TW201703325A - 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池 - Google Patents

包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池 Download PDF

Info

Publication number
TW201703325A
TW201703325A TW105106100A TW105106100A TW201703325A TW 201703325 A TW201703325 A TW 201703325A TW 105106100 A TW105106100 A TW 105106100A TW 105106100 A TW105106100 A TW 105106100A TW 201703325 A TW201703325 A TW 201703325A
Authority
TW
Taiwan
Prior art keywords
mass
mandrel
positive electrode
lead
coated
Prior art date
Application number
TW105106100A
Other languages
English (en)
Other versions
TWI699036B (zh
Inventor
武部智紀
稲守正治
松岡和哉
向谷一郎
北森茂孝
Original Assignee
日立化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55808212&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201703325(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立化成股份有限公司 filed Critical 日立化成股份有限公司
Publication of TW201703325A publication Critical patent/TW201703325A/zh
Application granted granted Critical
Publication of TWI699036B publication Critical patent/TWI699036B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/08Alloys based on lead with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

提供一種包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池,該包覆式鉛蓄電池用集電體能夠同時維持芯棒的鑄造性與耐久性。 藉由加壓鑄造法將鉛合金加以鑄造而製作芯棒,該芯棒構成包覆式鉛蓄電池用集電體,該鉛合金包含:相對於合金的總質量,92質量%以上且97質量%以下的鉛、及3.0質量%以上且7.0質量%以下的銻。

Description

包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池
本發明關於一種具備將鉛合金加以鑄造而構成的芯棒之包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板及包覆式鉛蓄電池。
堆高機等電動車輛用的蓄電池中,因為要求耐久性與耐衝擊性,所以一般使用長壽且抗振動性強的包覆式鉛蓄電池。包覆式鉛蓄電池中,於正極板使用包覆式正極板。此包覆式正極板是以下述方式而得:將圓筒形的管(包覆式管)排列複數根,並將作為集電體之芯棒插入各包覆式管內,接著將作為正極活性物質的鉛粉填充在各包覆式管與芯棒的縫隙之間而製作未化成極板,然後將此極板化成而得到該包覆式正極板。習知的包覆式鉛蓄電池中,構成包覆式正極板之芯棒,是藉由重力鑄造而形成。又,為了提高芯棒的鑄造性,構成芯棒之鉛合金中含有銻(Sb)(非專利文獻1)
[先前技術文獻] (非專利文獻) 非專利文獻1:Detchko Pavlov/Lead-Acid Batteries/Science and Technology/A hand book of lead-acid battery technology and its influence on the product/Elsevier Science Ltd.
〔發明所要解決的問題〕 然而,若構成包覆式正極板的集電體之芯棒的成份中存在銻,則有負極的氫過電壓(hydrogen overvoltage)降低而過度充電的傾向,正極板的集電體(芯棒)易於腐蝕,因此恐怕會對鉛蓄電池的耐久性造成影響(非專利文獻1)。
另一方面,在將包覆式正極板變薄的情況中,因為必須在受限的空間中盡可能多地排列細管,所以必須使芯棒的截面尺寸(例如截面的面積或截面的直徑尺寸)盡可能變小。為了製作這樣截面尺寸小的芯棒,必須增加銻的含量以維持芯棒的鑄造性。然而,若增加銻的含量,則如上文所述芯棒變得易於腐蝕,不得不預先考慮腐蝕的份量而將芯棒的截面尺寸變大。因此,習知的包覆式鉛蓄電池中,要使芯棒的截面尺寸變小,是有極限的。
本發明之目的在於提供一種能夠同時維持芯棒的鑄造性與耐久性的包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板及包覆式鉛蓄電池。
本發明之其他目的在於提供一種能夠將芯棒的截面尺寸變小的包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板及包覆式鉛蓄電池。
本發明的進一步的其他目的在於提供一種放電特性優異、電池壽命長的包覆式鉛蓄電池。
〔解決問題的手段〕 作為本發明的改良對象的包覆式鉛蓄電池用集電體,具備將鉛合金加以鑄造而構成之芯棒。該鉛合金中,包含:相對於合金的總質量,92質量%以上且97質量%以下的鉛(Pb)、及3.0質量%以上且7.0質量%以下的銻(Sb)。實際的鉛合金中,當然可包含銻以外的其他成分。其他成分雖因實際使用的鉛材料而有所不同,但其為砷(As)、硒(Se)、鉍(Bi)、錫(Sn)等。另外,這些其他成分在含量少的情況中也可視為原料所含的不可避免的不純物質。
在鉛合金的鑄造方面,使用加壓鑄造法。加壓鑄造法是這樣的製造方法:使用在熔鍋內設置的油壓式鉛泵,將熔鍋內所熔融的鉛合金以預定的注入速度擠入鑄模內,而製作鑄造物。
以此方式將含有預定量的銻之鉛合金,藉由加壓鑄造法鑄造而得的芯棒,可維持鑄造性與耐久性(耐腐蝕性、抗張力)。在使用習知重力鑄造法而得的芯棒的製造中,若不將銻的含量設定為超過5質量%的條件,製造芯棒會有困難。相對於此,本申請案之發明中,即便將銻的含量設成5質量%以下,也能夠維持鑄造性,所以可在維持耐久性的情況下來製造芯棒。尤其,銻的含量滿足4.0質量%以上5.0質量%以下之條件的情況中,因能夠維持、提升鑄造性,所以能夠確實地製造芯棒。另外,鉛合金中的銻的含量未達3.0質量%的情況中,無法維持鑄造性,而在銻的含量超過7.0質量%的情況中,有耐久性降低的傾向。
鉛合金中可含有相對於鉛合金的總質量為0.01質量%以上且0.45質量%以下的砷(As)。藉由使用包含這樣的含量的砷之鉛合金來鑄造芯棒,能夠使電池壽命變長。砷的含量較佳是相對於鉛合金的總質量是0.01質量%以上且0.40質量%以下。在這樣的含量的範圍內,不僅提升放電特性(例如,維持高放電容量),也能使電池壽命變長(例如,使壽命比率變高)。
又,若以上述的條件來鑄造芯棒,則能將芯棒的截面尺寸(截面的面積、截面的直徑尺寸等)變小。具體而言,在使包覆管的空間體積為一定值的情況中,能夠將芯棒的平均截面積設成4.9mm2 以上且7.1mm2 以下。此處,平均截面積是定義成:將在與芯棒的縱軸方向正交之方向上截斷而成的截面的截面積,沿著整個芯棒的縱軸方向進行平均時的平均截面積。
習知的包覆式鉛蓄電池中,如上所述,從鑄造性、耐久性的觀點來看,在使用銻的含量較多之鉛合金的情況中,不得不使芯棒的截面尺寸放大至某一程度。相對於此,在本發明中,即便使用銻的含量較少的鉛合金,仍能夠同時維持鑄造性與耐久性,因此能夠使芯棒的截面尺寸比習知還要小。又,若使芯棒的截面尺寸變小,則包覆管內的集電體(芯棒)的表面與包覆管的內壁之間的空間體積變大。其結果為,因為能夠使包覆管每個單元中的正極活性物質的填充量增加,所以在維持鑄造性與耐久性的同時,也能夠維持或提升鉛蓄電池的放電特性。尤其是,當芯棒的平均截面積為5.7mm2 附近時,鑄造性、耐久性、放電特性的任一者也提升。
而且,在芯棒的平均截面積未達4.9mm2 的情況中,可能無法得到充分的集電機能。又,在芯棒的平均截面積超過7.1mm2 的情況中,有包覆管內的正極活性物質的填充空間變小的傾向。因此,規定芯棒的平均截面積在4.9mm2 以上且7.1mm2 以下的數值範圍內。但是,芯棒的平均截面積與放電特性的關係,會被包覆管內的空間體積限制,並依照包覆管內的正極活性物質的填充量而相對地規定。
芯棒的截面形狀為任意形狀,但若規定截面的輪廓形狀成為圓形,則加壓鑄造所致的加壓力會均等地施加在芯棒的直徑方向上,因此能夠得到鑄造容易且強度不一的情況很少的芯棒。又,在包覆管為圓筒形的情況中,若將芯棒插入管內的中心,則能夠使芯棒的表面與圓筒形狀包覆管的內壁之間的距離大致相同。換言之,能夠使正極活性物質大致均勻地配置在集電體(芯棒)與包覆管的內壁之間,因此能夠期待鉛蓄電池的長壽命化、放電特性提升。
又,將芯棒的平均截面積(4.9mm2 以上且7.1mm2 以下)換算成將芯棒的截面形狀規定為截面的輪廓形狀成為圓形這般的情況中的芯棒的平均直徑(定義:將截面的直徑在沿著整個芯棒的縱軸方向上進行平均而得的平均直徑),則芯棒的平均直徑成為約2.5mm以上且3.0mm以下的數值範圍。又,芯棒的平均截面積為5.7mm2 的情況中,平均直徑成為約2.7mm。
本發明之包覆式鉛蓄電池用的正極板,具備由上述條件所得到的集電體(芯棒)。具體而言,該正極板是如下述般構成:具備將含浸有酚樹脂之筒狀玻璃纖維加以燒結而構成之管,並且在將集電體(芯棒)插入該管內的狀態下,正極活性物質填充於管與集電體(芯棒)之間。藉由使用具備這樣的構成之包覆式鉛蓄電池用正極板,能夠得到放電特性優異、壽命長的包覆式鉛蓄電池。
又,本發明之包覆式鉛蓄電池用正極板中,能夠如上述般地將集電體(芯棒)的截面尺寸變小。也就是,能夠將包覆管內的正極活性物質的填充空間變大,因此能夠增加每1根包覆管的正極活性物質的填充量。本申請案的說明書中,「既化密度」是意味化成後的活性物質的密度。活性物質的既化密度小表示活性物質為多孔性。從而,本發明中,因為能夠使多孔性正極活性物質的填充量變多,所以能夠得到放電特性優異的包覆式鉛蓄電池。
而且,既化密度的範圍為任意範圍,但為了兼顧放電特性及電池壽命,較佳是規定為3.30g/cm3 以上且3.75g/cm3 以下的數值範圍。又,為了提升放電特性並且延長電池壽命,較佳是將既化密度的範圍規定為3.40g/cm3 以上且3.65g/cm3 以下的數值範圍。但是,既化密度與電池特性的關係,受到包覆管內的空間體積所限制,依照包覆管內的正極活性物質的填充量相對地規定。
以下,針對本發明之實施形態詳細說明。在本例中,使用排氣(vent)型(液式類型)的包覆式鉛蓄電池來作為包覆式鉛蓄電池。此包覆式鉛蓄電池中,硫酸的電解液注入電解槽內,包覆式正極板與糊式負極板收納於該電解槽內。進一步,在電解槽的蓋部分中設有補水用的液栓。
包覆式正極板是由下述方式構成:將含浸樹脂之筒狀玻璃纖維加以燒結而形成複數根管(包覆管),並將芯棒插入該各自的管內,該芯棒構成正極集電體的主要部,進一步將鉛粉填充在包覆管與芯棒之間。
本例中,如第2圖的製造步驟的一例所示,每1個正極板15使用15根包覆管1。15根芯棒6是在將這些包覆管1嵌合於載盤(palette)2的溝部3而平行地排列的狀態下,各自插入包覆管1中並定位在該包覆管1的中心。在包覆管的兩個端部,裝設為了保持包覆管1與芯棒6之相連座(上部相連座4、下部相連座5)。上部相連座4裝設在包覆管1的一方的端部(用於插入芯棒且填充鉛粉之開口部)之側,且形成有芯棒6所貫穿通過的孔19。下部相連座5,是在從包覆管1的另一方的端部(包覆管1的底部)之側,將鉛粉7填充於包覆管1內之後,裝設於包覆管1的另一方的端部。並且,本例中,圓筒形包覆管1的尺寸,規定為:長度294mm,外徑(直徑)9.6mm,內徑(直徑)9.0mm。
各芯棒6是與連結部8一體地形成,該連結部8在各芯棒6被插入包覆管中的狀態下與各芯棒6的露出於包覆管外部之部分連結。進一步,在連結部8的端部,設有連接於正極端子上之耳部9。換言之,藉由芯棒6、連結部8及耳部9,構成正極集電體。
芯棒是以下述鉛合金來構成:該鉛合金含有作為主成分的鉛(Pb),並含有微量的銻(Sb),進一步含有相較於銻的含量更為微量的成分。本實施形態中,相對於鉛合金的總質量,包含92質量%以上且97質量%以下的鉛(Pb)、及3.0質量%以上且7.0質量%以下之銻(Sb)。
從進一步提升電池壽命的觀點來看,芯棒較佳是含有砷(As)。就含有砷之情況中的含量而言,相對於鉛合金的總量,較佳是0.01質量%以上且0.45質量%以下,更佳是0.01質量%以上且0.40質量%以下。
又,從能夠進一步提升鑄造性和耐久性的觀點來看,較佳是含有從硒、鉍及錫選出的至少一種。
就含有硒的情況中的含量而言,相對於鉛合金的總量,較佳是0.0001質量%以上且0.03質量%以下。
就含有鉍的情況中的含量而言,相對於鉛合金的總量,較佳是0.0001質量%以上且0.03質量%以下。
就含有錫的情況中的含量而言,相對於鉛合金的總量,較佳是0.0001質量%以上且0.02質量%以下。
又,可包含砷、硒、鉍及錫以外之金屬。
當芯棒包含銻(Sb)以外之金屬的情況,相對於鉛合金的總質量,鉛(Pb)的含量可為92質量%以上且96.5質量%以下。
所謂銻(Sb)以外之金屬,例如,除了砷、硒、鉍及錫以外,還可舉出鈣、銀等的金屬及不可避免的不純物質。
芯棒是藉由加壓鑄造法鑄造而得。依據此加壓鑄造法所實行的芯棒的鑄造,主要是由下述步驟所構成:以熔鍋(內部溫度480±20℃)熔融鉛合金之步驟、以油壓缸泵(推力50kN、衝程150mm、泵速度240mm/s)送出至加壓狀態的鑄模(鎖模力:2000~4000kN)之步驟、及冷卻而脫模之步驟。另外,鑄模的鎖模力的上限,雖然也可超過4000kN,但實際上依照能承受鎖模力的鑄模的性能而規定。
又,芯棒的強度為35MPa以上,但從鑄造性和耐久性的觀點來看,較佳是37MPa以上,更佳是40MPa以上。又,芯棒的強度上限雖無特別限制,但從實用性觀點來看,較佳是100MPa以下,更佳是60MPa以下。並且,前述強度的芯棒,較佳是使用加壓鑄造法來製作。但是,技術上,只要能夠得到前述強度,則不限定於加壓鑄造法。
另外,相對於每1個正極板使用15根包覆管,1個正極集電體具備15根芯棒。各芯棒的間隔是配合包覆管排列的間隔而規定。又,相對於長度為各種規格的管,每1根的芯棒的尺寸為更長5mm左右(考慮下部相連座的打入份量),截面尺寸(平均直徑)為2.7mm。
鉛粉是以一氧化鉛與金屬鉛為主成分,藉由在填充於包覆管的狀態下進行化成而成為正極活性物質。
另一方面,糊式負極板使用所謂裝袋構造的負極板。此負極板的製造中,將揉合鉛粉(一氧化鉛)、硫酸、水、添加劑(木質素、硫酸鋇、截切纖維等)而成的糊劑,塗布於鉛合金製的格子體。之後,經過熟成、乾燥步驟,使用防止短路用的PE(聚乙烯)製的隔離件而裝袋,得到未化成的糊式負極板。
使用以此方式所得的正極板與負極板,製作包覆式鉛蓄電池。本例中,將上述正極板與負極板交互堆疊,熔接電極帶(strap)、電極柱,來製作電極板群。之後,將這些電極板群插入PP(聚丙烯)製的電解槽,利用熱熔接,安裝此電解槽與PP製的蓋,而作成未化成電池。關於初次充電(化成),舉一例而言,將上述未化成電池放入盛有40℃的水之水槽內,將比重1.240的硫酸,隔著液栓而對電池內注入液體,之後,以相對於電池容量0.10~0.20CA的電流,進行初充電,直到充電量為理論容量的300%~350%的範圍為止。之後,進行調整以使電池內的完成電解液比重成為1.280。
本例中,化成後的正極活性物質的密度(既化密度)是如實施例及比較例那樣地調整。
〔實施例〕 以下,藉由比較包覆式鉛蓄電池之實施例與比較例,確認包覆式鉛蓄電池中的製作條件與各種特性的關係。
首先,確認鑄造形式和銻(Sb)的含量與各種特性的關係。各實施例和比較例的製作條件,如下文所述。
<芯棒的製作> 實施例的加壓鑄造: 以熔鍋(內部溫度480±20℃)熔融鉛合金後,以油壓缸泵(推力:50kN、衝程150mm、泵速度240mm/s)送出至加壓狀態的鑄模(鎖模力:3000N)內。之後,於常溫下冷卻20秒,然後從鑄模脫模而得到芯棒。
比較例的重力鑄造: 以熔鍋(內部溫度480±20℃)熔融鉛合金後,以鑄造用的杓子掬取760g的熔融合金(以下稱為熔湯),注入已調整成180℃的鑄模。之後,於常溫下冷卻60秒,然後從鑄模脫模而得到芯棒。任一情況中,使用集電體的有效高度285mm。
<芯棒的強度的測定> 製備以鉗子將正極板芯棒切斷成70mm之物。因芯棒的設計而有所不同,但代表性的試驗片為2.7mmφ×70mm的圓柱(棒)狀。試驗機(拉張試驗機)是使用Orientec製的桌上型材料試驗機STA-1225,在25±2℃下,以100mm/分鐘的條件測定。
<負極板的製作> 以鉛粉的總質量作為基準,相對於鉛粉添加0.2質量%的木質素磺酸鈉、0.3質量%的硫酸鋇,之後乾式混合。繼而,一邊加入稀硫酸(比重1.26(以20℃換算))及水,一邊揉合,製作負極活性物質糊劑。將負極活性物質糊劑填充於厚度4mm的鑄造的集電體(Pb-Sb-As-Se),而製作負極板。依循常用的方法,將負極板於溫度40℃、濕度98%的氣氛下放置16小時而熟成之後,於溫度60℃的氣氛下乾燥24小時而得到未化成負極板。
<正極板的製作> 如第2圖所示的包覆式正極板的製造步驟所示,在具有作成半圓形的凹陷狀的多數個溝部3之鋁合金製載盤2上,整齊地排列包覆管1(第2圖(a))。包覆管1是在將玻璃纖維織成筒狀後含浸水溶性熱硬化性樹脂(例如酚樹脂)再加以燒結而作成筒狀體。在將開有孔19之上部相連座4插入整齊地排列的包覆管1的一方的端部處之後,從上部相連座4的孔19的部分,插入發揮作為集電體的作用之芯棒6(第2圖(b))。又,作為芯棒6的材質,使用短時間內能夠起時效硬化效果的鉛-銻合金(表1至表6所示的成分比率)。
繼而,以與上述相反的狀態(芯棒6或上部相連座4在下方的狀態),從上方使發揮作為正極活性物質的作用之鉛粉7(以一氧化鉛作為主成分的鉛粉與鉛丹粉末之混合物)落下,將鉛粉7填充於包覆管1與芯棒6之間隙部分。此填充於包覆管1與芯棒6之間隙部分的鉛粉7,之後經化成而成為正極活性物質。最後,於包覆管1的另一方的開口部分,插入在中央沒有孔之下部相連座5,使鉛粉7不脫落,而完成包覆式正極板(第2圖(c))。與每1片的此正極板相當的容量為約58Ah。
<電池的組裝> 將聚乙烯製的隔離件加工成袋狀,將未化成的負極板插入此隔離件。繼而,在將八片未化成負極板和七片未化成正極板收納成一組之熔接框內進行積層,使得未化成正極板與已插入前述袋狀隔離件中的未化成負極板交互積層。接下來,將端子的極柱設置於模具,使收納有先前的極板組之熔接框從下部對接,並以自動熔接方式熔接相同極性的極板的耳部彼此,而製作極板群。將前述極板群插入電解槽,組裝成2V單槽電池。就此電池而言,於日本專利公報4888209號所示的初期,以(相較於第二階段)稀薄的硫酸注入電解液而化成,並在途中,以比第一階段更為濃厚的硫酸進行化成的方法而得到電池。施予充電的總時間為48小時,其為包括途中停止/放電之模式,最大電流為120A。以此方式,作成在30℃-5小時率(hour rate)的條件下為2V-400Ah的電池。
[正極活性物質的既化密度的測定] 正極既化活物質的密度,是以下述方式測定。首先,將化成後的正極板水洗一小時後,在氮氣氛下,以60℃乾燥20小時。繼而,從乾燥過的前述負極板的表面部和內部,分別採集負極材料。使用股份公司島津製作所製的孔隙測定儀(AutoPoreIV9500)作為分析裝置,以水銀壓入方式,從測定壓力2.00psi的細孔容積與乾燥質量的關係,測定負極材料的密度。測定條件的詳細內容如下所述。
{正極活性物質的既化密度(視密度,apparent density)的測定條件} 分析裝置:AutoPoreIV9500(股份公司島津製作所製) 水銀壓入壓力:0~354kPa(低壓)、大氣壓~414MPa(高壓) 各測定壓力下的壓力保持時間:900s(低壓)、1200s(高壓) 試料與水銀之接觸角:130度 水銀的表面張力:480~490mN/m 水銀的密度:13.5335g/mL
(實施例1-1) 以加壓鑄造作為鑄造形式,如表1所示般,Sb含量設為3.0質量%,As含量設為0.005質量%以下,其他成分(Se、Bi、Sn)設為0.0005質量%以下,芯棒的平均直徑設為2.7mm,既化密度設為3.65g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(實施例1-2) 除了將Sb含量設為3.5質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(實施例1-3) 除了將Sb含量設為4.0質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(實施例1-4) 除了將Sb含量設為4.5質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(實施例1-5) 除了將Sb含量設為5.0質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(實施例1-6) 除了將Sb含量設為6.0質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(實施例1-7) 除了將Sb含量設為7.0質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(比較例1-1) 以重力鑄造作為鑄造形式,如表1所示般,Sb含量設為2.0質量%,As含量設為0.005質量%以下,其他成分(Se、Bi、Sn)設為0.0005質量%以下,芯棒的平均直徑設為2.7mm,既化密度設為3.65g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(比較例1-2) 除了將Sb含量設為4.0質量%以外,其餘以與比較例1-1相同條件來製作包覆式鉛蓄電池。
(比較例1-3) 除了將Sb含量設為7.0質量%以外,其餘以與比較例1-1相同條件來製作包覆式鉛蓄電池。
(比較例1-4) 除了將Sb含量設為10.0質量%以外,其餘以與比較例1-1相同條件來製作包覆式鉛蓄電池。
(比較例1-5) 除了將Sb含量設為2.0質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
(比較例1-6) 除了將Sb含量設為7.5質量%以外,其餘以與實施例1-1相同條件來製作包覆式鉛蓄電池。
針對表1所示的上述實施例1-1~1-7及比較例1-1~1-6,確認鑄造性、耐久性(後述的腐蝕減損量及芯棒延伸度)。
(鑄造性) 以目視確認鑄造時的熔融金屬的流動性、或鑄造後的芯棒的外觀(製品保持性、空隙等缺陷)。
鑄造性是基於以下之評估基準而進行評估。 A:連續製作狀態中,不發生毛邊、鑄疵。 B:連續製作狀態中,毛邊、鑄疵的發生很稀少。 C:連續製作狀態中,雖毛邊、鑄疵以某種頻率發生,但製造上是可容許的。 D:無法製作。
(腐蝕減損量) 針對包覆式鉛蓄電池,實施JIS D 5303-1(電動車用鉛蓄電池-第1部:一般要件與試驗方法)所規定的壽命試驗-試驗方法1,而進行評估。以0.25CA的放電電流並以3小時、0.18CA的充電電流,將5小時作為1個循環(每日3個循環),對各種規格每300個循環就將電池解體,來測定正極板(芯棒)的腐蝕量。又,實施到1200個循環為止,結束試驗。以此條件,將使用前與使用後的正極集電體的質量差異(芯棒的腐蝕量)作為腐蝕減損量,根據此腐蝕減損量的觀點,確認包覆式鉛蓄電池的耐久性。
腐蝕減損量是基於以下的評估基準而評估。 A:腐蝕量極少 B:腐蝕量少 C:腐蝕量稍多 D:腐蝕量多
(芯棒延伸度) 針對已確認上述腐蝕減損量的芯棒,測定芯棒的延伸度(使用前的芯棒的長度與使用後的芯棒的長度之差異,以下稱為「芯棒延伸度」),也根據此芯棒延伸度的觀點,確認包覆式鉛蓄電池的耐久性。
芯棒延伸度是基於以下的評估基準而評估。 A:芯棒延伸度極小 B:芯棒延伸度小 C:芯棒延伸度稍大 D:芯棒伸延伸度大
(綜合評估) 從鑄造性、腐蝕減損量及芯棒延伸度的各評估結果,進行綜合評估。綜合評估是基於以下的評估基準而評估。 A:極為良好 B:良好 C:大略良好 D:不良
又,各項目中即便有一個「不良(D)」的評估的情況中,綜合評估設為「不良(D)」,各項目中無「不良(D)」但即便有一個「大略良好(C)」的評估的情況中,綜合評估設為「大略良好(C)」,各項目中全部「B」的評估的情況中,設為「良好(B)」,各項目中有「A」與「B」的情況中,其中無「不良(D)」也無「大略良好(C)」的評估的情況中,判斷綜合評估為「極為良好(A)」。
針對實施例1-1~1-7及比較例1-1~1-6,確認鑄造性、耐久性(腐蝕減損量、芯棒延伸度)的結果,顯示於表1作為綜合評估。
[表1]
從表1可知,首先,比較例1-1~1-4中,任一者的綜合評估都是「不良(D)」;比較例1-1~1-4鑄造形式為重力鑄造(習知的鑄造方法)、Sb含量為2.0~10.0質量%、芯棒的平均直徑為2.7mm(固定)、既化密度為3.65g/cm3 (固定)。
相對於此,實施例1-1~1-7中,任一者的綜合評估皆為「大略良好(C)」以上的結果;實施例1-1~1-7的鑄造形式為加壓鑄造、Sb含量為3.0~7.0質量%、芯棒的平均直徑為2.7mm(固定)、既化密度為3.65g/cm3 (固定)。特別是,實施例1-3~實施例1-5(Sb含量:4.0~5.0質量%)中,綜合評估為「極為良好(A)」。另外,在比較例1-5中,因為Sb含量少,所以鑄造性惡化,比較例1-6中因為Sb含量多而腐蝕減損量增加,上述任一者的綜合評估皆為「不良(D)」。
從這些結果可判斷,藉由將鑄造形式設為加壓鑄造、Sb的含量調整成3.0質量%~7.0質量%,能夠維持鑄造性、耐久性兩者,此外也能夠使芯棒的截面尺寸變小。
另外,針對比較例1-2(習知技術)及實施例1-3(本申請案之發明),使用金屬顯微鏡對芯棒表面放大攝影而得到照片,藉由此照片比較芯棒的組織。金屬顯微鏡中,使用KEYENCE製的數位顯微鏡VHX-1000,將芯棒的表面放大約150倍而攝影。其結果為,習知的芯棒中,組織相對粗且不均勻,相對於此,本發明所用的芯棒中,組織相對細且大略均勻。如此,本案發明的芯棒,相對於使用習知技術的芯棒,顯示在構造上也有明確不同之處。
繼而,在包覆管內徑小的條件下,確認改變芯棒的截面尺寸(芯棒的平均直徑)的情況的各種特性。各實施例及比較例之製作條件如下文所述。
(實施例2-1) 以加壓鑄造作為鑄造形式,如表2所示般,Sb含量設為4.0質量%,As含量設為0.005質量%以下,其他成分(Se、Bi、Sn)設為0.0005質量%以下,芯棒的平均直徑設為2.5mm,既化密度設為3.65g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(實施例2-2(與實施例1-3相同)) 除了將芯棒的平均直徑設為2.7mm以外,以與實施例2-1相同的條件來製作包覆式鉛蓄電池。
(實施例2-3) 除了將芯棒的平均直徑設為3.0mm以外,以與實施例2-1相同的條件來製作包覆式鉛蓄電池。
(比較例2-1) 除了將芯棒的平均直徑設為2.0mm以外,以與實施例2-1相同的條件來製作包覆式鉛蓄電池。
(比較例2-2) 除了將芯棒的平均直徑設為3.5mm以外,以與實施例2-1相同的條件來製作包覆式鉛蓄電池。
針對上述實施例2-1~2-3及比較例2-1、2-2,確認鑄造性、放電特性、耐久性(腐蝕減損量、芯棒延伸度)。這些項目中,針對鑄造性、腐蝕減損量、及芯棒延伸度,藉由與上述相同的手法進行確認。又,綜合評估也是與上述相同的方式進行。
(放電特性) 放電特性是基於放電容量而確認。放電容量依循JIS D 5303-(電動車用鉛蓄電池-第1部:一般要件與試驗方法)所規定的5小時率容量試驗,而進行評估。具體而言,放電開始時期為充滿電後的1~24小時以內,電解液溫度為30℃±2℃,放電電流為5小時率電流(相對於電池容量為0.20CA)、放電終止電壓是在1.70V/單元的試驗條件實施。
放電容量,能夠從額定容量比(%),基於以下的評估基準評估。 A:額定容量比110%以上 B:額定容量比105%以上且未達110% C:額定容量比95%以上且未達105% D:額定容量比未達95%
針對實施例2-1~2-3及比較例2-1、2-2,確認鑄造性、放電特性、耐久性(腐食減損量、芯棒延伸度)的結果顯示於表2。
[表2]
根據表2,實施例2-1~2-3中,任一者的綜合評估結果為「大略良好(C)」以上;實施例2-1~2-3鑄造形式為加壓鑄造,Sb含量為4.0質量%(固定),芯棒的平均直徑為2.5~3.0mm,既化密度設為3.65g/cm3 (固定)。特別是,實施例2-2(芯棒平均直徑2.7mm)中,綜合評價為「良好(B)」。又,比較例2-1中,芯棒的平均直徑過小,集電性降低,在比較例2-2中,芯棒的平均直徑過大,包覆管內的空間變窄(因正極活性物質的填充量變少),任一者的綜合評估皆為「不良(D)」。若以前述的放電容量比的評估來進行判斷,因為實施例2-1~2-3會成為評估B與評估C,所以實用性上沒有問題。
從這些結果可判斷,即便在因包覆管內徑小而芯棒的截面尺寸變小的情況中,不僅維持鑄造性與耐久性,也同時維持鉛蓄電池的放電容量(放電特性)。
進一步,在使包覆管的內徑變小同時芯棒的截面尺寸也變小的情況,確認正極活性物質的既化密度與電池特性的關係。進一步,也確認As添加量與電池特性之關係。各實施例及比較例的製作條件如以下所述。
(實施例3-1) 以加壓鑄造作為鑄造形式,如表3所示般,Sb含量設為4.0質量%,改變As含量,其他成分(Se、Bi、Sn)設為0.0005質量%以下,芯棒的平均直徑固定為2.7mm,既化密度設為3.10g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(實施例3-2) 除了將正極活性物質的既化密度設為3.30 g/cm3 以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-3) 除了將正極活性物質的既化密度設為3.40 g/cm3 以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-4(與實施例1-3相同)) 除了將正極活性物質的既化密度設為3.65 g/cm3 以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-5) 除了將正極活性物質的既化密度設為3.70 g/cm3 以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-6) 除了將正極活性物質的既化密度設為3.75 g/cm3 以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-7) 除了將正極活性物質的既化密度設為4.15 g/cm3 以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-8) 除了將As含量設為0.01質量%以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-9) 除了將As含量設為0.20質量%以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-10) 除了將As含量設為0.40質量%以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
(實施例3-11) 除了將As含量設為0.45質量%以外,以與實施例3-1相同的條件來製作包覆式鉛蓄電池。
針對上述實施例3-1~3-11確認放電容量、電池壽命。
(放電特性) 放電特性是基於上述放電容量而確認,該放電容量是藉由JIS D 5303-1所規定的5小時率容量試驗而測定,從額定容量比(%)評估的放電容量。
(電池壽命) 電池壽命是從壽命比率(%)評估。壽命比率(%)是實施JIS D 5303-1(電動車用鉛蓄電池-第1部:一般要件及試驗方法)之壽命試驗-試驗方法1而評估。以0.25CA的放電電流3小時、0.18CA的充電電流5小時作為1個循環(每日3個循環),針對各規格每100個循環進行5小時率容量試驗,低於額定容量的80%時,判定電池已達壽命盡頭。又,壽命比率以實施例3-4作為基準。
(電池特性之評估) 僅從放電容量與壽命比率之觀點進行評估的電池特性評估,可基於以下的評估基準而評估。 A:極為良好(放電容量為95%以上且壽命比率為90%以上之情況) B:良好(放電容量為90%以上且未達95%並且壽命比率為90%以上之情況,或者是,放電容量為95%以上並且壽命比率為80%以上且未達90%之情況) C:大略良好(放電容量為80%以上且未達90%之情況,或者是,壽命比率為70%以上且未達80%之情況)
[表3]
依照上述電池特性之評估基準,在放電容量與壽命比率之觀點的電池特性綜合評估中,首先,實施例3-3~3-5及實施例3-8~3-10任一者的評估都是「極為良好(A)」以上;實施例3-3~3-5之鑄造形式為加壓鑄造,Sb含量為4.0質量%(固定),As含量為0.005質量%以下,芯棒的平均直徑為2.7mm(固定),既化密度為3.30~3.75g/cm3 ,而實施例3-8~3-10之鑄造形式為加壓鑄造,Sb含量為4.0質量%(固定),As含量為0.01~0.45質量%,芯棒的平均直徑為2.7mm(固定),既化密度固定為3.30g/cm3 。並且,實施例3-1中,因為既化密度過小而正極活性物質的實質填充量變少,所以壽命比率降低,而實施例3-7中,因為既化密度過大而正極活性物質的多孔性變低,所以放電容量降低,任一者的評估皆為「大略良好(C)」。
從這些結果可判斷,即便在包覆管內徑小的情況,因為能使芯棒的截面尺寸小,所以能夠確保正極活性物質的填充量,維持放電容量(放電特性)與壽命比率(電池長壽)、或放電容量和壽命比率之任一者變高(放電特性及電池壽命之任一者皆提升)。
又,實施例3-8~3-10中,任一者之綜合評估皆為「極為良好(A)」;實施例3-8~3-10之鑄造形式為加壓鑄造,Sb含量為4.0質量%,As含量為0.01~0.40質量%,芯棒的平均直徑為2.7mm(固定),既化密度為3.30/cm3 (固定)。並且,實施例3-11(As含量為0.45質量%)止於「良好(B)」。考慮在實施例3-2(As含量為0.005質量%以下)的情況中止於「良好(B)」,可判斷使用含有0.01~0.40質量%的As的鉛合金進行鑄造,不僅維持放電容量(放電特性),壽命比率也變高(電池壽命變長)。
進一步,確認鑄造芯棒的鉛合金中含有As之外的硒(Se)、鉍(Bi)及錫(Sn)之情況的各種特性。各實施例的作成條件如以下所述。
(實施例4-1) 以加壓鑄造作為鑄造形式,如表4所示般,Sb含量設為3.5質量%,As含量設為0.01質量%,Se、Bi、Sn的含量任一者皆設為0.0005質量%以下,芯棒的平均直徑固定為2.7mm,既化密度設為3.65g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(實施例4-2~4-4) 除了將As含量分別設為0.1質量%、0.3質量%、0.45質量%以外,以與實施例4-1相同的條件來製作包覆式鉛蓄電池。
(實施例4-5~4-8) 除了將Se含量設為0.001質量%以外,以與實施例4-1~4-4各自相同的條件來製作包覆式鉛蓄電池。
(實施例4-9~4-12) 除了進一步將Bi含量設為0.001質量%以外,以與實施例4-5~4-8各自相同的條件來製作包覆式鉛蓄電池。
(實施例4-13~4-16) 除了進一步將Sn含量設為0.001質量%以外,以與實施例4-9~4-12各自相同的條件來製作包覆式鉛蓄電池。
針對上述實施例4-1~4-16,確認、評估鑄造性、耐久性、及其他的各種特性。評估基準如上文所述。結果顯示於表4。
[表4]
根據表4,相較於實施例4-1~4-4,實施例4-5以下的包含Se、Bi及Sn之任意一者的情況中,材料強度提升,尤其是包含0.001質量%的Se、Bi及Sn之任意一者的實施例4-13~4-16中,可見到鑄造性變得優良。
從這些結果確認,不管鉛合金所含的As量如何,藉由鉛合金中進一步包含Se、Bi及Sn之任意一者,可在不會損害其他的各種特性的情況下,實現鑄造性及材料強度的提升。
進一步,針對鉛合金所含的Sb、As、Se、Bi、及Sn各自的含量是否相互關聯而影響各種特性進行確認。各實施例及比較例之作成條件如下所述。
(實施例5-1) 以加壓鑄造作為鑄造形式,如表5所示般,Sb含量設為3.5質量%,As含量設為0.3質量%,Se含量設於0.01質量%,Bi及Sn含量設為0.005質量%,芯棒的平均直徑設為2.7mm,既化密度設為3.65g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(實施例5-2) 除了將Se含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-3) 除了將Se含量設為0.03質量%,Bi含量設為0.03質量%,Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-4) 除了將Sb含量設為4質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.01質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-5) 除了將Sb含量設為4質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-6) 除了將Sb含量設為4質量%,As含量設為0.45質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-7) 除了將Sb含量設為4.5質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-8) 除了將Sb含量設為4.5質量%,As含量設為0.45質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-9) 除了將Sb含量設為5質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-10) 除了將Sb含量設為5質量%,As含量設為0.45質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-11) 除了將Sb含量設為6質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-12) 除了將Sb含量設為6質量%,As含量設為0.45質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-13) 除了將Sb含量設為7質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(實施例5-14) 除了將Sb含量設為7質量%,As含量設為0.45質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(比較例5-1) 除了將Sb含量設為7.5質量%,As含量設為0.1質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
(比較例5-2) 除了將Sb含量設為7.5質量%,As含量設為0.45質量%,Se含量設為0.02質量%、Bi含量設為0.02質量%、Sn含量設為0.02質量%以外,以與實施例5-1相同的條件來製作包覆式鉛蓄電池。
針對上述實施例5-1~5-14,確認、評估材料強度及其他的各種特性。評估基準如上文所述。結果顯示於表5。
[表5]
根據表5確認,相較於As、Se、Bi及Sn,主要是Sb的含量會影響材料強度,在Se及Bi為0.001質量%以上且0.03質量%以下的範圍內、Sn為0.001質量%以上且0.02質量%以下的範圍內,各自使材料強度變得優良。又,確認Se、Bi及Sn的總量為約0.08質量%便不會有什麼問題。
繼而,針對以重力鑄造作為鑄造方法的情況中的各種特性的改善進行驗證。各比較例的作成條件如下文所述。
(比較例6-1) 以重力鑄造作為鑄造形式,如表6所示般,Sb含量設為3.5質量%,As含量設為0.005質量%,Se含量設於0.001質量%,Bi含量設為0.0005質量%,Sn含量設為0.0005質量%,芯棒的平均直徑設為2.7mm,既化密度設為3.65g/cm3 ,以上述條件,製作包覆式鉛蓄電池。
(比較例6-2) 除了將Se含量設為0.0005質量%、Bi含量設為0.001質量%以外,其餘以與比較例6-1相同的條件來製作包覆式鉛蓄電池。
(比較例6-3) 除了將Se含量設為0.0005質量%、Sn含量設為0.001質量%以外,其餘以與比較例6-1相同的條件來製作包覆式鉛蓄電池。
(比較例6-4) 除了將Bi含量設為0.001質量%以外,其餘以與比較例6-1相同的條件來製作包覆式鉛蓄電池。
(比較例6-5) 除了將Sn含量設為0.001質量%以外,其餘以與比較例6-1相同的條件來製作包覆式鉛蓄電池。
(比較例6-6) 除了將Se含量設為0.0005質量%,Bi含量設為0.001質量%,Sn含量設為0.001質量%以外,其餘以與比較例6-1相同的條件來製作包覆式鉛蓄電池。
(比較例6-7) 除了將Bi含量設為0.001質量%、Sn含量設為0.001質量%以外,其餘以與比較例6-1相同的條件來製作包覆式鉛蓄電池。
針對比較例6-1~6-7,將確認各種特性後的結果顯示於表6。
[表6]
根據表6,驗證即便除了Sb之外,於鉛合金中含有Se、Bi及Sn,只要鑄造方法是重力鑄造,就無法得到評估高的包覆式鉛蓄電池。
以上,雖針對本發明之實施形態及實施例與比較例具體地說明,但本發明並不限定於該等實施形態及實驗例。例如,可任意規定包覆件的根數、尺寸等。即,就上述實施形態及實驗例所記載的態樣而言,只要無特別記載,當然可基於本發明之技術思想而變更。
[產業上的利用可能性] 根據本發明,藉由加壓鑄造含有預定量的銻之鉛合金來製造包覆式鉛蓄電池的集電體,能夠同時維持芯棒的鑄造性和耐久性。又,不僅同時維持鑄造性和耐久性,也能夠使芯棒的截面尺寸變小,因此能夠提供一種包覆式鉛蓄電池,其包覆式鉛蓄電池用正極板的厚度薄。
1‧‧‧包覆管
2‧‧‧載盤
3‧‧‧溝部
4‧‧‧上部相連座
5‧‧‧下部相連座
6‧‧‧芯棒
7‧‧‧鉛粉
8‧‧‧連結部
9‧‧‧耳部
15‧‧‧包覆式正極板
19‧‧‧孔
第1圖(A)是金屬顯微鏡照片,其顯示使用習知技術鑄造而成的包覆式正極板的集電體(芯棒)的組織;第1圖(B)是金屬顯微鏡照片,其顯示本發明的實施例所使用的包覆式正極板的集電體(芯棒)的組織。 第2圖是本實施形態的包覆式正極板的製造步驟的概略圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無

Claims (11)

  1. 一種包覆式鉛蓄電池用集電體,其具備由鉛合金構成之芯棒,其中, 前述鉛合金包含:相對於前述鉛合金的總質量,92質量%以上且97質量%以下的鉛、及3.0質量%以上且7.0質量%以下的銻;前述芯棒是藉由加壓鑄造法將前述鉛合金加以鑄造而構成;並且,前述芯棒的平均截面積是4.9mm2 以上且7.1mm2 以下,該平均截面積是將在與前述芯棒的縱軸方向正交之方向上截斷而成的截面的截面積,沿著整個前述芯棒的縱軸方向進行平均而得。
  2. 如請求項1所述之包覆式鉛蓄電池用集電體,其中,前述銻的含量,相對於前述鉛合金的總質量是4.0質量%以上且5.0質量%以下。
  3. 如請求項1或2所述之包覆式鉛蓄電池用集電體,其中,在前述鉛合金中,包含相對於前述鉛合金的總質量是0.01質量%以上且0.40質量%以下的砷。
  4. 如請求項1所述之包覆式鉛蓄電池用集電體,其中,前述芯棒的前述截面的輪廓形狀是圓形。
  5. 如請求項4所述之包覆式鉛蓄電池用集電體,其中,將前述截面的直徑沿著整個前述芯棒的縱軸方向進行平均而得的平均直徑是2.5mm以上且3.0mm以下。
  6. 一種包覆式鉛蓄電池用正極板,其具備請求項1至5中任一項所述之集電體,其中, 該包覆式鉛蓄電池用正極板進一步具備: 管,其是將含浸有酚樹脂之筒狀玻璃纖維加以燒結而構成;及,正極活性物質,其在將前述集電體的芯棒插入前述管內的狀態中,填充於前述管與前述芯棒之間。
  7. 一種包覆式鉛蓄電池用正極板,其具備請求項1至5中任一項所述之集電體,其中, 該包覆式鉛蓄電池用正極板進一步具備: 管,其是將含浸有酚樹脂之筒狀玻璃纖維加以燒結而構成;及,正極活性物質,其在將前述集電體的芯棒插入前述管內的狀態中,填充於前述管與前述芯棒之間;並且,前述正極活性物質的密度是3.30g/cm3 以上且3.75g/cm3 以下。
  8. 一種包覆式鉛蓄電池,其使用了正極板,該正極板具備請求項1至5中任一項所述之集電體,其中, 前述正極板進一步具備: 管,其是將含浸有酚樹脂之筒狀玻璃纖維加以燒結而構成;及,正極活性物質,其在將前述集電體的芯棒插入前述管的狀態中,填充於前述管與前述芯棒之間。
  9. 一種包覆式鉛蓄電池,其使用了正極板,該正極板具備請求項1至5中任一項所述之集電體,其中, 前述正極板進一步具備: 管,其是將含浸有酚樹脂之筒狀玻璃纖維加以燒結而構成;及,正極活性物質,其在將前述集電體的芯棒插入前述管內的狀態中,填充於前述管與前述芯棒之間;並且,前述正極活性物質的密度是3.30g/cm3 以上且3.75g/cm3 以下。
  10. 一種包覆式鉛蓄電池用集電體的製造方法,其是製造包覆式鉛蓄電池用集電體的方法,該包覆式鉛蓄電池用集電體具備將鉛合金加以鑄造而構成之芯棒,其中, 前述鉛合金包含:相對於前述鉛合金的總質量,92質量%以上且97質量%以下的鉛、及3.0質量%以上且7.0質量%以下的銻;前述芯棒是藉由加壓鑄造法將前述鉛合金加以鑄造而構成;並且,使前述芯棒的平均截面積成為4.9mm2 以上且7.1mm2 以下,該平均截面積是將在與前述芯棒的縱軸方向正交之方向上截斷而成的截面的截面積,沿著整個前述芯棒的縱軸方向進行平均而得。
  11. 一種包覆式鉛蓄電池用集電體,其具備由鉛合金構成之芯棒,其中, 前述鉛合金包含:相對於前述鉛合金的總質量,92質量%以上且97質量%以下的鉛、及3.0質量%以上且7.0質量%以下的銻; 並且,前述芯棒的強度是35MPa以上。
TW105106100A 2015-02-26 2016-02-26 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池 TWI699036B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015037314A JP5909815B1 (ja) 2015-02-26 2015-02-26 クラッド式鉛蓄電池、クラッド式正極板、及びクラッド式正極板用集電体
JP2015-037314 2015-02-26

Publications (2)

Publication Number Publication Date
TW201703325A true TW201703325A (zh) 2017-01-16
TWI699036B TWI699036B (zh) 2020-07-11

Family

ID=55808212

Family Applications (3)

Application Number Title Priority Date Filing Date
TW109109712A TWI718036B (zh) 2015-02-26 2016-02-26 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池
TW105106100A TWI699036B (zh) 2015-02-26 2016-02-26 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池
TW109145379A TWI733637B (zh) 2015-02-26 2016-02-26 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109109712A TWI718036B (zh) 2015-02-26 2016-02-26 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109145379A TWI733637B (zh) 2015-02-26 2016-02-26 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池

Country Status (3)

Country Link
JP (1) JP5909815B1 (zh)
TW (3) TWI718036B (zh)
WO (1) WO2016136941A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY175720A (en) * 2016-10-07 2020-07-07 Hitachi Chemical Co Ltd Cladding tube, clad electrode, lead storage battery, production method for these, and electric car
JPWO2021053772A1 (zh) * 2019-09-18 2021-03-25
WO2021053771A1 (ja) * 2019-09-18 2021-03-25 昭和電工マテリアルズ株式会社 電極、鉛蓄電池、集電体及び集電体の製造方法
CN117397069A (zh) * 2021-03-16 2024-01-12 株式会社杰士汤浅国际 铅蓄电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910420B2 (ja) * 1977-04-04 1984-03-08 古河電池株式会社 蓄電池極板用鉛基合金
JPS57142759A (en) * 1981-02-26 1982-09-03 Shin Kobe Electric Mach Co Ltd Pressure casting device
JPS58145359A (ja) * 1982-02-24 1983-08-30 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用格子体加圧鋳造装置
JP2720029B2 (ja) * 1986-09-04 1998-02-25 日本電池株式会社 蓄電池用鉛合金
JPS63212062A (ja) * 1987-02-27 1988-09-05 Furukawa Battery Co Ltd:The 鉛蓄電池用極板基板の製造方法
JPH03105861A (ja) * 1989-09-19 1991-05-02 Japan Storage Battery Co Ltd クラッド式鉛蓄電池
JPH04358035A (ja) * 1991-01-25 1992-12-11 Furukawa Battery Co Ltd:The 蓄電池用鉛基合金
JPH051341A (ja) * 1991-02-19 1993-01-08 Furukawa Battery Co Ltd:The 蓄電池用鉛基合金
JPH11126614A (ja) * 1997-10-23 1999-05-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
CN1428881A (zh) * 2001-12-24 2003-07-09 赛尔动力电池(沈阳)有限公司 铅酸蓄电池板栅制造方法
US20050238952A1 (en) * 2004-04-22 2005-10-27 Prengaman R D High tin containing alloy for battery components
JP5348131B2 (ja) * 2008-03-24 2013-11-20 日本ゼオン株式会社 鉛蓄電池用電極およびその利用
CN103107310B (zh) * 2012-11-11 2015-07-22 广西天鹅蓄电池有限责任公司 蓄电池生极板的制作方法

Also Published As

Publication number Publication date
TWI718036B (zh) 2021-02-01
TW202125884A (zh) 2021-07-01
JP5909815B1 (ja) 2016-04-27
JP2016162501A (ja) 2016-09-05
TW202030915A (zh) 2020-08-16
TWI699036B (zh) 2020-07-11
WO2016136941A1 (ja) 2016-09-01
TWI733637B (zh) 2021-07-11

Similar Documents

Publication Publication Date Title
TWI699036B (zh) 包覆式鉛蓄電池用集電體、包覆式鉛蓄電池用正極板、及包覆式鉛蓄電池
JPWO2005107004A1 (ja) 鉛蓄電池
JPS58212060A (ja) 電気化学セル用隔離体
EP1737062B1 (en) Lead storage battery
JP6592215B1 (ja) 鉛蓄電池
JP2018018803A (ja) 鉛蓄電池
JP5505248B2 (ja) 鉛蓄電池
JP2012248280A (ja) 二硫化鉄・リチウム一次電池
JP7424371B2 (ja) 液式鉛蓄電池用セパレータおよび液式鉛蓄電池
JP2008218258A (ja) 鉛蓄電池
KR102201100B1 (ko) 클래드 튜브, 클래드식 전극, 납 축전지 및 이들의 제조 방법, 그리고 전동차
WO2018199053A1 (ja) 鉛蓄電池
JP6677436B1 (ja) 鉛蓄電池
JP7347042B2 (ja) 鉛蓄電池用クラッド式正極板およびそれを備える鉛蓄電池
JP7285206B2 (ja) 電極性能の判定方法、鉛蓄電池及びその製造方法
JP6730406B2 (ja) 鉛蓄電池
Hasuo et al. Research on trial production of lithium-ion battery with positive electrode by doping of Al fibers
WO2018199125A1 (ja) 鉛蓄電池
CN109643804B (zh) 铅蓄电池、以及铸造板栅及其制造方法
JP6756181B2 (ja) 鉛蓄電池
JP2022131790A (ja) 鉛蓄電池用クラッド式正極板および鉛蓄電池
JP2002075318A (ja) 二次電池
JP2023154163A (ja) 鉛蓄電池
JP2001229958A (ja) 密閉形鉛蓄電池
WO2014050074A1 (ja) アルカリ蓄電池及びそれを用いた蓄電池システム。