TW201721939A - 電極與電極的形成方法與電池 - Google Patents

電極與電極的形成方法與電池 Download PDF

Info

Publication number
TW201721939A
TW201721939A TW104140491A TW104140491A TW201721939A TW 201721939 A TW201721939 A TW 201721939A TW 104140491 A TW104140491 A TW 104140491A TW 104140491 A TW104140491 A TW 104140491A TW 201721939 A TW201721939 A TW 201721939A
Authority
TW
Taiwan
Prior art keywords
carbon
sulfur
electrode
layer
adhesive
Prior art date
Application number
TW104140491A
Other languages
English (en)
Other versions
TWI600199B (zh
Inventor
林嘉男
方家振
張志清
李俊龍
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW104140491A priority Critical patent/TWI600199B/zh
Priority to CN201511000188.0A priority patent/CN106848210B/zh
Priority to US14/984,536 priority patent/US10230096B2/en
Publication of TW201721939A publication Critical patent/TW201721939A/zh
Application granted granted Critical
Publication of TWI600199B publication Critical patent/TWI600199B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本揭露提供之電極,包括:含硫與碳之層狀物,包括碳材、硫材、與黏著劑;其中含硫與碳之層狀物之中心的硫含量,朝含硫與碳之層狀物之兩側表面的硫含量逐漸降低。上述電極可作為電池之正極,且電池可具有負極;以及位於正極與負極之間的電解液。

Description

電極與電極的形成方法與電池
本揭露關於鋰/硫電池,更特別關於其電極結構。
鋰/硫(Li/S)電池的理論電容量比LiFePO4高出一個數量級。然而,鋰/硫系統在許多應用中尚未實現,因為硫正極材料在實際用於可再充電的鋰電池之前,仍需要解決以下問題:1)硫的導電性不佳,因此粒徑小可確保高的硫利用率以及在充放電循環中維持高的可逆電容量。2)應避免充放電之中間產物(多硫化物)溶解進入電解液中,以確保長的循環壽命。3)應提高正極材料的導電率,以確保更好的倍率性能。
目前解決上述問題的習知方法係直接濕式塗佈碳材於硫碳電極上。然而塗佈之碳材與硫碳電極之間的層狀界面,將大幅增加電極的阻抗。
綜上所述,目前亟需新的電極結構解決上述問題。
本揭露一實施例提供之電極,包括:含硫與碳之層狀物,包括碳材、硫材、與黏著劑;其中含硫與碳之層狀物之中心的硫含量,朝含硫與碳之層狀物之兩側表面的硫含量逐漸降低。
本揭露一實施例提供之電池,包括:正極,係上述之電極;負極;以及電解液位於正極與負極之間。
本揭露一實施例提供之電極的形成方法,包括:將硫碳膜置於兩碳膜之間後,延壓形成電極,且電極係含硫與碳之層狀物,其中含硫與碳之層狀物之中心的硫含量,朝含硫與碳之層狀物之兩側表面的硫含量逐漸降低。
10‧‧‧含硫與碳之層狀物
11‧‧‧助導層
13‧‧‧電流收集層
20‧‧‧電池
21‧‧‧正極
23‧‧‧電解液
25‧‧‧負極
第1圖係本揭露一實施例中,電極的示意圖。
第2圖係本揭露一實施例中,電池的示意圖。
第3圖係本揭露一實施例中,純硫、純碳、與硫碳複合材料之導電度對壓力之曲線圖。
第4圖係本揭露一實施例中,電極於不同深度之硫/碳元素比。
第5圖係本揭露一實施例中,電池於不同充放電速度下,經多次充放電循環後之充放電容量。
第6圖係本揭露一實施例中,電池於0.5C之充放電循環測試多次後之電容量。
第7圖係本揭露一實施例中,電池於不同循環次數下之充放電曲線圖。
第8圖係本揭露一實施例中,電極於不同深度之硫/碳元素比。
第9圖係本揭露一實施例中,電池於不同充放電速度下,經多次充放電循環後之充放電容量。
第10圖係本揭露一實施例中,電池於0.5C之充放電循環測試多次後之電容量。
第11圖係本揭露一實施例中,電池於不同循環次數下之充放電曲線圖。
第12圖係本揭露不同實施例之電極的導電度對壓力之曲線圖。
本揭露一實施例提供電極的形成方法。首先,可混合碳材與黏著劑後壓延成碳膜。在一實施例中,碳材可為活性碳、導電碳黑、片狀孔碳、中孔碳、微孔碳球、空心碳球、奈米碳管、石墨烯、碳纖維、硫碳複合材料、或上述之組合,而黏著劑可為聚偏二氟乙烯、聚四氟乙烯、聚乙烯醇、聚乙二醇、羧甲基纖維素、苯乙烯-丁二烯橡膠、聚丙烯酸酯、聚丙烯腈、藻酸、或上述之組合。在一實施例中,碳材與黏著劑之重量比例介於98:2至90:10之間。若碳材之比例過高,則碳膜之機械強度變差不易加工。若碳材之比例過低,則碳膜之導電性變差。在一實施例中,上述壓延步驟的壓力介於10~1000kgf/cm2之間。若壓力過大,則碳膜過於緻密,而無法在後續步驟中與硫碳膜壓延成不具界面層的電極。若壓力過小,則碳膜機械強度不佳易於破裂,形成不連續面之碳膜。上述壓延後形成之碳膜厚度可介於15μm至300μm之間。若碳膜之厚度過薄,則無法成膜。若碳膜之厚度過厚,則在製備成電極時降低電極中之硫活物含量。
接著可混合硫材、碳材、與黏著劑後壓延成硫碳 膜。碳材與黏著劑之種類如前述,在此不贅述。在一實施例中,硫材可為單質硫、硫化物、硫碳複合材料、或上述之組合。舉例來說,硫化物可為含硫聚合物、金屬硫化物、或上述之組合。含硫聚合物可為聚噻吩,或具有硫原子之取代基的其他聚合物如聚苯胺、聚吡咯、或聚多巴胺。金屬硫化物為硫化鐵、硫化鈷、硫化錫、硫化銅、硫化鈦、或上述之組合。在一實施例中,100重量份之混合物中硫材占50至90重量份,碳材占5至45重量份,且黏著劑占2至10重量份。若硫材之比例過高,則電極之內阻抗提高,影響電池之能量表現。若硫材之比例過低,則電極之活物量降低,電池之能量偏低。在一實施例中,上述壓延步驟的壓力介於10~1000kgf/cm2之間。若壓力過大,則硫碳膜過於緻密,而無法在後續步驟中與碳膜壓延成不具界面層的電極。若壓力過小,則硫碳膜機械強度不佳易於破裂,形成不連續面之硫碳膜。上述壓延後形成之硫碳膜厚度可介於20μm至1200μm之間。若硫碳膜之厚度過薄,則電極之硫活物量降低,電池之能量偏低。若硫碳膜之厚度過厚,則電極之內阻抗提高,影響電池之能量表現。
接著將硫碳膜夾設於兩片碳膜之間,壓延形成電極。在一實施例中,夾設於兩片碳膜之間者可為多個不同硫/碳比例之硫碳膜,且越中間的硫碳膜其硫比例越高。在一實施例中,上述壓延步驟的壓力介於10~1000kgf/cm2之間。若壓力過大,則電極內之硫活物分布不均。若壓力過小,則硫碳膜與碳膜無法形成一體之電極,仍存在介面阻抗問題。上述壓延後形成之電極厚度可介於20μm至300μm之間。若電極厚度過大, 則抑制離子與電子在電極中之移動傳送。若電極厚度過小,則不易製備成電池元件。如第1圖所示,上述電極係含硫與碳之層狀物10,其包含硫材、碳材、與黏著劑。含硫與碳之層狀物10之中心的硫含量,朝含硫與碳之層狀物10之兩側表面的硫含量逐漸降低。簡言之,上述含硫與碳之層狀物10具有漸變組成。舉例來說,含硫與碳之層狀物10之中心的硫含量介於30wt%至90wt%之間,而含硫與碳之層狀物10之兩側表面的硫含量介於0wt%至10wt%之間。值得注意的是,含硫與碳之層狀物10中不具有層狀界面。舉例來說,在垂直於含硫與碳之層狀物10之表面的方向上,任一處以及與其相鄰處之硫含量差異大於0且小於5wt%。若是上述碳膜及/或硫碳膜在堆疊前就壓延過度,或者只堆疊碳膜/硫碳膜/碳膜而不進行壓延,則電極中的碳膜與硫碳膜之間將具有層狀界面而大幅增加電極阻抗。
在一實施例中,電極可視情況包含電流收集層13與助導層11,且助導層11位於該電流收集層13與含硫與碳之層狀物10之間。舉例來說,電流收集層13包括金屬箔(如鋁箔、銅箔、鎳箔、鈦箔、或不銹鋼箔)或金屬網(如鋁網、銅網、鎳網、鈦網、或不銹鋼網),而助導層11包括碳材與黏著劑。碳材與黏著劑與前述之碳材與黏著劑類似,在此不贅述。在一實施例中,可將90至98重量份之碳材與2至10重量份之黏著劑分散於溶劑如水、醇類、酮類、醛類、有機酸、或N-甲基吡咯烷酮中,形成固含量介於1wt%至20wt%之漿料,並將此漿料塗布於金屬箔上。在室溫下風乾或加熱乾燥金屬箔上之漿料,乾燥後形成之助導層11其厚度可介於0.5μm至5μm之間。若助導層 11之厚度過高,則增加助導層之阻抗。若助導層11之厚度過低,則無法提供助導效能。
在一實施例中,上述電極可作為電池20之正極21,如第2圖所示。電池20亦包含含負極25,以及位於正極21與負極25之間的電解液23。在一實施例中,負極25可包含鋰、碳、矽、錫、鍺、或上述之組合。在一實施例中,可進一步採用隔離膜(未圖示)於正極21與負極25之間,以避免兩者接觸短路。經實驗證實,採用上述電極作為正極之電池具有高導電度,且在多次充放電循環後維持足夠的電容量。
為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例作詳細說明如下:
實施例 製備例
取1g碳材(購自中鋼碳素化學股份有限公司之活性碳ACS25)分散於水中後,將0.125mole之Na2S2O3‧5H2O溶於上述分散液中。接著將0.25mole之HCl滴入上述水溶液中,攪拌反應2小時後過濾並以去離子水清洗濾餅。將濾餅烘乾後即得硫碳奈米複合材料。經熱重分析可知此硫碳奈米複合材料之硫含量為77.2wt%。由掃描式電子顯微鏡量測上述硫碳奈米複合材料,可知其尺寸為約15nm。純硫、純碳、與上述硫碳複合材料於不同壓力下的導電性如第3圖所示,即硫碳複合材料之導電度與純碳相近,且遠高於純硫之導電度。
實施例1(漸變組成之單層電極)
取94重量份之碳材(購自中鋼碳素化學股份有限公司之活 性碳ACS25),1重量份之導電碳(購自安炬科技之石墨烯P-MF10)與5重量份之黏著劑(購自Sigma-Aldrich之聚四氟乙烯)混合後,壓延形成厚度100μm之碳膜。
取70重量份製備例之硫碳奈米複合材料、24重量份之碳材(購自中鋼碳素化學股份有限公司之ACS25),1重量份之導電碳(購自安炬科技之石墨烯P-MF10)、及5重量份之黏著劑(購自Sigma-Aldrich之聚四氟乙烯)混合後,壓延形成厚度500μm之硫碳膜。
將上述硫碳膜夾設於兩碳膜之間,共壓延成厚度50μm之電極,並以SEM分析此電極於不同深度之硫/碳元素比,如第4圖所示。上述共壓延製程所形成之電極中不具有明顯界面,電極中心之硫濃度朝兩側表面之硫濃度逐漸降低,且電極中心之碳濃度朝兩側表面之碳濃度逐漸增加。
將90重量份之導電碳(購自TIMCAL之石墨TIMREX)與10重量份之黏著劑(購自Sigma-Aldrich之聚四氟乙烯)分散於具有揮發性之溶劑(購自BASF之NMP)中,形成固含量為10wt%之漿料,並將此漿料塗佈於鋁箔上。乾燥鋁箔上之漿料後,即形成助導層(碳層)與電流收集層(鋁箔)之雙層結構且助導層之厚度為2μm。將上述電極置於電流收集層上的助導層上,以形成正極。接著將隔離膜(購自Celgard之2320)夾設於上述正極與負極(購自FMC Lithium之LectroMax100)之間後封裝,再將電解液加入封裝中以形成電池。上述電解液含1.75M之鋰鹽(Lithium bis(trifluoromethane sulfonyl)imide),與1,3-環氧戊烷及1,2-二甲氧基乙烷(1/1)的溶劑。在35℃下進行上述 電池之恆電流充放電循環測試,充放截止電壓介於3V與1.5V之間,且充放電速度不同(0.1C-2C)。上述電池於不同充放電速度下,經多次充放電循環後之充放電容量如第5圖所示。即使將充放電速度提升至2C,電池仍具有800mAh/g之電容量。上述電池於0.5C之充放電循環測試如第6圖所示。即使經過1000次之充放電,仍具有600mAh/g之電容量,平均每次充放電之電容量損失率為0.035%,為相當穩定之電池。此外,上述電池於不同循環次數下之充放電曲線圖如第7圖所示。
比較例1(三層電極)
取94重量份(購自中鋼碳素化學股份有限公司之活性碳ACS25),1重量份之導電碳(購自安炬科技之石墨烯P-MF10)之碳材與5重量份之黏著劑(購自Sigma-Aldrich之聚四氟乙烯)混合後,壓延形成厚度15μm之碳膜。
取70重量份製備例之硫碳奈米複合材料、24重量份之碳材(購自中鋼碳素化學股份有限公司之ACS25),1重量份之導電碳(購自安炬科技之石墨烯P-MF10)、及5重量份之黏著劑(購自Sigma-Aldrich之聚四氟乙烯)混合後,壓延形成厚度20μm之硫碳膜。
將上述硫碳膜夾設於兩碳膜之間,堆疊成厚度50μm之電極。由於碳膜與硫碳膜之前已壓延成緻密的層狀物,此堆疊步驟無法將上述三層結構進一步壓延成不具層狀界面的電極,即碳膜與硫碳膜之間具有層狀界面。
比較例2(均勻組成之單層電極)
取50重量份製備例之硫碳奈米複合材料、44重量份之碳材 (購自中鋼碳素化學股份有限公司之ACS25)、1重量份之導電碳(購自安炬科技之石墨烯P-MF10)、及5重量份之黏著劑(購自Sigma-Aldrich之聚四氟乙烯)混合後,壓延形成厚度50μm之單層電極。並以SEM分析此電極於不同深度之硫/碳元素比,如第8圖所示。電極中心與兩側表面之硫濃度大致相同,且電極中心與兩側表面之碳濃度大致相同。
以與實施例1類似的方法製備電池。比較例2之電池中,負極、電解液、電流收集層、與助導層均與實施例1相同,差別僅在於電極為均勻組成之單層電極。在35℃下進行上述電池之恆電流充放電循環測試,充放截止電壓介於3V與1.5V之間,且充放電速度不同(0.1C-2C)。上述電池於不同充放電速度下,經多次充放電循環之充放電容量如第9圖所示。當充放電速度提升至2C,電池只具有600mAh/g之電容量。上述電池於0.5C之充放電循環測試如第10圖所示。經過250次之充放電後僅具有400mAh/g之電容量,平均每次充放電之電容量損失率為0.22%,為不穩定之電池。此外,上述電池於不同循環次數下之充放電曲線圖如第11圖所示。由第7圖與第11圖之比較可知,實施例1之電池具有較優異之充放電表現,且電極之極化現象(充電電位與放電電位之差)也較小,由此驗證漸變組成之電極可改善電子與離子在電極中之傳導速度,進而提升電池之性能。
此外,實施例1之漸變組成的單層電極、比較例1之三層電極、與比較例2之均勻組成的單層電極於不同壓力下之導電度如第12圖所示。由第12圖可知,實施例1之漸變組成 的單層電極具有較高之導電度,而比較例1之三層電極具有過高之界面阻抗。
雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
10‧‧‧含硫與碳之層狀物
11‧‧‧助導層
13‧‧‧電流收集層

Claims (14)

  1. 一種電極,包括:一含硫與碳之層狀物,包括一硫材、一碳材、與一黏著劑;其中該含硫與碳之層狀物之中心的硫含量,朝該含硫與碳之層狀物之兩側表面的硫含量逐漸降低。
  2. 如申請專利範圍第1項所述之電極,其中該含硫與碳之層狀物中不具有層狀界面。
  3. 如申請專利範圍第1項所述之電極,其中該硫材包括單質硫、硫化物、硫碳複合材料、或上述之組合。
  4. 如申請專利範圍第1項所述之電極,其中該碳材包括活性碳、導電碳黑、片狀孔碳、中孔碳、微孔碳球、空心碳球、奈米碳管、石墨烯、碳纖維、硫碳複合材料、或上述之組合。
  5. 如申請專利範圍第1項所述之電極,其中該黏著劑包括聚偏二氟乙烯、聚四氟乙烯、聚乙烯醇、聚乙二醇、羧甲基纖維素、苯乙烯-丁二烯橡膠、聚丙烯酸酯、聚丙烯腈、藻酸、或上述之組合。
  6. 如申請專利範圍第1項所述之電極,其中該含硫與碳之層狀物之中心的硫含量介於30wt%至90wt%之間,而該含硫與碳之層狀物之兩側表面的硫含量介於0wt%至10wt%之間。
  7. 如申請專利範圍第1項所述之電極,更包括一電流收集層與一助導層,且該助導層位於該電流收集層與該含硫與碳之層狀物之間。
  8. 如申請專利範圍第7項所述之電極,其中該電流收集層包括金屬箔或金屬網。
  9. 如申請專利範圍第7項所述之電極,其中該助導層包括碳材與黏著劑。
  10. 一種電池,包括:一正極,係申請專利範圍第1項所述之電極;一負極;以及一電解液位於該正極與該負極之間。
  11. 一種電極的形成方法,包括:將一硫碳膜置於兩碳膜之間後,延壓形成一電極,且該電極係一含硫與碳之層狀物,其中該含硫與碳之層狀物之中心的硫含量,朝該含硫與碳之層狀物之兩側表面的硫含量逐漸降低。
  12. 如申請專利範圍第11項所述之電極的形成方法,其中該硫碳膜包含硫材、碳材、與黏著劑。
  13. 如申請專利範圍第11項所述之電極的形成方法,其中該些碳膜包含碳材與黏著劑。
  14. 如申請專利範圍第11項所述之電極的形成方法,其中該含硫與碳之層狀物中不具有層狀界面。
TW104140491A 2015-12-03 2015-12-03 電極與電極的形成方法與電池 TWI600199B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW104140491A TWI600199B (zh) 2015-12-03 2015-12-03 電極與電極的形成方法與電池
CN201511000188.0A CN106848210B (zh) 2015-12-03 2015-12-28 电极与电极的制备方法与电池
US14/984,536 US10230096B2 (en) 2015-12-03 2015-12-30 Electrode and method for manufacturing the same and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140491A TWI600199B (zh) 2015-12-03 2015-12-03 電極與電極的形成方法與電池

Publications (2)

Publication Number Publication Date
TW201721939A true TW201721939A (zh) 2017-06-16
TWI600199B TWI600199B (zh) 2017-09-21

Family

ID=58799284

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140491A TWI600199B (zh) 2015-12-03 2015-12-03 電極與電極的形成方法與電池

Country Status (3)

Country Link
US (1) US10230096B2 (zh)
CN (1) CN106848210B (zh)
TW (1) TWI600199B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286757A (zh) * 2017-07-11 2017-10-24 佛山市中技烯米新材料有限公司 一种涂布液、集电体及其制备方法
US10790538B2 (en) 2017-08-11 2020-09-29 Industrial Technology Research Institute Negative electrode and lithium ion battery
CN108918853B (zh) * 2018-04-08 2021-03-12 山东理工大学 一种Pd@Ag@CeO2标记的免疫传感器的制备方法及应用
CN111146429B (zh) * 2020-01-10 2021-03-16 安徽师范大学 一种氧化石墨烯/硫微胶囊复合材料的制备方法、锂硫电池正极、锂硫电池
CN111682172B (zh) * 2020-05-28 2021-08-06 西安理工大学 一种硫碳复合正极材料的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084622A1 (ja) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 リチウム二次電池用正極とその利用
CN102208645B (zh) * 2011-05-05 2014-08-27 中国东方电气集团有限公司 锂硫电池正极复合材料与正极及锂硫电池
KR101182433B1 (ko) 2011-05-11 2012-09-12 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 전지
CN103958402B (zh) 2011-11-29 2016-01-06 中国科学院化学研究所 用于锂硫电池的硫碳复合物、制备所述复合物的方法以及包含所述复合物的电极材料和锂硫电池
DE102011088528A1 (de) 2011-12-14 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Kathode mit Schichtsystem
DE102011088910A1 (de) 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Separator mit Polysulfidsperrschicht
US20130183547A1 (en) * 2012-01-18 2013-07-18 E I Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making
WO2013138169A2 (en) 2012-03-14 2013-09-19 E. I. Du Pont De Nemours And Company Mcm-48 templated carbon compositions, electrodes, cells, methods for making and methods for using
US20130309572A1 (en) * 2012-05-21 2013-11-21 U.S. Government As Represented By The Secretary Of The Army Dual-layer structured cathod and electrochemical cell
CN103000864B (zh) * 2012-10-25 2015-08-05 北京理工大学 一种硫复合正极材料及其制备方法
CN103050667A (zh) 2012-12-13 2013-04-17 中南大学 一种用于锂硫二次电池的多层次结构复合正极及制备方法
CN103972467B (zh) 2013-02-06 2016-01-13 中国科学院金属研究所 一种锂硫电池多层复合正极及其制备方法
CN104300128A (zh) 2013-07-18 2015-01-21 中国科学院大连化学物理研究所 一种锂硫电池一体化膜电极结构及其制备方法
US9373829B2 (en) 2013-10-11 2016-06-21 GM Global Technology Operations LLC Porous interlayer for a lithium-sulfur battery
CN203631665U (zh) 2013-11-05 2014-06-04 华中科技大学 一种锂硫电池正极及电池
CN103700859B (zh) * 2013-12-30 2016-01-06 温州大学 锂硫电池正极用石墨烯基氮掺杂多级孔碳纳米片/硫复合材料及其制备方法和应用
CN106463674A (zh) * 2014-05-05 2017-02-22 得克萨斯州大学系统董事会 用于锂‑硫电池的双功能隔膜

Also Published As

Publication number Publication date
US10230096B2 (en) 2019-03-12
CN106848210A (zh) 2017-06-13
CN106848210B (zh) 2020-05-05
TWI600199B (zh) 2017-09-21
US20170162861A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
Zhang et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries
Jian et al. Monodispersed hierarchical Co 3 O 4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries
Han et al. Template-free formation of carbon nanotube-supported cobalt sulfide@ carbon hollow nanoparticles for stable and fast sodium ion storage
CN105470576B (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
JP6689885B2 (ja) 3次元網構造形態の電気化学素子用電極、その製造方法およびこれを含む電気化学素子
Qian et al. A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor
TWI600199B (zh) 電極與電極的形成方法與電池
Luo et al. Freestanding reduced graphene oxide–sulfur composite films for highly stable lithium–sulfur batteries
US10513794B2 (en) Multilayered sulfur composite cathodes for lithium sulfur batteries
JP6374117B2 (ja) セルロースナノ繊維分離膜を含む電気化学素子及びその製造方法
US11551878B2 (en) Electricity storage device
US11749831B2 (en) Li—S battery with carbon coated separator
US20110163274A1 (en) Electrode composite, battery electrode formed from said composite, and lithium battery comprising such an electrode
JP6510784B2 (ja) リチウム硫黄二次電池の正極の製造方法
Zhang et al. High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers
MX2014015896A (es) Aglutinantes. electrolitos y peliculas separadoras para dispositivos de almacenamiento y recoleccion de energia que utilizan nanotubos discretos de carbon.
Zhang et al. Mass production of three-dimensional hierarchical microfibers constructed from silicon–carbon core–shell architectures with high-performance lithium storage
JP2013140977A (ja) 電極、その製造方法、及びこれを含む電気化学キャパシタ
Pal et al. Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode
Zeng et al. Nano-Sn doped carbon-coated rutile TiO 2 spheres as a high capacity anode for Li-ion battery
US20140295293A1 (en) Electrode and manufacturing method thereof
JP7062771B2 (ja) 正極スラリー組成物、これを使用して製造された正極及びこれを含む電池
Kiai et al. Polycarboxylate functionalized graphene/S composite cathodes and modified cathode-facing side coated separators for advanced lithium-sulfur batteries
Si et al. Silicon–carbon composite dispersed in a carbon paper substrate for solid polymer lithium-ion batteries
WO2017177960A1 (zh) 电解液、电池和电池组