乙二酯薄片具備高耐熱溫度。此處,所謂「耐熱溫度」意指使用光學顯微鏡藉由試驗片尺寸直接讀取法測定之耐熱溫度。上述所謂「試驗 片尺寸直接讀取法」意指使用附CCD相機之光學顯微鏡(OLYMPUS股份有限公司製,BX51N-33P-OC)與加熱台(Linkam公司製,L-600A)與可定量畫面上尺寸之圖像解析軟體(Media Cybernetics公司製,Image-Pro PLUS)實施。試驗片尺寸使用長0.7mm、寬0.5mm之試驗片。以升溫速度1K/分鐘使試驗片自室溫加熱至最高溫度Tmax,將此時試驗片於長度方向(MD)或寬度方向(TD)產生變形3%以上(收縮或膨脹)時之溫度設為耐熱溫度。亦即,變形(ε)成為ε>3%或ε<-3%之溫度設為耐熱溫度(Th)。惟,於熔點(Tm)之前未觀察到成為|ε|>3%之溫度時設為Th=Tm
本發明一形態之聚萘二甲酸乙二酯薄片之耐熱溫度為280℃以上(更好290℃以上,又更好為300℃以上)為其特徵。由於已知PEN之平衡熔點為312℃(參考文獻:Intern.J.Polymeric Mater.,2001,Vol.50,pp.335-344),故亦可說本發明之聚萘二甲酸乙二酯薄片之耐熱溫度係比PEN之平衡熔點低32℃之溫度(更好比平衡熔點低22℃之溫度,亦又更好比平衡熔點低12℃之溫度)更為高溫。與以往習知之PEN之單軸延伸薄片之耐熱溫度為130℃~180℃比較時,可一目了然本發明一樣態之聚萘二甲酸乙二酯薄片之耐熱性顯著較高。後述之實施例的試料(PEN薄片)之耐熱溫度成為309℃,耐熱溫度比以往習知之PEN之單軸延伸薄片顯著上升,此可謂為本技藝者無法預期之顯著效果。
又,本發明一樣態之聚萘二甲酸乙二酯薄片除了高耐熱性以外,熔點亦高。亦即,本發明一樣態之聚萘二甲酸乙二酯薄片之熔點較好為280℃以上(更好290℃以上,又更好為300℃以上)。由於已知PEN之平衡熔點為312℃(參考文獻:Intern.J.Polymeric Mater.,2001,Vol.50,pp.335-344),故亦可說本發明之聚萘二甲酸乙二酯薄片之熔點係比PEN之平衡熔點低27℃之溫度(更好比平衡熔點低22℃之溫度,亦又更好比平衡熔點低12℃之溫度)更為高溫。與PEN本身之熔點為268℃~283℃比較時(參考文獻:W.G.Kampert,et.al.,Polymer vol.42,8703(2001)),可理解本發明之聚萘二甲酸乙二酯薄片熔點顯著較高。後述之實施例的試料(PEN薄片)之熔點成為309℃,本發明一樣態之PEN薄片之熔點比PEN本身之熔點更顯著上升,此可謂為本技藝者無法預期之顯著效果。
且,本發明一樣態之聚萘二甲酸乙二酯薄片較好熔點與耐熱溫度之差(熔點-耐熱溫度)為20K以下,更好為15K以下,又更好為10K以下,最好為5K以下。聚萘二甲酸乙二酯薄片較好熔點與耐熱溫度之差若為上述範圍,則由於耐熱溫度相對於熔點充分高,故可使聚萘二甲酸乙二酯薄片利用於要求耐熱性之工業製品。後述實施例之試料(PEN薄片)之耐熱溫度及熔點均為309℃,與以往習知之PEN之單軸延伸薄片之熔點與耐熱溫度之差為100K以上比較時,本發明一樣態之PEN薄片之 熔點與耐熱溫度之差顯著變小,此可謂為本技藝者無法預期之顯著效果。
此處,所謂平衡熔點(Tm 0)意指使高分子之分子鏈(以下適當稱為「高分子鏈」)以伸長狀態結晶化之巨觀尺寸之完全結晶之熔點,係由下述算出。
Tm 0=△Hu÷△Su
(△Hu:熔解焓(enthalpy),△Su:熔解熵(entropy))
另一方面,所謂「熔點」係結晶變為熔液時之溫度Tm
此處,本發明之聚萘二甲酸乙二酯薄片係含有聚萘二甲酸乙二酯之奈米配向結晶(nano-oriented crystals,NOC)者。此處,NOC係含有結晶尺寸為50nm以下且高分子鏈配向於伸長方向(machine direction,MD)之聚萘二甲酸乙二酯之結晶(亦稱為奈米結晶(nano crystals,NC))者。
本發明一樣態之聚萘二甲酸乙二酯薄片由於要求高的耐熱性,故較好含有NOC為主體。例如本發明一樣態之聚萘二甲酸乙二酯薄片較好為含有60%以上(較好70%以上,更好80%以上,又更好90%以上,再更好95%以上之)聚萘二甲酸乙二酯之NOC。聚萘二甲酸乙二酯薄片中所含之NOC比例(NOC分率)可藉由X線繞射法算出(參考文獻:Kiyoka N Okada,et.al.,Polymer Journal(2010)42,464-473)。NOC分率亦稱為f(NOC)。由於NOC為高配向,且非NOC為等向性,故 可基於X線散射之強度比算出NOC分率。
構成聚萘二甲酸乙二酯薄片之NOC中所含之NC之高分子鏈、或構成NOC之NC本身中之何者配向,可藉由偏光顯微鏡觀察、或藉由習知之X線繞射(小角X線散射法、廣角X線散射法)確認。針對偏光顯微鏡觀察或X線繞射(小角X線散射法、廣角X線散射法)之具體方法,可適當參考後述實施例。
構成上述NOC之NC係NC中所含之高分子鏈經高度配向者。因此,NOC之配向函數fc設為0.9以上(更好為0.95以上,再更好為0.97以上)。上述配向函數fc可藉由例如習知之廣角X線散射法(以下稱為「WAXS法」)測定。藉由WAXS法之配向函數fc之測定,利用例如呈像板(Imaging Plate)作為檢測器時,可藉由使用X線散射強度解析軟體(RIGAKU股份有限公司製,R-軸顯示)測定。關於配向函數fc之算出方法,可適當參考後述實施例。結晶性高分子時,已知配向函數fc越大,MD方向之機械強度越增大。因此,可理解本發明一樣態之聚萘二甲酸乙二酯薄片具備高的機械強度。
且本發明一樣態之聚萘二甲酸乙二酯薄片中所含之NOC中所含之NC的結晶尺寸為50nm以下(較好40nm以下,更好30nm以下,又更好25nm以下)。此處,NC之結晶尺寸可藉由習知之小角X線散射法(以下稱為「SAXS法」)求出。又,NC之結晶尺寸下限並未特別限制,但基於熔點之觀點,較好為3nm以上(較好 5nm以上,更好8nm以上,又更好10nm以上)。SAXS法中之散射向量(q)-小角X線散射強度(Ix)曲線之1次波峰,於NOC分率較大時,由於相當於平均尺寸d之微結晶隨機相互裝填時之微結晶間最接近距離(=結晶尺寸d)(參考文獻:A.Guinier著,「X線結晶學之理論與實際」,理學電機(股),p513,1967),故結晶尺寸d係由下述之布拉格(Bragg)式求出。
布拉格(Bragg)之式:d=2π÷q
構成本發明一樣態之聚萘二甲酸乙二酯薄片之NOC之構造係由偏光顯微鏡與X線繞射結果推定。圖5中顯示實施例所得之PEN之NOC構造模型。可知構成實施例所得之聚萘二甲酸乙二酯薄片之NOC係由紡錘狀之結晶(NC)沿著伸長方向(MD)連結成念珠狀之構造。所謂紡錘狀意指近似紡錘之形狀,意指圓柱狀且正中間較粗,兩端逐漸變細之形狀。且由於亦近似橄欖球之形狀,故「紡錘狀」亦可表現為「橄欖球狀」。
已了解NOC所含之NC與NC中所含之高分子鏈大致高度配向於MD方向,於薄片之寬度方向(切線方向(Tangential direction):TD)及薄片厚度方向(垂直方向(Normal direction):ND)均較弱之相關性配向。此係本發明一樣態之聚萘二甲酸乙二酯薄片的特徵構造。又,可知構成後述之實施例的聚萘二甲酸乙二酯薄片(表2之樣品1)中所含之NOC之NC結晶尺寸,如圖5 所示於伸長方向(MD)為約26nm,於薄片之寬度方向(TD)為約18nm,及於薄片厚度方向(ND)為約20nm。構成NOC之OC之如紡錘狀之結晶的結晶尺寸只要是測定MD、TD、ND之尺寸,將最大之尺寸設為結晶尺寸即可。亦即,圖5所示之NC的結晶尺寸可謂約26nm。
本發明一樣態之聚萘二甲酸乙二酯薄片中所含之NOC較好具有三斜晶(或三斜晶系)之結晶構造(單元胞(Unit cell)構造)。認為本發明一樣態之聚萘二甲酸乙二酯薄片中所含之NOC具有此等結晶構造,係本發明一樣態之聚萘二甲酸乙二酯薄片發揮高耐熱性之一原因。
又,本發明一樣態之聚萘二甲酸乙二酯薄片中所含之NOC較好具有單斜晶之結晶形態(Morphology)。認為本發明一樣態之聚萘二甲酸乙二酯薄片中所含之NOC具有此等結晶形態,係本發明一樣態之聚萘二甲酸乙二酯薄片發揮高耐熱性之一原因。
由於本發明一樣態之聚萘二甲酸乙二酯薄片具有優異耐熱性,故可較好地使用作為供於例如於超過200℃之高溫下之加工處理的高溫加工用聚萘二甲酸乙二酯薄片。
作為具體之高溫加工用,本發明一樣態之聚萘二甲酸乙二酯薄片可較好地使用作為例如設置ITO等之透明導電層之基材。亦即,由於為了降低透明導電層之電 阻而有必要於高溫下之加熱處理,故本發明一樣態之聚萘二甲酸乙二酯薄片與以往之聚萘二甲酸乙二酯薄片,可於更高溫加工。
且,本發明一樣態之聚萘二甲酸乙二酯薄片可較好地使用於供於鍍敷或焊接處理等之用途,例如作為進行焊料回焊處理之軟性電路基板的基材。軟性電路基板迄今係使用聚醯亞胺,雖亦關於聚酯進行探討,但僅為補強板所用等級之尺寸安定性(參考文獻:日本特開2012-15441號公報、特開2010-165986號公報等)。
然而,本發明一樣態之聚萘二甲酸乙二酯薄片由於係聚萘二甲酸乙二酯且可具備與聚醯亞胺同等之高耐熱性,故不僅可使用作為部直接焊接之補強板,亦可使用於與焊料接觸之基板本身。又,本說明書中,具備280℃以上之耐熱溫度的聚萘二甲酸乙二酯薄片稱為「高耐熱性聚萘二甲酸乙二酯薄片」。
(2)本發明之聚萘二甲酸乙二酯薄片之製造方法
本發明之聚萘二甲酸乙二酯薄片之製造方法並未特別限制,但例如可如下述般製造。又,下述製造方法係將熔液狀態之聚萘二甲酸乙二酯進行壓延伸長及結晶化(固化)之方法,係與使暫時固化聚萘二甲酸乙二酯薄片進行壓延伸長製作延伸薄片之方法全然不同。
圖11係顯示用以製造本發明之聚萘二甲酸乙二酯薄片之裝置(輥壓延伸長結晶化裝置10)之概略 圖。輥壓延伸長結晶化裝置10係由過冷卻熔液供給機(具備使聚萘二甲酸乙二酯熔解,供給聚萘二甲酸乙二酯熔液之擠出機2a,與將來自擠出機2a之熔液冷卻為過冷卻狀態之冷卻轉接器2b)及挾持輥3所構成。上述過冷卻熔液供給機中,於擠出機2a之噴出口設置狹縫模嘴(未圖示)。該狹縫模嘴前端之形狀為方形。自該狹縫模嘴噴出之聚萘二甲酸乙二酯熔液通過冷卻轉接器2b內時冷卻至成為過冷卻狀態(過冷卻狀態之熔液稱為「過冷卻熔液」),使過冷卻熔液朝向挾持輥3噴出。若將平衡熔點(PEN時為312℃)與結晶化溫度之差定義為「過冷卻度△T」,則特別適合之過冷卻度由於係根據高分子種類與特徵而顯著不同故未特別限定,但較好為例如△T=25℃~100℃(更好為40℃~90℃,又更好為50℃~85℃,最好為55℃~85℃)。
挾持輥3具備為使可旋轉之成對的輥對向,挾持自過冷卻熔液供給機供給之過冷卻熔液1,於輥之旋轉方向伸長,而可形成為薄片狀。
製造本發明一樣態之聚萘二甲酸乙二酯薄片時,只要藉由自過冷卻熔液供給機供給之過冷卻熔液1,以挾持輥3挾持並以臨界伸長變形速度以上之伸長變形速度壓延伸長而結晶化即可。藉由如此,過冷卻熔液1成為配向熔液,可以維持該狀態下結晶化,使配向熔液中所含之分子鏈彼此締合,不借助異物即可引起核生成(稱為「均一核生成」)及成長而生成NOC,可製造本發明一 樣態之聚萘二甲酸乙二酯薄片。
此處,進一步說明使用圖11所示之輥壓延伸長結晶化裝置10之本發明一樣態之聚萘二甲酸乙二酯薄片的製造方法。圖11中,著眼於自挾持輥3之壓延伸長開始(A)至壓延伸長結束(B)為止之間的區域(以下稱為「區域AB」)。將輥壓延伸長結晶化裝置10之挾持輥3的半徑設為R,將挾持輥3之角速度設為ω,將挾持輥3之旋轉角度設為θ,將區域AB之任意部位之過冷卻熔液1之厚度設為L0,將壓延伸長結束後之B點的聚萘二甲酸乙二酯薄片之厚度設為L,將挾持輥之薄片拉取速度設為V,將伸長變形速度設為ε。區域AB之輥旋轉角θ非常小。
θ<<1(rad)...(1)
輥的半徑R與薄片厚度L0及L相較,非常大。
R>>L0,L...(2)
關於區域AB之任意部位之微小體積Φ,考慮以微小體積之中心為原點。將過冷卻熔液1及聚萘二甲酸乙二酯薄片移動之方向設為x軸,將過冷卻熔液薄片之寬度方向(TD)設為y軸,將過冷卻熔液之厚度方向設為z軸。微小體積Φ近似於長方體,長方體之各邊長度設為x、y、L0。薄片成形中,過冷卻熔液薄片之寬度亦即y充分大於x、L0,見到不因壓延伸長而變化。
y=const>>x,L0...(3)
因此,利用挾持輥3之壓延伸長過程中,過冷卻熔液 薄片於z軸方向壓縮,於x軸方向伸長。亦即,利用挾持輥3之壓延伸長僅參與於x軸及z軸。
此處,若x軸方向之伸長變形速度張量(tensor)設為εxx,z軸方向之伸長變形速度張量(tensor)設為εzz,則兩者之關係成為ε xx=-ε zz...(5)(5)式之導出中,與壓延伸長中之微小體積Φ相關之質量保存法則,使用Φ≒xyL0=const...(4)。
圖11之區域AB之z軸方向中之變形速度εzz,基於定義式而成為ε zz≡(1/L0)×(dL0/dt)...(6)
惟,t為時間。
此處,由於L0=2R(1-cosθ)+L...(7)
故由(6)式與(7)式及(1)式,近似地獲得ε zz≒-2ω√{(R/L0)×(1-L/L0)}...(8)
自(5)式及(8)式,獲得欲求出之伸長變形速度ε xx≒2ω√{(R/L0)×(1-L/L0)}...(9)
εxx基於(9)式係L0的函數。
ε xx係以L0=2L...(10)
而具有極大值。此意指於L0=2L,εxx成為最大,對於過冷卻熔液1施加最大伸長變形速度。
極大值之伸長變形速度若寫為εmax,則將(10)式代入(9)式,ε maxω√(R/L)...(11)
此處,由於於超臨界伸長變形速度中成形,故以εmax為臨界伸長變形速度ε*以上為條件。
因此,(11)式定義為伸長變形速度ε,並成為
V=Rω...(13)
ω(R,V)=V/R...(14)
由上述式(12)及(14),為
因此,若使用上述式(15),以使伸長變形速度ε(R,L,V)成為臨界伸長變形速度以上之方式,設定挾持輥3之半徑R、伸長後之高分子薄片之平均厚度L、及挾持輥3之薄片拉取速度V,則可製造期望之本發明的聚萘二甲酸乙二酯薄片。
此處,上述臨界伸長變形速度ε*(R,L,V)可為藉由任何方法決定之速度,但亦可為例如使用下述近似式(式i)算出者。
(式i)
此處,上述臨界點之薄片拉取速度V*係藉由供給過冷卻狀態之聚萘二甲酸乙二酯熔液,以半徑為R之一對挾持輥3挾住並以薄片拉取速度V使聚萘二甲酸乙二酯熔液壓延伸長,而結晶化為厚度L之聚萘二甲酸乙二酯薄片時生成NOC之臨界點的薄片拉取速度V。
且本發明一樣態之聚萘二甲酸乙二酯薄片之製造方法中,上述臨界伸長變形速度ε*(R,L,V)亦可為使用下述之近似式(式ii)算出者。
(式ii)
此處,上述臨界點之聚萘二甲酸乙二酯的厚度L*係藉由供給過冷卻狀態之聚萘二甲酸乙二酯熔液,以半徑為R之一對挾持輥3挾住並以薄片拉取速度V使聚萘二甲酸乙二酯熔液壓延伸長,而結晶化為厚度L之聚萘二甲酸乙二酯薄片時生成NOC之臨界點的聚萘二甲酸乙二酯的厚度L。
且本發明一樣態之聚萘二甲酸乙二酯薄片之 製造方法中,例如NOC分率成為0.6之伸長變形速度ε(R,L,V)亦可作為臨界伸長變形速度ε*(R,L,V)(參考文獻:Kiyoka N Okada,et.al.,Polymer Journal(2010)42,464-473)。
又,是否生成NOC之判斷並未特別限定,但可藉由例如後述實施例中說明之X射線繞射法判斷。
聚萘二甲酸乙二酯熔液之流動性高時,使用輥進行壓延伸長結晶化之情況下,有難以藉挾持輥伸長之情況,有無法以臨界伸長變形速度以上進行伸長之情況(參考後述之「(1)實施例之試料調製」項)。因此,製作本發明一樣態之聚萘二甲酸乙二酯薄片時,較好事先將聚萘二甲酸乙二酯熔液之流動性調整為可在臨界伸長變形速度以上進行伸長之程度的流動性(熔融流動速率:Melt flow rate:MFT)。亦即製作本發明一樣態之聚萘二甲酸乙二酯薄片之方法中,較好包含調整聚萘二甲酸乙二酯熔液流動性之步驟。
製作本發明一樣態之聚萘二甲酸乙二酯薄片之方法中,只要聚萘二甲酸乙二酯熔液流動性調整為可在臨界伸長變形速度以上進行伸長之程度的流動性即可,但較好例如300℃下之聚萘二甲酸乙二酯熔液之MFR為80(g/10min)以下,更好為60(g/10min)以下,又更好為40(g/10min)以下,最好為20(g/10min)以下。又,聚萘二甲酸乙二酯熔液之MFR之下限只要可在臨界伸長變形速度以上進行伸長之程度則未特別限定,但通常較好為 3(g/10min)以上。
以下顯示實施例進一步詳細說明本發明之實施形態。當然本發明不限定於以下實施例,不用說當然針對細部可有各種樣態。再者,本發明並非限定於上述之實施形態者,在申請專利範圍所示之範圍內可有各種變更,適當組合各揭示之技術手段所得之實施形態亦包含於本發明之技術範圍。
[實施例] (1)實施例之試料調製
本實施例中,使用表1所示之聚萘二甲酸乙二酯(polyethylene naphthalate,PEN)作為試料之材料。
表1中分別係「Mn」表示數平均分子量,「Mw」表示重量平均分子量,「Mw/Mn」表示分散指數。 PEN之Mn、Mw及Mw/Mn係使用TOSOH公司製HLC-8320GPC測定。管柱係TSK-gel GMHHR-M×2在40℃使用,作為PEN之溶劑係使用氯仿與HFIP(六氟異丙醇) 之1:1混合溶劑。又藉由測定所得之分子量係聚苯乙烯換算的分子量。
又表1中之「MFR[300℃]」表示在300℃之熔融流動速率(Melt flow rate:MFT)。MFR係使以加熱器加熱之於圓筒容器內之一定量合成樹脂於預定溫度(300℃)加熱.加壓,測定自設於容器底部之開口部(噴嘴)每10分鐘擠出之樹脂量。值係以單位(g/10min)表示。試驗機械係使用以JIS K6760規定之擠出型塑性測定計,測定方法係以JIS K7210規定。
使用圖11示意性所示之輥壓延伸長結晶化裝置11,進行表1所示之PEN之伸長結晶化。伸長結晶化條件如表2之記載。又,表2顯示進行PEN之伸長結晶化的結果。MFR越高(熔液之流動性高(亦即黏度低)的狀態),由於限制了熔液以輥壓延之條件,故利用輥之壓延伸長結晶化較好事先使PEN熔液之流動性某程度降低(例如MFR[300℃]為80(g/10min)以下)。
表2中之「最高溫度(Tmax)/℃」表示PEN以擠出成形機之加熱器熔解,調製PEN熔液時之擠出機的設定溫度。且表2中之「熔液溫度(Tmelt)/℃」表示PEN熔液以輥進行壓延伸長時之輥的表面溫度(≒PEN熔液之溫度≒結晶化溫度(Tc))。且表2中之「伸長變形速度(ε)/s-1」表示PEN熔液以輥進行壓延伸長時之伸長變形速度。且表2中之「試料厚度/mm」表示藉由伸長結晶化所得之試料厚度。
又,檢討於某伸長變形速度所得之PEN之NOC的NOC分率之結果,於伸長變形速度為2.7×102s-1時,由於NOC分率為0.91,故可知2.7×102s-1超過臨界伸長變形速度。因此,表2所示之樣品1及樣品2之伸長變形速度均超過2.7×102s-1,故該等可謂為臨界伸長變形速度以上之速度。
(2)比較例之試料調製
比較例中,表1之PEN係使用擠出成形機(TOYO SEIKI製LABO PLASTOMILL)製作PEN薄片。擠出成形條件係於設定溫度300℃使樹脂熔融並自模嘴擠出成薄片狀,設置於設定於溫度80℃之澆鑄輥上,使薄片固化。
上述所得之PEN薄片使用延伸機(TOYO SEIKI製,沖壓延伸機)進行延伸,製作PEN單軸延伸薄片。延伸係在環境溫度150℃,於MD方向以延伸倍率成為5倍之方式延伸PEN薄片。
將上述所得之PEN單軸延伸薄片固定於金屬框上,於200℃進行1分鐘固定,調製比較例之試料(厚度:0.055mm)(該試料於以下記載為「比較例之試料」)。
(3)偏光顯微鏡觀察
針對上述所得之各試料,進行偏光顯微鏡觀察。偏光顯微鏡使用OLYMPUS(股)製BX51N-33P-OC,以交叉稜鏡進行觀察。為了量測定延遲變化,於偏光顯微鏡之偏光鏡與分析儀(偏光板)之間插入敏銳色檢板(參考文獻:高分子材料之偏光顯微鏡入門 粟屋 裕,AGUNE技術中心,2001年p.75-103)。利用偏光顯微鏡之觀察係在室溫25℃進行。對於試料,自薄片厚度方向(ND,穿透方向)進行觀察。
圖1顯示進行偏光顯微鏡觀察之結果。圖1(a)及(b)中,作為實施例之試料的代表例,顯示表2之樣品2的偏光顯微鏡像。又,圖1(a)係MD相對於敏銳檢色板平行配置時之偏光顯微鏡像,圖1(b)係消光角時之偏光顯微鏡像。
以插入敏銳檢色板之狀態使試料旋轉,藉此使伸長方向(MD)之色(及延遲)變化為紅紫→黃(圖1(a))→紅紫,顯示明確之消光角(紅紫色)(圖1(b))。因此,由該延遲之變化,可知實施例之試料(表2之樣品2)之高分子鏈於伸長方向(MD)配向。
(4)X線繞射(小角X線散射法)
使用SAXS法觀察各試料。SAXS法係依據參考文獻「高分子X線繞射 角戶 正夫 笠井 暢民,丸善股份有限公司,1968年」或參考文獻「高分子X線繞射 第3.3版,增子 徹,山形大學生協,1995年」之記載進行。更具體而言,於高亮度光科學研究中心(財)(JASRI)Spring-8,BEAMLINE BL03XU中,以X線之波長λ=0.06nm~0.15nm,相機長300mm~3m,使用呈像板(Imaging Plate)作為檢測器,於室溫25℃進行。於垂直於MD及TD之方向(穿透)、平行於TD之方向(邊緣)與平行於MD之方向(端部)之3方向進行觀察。針對穿透及邊緣之試料係將MD設定於Z軸方向,針對端部則將TD設定為Z軸方向,以X線之暴露時間為5秒~180秒進行。以RIGAKU股份有限公司製之讀取裝置及讀取軟體(RIGAKU股份有限公司,raxwish,control)讀取呈像板,獲得2次元影像。
作為實施例之試料代表例,表2之樣品1的SAXS影像示於圖2。圖2之(a)係自穿透方向之觀察結果,(b)係自邊緣方向之觀察結果,(c)係自端部方向之觀察結果。
圖2之(a)中,MD較強之2點像與TD較弱之2點像正交。
圖2之(b)中,2點像分別自MD與ND傾 斜ψ與Φ(細節參考圖9)。
圖2之(c)中,係於TD及ND伸長散射漫射。
由於圖2之(a)及(b)中顯示2點像,可知PEN之奈米配向結晶(NOC)排列為3D之晶格狀。但,由於SAXS之2點像係次晶(paracrystal)晶格(參考文獻:A.Guinier,A Theory of Technique of the Radio-crystallography,Tokyo:Rigaku Denki,1967,Chap.10&11)之繞射一次波峰,故更正確而言,PEN之NOC係「3D的次晶晶格」。
藉此,可知PEN之NOC晶格形(結晶形態)為單斜晶(Monoclinic),獨特軸(參考文獻:Internatiolal tables for crystallography,Vol.A,(ed.T.Hahn)Netherlands:Kluwer Academic Publishers,1996,pp.106-107)係TD(細節參考圖9)。
又,雖省略數據,但關於實施例之其他試料(表2之樣品2)亦與圖2相同之結果。
(5)X線繞射(廣角X線散射法)
使用WAXS法觀察各試料。WAXS法係以高亮度光科學研究中心(財)(JASRI)Spring-8,BEAMLINE BL03XU,以X線之波長(λ)係λ=0.06nm~0.15nm,相機長(R)為R=300mm~3m,使用呈像板(Imaging Plate)作為檢測器,於室溫25℃進行。針對穿透及邊緣 之試料係將MD設定於Z軸方向,針對端部則將TD設定為Z軸方向,以X線之暴露時間為10秒~180秒進行。以RIGAKU股份有限公司製之讀取裝置及讀取軟體(RIGAKU股份有限公司,raxwish,control)讀取呈像板,獲得2次元影像。
作為實施例之試料代表例,表2之樣品1的WAXS影像示於圖3。圖3之(a)係自穿透方向之觀察結果,(b)係自邊緣方向之觀察結果,(c)係自端部方向之觀察結果。
由圖3之(a)及(b),可知實施例之試料的高分子鏈(結晶之c軸)於MD高度配向。且圖3之(c)顯示弧狀圖型,可知為雙軸配向。因此,實施例之試料係NOC。
由以上,可知PEN之NOC的單元胞構造為三斜晶(Triclinic)之β型(參考文獻:S.Buchner,D.Wiswe,and H.G.Zachmann,Polymer,30,480(1989))。
(6)配向函數fc之檢討
藉由表計算軟體(WaveMetfics公司製,Igor Pro)對圖3之(a)進行解析,獲得實施例之試料的配向函數fc。針對圖3之(a)所示之020反射,偏角(β)-廣角X線散射強度(Ix)曲線係進行背景修正而得。更具體而言,配向函數之式:fc=(3<cos2β>-1)÷2
但使用
算出fc
上述檢討之結果,可知實施例之試料(表2之樣品1)之配向函數fc≒0.98。因此,由於配向函數fc≒1,故可知實施例之試料所含之高分子鏈係高度配向。
(7)NC之結晶尺寸及NOC之構造檢討
由圖2之MD方向、TD方向、ND方向之2點像,求出實施例之試料的NC結晶尺寸(d)。圖4係顯示對圖2之(b)所示之SAXS中自邊緣方向之觀察結果中標附反射指數之圖。又,圖4係以彩色影像顯示圖2之(b)所示之黑白影像。由於SAXS法中之散射向量(q)-小角X線散射強度(Ix)曲線之1次波峰相當於平均尺寸d之微結晶隨機相互裝填時之微結晶間最接近距離(=結晶尺寸d)(參考文獻:A.Guinier著,「X線結晶學之理論與實際」,理學電機(股),p513,1967),故結晶尺寸d係由下述之布拉格(Bragg)式求出。
布拉格(Bragg)之式:d=2π÷q
可知實施例之試料(表2之樣品1)之結晶尺寸(亦包含DEN界面(參考文獻:日本專利第576707號)之 NC之結晶尺寸)於MD方向約26nm,於TD方向約18nm,及於ND方向約20nm。且,可知實施例之試料(表2之樣品2)之結晶尺寸(NC之結晶尺寸)於MD方向為26nm,於TD方向為18nm。
顯微鏡觀察及X線觀察之結果,推定實施例之試料為如圖5之構造。亦即,實施例之試料所含之NOC係由紡錘狀(或橄欖球狀)之NC沿著MD連結成念珠狀之構造,構成NC之高分子鏈於MD高度配向。且NC於TD及ND均以較弱相關配向。
(8)耐熱溫度之檢討
實施例之試料(表2之樣品1及2)及比較例之試料的耐熱溫度Th係使用光學顯微鏡藉由試驗片尺寸直接讀取法測定。於加熱台(Linkam公司製,L-600A)內放置試驗片(長0.7mm,寬0.5mm),以升溫速度1K/分鐘使加熱台內自室溫升溫至最高溫度Tmax。此時,以附CCD相機光學顯微鏡(OLYMPUS(股)製BX51N-33P-OC)進行觀察與記錄。使用圖像解析軟體(Media Cybernetics公司製,Image-Pro PLUS),定量測定試驗片之長度方向(MD)及寬度方向(TD),將MD或TD開始收縮(或膨脹)3%以上時之溫度設為耐熱溫度Th。亦即變形(ε)成為ε>3%或ε<-3%之溫度設為耐熱溫度(Th)。惟,於熔點(Tm)之前未觀察到成為|ε|>3%之溫度時設為Th=Tm
且亦一併檢討實施例之試料(表2之樣品1及2)及比較例之試料的熔點Tm
分別顯示檢討實施例之試料(圖6及圖7)及比較例之試料(圖8)之耐熱溫度之結果。
依據圖6,於熔點(Tm)之前,MD、TD之變形(ε)均未超過3%。因此,由Th之定義,實施例之試料(表2之樣品1)之耐熱溫度Th及熔點Tm為約309℃。因此,可知實施例之試料(表2之樣品1)的NOC顯示高耐熱性。
且,依據圖7,可知於MD變形3%以上時之溫度(Th(MD))為約302℃,於TD變形3%以上時之溫度(Th(TD))為約291℃。因此實施例之試料(表2之樣品2)之耐熱溫度Th為約291℃。且實施例之試料(表2之樣品2)之熔點Tm為約306℃。
另一方面,依據圖8,可知於MD變形3%以上時之溫度(Th(MD))為約172℃。因此比較例之試料之耐熱溫度Th為約172℃。且比較例之試料之熔點Tm為約277℃。
若比較實施例與比較例,則針對耐熱溫度及熔點,實施例之試料比比較例之試料大為提高。此可說係本實施例之試料發揮之顯著效果。
且比較例之試料的耐熱溫度與熔點Tm之差為100K以上,相對於此,實施例之試料(表2之樣品2)之耐熱溫度與熔點Tm之差為15K左右。且實施例之試料 (表2之樣品1)並無耐熱溫度與熔點Tm之差。由該結果可知實施例之試料大為改善了以往的PEN之單軸延伸薄片之耐熱溫度相對於熔點較低的問題點。
(9)NOC之3D形態模型
使用2次元影像解析軟體(RIGAKU股份有限公司,Display Win)進行圖2之(b)的解析(圖9)。圖9中,A*、B*及C*係NOC之逆晶格向量,β*NC係A*與C*所成之角度(亦即2點像間之角度)。且獨特軸(參考文獻:Internatiolal tables for crystallography,Vol.A,(ed.T.Hahn)Netherlands:Kluwer Academic Publishers,1996,pp.106-107)(逆晶格)係B*//TD。ψ係NOC的C*與MD所成之角度,Φ係NOC的A*與ND所成之角度,順時針為正。
解析結果,可知實施例之試料(表2之樣品1)之NOC方位係ψ=3.6°,Φ=-5.1°。
此處,由上述「(7)NC之結晶尺寸及NOC之構造檢討」,NOC之尺寸為MD方向(=C)26nm,TD方向(=B)18nm及ND方向(=A)20nm,且由上述「(4)X線繞射(小角X線散射法)」,NOC之結晶形態為單斜晶,故可知NC係以圖10之示意圖所示般於自MD傾斜Φ之方向以較強相關排列,自ND傾斜ψ之方向以較弱相關排列。
接著,算出A與C所成之角度βNC。βNC之算 出係使用以下式進行。
自上述式算出βNC之結果,可知實施例之試料(表2之樣品1)之βNC為98.7°,獨特軸係B//B*。
[產業上之可利用性]
如上述,本發明一樣態之聚萘二甲酸乙二酯薄片與以往之聚萘二甲酸乙二酯薄片相比,具備高的耐熱性。因此,依據本發明,可將因耐熱性不充分而難以作為超級工程塑膠加以利用之聚萘二甲酸乙二酯薄片利用於要求耐熱性之工業製品等。

Claims (10)

  1. 一種聚萘二甲酸乙二酯薄片,其係含有聚萘二甲酸乙二酯結晶之聚萘二甲酸乙二酯薄片,其特徵係上述結晶為含有高分子之分子鏈經配向且結晶尺寸為50nm以下之聚萘二甲酸乙二酯的結晶之奈米配向結晶,耐熱溫度為280℃以上。
  2. 如請求項1之聚萘二甲酸乙二酯薄片,其中熔點為285℃以上。
  3. 如請求項1之聚萘二甲酸乙二酯薄片,其中上述奈米配向結晶係由紡錘狀之結晶連結成念珠狀之構造所成。
  4. 如請求項1之聚萘二甲酸乙二酯薄片,其中上述奈米配向結晶之結晶形態為單斜晶。
  5. 如請求項2之聚萘二甲酸乙二酯薄片,其中上述奈米配向結晶之結晶形態為單斜晶。
  6. 如請求項3之聚萘二甲酸乙二酯薄片,其中上述奈米配向結晶之結晶形態為單斜晶。
  7. 如請求項1~6中任一項之聚萘二甲酸乙二酯薄片,其係用於高溫加工。
  8. 如請求項7之聚萘二甲酸乙二酯薄片,其係用於附透明導電層之層合體之基材。
  9. 如請求項7之聚萘二甲酸乙二酯薄片,其係用於軟性電路基板之基材。
  10. 一種軟性電路基板,其係將如請求項9之聚萘二 甲酸乙二酯薄片作為基材。
TW106105952A 2016-03-01 2017-02-22 高耐熱性聚萘二甲酸乙二酯薄片 TW201733778A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039448A JP2017155129A (ja) 2016-03-01 2016-03-01 高耐熱性ポリエチレンナフタレートシート

Publications (1)

Publication Number Publication Date
TW201733778A true TW201733778A (zh) 2017-10-01

Family

ID=59744034

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106105952A TW201733778A (zh) 2016-03-01 2017-02-22 高耐熱性聚萘二甲酸乙二酯薄片

Country Status (3)

Country Link
JP (1) JP2017155129A (zh)
TW (1) TW201733778A (zh)
WO (1) WO2017150193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799626B (zh) * 2018-08-06 2023-04-21 日商迪思科股份有限公司 晶圓的加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207830A1 (ja) * 2017-05-12 2018-11-15 国立大学法人広島大学 ポリアミド樹脂部材およびその製造方法
JP7241272B2 (ja) * 2018-03-26 2023-03-17 株式会社レゾナック 材料中の針状物質の配向性の測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390079B1 (en) * 2009-01-23 2015-11-04 Hiroshima University Polymer sheet and method for producing same
JP2011094059A (ja) * 2009-10-30 2011-05-12 Teijin Dupont Films Japan Ltd 二軸配向ポリエステルフィルムおよびその製造方法
JP5379033B2 (ja) * 2010-01-29 2013-12-25 帝人デュポンフィルム株式会社 配向ポリエステルフィルムおよびその製造方法
US10420209B2 (en) * 2014-09-02 2019-09-17 Hiroshima University Highly heat-resistant polyester sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799626B (zh) * 2018-08-06 2023-04-21 日商迪思科股份有限公司 晶圓的加工方法

Also Published As

Publication number Publication date
WO2017150193A1 (ja) 2017-09-08
JP2017155129A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6682103B2 (ja) 高耐熱性ポリエステルシート
CN107003458B (zh) 叠层膜
JP5534458B2 (ja) 高分子シートおよびその製造方法
CN108463749A (zh) 偏振器保护膜、偏振片以及含有其的显示装置
TW201733778A (zh) 高耐熱性聚萘二甲酸乙二酯薄片
JP2009192845A (ja) 位相差板の製造方法
JP2009192844A (ja) 位相差板の製造方法
Chatterjee et al. Machine direction orientation of high density polyethylene (HDPE): Barrier and optical properties
WO2015072486A1 (ja) 位相差フィルムの製造方法
JP2004277524A (ja) 二軸配向ポリエステルフィルム
Milicevic et al. Microstructure and crystallinity of polyolefins oriented via solid-state stretching at an elevated temperature
JP7186974B2 (ja) ポリアミド樹脂部材およびその製造方法
Ratta et al. Structure–property-processing investigations of the tenter-frame process for making biaxially oriented HDPE film. I. Base sheet and draw along the MD
WO2013133102A1 (ja) 位相差板の製造方法
JP2008155436A (ja) 二軸延伸樹脂フィルム
JP2007253619A (ja) 二軸延伸樹脂フィルム
KR102092879B1 (ko) 편광판용 보호필름 및 이의 제조방법
JP2014149508A (ja) 積層位相差フィルム及び積層位相差フィルムの製造方法
JP5906879B2 (ja) 位相差板の製造方法
JP2013137394A (ja) 位相差フィルムの製造方法
TWI833867B (zh) 雙軸配向聚丙烯膜
WO2022145174A1 (ja) 光学フィルム及びその製造方法
Cui et al. The Effect of Stretching on the Crystal Structure and Crystal Orientation of PA510/SiO2 Films. Materials 2021, 14, 705
Yoshida et al. Molecular orientation behavior of isotactic polypropylene films under uniaxial and biaxial deformation at elevated temperatures
Wang et al. Effect of Uniaxial Stretching on Molecular Orientation, Crystallinity and Oxygen Permeability of Ethylene Vinyl Alcohol