TW201629658A - 用於ir和uv監控的具有小容量且長路徑長度的多程氣體單元 - Google Patents
用於ir和uv監控的具有小容量且長路徑長度的多程氣體單元 Download PDFInfo
- Publication number
- TW201629658A TW201629658A TW105101572A TW105101572A TW201629658A TW 201629658 A TW201629658 A TW 201629658A TW 105101572 A TW105101572 A TW 105101572A TW 105101572 A TW105101572 A TW 105101572A TW 201629658 A TW201629658 A TW 201629658A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- pass
- fluid
- unit assembly
- optical
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/0303—Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F22/00—Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/031—Multipass arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0636—Reflectors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本發明描述一種用於流體監控的多程單元組件,以及使用多程單元組件的流體處理系統,及使用此多程單元組件執行流體監控的關聯方法。多程單元組件有效用於流體處理操作中,諸如氣相沉積製程反應物之監控,該等氣相沉積製程反應物例如用於自鎢羰基前驅物的鎢之氣相沉積金屬化的反應物。
Description
本申請案根據專利法條款主張以Thomas H.Baum等人名義於2015年1月19日提出申請之標題為「SMALL VOLUME,LONG PATHLENGTH MULTI-PASS GAS CELL FOR IR AND UV MONITORING」之美國臨時專利申請案第62/105,178號之優先權權益。出於所有目的,此美國臨時專利申請案第62/105,178號之揭示內容藉此全部併入本文。
本揭示內容係關於一種流體監控設備及方法,此設備及方法在諸如半導體產品、平板顯示器及太陽電池板之製造的應用中賦能流體之小容量且長路徑長度的光電監控。本發明描述了光學單元,此等光學單元為諸如液體及氣體之流體材料在受限容量內的量測提供增加的敏感性。此類光學單元採用自光學空腔壁的多次反射,且在廣泛的應用範圍(例如,工業、環境、公眾安全、國防、消費者及醫療應用)內尤其有效用於低濃度氣體或蒸氣之量測及偵測。
在光電偵測器用於流體監控,例如,以將流體流中所關注組分的定量或特徵化時,已開發出紅外監控裝置。此等裝置可具有廣泛變化之類型。
在此等裝置之一個類別中,使紅外輻射傳遞穿過樣本單元以與流動穿過單元的流體流相互作用。用於此等裝置中的紅外輻射源通常為經配置以產生準直光束的寬頻帶紅外光源。光束接觸流體流,流體流通常為氣體,但可包含液體或氣體/液體混合物。在此接觸中,入射輻射之光束與流組分相互作用,且將所透射或反射訊號傳遞出樣本單元且入射在紅外偵測器上。
可多方面配置紅外偵測器。舉例而言,紅外偵測器可包含多個獨立過濾器通道,每個通道配備有容許特定光譜特性之紅外輻射通過的特定過濾器元件。因此,可採用獨立過濾器元件來識別所關注的特定組分或化學物種,此等特定組分或化學物種與來自IR光源的紅外光相互作用並產生此紅外光之區別性變換、衰減或調變,使得自樣本單元輸出的紅外光可識別為與此類組分或化學物種關聯。
舉例而言,紅外偵測器可包含與接收熱電堆(熱電等)元件一起排列之IR過濾器,熱電堆(熱電等)元件將紅外熱能轉換成電能(例如,DC輸出訊號)。因此,與特定過濾器關聯的熱電堆元件可「經調諧」以在
熱電堆元件入射有特定波長或由關聯過濾器決定的其他光譜特性之IR輻射時回應產生輸出電訊號。
前文論及之紅外流體監控裝置可應用於眾多材料及應用中。寬泛而言,可在任何變型配置及形式中體現本揭示內容之流體監控裝置,且此等流體監控裝置可例如包含變化類型廣泛之熱電偵測器。
作為特定範例,在半導體製造設施中可採用熱電堆紅外(thermopile infrared;TPIR)監控系統,在此設施中藉由氣相沉積製程使用相應金屬前驅物實施金屬化(例如,鎢金屬化),其中TPIR監控系統經配置以監控自氣相沉積製程的流出物流以偵測前驅物及前驅物在製程中所產生之氣相分解產物之流出物濃度。用於此TPIR監控系統中的偵測器可包括用於基線參考或校準目的之參考通道。
使用中的上述光電監控系統必須處理爭用設計考慮。大體而言,傳遞穿過樣本單元中的流體流之紅外光束之路徑需要實質長度以使得入射IR光束與流體流之相應相互作用能夠實現偵測操作中的高水平精確度(及解析度)。因此,長路徑長度允許實現低偵測極限。同時,特別是在諸如空間為高代價且需要最小化的半導體工業之應用中,需要提供具有緊湊特性的監控系統,使得此監控系統相應具有小容量及小外形尺寸或佔據面積。
除用於多組分流體流之組分偵測及分析的紅外光源光電監控系統之外,該項技術中亦使用採用包括可見光源、紫外(ultraviolet;UV)光源等其他類型光源的光電監控系統。
上述類型之流體監控系統需要適當尺寸之光學路徑長度以用於特定電磁輻射(例如,光)與所監控材料之相互作用,且如上文所論及,路徑長度決定可由特定監控裝置實現的量測之敏感性及較低偵測極限。根據朗伯定律,或更普遍地藉由比爾-朗伯-波格定律,電磁輻射之吸收與路徑長度成比例。路徑長度考慮可限制許多應用中監控設備之實際使用,在此等應用中需要量測低濃度氣體或蒸氣。對於低百萬分率下至十億分率或更低之濃度範圍內的材料量測需要1公尺或更大之路徑長度並不常見。
為了實現樣本單元中的長路徑長度且同時實現小尺寸、小容量配置,已提出並開發了多程監控系統。此類小容量、長路徑長度的流體樣本單元採用入射輻射束之多次傳遞或反射以實現相對較小外形尺寸的長路徑長度。小容量能夠減小時間延遲,同時長路徑長度能夠降低偵測極限。
因此,在有用光電流體監控單元之實現方面主要考慮的是實現對於監控操作的低樣本容量需求,光學監控的延伸路徑長度以實現改良的樣本量測敏感性,
部件之有效光學耦合以最大化光學訊號利用率,及流體監控單元及關聯部分及組件之低成本可製造性。
該項技術繼續尋求用於多組分流體流之組分的偵測及分析以及用於即時流體流監控的光電監控系統的改良。
本揭示內容係關於流體監控設備及方法。
在一個態樣中,本揭示內容係關於一種用於流體監控的多程單元組件,該多程單元組件包含:弓形環繞構件,界定多程光學反射腔室,該弓形環繞構件包含沿弓形延伸範圍的面向內反射表面,該面向內反射表面產生入射光之多程光學反射;光輸入結構,經配置以將來自光源的光導向至弓形環繞構件之反射表面上,使得在光學反射腔室中產生光之該多程光學反射;光輸出結構,經配置以將自弓形環繞構件之反射表面的多程光導出光學反射腔室以便偵測及處理;流體入口,經配置以將流體引入至多程光學反射腔室,使得流體與腔室內的多程光相互作用;以及流體出口,經配置以在流體與腔室內的多程光相互作用後將流體排放出多程光學反射腔室。
在另一態樣中,本揭示內容係關於一種用於流體監控的多程單元組件,該多程單元組件包含:
圓柱形壁構件,環繞及界定多程光學反射腔室,該圓柱形壁構件內包含周向地間隔分離的開口;周向地間隔分離的開口中的鏡面,該等鏡面面向內且經配置以在多程光學反射腔室中產生光之多程光學反射;光輸入結構,經配置以將來自光源的光導向至鏡面之一或更多者之反射表面上,使得在光學反射腔室中產生光之該多程光學反射;光輸出結構,經配置以將多程光導出光學反射腔室以便偵測及處理;底板及蓋構件,與圓柱形壁構件協調嚙合以圍束多程光學反射腔室;流體入口,經配置以將流體引入至多程光學反射腔室,使得流體與腔室內的多程光相互作用,該流體入口包含底板構件中的至少一個流體入口埠;流體出口,經配置以在流體與腔室內的多程光相互作用後將流體排放出多程光學反射腔室,該流體出口包含底板構件中的至少一個流體出口埠;光源,經安裝在蓋構件上且光學耦接至光輸入結構;以及光偵測器,經安裝在蓋構件上且光學耦接光輸出結構。
在另一態樣中,本揭示內容係關於一種流體處理系統,該流體處理系統包含:
製程工具,使用或產生流體流;以及如本文多方面描述之用於流體監控的多程單元組件,經配置用於使流體流穿過多程光學反射腔室自流體入口至流體出口流動以便在多程光學反射腔室中與多程光相互作用。
本揭示內容之另一態樣係關於一種監控流體流的方法,該方法包含:使流體流流動穿過本揭示內容之多程單元組件,如本文多方面描述,以產生多程光輸出;及處理多程光輸出以特徵化或分析流體流。
本揭示內容之其他態樣、特徵及實施例將自以下描述及隨附申請專利範圍而更加顯而易見。
100‧‧‧多程單元組件
102‧‧‧外殼
104‧‧‧蓋構件
106‧‧‧光源
108‧‧‧光偵測器
110‧‧‧入口(/出口)埠
112‧‧‧電子設備模組
114‧‧‧氣體入口管線
116‧‧‧氣體出口管線
120‧‧‧質量流量控制器
124‧‧‧氣相沉積工具
126‧‧‧前驅物源容器
128‧‧‧載氣源容器
130‧‧‧前驅物氣體混合物饋送管線
132‧‧‧中央處理單元
134‧‧‧流出物排放管線
136‧‧‧通風管線
138‧‧‧輸出訊號傳輸線
140‧‧‧控制訊號傳輸線
142‧‧‧控制訊號傳輸線
200‧‧‧弓形環繞構件
210‧‧‧支撐壁構件
214‧‧‧光輸入結構
216‧‧‧輸出光結構
220‧‧‧光輸入埠
222‧‧‧光輸出埠
300‧‧‧鏡面層
314‧‧‧直徑
315‧‧‧輸入光角度
316‧‧‧輸出光角度
317‧‧‧主體
318‧‧‧多程光學反射腔室
319‧‧‧面向內反射表面
330‧‧‧輸出光束
332‧‧‧輸入光束
336‧‧‧多程(反射)光束
340‧‧‧光源
342‧‧‧光偵測器
402‧‧‧頂蓋
404‧‧‧底蓋
406‧‧‧入口
408‧‧‧出口
410‧‧‧肩螺栓
412‧‧‧肩螺栓
414‧‧‧肩螺栓
416‧‧‧肩螺栓
418‧‧‧肩螺栓
420‧‧‧底板安裝凸緣
422‧‧‧接收開口
424‧‧‧鏡面
426‧‧‧O形環接收凹槽
720‧‧‧研磨電鍍表面
721‧‧‧O形環密封元件
728‧‧‧研磨電鍍表面
第1圖係在一個實施例中的本揭示內容之多程單元組件之簡化示意性俯視平面圖。
第2圖係根據另一實施例的本揭示內容之多程單元組件之簡化示意性俯視平面圖。
第3圖係根據又一實施例的本揭示內容之多程單元組件之簡化示意性俯視平面圖。
第4圖係根據本揭示內容之又一實施例的多程單元排列之簡化示意性俯視平面圖。
第5圖係根據本揭示內容之另一實施例的採用刻面反射表面之多程單元排列之簡化示意性俯視平面圖。
第6圖係根據本揭示內容之又一實施例的多程單元組件之分解透視圖。
第7圖係根據本揭示內容之一個實施例的多程單元子組件之示意性透視圖。
第8圖係包括第7圖之子組件的多程單元組件之示意性透視圖。
第9圖係第7圖之多程單元子組件之仰視透視圖。
第10圖係第9圖之多程單元子組件之示意性正視圖。
第11圖係多程單元組件之俯視透視圖,圖示內部的氣體入口結構之細節。
第12圖係根據本揭示內容之一個實施例的多程單元組件之俯視透視圖,特徵在於單元組件蓋上安裝的IR源及IR偵測器。
第13圖係第12圖之多程單元組件之正視圖。
第14圖係第12圖及第13圖中所示類型之多程單元組件之透視圖,多程單元組件進一步包括氣體流動管路系統,管路系統包括耦接至多程單元的氣體入口及出口管線。
第15圖係第14圖之多程單元組件之透視圖,圖示具有質量流量控制器,以指示多程單元組件之尺寸特點。
第16圖係監控蒸氣流的多程單元組件隨時間變化之輸出資料之曲線圖,蒸氣流包括來自供應鎢羰基前驅物蒸氣的氣化器的蒸氣以及氬載氣,此表示用於在氣相沉積操作中的半導體基板上的鎢薄膜沉積之蒸氣流。
第17圖係使用本揭示內容之多程單元組件的半導體製造製程系統之示意性表示,此系統與控制系統連接以便回應於多程單元組件感測來調變系統操作。
第18圖係根據本揭示內容之另一實施例的多程單元組件之透視圖。
第19圖及第20圖係根據本揭示內容之一個實施例的多程單元組件之3D列印鋁複合物部件之透視圖,此部件使用金塗覆鏡面且經配置使得在組裝後無需光學對準。
第21圖係可用於第18圖至第20圖之多程單元組件中的紅外源之正視圖。
第22圖係可用於第18圖至第20圖之多程單元組件中的4通道偵測器之正視圖。
第23圖係多程單元組件之仰視平面圖,其中圖示至單元的氣體連接,此等氣體連接用於將氣體輸送至單元中以便監控操作且將所監控氣體排放出單元。第24圖係具有附接氣體流動管線的此等氣體連接之透視圖。
第25圖係監控蒸氣流的線性單元組件隨時間變化之輸出資料之曲線圖,蒸氣流包括來自供應鎢羰基前驅物蒸氣的氣化器的蒸氣以及氮載氣,此表示用於在氣相沉積操作中的半導體基板之鎢金屬化之蒸氣流。
第26圖係本揭示內容之多程單元組件隨時間變化之輸出資料之曲線圖,多程單元組件監控蒸氣流,蒸氣流包括來自供應鎢羰基前驅物的氣化器的蒸氣以及氮載氣,此表示在對應於產生第25圖之曲線圖中的資料所用之操作條件下用於在氣相沉積操作中的半導體基板之鎢金屬化之蒸氣流。
第27圖係1m線性單元組件隨時間變化之輸出資料(2次脈衝)之曲線圖,線性單元組件監控55℃溫度及40托壓力下的氣流,氣流包含氣體流動速率為500sccm的氬氣。
第28圖係本揭示內容之多程單元組件隨時間變化之輸出資料(2次脈衝)之對應曲線圖,多程單元組件監控55℃溫度及40托壓力下的氣流,氣流包含流動速率為500sccm的氬載氣。
第29圖係本揭示內容之多程單元組件隨時間變化之輸出資料(22次脈衝)之曲線圖,多程單元組件監控55℃溫度及40托壓力下的氣流,氣流包含流動速率為500sccm的氬載氣。
第30圖係本揭示內容之多程單元組件以濃度階梯量測形式的隨時間變化之鎢羰基前驅物蒸氣的輸出資料之曲線圖。
本揭示內容係關於流體監控設備及方法,其中採用高效且緊湊配置之多程單元組件來實現流體之延伸路徑光學監控。
在一個態樣中,本揭示內容係關於一種用於流體監控的多程單元組件,該多程單元組件包含:弓形環繞構件,界定多程光學反射腔室,該弓形環繞構件包含沿弓形延伸範圍的面向內反射表面,該面向內反射表面產生入射光之多程光學反射;光輸入結構,經配置以將來自光源的光導向至弓形環繞構件之反射表面上,使得在光學反射腔室中產生光之該多程光學反射;光輸出結構,經配置以將自弓形環繞構件之反射表面的多程光導出光學反射腔室以便偵測及處理;流體入口,經配置以將流體引入至多程光學反射腔室,使得流體與腔室內的多程光相互作用;以及流體出口,經配置以在流體與腔室內的多程光相互作用後將流體排放出多程光學反射腔室。
在此多程單元組件之特定排列中,反射表面可包含沿弓形環繞構件之弓形延伸範圍的複數個鏡面。在此等排列中,弓形環繞構件可包含弓形環繞支撐件,
弓形環繞支撐件內包含接收開口,在此等接收開口中安裝複數個鏡面之各別者。鏡面可包含拋物線形鏡面,或可具有其他形狀或構造。
在特定實施例中,弓形環繞構件可包含圓柱形壁構件,例如其中圓柱形壁構件包含反射內壁表面,反射內壁表面包含面向內反射表面。或者,弓形環繞構件可包含刻面或分段內表面,內表面包含面向內反射表面。
在各種實施例中,多程單元組件可進一步包含蓋及底板構件,此等構件與弓形環繞構件協調耦接以圍束多程光學反射腔室。
此等蓋及底板構件可包含內部光反射表面,使得單元本身充當光導管以最大化光學反射效率。
在特定排列中,多程單元組件之流體入口可包括底板構件中的至少一個流體入口埠,且在特定實施例中,單元組件可包括兩個或更多個此等流體入口埠,以實現流動穿過子組件的流體流之均勻性。
以相同方式,流體出口可包括底板構件中的至少一個流體出口埠,且當底板構件含有流體入口埠時,可使流體出口埠與流體入口橫向間隔分離,以防止單元組件中的流體短路或其他不均勻或異常行為。
多程單元組件中的光輸入結構可包含光入口埠,光入口埠經配置以適應光源之安置或替代地經配置
以光學耦接至光源,以便將入射光引入至單元組件之多程光學反射腔室中。
多程單元組件中的光輸出結構可以相同方式包含光出口埠,光出口埠經配置以適應輸出光偵測器之安置或替代地經配置以光學耦接至輸出光偵測器。
在多程單元組件中,按需要排列光輸入埠與光輸出埠相對於彼此之相對位置,以實現經引入至光學反射腔室的光之特定多程程度,使得光學反射腔室之光輸入及光輸出對於採用多程單元組件的特定應用實現必要路徑長度。各別光輸入埠與光輸出埠相對於彼此之相對位置可在本揭示內容之廣泛實踐中廣泛變化。
在一些實施例中,可需要相對於彼此定位光輸入埠及光輸出埠,以界定兩者之間自30°至90°範圍內之夾角。在其他實施例中,可需要使光輸入埠及光輸出埠相對於彼此定位,以界定兩者之間自35°至75°範圍內之夾角。將認識到,可基於本文之揭示內容,在該項技術內輕易決定輸入埠及輸出埠之最佳定位,以提供多程單元組件之特定實施方式的適當排列。
取決於流動穿過多程單元組件之光學反射腔室的流體流之特定特性及組成,多程單元組件可由任何適宜構建材料製成,且可例如包含金屬、陶瓷、合金、聚合物或複合材料,因為需要多程單元組件之構建材料對於流體流不反應。在一些應用中,可需要由具有高熱容量的材料製造多程單元組件或子組件,以便促進單元
組件之操作中的等溫性。特定構建材料之選擇可基於材料之熱、物理、化學及/或光學特性,以實現多程單元組件之所欲效能行為。在各種實施例中,由鋁複合材料製造弓形環繞構件,以促進使用中的單元組件之等溫操作。
在一特定實施例中,多程單元組件之弓形環繞構件可包含模製或微機製構件或3D列印構件,以促進單元組件之經濟製造。更概括而言,可採用任何適宜製造方法。
本揭示內容之多程單元組件之反射表面組件的鏡面可具有在特定氣體監控應用中適用於此組件之功能及操作的任何適宜類型。在一些實施例中,多程單元組件之反射表面包含沿弓形環繞構件之弓形延伸範圍的複數個鏡面,其中每個鏡面包含石英鏡面基板,在石英鏡面基板上例如藉由氣相沉積技術沉積金塗層反射表面。
多程單元組件之光輸入結構可包含組件之弓形環繞構件中的光輸入埠,且可在此光輸入埠中安置光源或將光源光學耦接至此光輸入埠。光源可具有任何適宜特性,且在特定實施方式中可包含紅外光源、UV光源、可見光源或特定所欲光譜特性之其他光源。光源較佳地提供準直光至光學反射腔室。
光輸出結構同樣可包含光輸出埠及弓形環繞構件,且可在光輸出埠中安置光偵測器或將光偵測器光學耦接至光輸出埠。
在各種特定實施例中,多程子組件可進一步包含蓋及底板構件,此等構件與弓形環繞數目協調嚙合以圍束多程光學反射腔室。底板構件可與弓形環繞構件一起整體形成,或替代地可將底板構件最初形成為例如藉由凸起、焊接、黏接、機械緊固或其他適宜技術緊固至弓形環繞構件的獨立構件。可以任何適宜方式同樣將蓋構件與弓形環繞構件協調嚙合,且蓋構件可採取經機械緊固至弓形環繞構件的可拆卸蓋形式。
在一特定排列中,包括蓋及底板構件的單元組件可進一步包括安裝在蓋構件上且光學耦接光輸入結構的光源,及安裝在蓋構件上且光學耦接至光輸出結構的光偵測器。此排列容許對光源及光偵測器子組件的就緒接近以便維護、替換等。
在一特定實施方式中,光源可包含紅外光源,且對應光偵測器可包含紅外光偵測器(例如,多通道紅外光偵測器)。(源可為寬頻帶或能量之特定頻帶)。此紅外光偵測器可包含適宜過濾器及感測與訊號處理部件,以與穿過單元組件的流體流之通道連接來輸出一或多個適宜訊號以便特徵化或分析流體流或組分。
在各種實施方式中,多程單元組件可包括多程光學反射腔室,腔室經配置以提供特定所欲尺寸範圍之光路徑長度,例如,自0.5至10公尺範圍內的光路徑長度,或自0.5至5公尺範圍內的光路徑長度,或其他尺寸特性的光路徑長度。
在多程光學反射腔室中,可定向引入輸入光,且可將多程光定向傳遞出光學反射腔室,使得腔室中的光之反射傳遞具有特定數值特性。光傳遞有利地為非直徑,亦即在圓形光學反射腔室中並非自光學反射腔室之光輸入埠至光輸出埠的直線直徑的直接線性,以便實現光學反射腔室之多程橫跨,其中光路徑區段具有弦特性,使得光在適宜數目之總逐次反射的逐次傳遞中入射弓形環繞構件之反射表面。
因此,在各種實施例中,弓形環繞構件可包含圓柱形構件,且光輸入結構及光輸出結構可經配置以在光學反射腔室中產生光之多程光學反射,其中光之多程光學反射包含光學反射腔室中的自10至50次非直徑弦光反射。
在其他實施例中,可配置多程單元組件使得光之多程光學反射包含光學反射腔室中的自15至40次非直徑弦光反射。在又其他實施例中,可配置多程單元組件使得光之多程光學反射包含光學反射腔室中的自18至30次非直徑弦光反射。可藉由多程單元組件之適當配置採用任何其他數目之反射。
在另一態樣中,本揭示內容係關於一種用於流體監控的多程單元組件,該多程單元組件包含:圓柱形壁構件,環繞及界定多程光學反射腔室,該圓柱形壁構件內包含周向地間隔分離的開口;
周向地間隔分離的開口中的鏡面,該等鏡面面向內且經配置以在多程光學反射腔室中產生光之多程光學反射;光輸入結構,經配置以將來自光源的光導向至鏡面之一或更多者之反射表面上,使得在光學反射腔室中產生光之該多程光學反射;光輸出結構,經配置以將多程光導出光學反射腔室以便偵測及處理;底板及覆蓋構件,與圓柱形壁構件協調嚙合以圍束多程光學反射腔室;流體入口,經配置以將流體引入至多程光學反射腔室,使得流體與腔室內的多程光相互作用,該流體入口包含底板構件中的至少一個流體入口埠;流體出口,經配置以在流體與腔室內的多程光相互作用後將流體排放出多程光學反射腔室,該流體出口包含底板構件中的至少一個流體出口埠;光源,經安裝在覆蓋構件上且光學耦接至光輸入結構;以及光偵測器,經安裝在蓋構件上且光學耦接光輸出結構。
將自前文瞭解到,本揭示內容之多程單元組件可在結構與操作上廣泛變化以實現有效率的多程光學反射用於輸入輻射與光學反射腔室中所關注流體的延伸路徑長度相互作用。
在另一態樣中,本揭示內容係關於一種流體處理系統,該流體處理系統包含:製程工具,使用或產生流體流;以及如本文多方面描述之用於流體監控的多程單元組件,多程單元組件經配置用於使流體流穿過多程光學反射腔室自流體入口至流體出口流動以便在多程光學反射腔室中與多程光相互作用。
此流體處理系統中的製程工具可具有任何適宜類型,如所採用以便使用或產生藉由多程單元組件監控的流體流。
在一個特定實施方式中,製程工具包含半導體製造工具,例如,氣相沉積工具,氣相沉積工具經配置以在半導體基板上自相應金屬前驅物(例如,鎢前驅物)沉積金屬(例如,鎢)及產生流體流,流體流包含自氣相沉積操作所得的未反應前驅物(例如,未反應鎢前驅物)或未反應鎢前驅物及鎢前驅物之氣相沉積副產物。出於此目的之金屬前驅物可具有任何適宜類型,且在各種特定實施例中可包含金屬羰基前驅物化合物(例如,鎢羰基前驅物化合物)。
本揭示內容之另一態樣係關於一種監控流體流的方法,該方法包含:使流體流流動穿過本揭示內容之多程單元組件,如本文多方面描述,以產生多程光輸出;及處理多程光輸出以特徵化或分析流體流。
此方法中所採用的光可具有任何適宜類型,且在特定實施例中可包含紫外光、可見光、紅外光或所欲光譜特性之其他光,包括前述光譜之組合。用以特徵化或分析流體流之多程光輸出之處理可涉及對於此目的有效的任何適宜操作。
舉例而言,處理可包含過濾光及使所得過濾光入射在熱電堆偵測元件上,以分析流體流之化學組成。流體流可包含經引入至半導體製造操作中的反應物,或自半導體製造操作的流出物,半導體製造操作例如氣相沉積,氣相沉積包含半導體基板上的薄膜沉積以在半導體基板上自鎢羰基前驅物之前驅物蒸氣沉積鎢金屬及氮化鎢之至少一者。舉例而言,可利用對傳遞至氣相沉積腔室的前驅物之化學濃縮及/或組成之分析或對排放出腔室的製程流出物之分析而實施方法,以便控制半導體製造操作之一或更多個製程條件及/或決定半導體製造操作終止的終點。
將自前文認識到,可以各種方式構成並實施本揭示內容之多程單元組件,以實現對應的各種流體流之監控。流體可包含氣體,此術語經寬泛解讀而包括蒸氣。或者,流體可包含液體或氣體/液體或蒸氣/液體多相流體。另外,流體可包含懸浮或挾帶的固體(例如,流體流中的顆粒污染物或組分),如自上游流體處理操作中的流體之化學反應或分解所得。
參看此處第1圖至第17圖之圖式,進一步說明本揭示內容之優勢及特徵。
現參看諸圖,第1圖係在一個實施例中的本揭示內容之多程單元組件100之簡化示意性俯視平面圖。
如圖所示,多程單元組件100包括主體317及弓形環繞構件200,弓形環繞構件可與主體整體形成或替代地單獨形成並緊固至主體。此實施例中的弓形環繞構件具有圓柱形狀,包含圓柱形狀之支撐壁構件210,支撐壁構件界定由弓形環繞構件200環繞之多程光學反射腔室318。此實施例中的弓形環繞構件具有圓柱形特性,但應瞭解,在其他實施例中,可採用延伸小於圍繞光學反射腔室之完整圓周延伸範圍的弓形環繞構件。
如圖所示之弓形環繞構件在支撐壁構件210上具有鏡面層300,以提供沿環繞構件200之弓形延伸範圍的面向內反射表面319。光學反射腔室具有直徑314,直徑可具有任何適宜尺寸特性,適合於正由多程單元組件實施的特定光電監控操作。
第1圖之多程單元組件包括光輸入結構214,光輸入結構包含光輸入埠220,光輸入埠可經配置用於將以輸入光角度315引入之輸入光束輸入至光學反射腔室。如圖所示,輸入光束332自光輸入埠220傳遞至面向內反射表面319,且隨後繼續反射以提供多程
(反射)光束336。以此方式,將多程光輸出為穿過包含光輸出埠222之光輸出結構216的輸出光束330。可配置輸出光結構使得以由光輸出結構之配置所決定的輸出光角度316將光之輸出傳遞出光學反射腔室。
因此,弓形環繞構件200界定多程光學反射腔室318,且弓形環繞構件包含沿弓形延伸範圍的面向內反射表面319,此反射表面產生入射光之多程光學反射。
光輸入結構214經配置以將自光源(第1圖未圖示)的光導向至弓形環繞構件之反射表面上,使得在光學反射腔室318中產生光之多程光學反射。光輸出結構經配置以將自弓形環繞構件200之反射表面的多程光導出光學反射腔室318以便偵測及處理(例如,藉由傳遞至光偵測器或其他光學處理部件(第1圖未圖示)來偵測及處理)。
第1圖之多程單元組件100另外具有適宜流體入口及出口結構(為了清晰,第1圖未圖示),此等結構分別用來將流體引入至多程光學反射腔室,使得流體與腔室內的多程光相互作用,且在流體與腔室內的多程光相互作用後將流體排放出多程光學反射腔室。此類流體入口及出口結構可具有任何適宜類型,且可處於光學反射腔室的蓋中,處於光學反射腔室的底板中,穿過弓形環繞構件中的埠,或經其他方式提供以使得能夠實行
流體進入及排出,以便流體與光學反射腔室中的光之相互作用。
多程單元組件之光學反射腔室中的多次反射之總體效果為延伸樣本路徑長度以實現增加的量測敏感性。可藉由相應增加或減小光學反射腔室之直徑314及/或藉由增加或減少由自單元組件之輸入角315及輸出角316所決定之內部反射數目來增加或減小路徑長度。
單元組件由此對氣體監控單元提供緊湊且具有成本效益的設計。在特定實施例中,由此設計提供之內部路徑長度可範圍自0.5m至10m。可採用此範圍以外的路徑長度,但在特定應用中可受限於尺寸及空間需求,且較短路徑長度可變得太小而無法容納取決於所關注特定光譜區的特定類型源及偵測器。較長路徑長度可需要實體上比特定應用中所欲的更大之單元尺寸及容量。基於本文之揭示內容,可藉由模型化或經驗性測試輕易決定適用於特定應用的範圍內的路徑長度。在各種實施例中,可採用0.5m至5m之路徑長度,以實現具有緊湊尺寸及內部樣本容量的適當敏感性。儘管在各種實施例中的樣本容量(亦即,光學反射腔室之容量)可處於自10mL至200mL範圍內,但在其他實施例中可有效採用小於或大於此範圍的樣本容量。
可自構成主體317的適宜材料塊體構造第1圖所示之單元組件,其中用圓形橫截面區段切割空腔以形成光學反射腔室318。塊體可由任何適宜構建材料形
成,此材料諸如金屬、陶瓷、聚合物、材料化合物等。在特定實施例中,可將限界此圓形橫截面區段光學反射腔室的壁表面研磨成鏡面品質修飾面以提供面向內反射表面319。可添加頂板及底板以提供藉由頂板及底板以及藉由具有鏡面層300的弓形環繞構件200限界的圓形橫截面區段空腔,所指示之鏡面層可為整體形成之壁構件210的層。亦可鏡面研磨頂板及底板以提供空腔,空腔充當光導管以及產生用以產生延伸光學路徑長度所必需的多次反射。
關於光輸入結構及光輸出結構之置放及定位,多程單元組件之各種配置皆為可能。
第2圖係根據另一實施例的本揭示內容之多程單元組件之簡化示意性俯視平面圖。相對於第1圖之相同部分及元件將第2圖多程單元組件之對應部分及元件之元件符號對應編號。第1圖多程單元組件分別包括輸入光結構214及輸出光結構216,此等光結構彼此周向地間隔分離(例如,60°-75°角)。相比之下,第2圖多程光組件中的輸入光結構214及輸出光結構216經定位非常接近於彼此,周向地間隔分離可為大約30°-45°的角。
第3圖係根據又一實施例的本揭示內容之多程單元組件之簡化示意性俯視平面圖,其中相對於第1圖多程單元組件之部分及元件,將部分及元件對應編號。在第3圖之多程單元組件中,光輸入結構及光輸出結
構同樣非常接近,其中光輸入結構214具有與光輸出結構216之光輸出通道相交的關聯光輸入通道。
第4圖係根據本揭示內容之又一實施例的多程單元排列之簡化示意性俯視平面圖,其中相對於第1圖之部分及元件,將部分及元件對應編號。在第4圖多程單元組件中,在光輸入結構214之光輸入埠220中安置光源元件340,且在光輸出結構216之光輸出埠222中安置光偵測器元件342。在此實施例之特定實施方式中,可產生20次多程反射以提供1m之路徑長度。
第5圖係根據本揭示內容之另一實施例的採用刻面反射表面之多程單元排列之簡化示意性俯視平面圖,其中對應於第1圖之部分及元件將對應部分及元件編號。在此實施例中,限界光學反射腔室318的面向內反射表面319由刻面壁表面構成,且採用光源340及光偵測器342。作為說明性範例,在一特定實施例中,可配置此系統以在光學反射腔室中提供21次反射,從而產生1.03m之對應路徑長度。
在第1圖至第5圖之前述實施例中,藉由用於輸入源輻射之角度控制自光學反射腔室之壁表面的反射數目。單元之總路徑長度由反射數目乘以內部空腔直徑決定,且設置內部空腔高度以與源輻射之尺寸及輻射束於離開單元之點處之幾何形狀可相容。在特定實施例中,光束幾何形狀可經調適以便與由包括聚焦透鏡的輔助光學件提供的特定類型儀器建立介面。
多程單元組件之總尺寸可廣泛變化。在一些實施例中,單元可經微機製以提供小型化或小尺度氣體取樣系統。在此情況中,將採用光源部件,從而產生微米或次微米尺寸之高準直、微橫截面光束。在各實施例中,多程單元組件可用於積體電路晶片上的光譜氣體量測系統或以其他方式用於小尺度或奈米尺度實施例。
第6圖係根據本揭示內容之又一實施例的多程單元組件之分解透視圖。在第6圖之多程單元組件中,將與第1圖至第5圖中說明性描述之部分及元件對應的部分及元件對應編號。
第6圖組件包含空腔主體317,此空腔主體特徵在於環繞光學反射腔室的電鍍鏡面表面319。亦由O形環密封元件721環繞腔室,以實現利用頂蓋402對光學反射空腔之防漏密封。在腔室之底部部分處提供類似O形環密封元件(第6圖中未圖示),用於利用底蓋404對光學反射空腔之防漏密封。
空腔主體317具有縱向延伸的機械扣件開口以容納將頂蓋402緊固在適當位置中的肩螺栓410、412及414以及將底蓋404緊固在適當位置中的肩螺栓416及418。塊體具有容納自輸入光源的光之輸入的入口埠220(第6圖未圖示),且塊體亦包括光輸出埠222以容納至光偵測器的光之輸出(第6圖未圖示)。
第6圖多程單元組件之頂蓋402具有研磨電鍍表面720,且底蓋404同樣具有研磨電鍍表面728,
以增強由頂蓋及底蓋限界的光學反射空腔及光學反射空腔之電鍍鏡面表面319之光學反射特性。
在第6圖組件中,在頂蓋中提供流體入口406及流體出口408,以提供用於在入口406中將流體引入至光學反射腔室以便與腔室內的光相互作用,且用於在流體與光學反射腔室中的多程光相互作用後在出口408中排放流體。
本揭示內容之多程單元組件可用於氣體及蒸氣以及其他流體之量測及/或特徵化,此等其他流體包括液體及液體/氣體及液體/蒸氣材料及固體/蒸氣材料。與流體相互作用的光之光譜區可處於任何適宜波長範圍內,或電磁輻射光譜中的特定波長。在特定應用中,用於流體之量測及/或特徵化的光可為紫外光、可見光、近紅外光、紅外光、中紅外光或其他特定光譜範圍或波長範圍,包括用於特定材料(例如,流體或流體組分)之偵測或特徵化的不同類型輻射之混合物。
對於本揭示內容之多程子組件所設想的應用具有廣泛變化類型。舉例而言,可採用此類型組件以便量測UV及可見光譜區中的低位準發色團,包括偵測及監控水樣本中的低濃度有機材料。可藉由短波近紅外量測且利用可例如約5cm至20cm或以上的路徑長度來監控液體組成。
組件之光學反射腔室可用於量測低位準螢光、磷光或化學發光,其中縱向激勵沿單元軸下行。在
液體應用中,可將光學反射腔室例如配置為研磨金屬壁空腔,此空腔用於所關注之流體不積垢、污染或侵蝕金屬材料的應用中。在使用與構建金屬材料具有潛在相互作用的流體的應用中,光學反射腔室可由聚合物、玻璃或石英材料形成,或可在單元之外壁上塗有反射表面材料,以在保護下層金屬免遭侵蝕的同時提供適宜反射率。
可將光學反射腔室配置為圓柱形腔室,或配置為管狀腔室,或可以適合於特定應用的其他方式配置腔室,從而容納腔室之多程操作以實現特定流體監控的延伸路徑長度。
因此,本揭示內容之多程單元組件可用於流體與光的相互作用,涉及吸收,以及用於其他形式光譜學。單元組件可使用由經研磨且大體垂直延伸表面及平坦研磨表面所密封的頂部及底部形成之空腔來形成全反射空腔。可經由垂直延伸表面中的圓形橫截面孔將光引入至空腔中,使得將光導向跨越空腔至相對表面上,其中具有入射角以使得光自壁以與入射光束角度不同的角度反射,從而起始自空腔之圍束垂直反射表面的多次反射之連續路徑,而光最終在垂直延伸表面中的第二孔離開空腔。在空腔內的多次反射期間,光/輻射與流體樣本相互作用,且有效路徑長度由空腔內的壁至壁反射總數目及逐次反射之間通過的距離決定,此距離又由空腔內的相對表面之間的距離及各別光/輻射輸入及輸出孔之入射角及出射角決定。
可以圓形橫截面腔室形式提供空腔,腔室構成由反射光/輻射的圓柱形環繞表面界定之內部反射區域。如上文所指示,空腔可由連續、平面反射表面圍束,反射表面諸如單元空腔之各別頂端及底端處的平板。
光源及光偵測器部件的各別孔可經機製或鑽入單元之壁中,以提供各別圓形橫截面區段開口來容納各別光源及偵測器裝置,或替代地可採用將光入口孔及出口孔與各別源及偵測器裝置光學耦接的鏡面、光纖陣列或其他部件。孔可具有適宜尺寸特性以界定輸入到光學反射空腔的光束或自光學反射空腔輸出的光束之最初直徑。取決於單元內的光束發散或會聚程度,光輸入及輸出光束之直徑可彼此相同或不同。
單元之標稱或平均路徑長度由相對於單元基座處於水平平面內的單元壁中的輸入孔與輸出孔之間的相對角及跨單元之圓柱形橫截面區段的直徑決定。使用空腔中的相對壁表面之平行性確保單元內的最佳反射幾何形狀。圍束單元之構件的頂部及底部之反射內表面幫助修正光束之垂直偏差並在單元中形成光管狀結構。
單元可具有用於單元中所監控之材料(例如,氣體、蒸氣、液體等)之輸入及輸出的兩個或更多個埠。可在頂板及/或底板(或側壁中)安置埠,作為可在單元之此類結構部件中機製的開口。可採用連續密封(諸如由具有適宜彈性體組成物之O形環提供)或其他形式機械密封以實現光學反射空腔之流體密封特性。舉
例而言,可在單元之主體部分中切割凹槽或凹部,以容納此類型之O形環,以便密封由此頂板及底板限界的空腔。可採用適宜特性之密封以支援單元中的流體之真空、大氣壓力或超大氣壓力。
光學反射空腔之環繞壁可包含界定空腔之圓形橫截面的機製或模製連續表面。或者,反射壁表面可經刻面、分段或以其他方式成形以提供適宜反射(/聚焦)表面用於空腔中的多程光傳輸。表面可經機製或以其他方式配置以提供反射光束之適宜程度的發散或會聚。可配置光輸入結構使得入射光照射環繞壁之相對刻面區域之中心,使得光束自多刻面壁之刻面至刻面多次內反射,直至光束如來自刻面表面的反射般穿過輸出結構之出口孔離開。
光輸入結構可經配置以提供準直輻射束至光學反射空腔,其中取決於內部反射壁表面之幾何形狀,出射光束在特性上為準直或接近準直。單元可與任何適宜偵測/分析儀器(例如,光度計、分光光度計、分光計及其他光學分析器)一起使用。若需要或希望,可利用適宜成像光學件處理離開光學反射空腔的多程光束以便傳輸至儀器之偵測器系統或光度計或光譜儀等效物。
可將適宜源及偵測器裝置緊密耦接至多程單元,無需任何外部聚焦光學件,以構成完全整體的流體監控系統。可鄰近於光/輻射輸入孔或在孔內部提供源裝置。以相同方式,可鄰近於光/輻射輸出孔或在孔內部提
供光/輻射偵測器。各別光/輻射輸入及輸出孔可具有窗口以提供對光學反射空腔的適當密封。出於此目的的窗口可由適宜材料構建,此材料為剛性,對所監控樣本及周圍操作環境為惰性,且在所關注光譜區內為透明。可在窗口之任一面或兩面上採用塗層以增強化學惰性及/或減少任一光學表面處的反射損失。可藉由機械密封元件(例如,O形環或等效物),藉由密封劑、黏著劑黏接介質、焊接或其他黏接或緊固技術及材料將窗口保持在適當位置中。
取決於監控應用之物理及化學要求、流體介質之化學反應性、調節要求、操作環境、成本考慮等,單元可由任何適宜構建材料製成。舉例而言,單元可由滿足化學惰性之可應用標準所需之金屬(諸如鋁、不銹鋼或特種合金)製成。可藉由適宜研磨及/或切割程序(諸如金剛石車削)提供內部空腔之光學表面。可藉由反射材料(諸如金、鎳、介電材料等)之沉積增強切割/研磨表面之反射率。
亦可藉由鑄造或模製技術以及光學表面之後續研磨由金屬或其他構建適宜材料形成單元。設想諸如陶瓷、工程聚合物或其他聚合物或樹脂(熱塑性、熱固性或催化固化)之構建材料,視情況藉由反射金屬或介電材料之沉積而增強光學表面之反射率。可在藉由模製、鑄造或其他技術的區段中形成單元空腔壁,以用於複合壁結構之後續組裝,此壁結構可經刻面或以其他方
式成形或形成輪廓以獲得單元使用中的適宜反射特性。可利用適宜黏著或密封劑材料之黏接組裝此複合壁結構中的壁區段。
單元可由導熱材料製成且併入有熱傳遞組分或能力,使得在特定溫度下實施光/輻射與單元中的流體之相互作用。出於此目的,可製造單元使得確保等溫操作,其中光學反射腔室內所有點處的空腔溫度近似均衡。出於此目的,可在空腔壁及/或蓋構件中提供加熱器元件或熱傳遞通道。
第7圖係根據本揭示內容之另一實施例的多程單元子組件之示意性透視圖。如圖所示,此單元子組件包括底板安裝凸緣420,自底板安裝凸緣向上延伸呈圓柱形壁形式的弓形環繞構件200,圓柱形壁內配置有光輸入埠220。
圓柱形壁內包括沿壁之圓周延伸範圍的一系列接收開口422,處於上端與下端中間,此等開口包括光輸入埠及光輸出埠開口。在接收開口中,除了光輸入埠及光輸出埠的開口以外,安置鏡面424用於產生入射輻射之反射傳遞。在圓柱形壁之上部末端處提供O形環接收凹槽426,從而在凹槽內容納O形環之插入以便用於光學反射腔室之密封。
第8圖係包括第7圖之子組件的多程單元組件之示意性透視圖。多程單元組件100包括光輸入結構
214及關聯光源106,以及光偵測器108。單元組件包含外殼102及蓋構件104。
第9圖係第7圖之多程單元子組件之仰視透視圖,圖示底板安裝凸緣420、接收開口422及鏡面424。
第10圖係第9圖之多程單元子組件之示意性正視圖。如圖所示,相對於光輸入結構排列光源106,以將輸入光束引入至光學反射腔室中。圖示單元子組件之接收開口422以及光輸出結構216,光輸出結構自光學反射腔室接收輸出光束且將此光束導向至組件之偵測器。
第11圖係多程單元組件之俯視透視圖,圖示內部的流體入口結構之細節。如圖所示,弓形環繞構件200環繞單元組件外殼102中的光學反射腔室318,且提供流體入口(/出口)埠110用於將流體引入至光學反射腔室中以便從中流過。
第12圖係根據本揭示內容之一個實施例的多程單元組件之俯視透視圖,特徵在於單元組件包括蓋上安裝的IR源及蓋上安裝的IR偵測器。
第12圖所示之單元組件蓋構件104上已安裝有光源106及光偵測器108,在光源與光偵測器之間具有電子設備模組112,以便實施監控操作並產生監控輸出訊號。
第13圖係第12圖之多程單元組件之正視圖。如圖所示,單元組件外殼102嚙合單元組件蓋構件104,且蓋構件104上已安裝有光源106、光偵測器108及關聯電子設備模組112。
第14圖係第12圖及第13圖中所示類型之多程單元組件之透視圖,進一步包括氣體流動管路系統,管路系統包括耦接至多程單元的氣體入口及出口管線。氣體流動管路系統包括氣體入口管線114,作為歧管用於穿過單元組件外殼102內的光學反射腔室之底板且經由腔室之底板中的間隔分離流體入口埠的流體之引入。提供氣體出口管線116用於在流體與腔室內的多程光相互作用後自光學反射腔室排放流體。
第15圖係第14圖之多程單元組件100之透視圖,圖示具有質量流量控制器120,以指示多程單元組件之相對尺寸大小特性。
第16圖係監控蒸氣流的多程單元組件隨時間變化之輸出資料之曲線圖,蒸氣流包括來自供應鎢羰基前驅物蒸氣的氣化器的蒸氣以及氮載氣,此表示用於在氣相沉積操作中的半導體基板之鎢金屬化之蒸氣流。
在脈衝流動格式、55℃溫度及40托壓力下操作用於產生第16圖之資料的氣化器,以便在組合氬/氮載氣流中輸送鎢羰基前驅物蒸氣,其中氬載氣流動速率為500sccm而氮載氣流動速率為50sccm。使包括載氣及鎢羰基前驅物蒸氣的合併蒸氣流動至根據本揭示內
容的多程單元組件,其中多程單元組件包括4通道紅外偵測器。對單元組件之光學反射腔室輸入的輻射為紅外輻射。
四通道偵測器之第一通道監控一氧化碳(CO),由藍線指示,第二通道監控二氧化碳(CO2),由紫紅線指示,第三通道監控鎢羰基前驅物,由綠線指示,且第四通道為參考通道,由紅線指示。
第16圖曲線圖之資料指示,多程單元組件在特徵化關於CO、CO2及鎢羰基化合物的氣流之組成方面及在展示提供鎢羰基前驅物蒸氣的氣化器之效能品質方面非常有效。
第17圖係使用本揭示內容之多程單元組件的半導體製造製程系統之示意性表示,此系統與控制系統連接以便回應於多程單元組件感測來調變系統操作。
在氣相沉積工具124之下游安置多程單元組件100(或可替代地在上游安置多程單元組件),氣相沉積工具可例如包含半導體製造設施中所提供之化學氣相沉積製程腔室。
此製程系統中的氣相沉積工具124經排列以接收來自前驅物源容器126的前驅物蒸氣及來自載氣源容器128的載氣。組合各別前驅物及載氣流以形成前驅物氣體混合物,使前驅物氣體混合物在前驅物氣體混合物饋送管線130中流動至氣相沉積工具。氣相沉積工具124中實施的氣相沉積製程產生流出物,將流出物在流
出物排放管線134中從工具中排出並傳遞至多程單元組件100。在多程單元組件中監控流出氣體並將流出氣體排放出此類組件作為通風管線136中的最終流出物。
多程單元組件100監控流出氣體並產生相應輸出,在輸出訊號傳輸線138中將輸出傳輸至中央處理單元(central processor unit;CPU)132。CPU 132可經程式化排列以處理自輸出訊號傳輸線138的輸出訊號,且回應性產生相關控制訊號,在控制訊號傳輸線140及控制訊號傳輸線142中輸出此等控制訊號。在此排列中,採用線140中的控制訊號來調變氣相沉積工具124之操作,且採用線142中的控制訊號來調變自各別前驅物容器126及載氣容器128的前驅物及載氣之供應。
藉由此排列,氣相沉積工具124中或與氣相沉積工具關聯的製程條件可經可控調節以最大化工具中正經金屬化之基板上的鎢沉積,同時避免前驅物蒸氣之不良副反應,此等副反應原本可產生非所欲位準之固體顆粒或其他污染物。訊號傳輸線142中的控制訊號可相應用於調節管線130中流動至工具的前驅物氣體混合物中的前驅物濃度(例如,藉由調變與容器126及128關聯的流量控制閥來調節),從而實現前驅物氣體混合物中的前驅物之所欲濃度。
除出於製程控制目的之使用以外,亦可採用多程單元組件來偵測製程操作之終點或含有前驅物及載
氣的供應容器之接近耗盡條件,並相應終止製程操作。用於此目的之CPU 132可包含任何適宜處理器部件及配置,且可例如包含經程式化以使用多程單元組件監控及控制製程系統的專用電腦。或者,CPU可包含微處理器、可程式化邏輯控制器或其他控制器部件。
將自前文瞭解到,本揭示內容之多程單元組件可有效用於各種流體監控操作及應用,以實現流體及含流體材料之基於延伸路徑長度輻射的監控,且可根據諸如半導體製造之應用中之需要,以極為緊湊形式按本文所描述之結構排列佈署多程單元組件,半導體製造中需要最小化製程部件之佔據面積及體積。亦將自前文論述顯而易見的是,本揭示內容之多程單元組件具有相對簡單形式,且符合具有成本效益的製造、組裝、安裝及操作。
本揭示內容之多程單元組件可有利用於各實施例中以監控在製程系統中供應至氣體使用設備的製程流之選定氣體組分。一範例為使用此多程單元組件監控六羰基化鎢W(CO)6,在製程氣流中將W(CO)6供應至製造製程系統中的氣相沉積工具以便在基板上沉積鎢。舉例而言,此應用中的氣相沉積工具可包含化學氣相沉積(chemical vapor deposition;CVD)製程工具或原子層沉積(atomic layer deposition;ALD)製程工具。包括本揭示內容之多程單元組件的製造製程系統
可用於半導體產品、平板顯示器、太陽電池板或其他產品之生產。
在此類應用中,可採用包括界定多程光學反射腔室之弓形環繞構件的多程單元組件以相對於對應線性監控單元組件改良監控訊號之訊雜比特性,使得儘管圓形幾何形狀與線性單元組件相比提供了增加的光學表面,但並未明顯減弱總體訊號強度。
在另一實施例中,可在第18圖所示之外殼內配置本揭示內容之多程單元組件,藉由電纜將多程單元組件耦接至適宜電能源,且利用USB線纜附接至單元以便將監控訊號資料傳輸至關聯處理器,此處理器可包含微處理器、可程式化邏輯裝置、專用可程式化電腦或類似者,處理器經配置以處理監控訊號資料並提供相應輸出,例如出於監控並控制供應所監控氣體使用的氣體供應設備目的所使用的輸出。舉例而言,氣體供應設備可包含前驅物蒸氣,前驅物蒸氣藉由加熱含有固體前驅物的相應氣化器容器產生,使得固體前驅物揮發以形成相應前驅物蒸氣以便輸送至下游製程工具。此情形中的多程單元組件可配備有加熱器夾套,以防止前驅物蒸氣或蒸氣組分之濃縮或凝結,使得以有效方式實施監控操作。
第18圖所示類型之多程單元組件可配置有適宜光束源,諸如紅外源,紅外源以適當頻率脈衝輸送及以其他方式構成以在操作中提供適當訊雜比。在一特定實施例中,脈衝輸送頻率為10Hz。多程單元組件經
構造及排列以減小熱漂移並最小化外來雜訊,且提供適宜快速回應時間,具有低熱漂移、小佔據面積及模組設計。
第19圖及第20圖係根據本揭示內容之一個實施例的多程單元組件之3D列印鋁複合物部件之透視圖,此部件使用金塗覆鏡面且經配置使得在組裝後無需光學對準。
第21圖係可用於結合第18圖至第20圖描述之多程單元組件中的紅外源之正視圖。如所指示,紅外源可以適宜頻率(例如,10Hz)脈衝輸送,具有緊湊設計,且展示出低功率消耗。
第22圖係可用於結合第18圖至第20圖描述之多程單元組件中的4通道偵測器之正視圖。如圖所示,可以緊湊「四」板配置提供偵測器,此配置經構造以展示出適當低溫敏感性及雜訊敏感性特點。
第23圖係上文所描述之多程單元組件之仰視平面圖,其中圖示至單元的氣體連接,此等氣體連接用於將氣體輸送至單元中以便監控操作且將所監控氣體排放出單元。第24圖係具有附接氣體流動管線的此等氣體連接之透視圖。
第25圖係監控蒸氣流的線性單元組件隨時間變化之輸出資料之曲線圖,蒸氣流包括來自供應鎢羰基前驅物蒸氣的氣化器的蒸氣以及氮載氣,此表示用於在氣相沉積操作中的半導體基板之鎢金屬化之蒸氣流。
對於55℃溫度及40托壓力下的氣流產生第25圖之監控資料,氣流在組合氬/氮載氣流中包含鎢羰基前驅物蒸氣,其中氬載氣流動速率為500sccm而氮載氣流動速率為50sccm。使包括載氣及鎢羰基前驅物蒸氣的合併蒸氣流動至線性單元組件,且組件包括4通道紅外偵測器。對線性單元組件輸入的輻射為紅外輻射。
四通道偵測器之第一通道監控一氧化碳(CO),由藍線指示,第二通道監控二氧化碳(CO2),由紫紅線指示,第三通道監控鎢羰基前驅物,由綠線指示,且第四通道為參考通道,由紅線指示。
第26圖係本揭示內容之多程單元組件隨時間變化之輸出資料之曲線圖,多程單元組件監控蒸氣流,蒸氣流包括來自供應鎢羰基前驅物的氣化器的蒸氣及氮載氣,此表示在對應於產生第25圖之曲線圖中的資料所用之操作條件下用於在氣相沉積操作中的半導體基板之鎢金屬化之蒸氣流。
因此,對於55℃溫度及40托壓力下的氣流亦產生第26圖之監控資料,氣流在組合氬/氮載氣流中包含鎢羰基前驅物蒸氣,其中氬載氣流動速率為500sccm而氮載氣流動速率為50sccm。使包括載氣及鎢羰基前驅物蒸氣的合併蒸氣流動至本揭示內容之多程單元組件,且組件包括4通道紅外偵測器。對多程單元組件輸入的輻射為紅外輻射。
與多程單元組件關聯的四通道偵測器之第一通道監控一氧化碳(CO),由藍線指示,第二通道監控二氧化碳(CO2),由紫紅線指示,第三通道監控鎢羰基前驅物,由綠線指示,且第四通道為參考通道,由紅線指示。
第25圖曲線圖中的線性單元組件之資料與第26圖曲線圖中的本揭示內容之多程單元組件之資料的比較指示,多程單元組件在監控關於CO、CO2及鎢羰基化合物的氣流之組成方面非常有效。在多程單元組件中記錄無體積滯留或濃縮。
第27圖係1m線性單元組件隨時間變化之輸出資料(2次脈衝)之曲線圖,線性單元組件監控55℃溫度及40托壓力下的氣流,氣流包含氣體流動速率為500sccm的氬氣。監控系統包含線性單元組件,線性單元組件包括4通道紅外偵測器。對線性單元組件輸入的輻射為紅外輻射。對於1m線性單元的脈衝操作包括5秒持續時間之脈衝「開啟」及10秒「關閉」持續時間,其中在4Hz速率下進行資料收集。
第28圖係本揭示內容之多程單元組件隨時間變化之輸出資料(2次脈衝)之對應曲線圖,多程單元組件監控55℃溫度及40托壓力下的氣流,氣流包含流動速率為500sccm的氬載氣。監控系統包含多程單元組件,多程單元組件包括4通道紅外偵測器。對多程單元組件輸入的輻射為紅外輻射。對於多程單元的脈衝操作包
括5秒持續時間之脈衝「開啟」及10秒「關閉」持續時間,其中在10Hz速率下進行資料收集。第27圖與第28圖的比較展示出本揭示內容之多程單元組件提供與線性監控單元組件相比更快的總體回應,更多的資訊及可見的脈衝波形。
第29圖係本揭示內容之多程單元組件隨時間變化之輸出資料(22次脈衝)之曲線圖,多程單元組件監控55℃溫度及40托壓力下的氣流,氣流包含流動速率為500sccm的氬載氣。對於多程單元的脈衝操作包括5秒持續時間之脈衝「開啟」及10秒「關閉」持續時間,其中在10Hz速率下進行資料收集。
第30圖係本揭示內容之多程單元組件以濃度階梯量測形式的隨時間變化之鎢羰基前驅物蒸氣的輸出資料之曲線圖。鎢羰基前驅物流處於55℃溫度及40托壓力下,其中載氮氣流動速率為50sccm。隨時間推移,多程單元組件之效能相同,重複6次。
總體上,本揭示內容之多程單元組件展示出根據線性單元組件的一般效能趨勢,並表明就對於溫度波動的改良行為、對於電子雜訊的改良行為及更快訊號回應時間而言優於線性單元組件的優勢,且觀察到無滯留。
儘管本文已參考特定態樣、特徵及說明性實施例闡述了本揭示內容,但應瞭解,本揭示內容之實用性並不因此受限,而是延伸及包含基於本文描述對本揭
示內容領域中的一般技藝人士將認識到之眾多其他變化、修改及替代實施例。相應地,意欲廣泛分析及解讀下文所主張之揭示內容,因為本揭示內容包括該揭示內容之精神及範疇內的所有此等變化、修改及替代實施例。
100‧‧‧多程單元組件
200‧‧‧弓形環繞構件
210‧‧‧支撐壁構件
214‧‧‧光輸入結構
216‧‧‧輸出光結構
220‧‧‧光輸入埠
222‧‧‧光輸出埠
300‧‧‧鏡面層
314‧‧‧直徑
315‧‧‧輸入光角度
316‧‧‧輸出光角度
317‧‧‧主體
318‧‧‧多程光學反射腔室
319‧‧‧面向內反射表面
330‧‧‧輸出光束
332‧‧‧輸入光束
336‧‧‧多程(反射)光束
Claims (50)
- 一種用於流體監控的多程單元組件,該多程單元組件包含:一弓形環繞構件,界定一多程光學反射腔室,該弓形環繞構件包含沿一弓形延伸範圍的面向內反射表面,該面向內反射表面產生入射光之多程光學反射;一光輸入結構,經配置以將來自一光源的光導向至該弓形環繞構件之該反射表面上,使得在該光學反射腔室中產生光之該多程光學反射;一光輸出結構,經配置以將自該弓形環繞構件之該反射表面的多程光導出該光學反射腔室以便偵測及處理;一流體入口,經配置以將流體引入至該多程光學反射腔室,使得該流體與該腔室內的多程光相互作用;以及一流體出口,經配置以在該流體與該腔室內的多程光相互作用後將流體排放出該多程光學反射腔室。
- 如請求項1所述之多程單元組件,其中該反射表面包含沿該弓形環繞構件之該弓形延伸範圍的複數個鏡面。
- 如請求項2所述之多程單元組件,其中該弓形環繞構件包含一弓形環繞支撐件,該弓形環繞支撐 件內包含接收開口,在該等接收開口中安裝該複數個鏡面之各別者。
- 如請求項3所述之多程單元組件,其中該等鏡面包含拋物線形鏡面。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含一圓柱形壁構件。
- 如請求項5所述之多程單元組件,其中該圓柱形壁構件包含一反射內壁表面,該反射內壁表面包含該面向內反射表面。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含一刻面或分段內表面,該內表面包含該面向內反射表面。
- 如請求項1所述之多程單元組件,進一步包含蓋及底板構件,該等構件與該弓形環繞構件協調嚙合以圍束該多程光學反射腔室。
- 如請求項8所述之多程單元組件,其中該等蓋及底板構件包含內部光反射表面。
- 如請求項8所述之多程單元組件,其中該流體入口包含該底板構件中的至少一個流體入口埠。
- 如請求項8所述之多程單元組件,其中該流體入口包含該底板構件中的兩個流體入口埠。
- 如請求項10所述之多程單元組件,其中 該流體出口包含該底板構件中的至少一個流體出口埠,該流體出口埠與該流體入口橫向間隔分離。
- 如請求項1所述之多程單元組件,其中該光輸入結構包含一光輸入埠,且其中該光輸出結構包含一光輸出埠。
- 如請求項13所述之多程單元組件,其中該光輸入埠及該光輸出埠界定兩者之間自30°至90°之一範圍內的一夾角。
- 如請求項13所述之多程單元組件,其中該光輸入埠及該光輸出埠界定兩者之間自35°至75°之一範圍內的一夾角。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含一微機製構件或一3D列印構件。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含鋁複合材料。
- 如請求項1所述之多程單元組件,其中該反射表面包含沿該弓形環繞構件之該弓形延伸範圍的複數個鏡面,其中每個鏡面在一石英鏡面基板上包含一金塗層。
- 如請求項1所述之多程單元組件,其中該光輸入結構包含該弓形環繞構件中的一光輸入埠。
- 如請求項19所述之多程單元組件,進一 步包含一光源,該光源經安置在該光輸入埠中或光學耦接至該光輸入埠。
- 如請求項1所述之多程單元組件,其中該光輸出結構包含該弓形環繞構件中的一光輸出埠。
- 如請求項21所述之多程子組件,進一步包含一光偵測器,該光偵測器經安置在該光輸出埠中或光學耦接至該光輸出埠。
- 如請求項1所述之多程單元組件,進一步包含蓋及底板構件,該等構件與該弓形環繞構件協調嚙合以圍束該多程光學反射腔室,進一步包含一光源,該光源經安裝在該蓋構件上且光學耦接至該光輸入結構,且進一步包含一光偵測器,該光偵測器經安裝在該蓋構件上且光學耦接至該光輸出結構。
- 如請求項23所述之多程單元組件,其中該光源包含一紅外光源,且該光偵測器包含一紅外光偵測器。
- 如請求項24所述之多程單元組件,其中該紅外光偵測器包含一多通道紅外光偵測器。
- 如請求項1所述之多程單元組件,其中該多程光學反射腔室經配置以提供自0.5至10公尺之一範圍內的一光路徑長度。
- 如請求項1所述之多程單元組件,其中該 多程光學反射腔室經配置以提供自0.5至5公尺之一範圍內的一光路徑長度。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含一圓柱形構件,且該光輸入結構及光輸出結構經配置以在該光學反射腔室中產生光之該多程光學反射,其中光之該多程光學反射包含該光學反射腔室中的自10至50次非直徑弦光反射。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含一圓柱形構件,且該光輸入結構及光輸出結構經配置以在該光學反射腔室中產生光之該多程光學反射,其中光之該多程光學反射包含該光學反射腔室中的自15至40次非直徑弦光反射。
- 如請求項1所述之多程單元組件,其中該弓形環繞構件包含一圓柱形構件,且該光輸入結構及光輸出結構經配置以在該光學反射腔室中產生光之該多程光學反射,其中光之該多程光學反射包含該光學反射腔室中的自18至30次非直徑弦光反射。
- 一種用於流體監控的多程單元組件,該多程單元組件包含:一圓柱形壁構件,環繞及界定一多程光學反射腔室,該圓柱形壁構件內包含周向地間隔分離的開口;該等周向地間隔分離的開口中的鏡面,該等鏡面面 向內且經配置以在該多程光學反射腔室中產生光之多程光學反射;一光輸入結構,經配置以將來自一光源的光導向至該等鏡面之一或更多者之一反射表面上,使得在該光學反射腔室中產生光之該多程光學反射;一光輸出結構,經配置以將多程光導出該光學反射腔室以便偵測及處理;底板及蓋構件,與該圓柱形壁構件協調嚙合以圍束該多程光學反射腔室;一流體入口,經配置以將流體引入至該多程光學反射腔室,使得該流體與該腔室內的多程光相互作用,該流體入口包含該底板構件中的至少一個流體入口埠;一流體出口,經配置以在該流體與該腔室內的多程光相互作用後將流體排放出該多程光學反射腔室,該流體出口包含該底板構件中的至少一個流體出口埠;一光源,經安裝在該蓋構件上且光學耦接至該光輸入結構;以及一光偵測器,經安裝在該蓋構件上且光學耦接光輸出結構。
- 一種流體處理系統,該流體處理系統包含: 一製程工具,使用或產生一流體流;以及如請求項1至31中任一項所述之用於流體監控的一多程單元組件,該多程單元組件經配置用於使流體流穿過該多程光學反射腔室自該流體入口至該流體出口流動以便在該多程光學反射腔室中與多程光相互作用。
- 如請求項32所述之流體處理系統,其中該製程工具包含一半導體製造工具。
- 如請求項33所述之流體處理系統,其中該半導體製造工具包含一氣相沉積工具。
- 如請求項34所述之流體處理系統,其中該氣相沉積工具經配置以在一半導體基板上自一鎢前驅物沉積鎢,且產生包含未反應鎢前驅物的該流體流。
- 如請求項34所述之流體處理系統,其中該氣相沉積工具經配置以在一半導體基板上自一鎢前驅物沉積鎢,且產生包含未反應鎢前驅物及該鎢前驅物之氣相沉積副產物的該流體流。
- 如請求項35所述之流體處理系統,其中該鎢前驅物包含一金屬羰基前驅物化合物。
- 如請求項35所述之流體處理系統,其中該鎢前驅物包含一鎢羰基前驅物化合物。
- 一種監控一流體流的方法,該方法包含以下步驟:使該流體流流動穿過如請求項1至31中任一項所述之一多程單元組件以產生一多程光輸出;及偵測及處理該多程光輸出以特徵化或分析該流體流。
- 如請求項39所述之方法,其中該光包含紫外光。
- 如請求項39所述之方法,其中該光包含可見光。
- 如請求項39所述之方法,其中該光包含紅外光。
- 如請求項42所述之方法,其中該處理步驟包含以下步驟:過濾該光及使所得過濾光入射在熱電堆偵測元件上,以分析該流體流之化學組成。
- 如請求項42所述之方法,其中該處理步驟包含以下步驟:過濾該光及使所得過濾光入射在熱電偵測元件上,以分析該流體流之化學組成。
- 如請求項43所述之方法,其中該流體流包含經引入至一半導體製造操作中的反應物。
- 如請求項43所述之方法,其中該流體流包含自一半導體製造操作的流出物。
- 如請求項45或46所述之方法,其中該半導體製造操作包含氣相沉積。
- 如請求項47所述之方法,其中該氣相沉積包含一半導體基板上的薄膜沉積以在該半導體基板上自一鎢羰基前驅物之一前驅物蒸氣沉積鎢金屬及氮化鎢之至少一者。
- 如請求項48所述之方法,其中利用該流出物之化學組成之分析調變該半導體製造操作之一或更多個製程條件。
- 如請求項48所述之方法,其中利用該流出物之化學組成之分析決定該半導體製造操作終止的一終點。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562105178P | 2015-01-19 | 2015-01-19 | |
US62/105,178 | 2015-01-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201629658A true TW201629658A (zh) | 2016-08-16 |
TWI684082B TWI684082B (zh) | 2020-02-01 |
Family
ID=56417616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105101572A TWI684082B (zh) | 2015-01-19 | 2016-01-19 | 用於ir和uv監控的具有小容量且長路徑長度的多程氣體單元 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10451540B2 (zh) |
JP (1) | JP6450850B2 (zh) |
KR (1) | KR101975134B1 (zh) |
CN (2) | CN107250764A (zh) |
TW (1) | TWI684082B (zh) |
WO (1) | WO2016118431A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107250764A (zh) | 2015-01-19 | 2017-10-13 | 恩特格里斯公司 | 用于ir及uv监测的小体积长路径长度多程气体池 |
US10390319B2 (en) * | 2015-04-10 | 2019-08-20 | Kyocera Corporation | Device to-device synchronization signal (D2DSS) resource management |
JP6704920B2 (ja) * | 2015-10-14 | 2020-06-03 | アルプスアルパイン株式会社 | 流路構造体および測定対象液体の測定装置 |
FR3054882B1 (fr) * | 2016-08-04 | 2020-10-09 | Commissariat Energie Atomique | Cavite d'absorption avec guides d'onde d'entree et sortie pour un capteur biologique ou chimique |
KR102643353B1 (ko) * | 2016-12-06 | 2024-03-07 | 엘지전자 주식회사 | 가스 센서 |
CN106841126A (zh) * | 2017-01-09 | 2017-06-13 | 武汉理工大学 | 环形反射室气体浓度测量装置及测量方法 |
EP3396355A1 (en) | 2017-04-27 | 2018-10-31 | Pharmafluidics NV | Lateral detection of fluid properties |
KR102024097B1 (ko) * | 2017-10-31 | 2019-09-23 | 한국생산기술연구원 | 온도 조절부가 구비된 야외용 tdlas 멀티패스 셀 |
WO2019088479A1 (ko) | 2017-10-31 | 2019-05-09 | 한국생산기술연구원 | 야외용 tdlas 멀티패스 셀 |
JP7286271B2 (ja) | 2018-05-22 | 2023-06-05 | 株式会社堀場製作所 | 光学セル及びガス分析装置 |
KR102223821B1 (ko) * | 2019-02-25 | 2021-03-08 | 주식회사 템퍼스 | 다종 가스 측정 장치 |
US10948408B2 (en) * | 2019-06-25 | 2021-03-16 | Battelle Memorial Institute | Toroidal multipass absorption device |
CN110361329A (zh) * | 2019-07-29 | 2019-10-22 | 云南电网有限责任公司昭通供电局 | 一种能提高检测精度的sf6分解产物的检测系统 |
CN110596005A (zh) * | 2019-09-25 | 2019-12-20 | 安徽理工大学 | 一种新型环形平凹面镜光学多通吸收池 |
US12072281B2 (en) | 2019-10-23 | 2024-08-27 | Battelle Savannah River Alliance, Llc | Multipass optical spectroscopy cell having a single transmission path |
CN111077663A (zh) * | 2019-12-31 | 2020-04-28 | 西安鹏泰航空动力技术有限公司 | 一种精密光学反射腔装置 |
US11680897B2 (en) * | 2021-02-23 | 2023-06-20 | Joseph R. Demers | Multi-pass spectroscopy apparatus, associated sample holder and methods |
US11733156B2 (en) | 2021-02-23 | 2023-08-22 | Joseph R. Demers | Semiconductor package for free-space coupling of radiation and method |
CN113340837B (zh) * | 2021-06-03 | 2021-12-24 | 深圳市诺安传感技术有限公司 | 一种长光程微型红外气室及红外气体传感器 |
CN117940757A (zh) * | 2021-09-15 | 2024-04-26 | 赛默环境设备有限责任公司 | 气体分析仪 |
WO2023189627A1 (ja) * | 2022-03-30 | 2023-10-05 | 富士フイルム株式会社 | フローセル、および測定方法 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3815977A (en) * | 1971-07-14 | 1974-06-11 | V Vasiliev | Photo-detector |
US4322621A (en) * | 1980-05-05 | 1982-03-30 | Honeywell Inc. | Folded path absorption cell gas sensor |
US5220402A (en) * | 1989-06-21 | 1993-06-15 | Harvey C. Nienow | Multiple-path gas-absorption cell |
JPH04274737A (ja) * | 1991-02-28 | 1992-09-30 | Mitsubishi Electric Corp | 原子吸光分析装置 |
JPH0843305A (ja) * | 1994-07-29 | 1996-02-16 | Nippon Kagaku Kogyo Kk | 煙濃度測定装置 |
JP3228080B2 (ja) * | 1995-08-07 | 2001-11-12 | 富士電機株式会社 | 多重反射形試料セル |
US5818578A (en) | 1995-10-10 | 1998-10-06 | American Air Liquide Inc. | Polygonal planar multipass cell, system and apparatus including same, and method of use |
WO1997015817A1 (en) | 1995-10-20 | 1997-05-01 | Orbisphere Laboratories Neuchatel S.A. | Multipass cell and analysis method |
JP2000206035A (ja) | 1999-01-19 | 2000-07-28 | Anritsu Corp | ガス検出装置 |
GB2349207A (en) * | 1999-04-22 | 2000-10-25 | Shimadzu Research Lab | Measuring attenuation in the intensity of electromagnetic radiation |
AU2002306560A1 (en) | 2001-02-22 | 2002-09-12 | Ion Optics, Inc. | Multi-pass cell for absorption spectroscopy |
JP2003014637A (ja) | 2001-06-29 | 2003-01-15 | Ishikawajima Harima Heavy Ind Co Ltd | So3濃度計測装置 |
US6772072B2 (en) * | 2002-07-22 | 2004-08-03 | Applied Materials, Inc. | Method and apparatus for monitoring solid precursor delivery |
JP4095369B2 (ja) | 2002-08-02 | 2008-06-04 | 日本分光株式会社 | 光学装置、測定用セル及び光学遅延装置 |
JP2005147962A (ja) | 2003-11-18 | 2005-06-09 | Takao Tsuda | 光学式ガス濃度検出装置 |
WO2005057188A1 (en) | 2003-12-12 | 2005-06-23 | Elt Inc. | Gas sensor |
US20050221000A1 (en) | 2004-03-31 | 2005-10-06 | Tokyo Electron Limited | Method of forming a metal layer |
US7189431B2 (en) | 2004-09-30 | 2007-03-13 | Tokyo Electron Limited | Method for forming a passivated metal layer |
JP4214526B2 (ja) | 2004-12-01 | 2009-01-28 | 独立行政法人 宇宙航空研究開発機構 | ガス成分・濃度測定方法及び装置 |
US7215428B2 (en) * | 2005-04-08 | 2007-05-08 | Ion Optics, Inc. | Absorption spectroscopy apparatus and method |
US8208143B2 (en) * | 2005-04-28 | 2012-06-26 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas analyzer |
US7911671B2 (en) * | 2006-05-10 | 2011-03-22 | The Ohio State University | Apparatus and method for providing true time delay in optical signals using a Fourier cell |
JP4594277B2 (ja) * | 2006-05-31 | 2010-12-08 | トヨタ自動車株式会社 | 排ガス分析装置におけるセンサユニット |
US7777887B2 (en) * | 2007-04-13 | 2010-08-17 | Ion Optics, Inc. | Absorption spectroscopy apparatus and method |
CN100573105C (zh) | 2007-07-30 | 2009-12-23 | 天津大学 | 多成分气体在线检测方法及装置 |
KR20090086766A (ko) | 2008-02-11 | 2009-08-14 | 전자부품연구원 | 광학식 가스센서 |
US7876443B2 (en) * | 2008-09-29 | 2011-01-25 | Battelle Memorial Institute | Multipass optical device and process for gas and analyte determination |
US8119527B1 (en) | 2009-08-04 | 2012-02-21 | Novellus Systems, Inc. | Depositing tungsten into high aspect ratio features |
CN101872062B (zh) * | 2010-06-02 | 2012-07-25 | 清华大学 | 一种采用复用结构的反射池 |
US20120261578A1 (en) | 2010-06-15 | 2012-10-18 | California Institute Of Technology | Scanning laser infrared molecular spectrometer |
US8824042B2 (en) * | 2012-08-01 | 2014-09-02 | Kaiser Optical Systems | Ellipsoidal raman signal amplifier |
US9638624B2 (en) * | 2012-10-08 | 2017-05-02 | Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt | Method for reducing interference fringes in laser spectroscopy measurements using an absorption mask in combination with multi-pass optical cells |
US9052232B2 (en) * | 2012-12-19 | 2015-06-09 | Thermo Scientific Portable Analytical Instruments Inc. | Spheroid sample cell for spectrometer |
CN107250764A (zh) | 2015-01-19 | 2017-10-13 | 恩特格里斯公司 | 用于ir及uv监测的小体积长路径长度多程气体池 |
US10067049B1 (en) * | 2016-08-17 | 2018-09-04 | National Technology & Engineering Solutions Of Sandia, Llc | Method and system for multi-pass laser-induced incandescence |
-
2016
- 2016-01-16 CN CN201680010504.9A patent/CN107250764A/zh active Pending
- 2016-01-16 WO PCT/US2016/013751 patent/WO2016118431A1/en active Application Filing
- 2016-01-16 JP JP2017537905A patent/JP6450850B2/ja active Active
- 2016-01-16 KR KR1020177022665A patent/KR101975134B1/ko active IP Right Grant
- 2016-01-16 US US15/544,327 patent/US10451540B2/en active Active
- 2016-01-16 CN CN202211102777.XA patent/CN115452724A/zh active Pending
- 2016-01-19 TW TW105101572A patent/TWI684082B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI684082B (zh) | 2020-02-01 |
KR20170103955A (ko) | 2017-09-13 |
JP6450850B2 (ja) | 2019-01-09 |
US10451540B2 (en) | 2019-10-22 |
KR101975134B1 (ko) | 2019-05-03 |
JP2018509598A (ja) | 2018-04-05 |
US20180011003A1 (en) | 2018-01-11 |
WO2016118431A1 (en) | 2016-07-28 |
CN115452724A (zh) | 2022-12-09 |
CN107250764A (zh) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI684082B (zh) | 用於ir和uv監控的具有小容量且長路徑長度的多程氣體單元 | |
US7351976B2 (en) | Monitoring system comprising infrared thermopile detector | |
US7723685B2 (en) | Monitoring system comprising infrared thermopile detector | |
TW496955B (en) | Method and system for preventing deposition on an optical component in a spectroscopic sensor | |
US6442736B1 (en) | Semiconductor processing system and method for controlling moisture level therein | |
WO2014181527A1 (ja) | 原料流体濃度検出器 | |
US20120009694A1 (en) | Apparatus and method for monitoring precursor flux | |
Bravo-Suárez et al. | Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis | |
WO2007050123A9 (en) | Optical micro-spectrometer | |
US20020152797A1 (en) | Gas delivery apparatus and method for monitoring a gas phase species therein | |
US20160281238A1 (en) | Tpir apparatus for monitoring tungsten hexafluoride processing to detect gas phase nucleation, and method and system utilizing same | |
US7255474B2 (en) | Parallel infrared spectroscopy apparatus and method | |
JP2010190824A (ja) | 半導体製造プロセス用吸光分析装置 | |
TW418321B (en) | In-line cell for absorption spectroscopy | |
US9897541B1 (en) | Attenuated total reflection flow cell | |
CN112840444A (zh) | 用于外延反应器的石英圆顶的净化的视口 | |
US7715010B2 (en) | Non-dispersive electromagnetic radiation detector | |
US12072281B2 (en) | Multipass optical spectroscopy cell having a single transmission path | |
WO2001027574A1 (en) | Apparatus and method for infrared radiation transmission and system and method for infrared analysis | |
KR20090002037U (ko) | 플라즈마를 이용한 소형화된 시료 검출 장치 |