TW201624715A - 金屬氧化物金屬場效電晶體(momfet) - Google Patents

金屬氧化物金屬場效電晶體(momfet) Download PDF

Info

Publication number
TW201624715A
TW201624715A TW104127162A TW104127162A TW201624715A TW 201624715 A TW201624715 A TW 201624715A TW 104127162 A TW104127162 A TW 104127162A TW 104127162 A TW104127162 A TW 104127162A TW 201624715 A TW201624715 A TW 201624715A
Authority
TW
Taiwan
Prior art keywords
channel
drain
source
gate electrode
work function
Prior art date
Application number
TW104127162A
Other languages
English (en)
Inventor
瑞菲爾 羅伊斯
克萊恩 坎恩
金世淵
賈斯汀 韋伯
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201624715A publication Critical patent/TW201624715A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78636Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with supplementary region or layer for improving the flatness of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本發明的實施例包括金屬氧化物金屬場效電晶體(MOMFET)和製作此種裝置的方法。於實施例中,MOMFET裝置包括源極和汲極,而具有配置在源極和汲極之間的通道。根據實施例,通道具有在通道中產生量子侷限效應的至少一侷限維度。於實施例中,MOMFET裝置也包括閘極電極,其藉由閘極介電質而與通道分開。根據實施例,通道的能帶間隙能量可以藉由改變通道的尺寸、用於通道的材料和/或施加於通道的表面終端而調變。實施例也包括藉由控制源極和汲極相對於通道之傳導帶和共價帶能量的功函數而形成N型裝置和P型裝置。

Description

金屬氧化物金屬場效電晶體(MOMFET)
實施例大致關於電晶體裝置。更特定而言,實施例關於金屬氧化物金屬場效電晶體(MOMFET)和製作此種裝置的方法。
裝置尺度持續縮小導致有逐漸較小和受到侷限的通道。隨著電晶體的尺寸持續減少,材料性質上的限制正變成漸漸更難克服的障礙。舉例而言,隨著通道的維度減少,半導體材料的能帶間隙由於量子侷限效應而開始增加。舉例而言,整塊矽典型而言具有在大約1.0電子伏特和1.1電子伏特之間的能帶間隙。然而,當通道厚度減少到大約10奈米以下時,能帶間隙可以增加到1.5電子伏特或更大。因為狀態密度有所減少,所以侷限的通道也減少了可以在半導體通道中誘發的總電荷。如此,則電晶體的效率便有所降低。
附帶而言,隨著裝置尺度持續縮小,製造限制也可以進一步限制尺寸的縮減。隨著通道長度減少到小 於10奈米,在已經植入幾個原子的摻雜物之後可以獲得適當的摻雜濃度。舉例而言,可以僅需一或二個原子的摻雜物來提供適當的摻雜濃度。在植入之後,摻雜物也易於擴散。在此種小尺度和這麼少的摻雜原子,摻雜物種所不要的擴散變得逐漸更難以控制。如此,裝置尺度縮小增加了製造電晶體裝置的困難。
此外,對於增加電晶體密度的要求正驅動著製造商去利用三維(3-D)整合。由於源極、汲極、通道等區域典型而言需要高度規則的半導體晶體,故3-D整合需要晶圓結合。晶圓結合大大增加製造成本並且需要額外的處理操作而額外的處理操作將減少產出。
201‧‧‧基板
203‧‧‧絕緣層
205‧‧‧源極/汲極(S/D)區域
212‧‧‧側壁層
214‧‧‧閘極介電質
215‧‧‧侷限通道
216‧‧‧閘極電極
250‧‧‧金屬氧化物金屬場效電晶體(MOMFET)裝置
251‧‧‧第二MOMFET裝置
260‧‧‧三維(3-D)整合的MOMFET
301‧‧‧基板
303‧‧‧絕緣層
304‧‧‧S/D層
305‧‧‧S/D區域
310‧‧‧開口
312‧‧‧通道材料
314‧‧‧閘極介電質
315‧‧‧通道
316‧‧‧閘極電極
401‧‧‧基板層
403‧‧‧絕緣層
405‧‧‧S/D區域
410A、410B‧‧‧開口
412‧‧‧通道材料
414‧‧‧閘極介電質
415‧‧‧通道
416A、416B‧‧‧閘極電極材料
501‧‧‧基板
503‧‧‧絕緣層
505‧‧‧S/D區域
505A‧‧‧取代S/D區域
505B‧‧‧原始S/D區域
512‧‧‧通道材料
514‧‧‧閘極介電質
515‧‧‧通道
516A、516B‧‧‧閘極電極
522‧‧‧遮罩層
524、526‧‧‧開口
601‧‧‧基板
605‧‧‧S/D區域
632‧‧‧間隔物
634‧‧‧通道部分
636‧‧‧矽奈米線
638‧‧‧金屬層
640‧‧‧矽化物層
644‧‧‧矽化物通道
701‧‧‧基板
705‧‧‧S/D區域
736‧‧‧奈米線
740‧‧‧矽化物層
744‧‧‧奈米線(通道)
800‧‧‧計算裝置
802‧‧‧板
804‧‧‧處理器
806‧‧‧通訊晶片
Ec‧‧‧傳導帶能量
Ev‧‧‧共價帶能量
L‧‧‧通道長度
T‧‧‧通道厚度
W‧‧‧通道寬度
WO‧‧‧開口寬度
圖1A是示範能帶間隙能量為具有多樣的表面終端物種之Sn奈米線的線直徑之函數的圖形。
圖1B~1E是示範具有多樣之表面終端物種的Sn奈米線相對於真空之傳導帶和共價帶的圖形。
圖2A是根據實施例的平坦MOMFET裝置的示範。
圖2B是根據實施例的平坦MOMFET裝置的示範,其包括3-D整合。
圖3A~3F是根據實施例而示範形成平坦MOMFET裝置之過程的截面。
圖4A~4E是根據實施例而示範形成CMOM反 相器之過程的截面。
圖5A~5D是根據額外的實施例而示範形成CMOM反相器之過程的截面。
圖6A~6C是根據實施例而示範形成奈米線MOMFET裝置之過程的截面。
圖7是根據實施例而示範奈米線MOMFET裝置的截面。
圖8是根據實施例而示範利用MOMFET裝置之電腦系統的示意方塊圖解。
【發明內容及實施方式】
本發明的實施例包括金屬氧化物金屬場效電晶體(MOMFET)和形成此種裝置的方法。
本發明的實施例能夠克服基於半導體的電晶體裝置之先前製造和材料性質的限制,其是當裝置尺度縮減到使通道在至少一維度受到侷限時會出現。如在此所用,「侷限」通道是所具有的維度夠小而在通道材料中產生量子侷限效應的通道。材料中的量子侷限效應導致能譜從連續的能譜轉變成離散的能譜。如此,則載子(亦即電洞和電子)僅能夠佔據離散的能階。舉例而言,雖然金屬或半金屬在整塊形式下可以具有連續的能譜,但隨著材料的維度變成受到侷限,載子僅能夠佔據離散的能階。據此,能帶間隙在材料中形成,其根據本發明在此所述的實施例則可以用於製造例如MOMFET的電晶體裝置。
本發明的實施例提供一或更多個變數,其可加以控制而在通道中獲得想要的能帶間隙。舉例來說,能帶間隙能量可以藉由選擇不同的通道材料、改變通道之侷限維度的尺寸、改變通道的表面終端或其任何組合而調變。圖1A示範通道的尺寸和通道的表面終端對於能帶間隙能量的效應。於圖1A,將能帶間隙能量畫成具有不同表面終端物種的<100>Sn奈米線之線半徑的函數。如圖1A顯示的範例性實施例所示,侷限的Sn奈米線所獲得的能帶間隙可以用於形成電晶體裝置。此外,對於任何給定直徑的奈米線而言,能帶間隙能量可以藉由使用不同的表面終端物種而調變。舉例來說,表面終端物種可以包括CH3、F、H、OH。使用不同的表面終端物種也可以用於調變通道材料的電子親和性(亦即相對於真空能階的傳導帶能量)。圖1B~1E提供對於圖1A所示每個表面終端的<100>Sn線相對於真空之傳導帶(EC)和共價帶(EV)為線半徑的函數圖。
注意畫在圖1A~E的資料在定性上是正確的,因為自旋軌道分裂未包括在資料中。如此,則要體會在多樣的半徑和針對不同的終端物種之能帶間隙能量和電子親和性的數值不是限制性的,並且是為了示範而提供。附帶而言,雖然提供Sn奈米線作為範例性圖示,不過類似的量子侷限效應可以產生在不是奈米線的通道中和在非Sn的材料中。舉例而言,根據本發明的實施例,也也可以使用侷限在單一維度(譬如薄片)和在其他金屬或半金屬材 料所做之通道中的通道。
根據實施例,侷限通道本質上是雙極的並且能夠傳導電洞和電子。然而,不依賴摻雜物來產生N型或P型電晶體,根據本發明的實施例可以改成源極/汲極(S/D)區域和閘極電極所用的材料來控制傳導類型。根據實施例,S/D區域相對於通道之傳導帶和共價帶的功函數決定了裝置將是N型或P型裝置,如下面更詳細描述。如此,則避免了當使用半導體材料時發生摻雜物擴散所涉及的問題。
現在參見圖2A,示範的是根據實施例之平坦的MOMFET裝置250。於實施例,平坦的MOMFET裝置250可以形成在基板201上。實施例包括基板201,其夠堅固以在製造操作期間提供對裝置的支持。基板201可以是非結晶或結晶的材料。舉例來說,基板201可以是玻璃、藍寶石、矽、聚合物或上面可以沉積絕緣層的任何其他基板。本發明的實施例不限於具有高度規則結晶結構的典型半導性基板,例如矽晶圓,因為MOMFET裝置250的半導性質不取決於那些材料的半導行為。
如所示範,絕緣層203形成在基板201的頂表面上。根據實施例,絕緣層203可以是典型用於半導體處理的任何絕緣材料。舉例而言,絕緣層203可以是氧化物(例如氧化矽)或氮化物。根據本發明的實施例,絕緣層所具有的厚度可以選擇成在絕緣層203之上和之下所形成的諸層之間以提供想要的絕緣保護。舉例來說,實施例 所包括的絕緣層203具有大約50奈米的厚度。
MOMFET裝置250包括S/D區域205。於實施例,S/D區域可以由金屬或半金屬材料所形成。於實施例,選擇用於S/D區域的材料可以是高度導電的材料。舉例而言,當高導電材料(例如鎢)用於S/D區域205時,可以改善MOMFET裝置250的效能。額外的實施例包括材料相同於通道215的S/D區域205。
侷限通道215形成在S/D區域205之間。於實施例,通道215是由當呈整塊形式時是導電的但當通道被侷限的維度是夠小到足以在通道中產生量子侷限效應而獲得能帶間隙的材料所形成。根據實施例,通道215具有一或更多個侷限維度。舉例而言,於圖2A,通道215至少侷限在其厚度維度T。通道215須要產生量子侷限效應的的厚度T則取決於選擇用於通道215的材料和施加於通道的表面終端(如果有的話)。
實施例所包括的通道厚度T可以小於大約5奈米。額外的實施例包括小於大約3奈米的通道厚度T。於實施例,通道可以具有在大約0.5奈米和大約5奈米之間的厚度T。於實施例,通道215的厚度乃選擇成提供想要的能帶間隙能量。舉例來說,通道材料的厚度可以在通道中產生小於1.5電子伏特的能帶間隙能量。額外的實施例所包括的通道厚度可以在通道中產生在大約0.5電子伏特和大約1.5電子伏特之間的能帶間隙能量。
根據實施例,通道215可以是半金屬,例如 Sn、Pb、As、Sb或Bi。要體會視為「半金屬」的這群材料不包括Si或Ge,因為「半金屬」定義為當呈整塊形式時不具有能帶間隙,而Si和Ge當呈整塊形式時都具有能帶間隙。額外的實施例包括為鉍化物的通道215,例如InBi或GaBi。於實施例,通道215也可以是稀土磷族元素化物,例如LaAs、ScP、YSb或ErAs。於實施例,通道215也可以包括IV-B族/IV-A族化合物,例如TiC或HfSi。於實施例,通道215可以包括過渡金屬化合物,例如FeSi。另一實施例可以包括為矽化物的通道215,例如NiSi、TiSi或CoSi。根據實施例,通道215的材料可以相同於用於S/D區域205的材料。
除了控制通道215的厚度以提供想要的能帶間隙,本發明的實施例也還可以包括在通道215上形成表面終端物種以便調變通道的能帶間隙。舉例而言,回去參見圖1A,具有氫表面終端之1.0奈米直徑的Sn奈米線所產生的能帶間隙大於具有氟表面終端之1.0奈米直徑的Sn奈米線的能帶間隙。
實施例也可以使用表面終端物種,其施加於通道215以決定裝置是N型或P型裝置。當通道215的費米能階較靠近傳導帶(EC)時,則產生N型裝置,而較靠近共價帶(EV)的費米能階則產生P型裝置。表面終端物種可以用於藉由更改通道215的電子親和性而調變通道215之傳導帶和共價帶的位置。相對於具有高電子親和性的通道215而言,具有低電子親和性的通道215所產生 的傳導帶(EC)比較高。舉例而言,回去參見圖1B和1E,對於給定的線直徑來說,具有CH3表面終端之Sn奈米線的電子親和性低於具有OH表面終端之Sn奈米線的電子親和性。
回去參見圖2A,通道215可以具有通道長度L。舉例來說,通道長度可以是大約10奈米或更小。根據實施例,通道長度L小於5奈米。通道也可以具有通道寬度W,其大致沿著閘極電極216的寬度而延伸。由於通道215侷限於厚度維度T,故根據本發明的實施例,通道長度L和通道寬度W不須要是侷限維度。然而,實施例也可以包括侷限於通道寬度W、通道長度L、通道厚度T或其任何組合的通道215。
於實施例,側壁層212可以沿著S/D區域的側壁而形成。舉例來說,側壁層212的材料相同於通道215。於某些實施例,側壁層212是用於形成MOMFET 250之處理方法的剩餘物,並且可以視為S/D區域205的一部分。根據額外的實施例,可以省略這層212。
如圖2A所示範,閘極電極216藉由閘極介電質214而與S/D區域205和通道215分開。於實施例,閘極介電質可以是高k介電質。舉例來說,閘極介電質可以是氧化鉿、氧化鋯或類似者。於實施例,閘極電極216是導電材料,並且可以選擇成具有將提供裝置所想要之門檻電壓的功函數。
根據實施例,S/D區域205的功函數可以用於 決定MOMFET裝置250的傳導類型。特定而言,S/D區域205相對於通道215之傳導帶能量(EC)和共價帶能量(EV)的功函數決定了MOMFFET裝置是P型或N型裝置。舉例而言,如果S/D區域205的功函數相近於或小於通道215的傳導帶能量,則形成優選傳導電子的N型裝置。替代而言,如果S/D區域205的功函數靠近或大於通道的共價帶能量,則形成優選傳導電洞的P型裝置。於S/D區域205的功函數接近通道215之能帶間隙中間的實施例,二種載子都可以傳導,此視施加的閘極偏壓而定。然而,由於S/D區域205和通道215之間有高能量阻障,故此種實施例可能苦於低的電流(I)開啟/關閉比例和低的驅動電流。據此,不是像傳統半導性電晶體必須依賴摻雜物,MOMFET裝置250的傳導類型可以改為藉由改變S/D區域205所用的材料、改變通道215所用的材料以及/或者改變施加於通道的表面終端而設計。
根據額外的實施例,當S/D區域205是以相同於通道215的材料而形成時,MOMFET裝置250的傳導類型也可以藉由控制閘極電極216相對於通道215的功函數而決定。於此種實施例,MOMFET裝置是雙極的並且能夠傳導二種載子。於實施例,閘極電極216的功函數可以用於設定開啟電壓,使得某一傳導類型變成主控的。舉例而言,靠近通道之傳導帶(EC)的閘極電極功函數可以用於形成N型裝置,而靠近通道之共價帶(EV)的閘極電極功函數可以用於形成P型裝置。
半金屬和金屬材料用於S/D區域和通道也減少了3-D整合的困難。不須在高度結晶的半導體基板上形成MOMFET,MOMFET的多重層可以堆疊在彼此的頂部上,而不需昂貴和費時的晶圓結合過程。
此種3-D整合裝置示範於圖2B。根據實施例,3-D整合的MOMFET 260可以包括堆疊在彼此頂部上的多個MOMFET裝置。舉例而言,圖2B所示範的實施例顯示第二MOMFET裝置251堆疊在第一MOMFET裝置250上。根據實施例,3-D整合有可能不需要晶圓結合過程。由於S/D區域205和通道215不須形成在傳統的半導性基板(例如矽晶圓)上,故不需要形成在第一MOMFET裝置250上的結晶基板。取而代之的是實施例可以包括形成額外的絕緣層203在第一MOMFET裝置250上,以便使裝置彼此電隔離。第二MOMFET裝置251然後可以形成在第二絕緣層203上。據此,可以增加電晶體密度而不增加裝置製造的複雜度。
於實施例,第二MOMFET 251可以大致類似於第一MOMFET裝置250。替代性實施例可以包括不同於第一MOMFET裝置250的第二MOMFET裝置251。舉例來說,第二MOMFET裝置251可以是P型裝置,而第一MOMFET裝置250可以是N型裝置。額外的實施例包括指向不同於第一MOMFET裝置251方向的第二MOMFET裝置251。進一步實施例也可以包括一或更多個中介層,例如形成在第一和第二MOMFET裝置250、251 之間的互連層。
圖3A~3F是示範多樣之處理操作的截面,其可以用於形成根據本發明之實施例的MOMFET裝置。開始於圖3A,提供基板301。於實施例,基板301可以是非結晶或結晶的材料。然而,實施例可以利用結晶結構而用於根據特定實施例的基板。舉例而言,半導體材料(例如矽晶圓)可以使用作為基板301。使用結晶的基板可以提供更均勻的厚度和極為平坦的表面。據此,此種實施例由於平坦的表面而可以改善製造的容易度。
根據實施例,絕緣層303可以形成在基板301上。於實施例,絕緣層303可以是通常用於半導體製造的任何絕緣層。舉例而言,絕緣層可以是氧化鋁、氧化矽或氮化物。於實施例,絕緣層303可以用化學氣相沉積(CVD)、物理氣相沉積(PVD)或原子層沉積(ALD)來形成。
於實施例,源極/汲極(S/D)層304可以沉積在絕緣層303上。於實施例,S/D層304可以是低接觸電阻材料,例如金屬材料。舉例而言,S/D層304可以是鎢。於實施例,S/D層304可以由具有特定功函數的材料所形成。使用功函數作為選擇S/D層304之材料的標準則允許決定MOMFET的傳導類型。額外實施例所包括的S/D層304之材料相同於將用於通道315之材料。
現在參見圖3B,將S/D層304圖案化以界定S/D區域305。如所示範,形成開口310穿過S/D層304 以暴露部分的絕緣層303。本發明的實施例可以利用此技藝已知的典型圖案化和蝕刻過程以便形成開口310。於實施例,開口可以用多重圖案化過程來形成。當開口310是夠小時,多重圖案化過程可以是想要的,使得微影技術的解析度不足以將S/D區域305圖案化。舉例來說,開口可以具有小於大約10奈米的寬度WO。根據實施例,寬度WO可以為大約5奈米或更小。
現在參見圖3C,根據實施例,通道315可以沉積在絕緣層303的暴露表面上而在S/D區域305之間。在通道315的沉積期間,通道材料312也可以沿著S/D區域305的側壁和頂表面來沉積。雖然通道材料312可以形成在整個暴露表面上,不過根據圖3C所示的實施例,注意MOMFET裝置的通道315是沿著開口310的底表面而在S/D區域之間。如此,根據實施例,則通道材料312沿著S/D區域305之側壁所形成的部分可以不視為通道315的一部分。
於實施例,通道315是由當通道315的厚度T夠小而在通道315中產生量子侷限效應時發展出能帶間隙的材料所形成。於實施例,通道315的厚度T乃選擇成提供想要的能帶間隙。舉例而言,隨著通道315的厚度減少,能帶間隙則增加。舉例而言,當通道材料是Sn時,大約1奈米和大約5奈米之間的厚度T可以在通道315中產生想要的能帶間隙。舉例來說,通道315中想要的能帶間隙可以是在大約0.5電子伏特和1.5電子伏特之間。本 發明的實施例允許透過使用多樣的沉積技術來精確控制厚度T。舉例而言,ALD可以能夠產生小於大約3.0奈米的通道厚度T。額外的實施例包括以CVD或PVD來沉積通道315。
實施例包括為半金屬的通道315,例如Sn、Pb、As、Sb或Bi。要體會視為「半金屬」的這群材料不包括Si或Ge,因為「半金屬」定義為當呈整塊形式時不具有能帶間隙,而Si和Ge當呈整塊形式時都具有能帶間隙。額外的實施例包括為鉍化物的通道315,例如InBi或GaBi。於實施例,通道315也可以是稀土磷族元素化物,例如LaAs、ScP、YSb或ErAs。於實施例,通道315也可以是IV-B族/IV-A族化合物,例如TiC或HfSi。於實施例,通道315可以是過渡金屬化合物,例如FeSi。另一實施例可以包括為矽化物的通道315,例如NiSi、TiSi或CoSi。
於包括矽化物通道315的實施例,通道315可以用矽化物形成過程來形成。於實施例,矽化物形成過程可以包括將一層非晶矽或多晶矽配置在絕緣層303的暴露表面上而在S/D區域305之間。根據實施例,非晶矽或多晶矽的厚度可以小於想要的通道厚度T。舉例來說,非晶矽或多晶矽層可以小於5奈米。於實施例,非晶矽或多晶矽層小於大約1.0奈米。在已經沉積了非晶矽或多晶矽之後,將與非晶矽或多晶矽形成矽化物的金屬層則形成在非晶矽或多晶矽層上。於實施例,金屬可以是Fe、Ni、 Ti、Co或形成矽化物的任何其他金屬。根據實施例,然後可以加熱裝置以允許金屬和矽層彼此反應以形成矽化物。
於實施例,通道315的能帶間隙可以藉由在通道315的暴露表面上形成表面終端而調變。如圖1A的圖形所示範,對於給定的通道315之厚度來說,每種終端物種可以產生不同的能帶間隙。舉例來說,表面終端物種可以是CH3、F、H或OH。根據實施例,表面終端的施加可以與通道315的沉積同時。舉例而言,ALD沉積過程的最終脈衝可以包括來源氣體,其包含表面終端物種。
額外的實施例可以包括在後續處理操作之後施加表面終端物種。舉例而言,在表面終端施加於通道315之前,可以形成閘極介電質314和閘極電極316。於此種實施例,終端物種可以透過配置在通道315上的諸層而植入。舉例而言,當利用氫作為表面終端時,氫離子可以透過閘極電極316和閘極介電質314而植入以便抵達通道315。
現在參見圖3D,閘極介電層314形成在通道材料312和通道315的暴露表面上。於實施例,閘極介電層314可以是高k介電材料。舉例而言,介電層314可以是氧化鉿或氧化鋯。根據實施例,閘極氧化物可以是大約2奈米到3奈米厚。於實施例,閘極氧化物可以用CVD、PVD或ALD來沉積。
現在參見圖3E,導電材料沉積在閘極介電層 314的暴露表面上以形成閘極電極316。如上所述,用於閘極電極316的材料可以選擇成提供MOMFET裝置所想要的門檻電壓。根據實施例,在已經沉積了用於閘極電極316的材料之後,MOMFET裝置的頂表面可加以平坦化。舉例而言,平坦化可以用化學機械拋光(CMP)過程來進行。於實施例,平坦化可以移除配置在S/D區域305的頂表面上之多餘的通道材料312、閘極介電材料314、閘極電極材料316。
於額外的實施例,第二MOMFET裝置可以形成在第一MOMFET裝置的頂表面上以形成3-D整合結構,例如上面關於圖2B所述者。於此種實施例,關於圖3A~3F所述的處理可以重複,例外之處在於不需要基板層301。取而代之的是第二絕緣層可以形成在第一MOMFET裝置的暴露表面上,如圖2B所示範。第二絕緣層可以大致類似於第一絕緣層303。根據額外的實施例,形成堆疊在彼此頂部上之MOMFET裝置的過程可以重複任意次數以產生具有想要之MOMFET層數目的3-D整合封裝。
由於通道的雙極天性,故本發明的實施例能夠形成互補式金屬-氧化物-金屬(CMOM)反相器,而不必摻雜P井和N井,後者是當形成互補式金屬-氧化物-半導體(CMOS)反相器的情形。取而代之的是本發明的實施例可以藉由讓每個MOMFET的閘極電極使用不同的材料、每個MOMFET的S/D區域使用不同的材料或其組合,而形成電耦合的P型MOMFET和N型MOMFET。
根據本發明的實施例,CMOM反相器可以用例如圖4A~4E所示範的過程來形成。現在參見圖4A,已經形成開口410A和410B穿過S/D層以暴露部分的絕緣層403並且界定S/D區域405。除了形成二開口,用於形成圖4A所示範之結構的材料和處理大致類似於上面關於圖3A和3B所述的處理和材料。
現在參見圖4B,通道材料412配置在S/D區域405的暴露表面上和絕緣層403的暴露表面上。通道材料形成在絕緣層上和在S/D區域405之間的部分可以視為通道415。根據實施例,通道415是由當通道415的厚度在通道415中產生量子侷限效應時發展出能帶間隙的材料所形成。於實施例,通道415的厚度乃選擇成提供想要的能帶間隙。舉例而言,隨著通道415的厚度減少,能帶間隙則增加。於實施例,厚度可以在大約1奈米和5奈米之間以便在通道415中產生想要的能帶間隙。實施例所包括的通道415可以是金屬、半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物,例如上面關於圖3C所述。根據實施例,形成通道415的材料相同於S/D區域405。
現在參見圖4C,閘極介電質414可以形成在通道415上,並且通道材料層412可以沿著S/D區域405的側壁和頂表面而形成。根據實施例,閘極介電質414可以是高k介電質,其大致類似於上面關於圖3D所述的閘極介電質。
現在參見圖4D,閘極電極材料416A和416B可以沉積到開口裡。根據實施例,用於閘極電極416A的材料不同於用於閘極電極416B的材料。舉例來說,用於416A和416B的材料具有不同的功函數。當S/D區域405和通道415是由相同的材料所形成時,不同的功函數允許形成N型和P型MOMFET裝置。舉例而言,用於閘極電極416A的材料可以具有高於閘極電極416B的功函數。於此種實施例,閘極電極416A可以允許形成N型裝置,並且閘極電極416B可以允許形成P型裝置。據此,由於N-MOM和P-MOM裝置藉由其間的S/D區域405而耦合,故可以形成CMOM反相器。
現在參見圖4E,CMOM反相器可加以平坦化以暴露S/D區域405的頂表面。舉例而言,平坦化可以用CMP過程來進行。於實施例,平坦化可以移除配置在S/D區域405的頂表面上之多餘的通道材料414、閘極介電材料414、閘極電極材料416。
附帶而言,第二CMOM反相器可以形成在第一CMOM反相器的頂表面上以形成3-D整合結構。於此種實施例,可以重複關於圖4A~4E所述的處理,例外之處在於不需要基板層401。取而代之的是第二絕緣層403可以形成在第一CMOM反相器的暴露表面上。根據額外的實施例,形成堆疊在彼此頂部上之CMOM反相器的過程可以重複任意次數以產生具有想要數目之CMOM反相器層的3-D整合封裝。
根據額外的實施例,CMOM反相器也可以藉由生成具有相同於閘極電極之所用材料的互補式N-MOM和P-MOM裝置而形成。如此,則每個電晶體的傳導類型是藉由針對每個電晶體的S/D區域來選擇不同的材料而決定。圖5A~5D示範根據實施例而形成此種裝置的方法。
現在參見圖5A,示範的是大致類似於圖4E所述的CMOM反相器,例外之處在於閘極電極516A和516B是由相同的材料所形成。附帶而言,遮罩層522配置在電晶體的頂表面上。遮罩層522可以是典型用於圖案化和蝕刻過程的任何遮罩層,例如可光界定的遮罩層。如圖5B所示,將開口524圖案化到遮罩層522裡。開口暴露部分的S/D區域505。於實施例,遮罩層522覆蓋通道材料512沿著S/D區域505之側壁所形成的部分。然而,實施例不限於此種組態,並且根據額外的實施例,開口524也可以暴露通道材料512沿著S/D區域之側壁所形成的部分。
之後,實施例包括移除暴露的S/D區域505,如圖5C所示範。於實施例,S/D區域505用蝕刻過程而移除以形成靠近閘極電極516A的開口526。於也暴露了通道材料512沿著S/D區域505的側壁所形成之部分的實施例,沿著側壁所形成的通道材料512也可以蝕刻掉。之後,取代S/D區域505A沉積於開口526中。根據實施例,取代S/D區域505A的材料之功函數在MOMFET中所產生的傳導類型可以不同於閘極電極516B和原始S/D區 域505B之組合所形成的傳導類型。
根據額外的實施例,MOMFET裝置也可以形成有奈米線通道。形成此種MOMFET的過程示範於圖6A~6C。於圖6A,矽奈米線636形成在重度摻雜的矽S/D區域605之間。舉例來說,矽奈米線可以是非晶矽或多晶矽。為了在奈米線636中所形成的通道獲得想要的直徑,間隔物632可以沿著S/D區域605的側壁而形成,並且在部分的矽奈米線636上。奈米線的直徑然後以蝕刻過程來縮減以形成奈米線的通道部分634。舉例來說,通道部分634可以具有小於大約5.0奈米的直徑。於實施例,通道部分634的直徑可以是大約1.0奈米或更小。
現在參見圖6B,金屬層638可以沉積在S/D區域606的暴露表面上和奈米線的通道部分634上。根據實施例,金屬層638可以是大約3.0奈米到5.0奈米厚。於實施例,金屬層638可以是過渡金屬,其將與奈米線的通道部分634形成矽化物。舉例而言,金屬層638可以是Fe、Ni、Co或Ti。
在形成了金屬層638之後,可以形成矽化物通道644。根據實施例,矽化物通道644可以藉由使金屬層638與通道部分634反應而形成。於實施例,矽化物的形成可以完全消耗形成通道部分634的矽。於實施例,通道部分634的直徑可以因為形成矽化物而增加。於實施例,可以移除金屬層638的未消耗部分。舉例而言,多餘的金屬可以用蝕刻過程來移除。根據實施例,金屬層638 也可以與S/D區域605反應以在部分的S/D區域605上形成矽化物層640。之後,根據實施例,閘極介電質可以形成在矽化物通道644周圍,並且閘極電極可以配置在閘極介電質周圍,以便形成閘極遍布的(GAA)奈米線。圖6C省略了閘極介電質和閘極電極以便不必要的模糊了此圖。
本發明的額外實施例示範於圖7。圖7是示範包括多條奈米線之奈米線矽化物MOMFET裝置的截面。根據實施例,此裝置大致類似於關於圖6C所述者,例外之處在於多於一條的奈米線744形成在S/D區域705之間。雖然圖7示範三條奈米線744,不過實施例並不如此受限。舉例來說,可以有二或更多條奈米線744形成在S/D區域之間。
雖然在此所述的實施例示範形成具有平坦的和奈米線通道架構的MOMFET裝置,不過實施例並不限於此種組態。額外的實施例包括形成於任何通道幾何型態或指向而包括通道的MOMFET裝置,該通道具有在通道中產生量子侷限效應的至少一侷限維度。舉例來說,實施例也可以包括鰭部形通道,並且通道指向於水平或垂直方向。
圖8示範依據實施例的計算裝置800。計算裝置800容置了板802。板802可以包括許多構件,包括但不限於處理器804和至少一通訊晶片806。處理器804實體和電耦合於板802。於某些實施例,至少一通訊晶片 806也實體和電耦合於板802。於進一步實施例,通訊晶片806是處理器804的一部分。
視其應用而定,計算裝置800可以包括可以是或不是實體和電耦合於板802的其他構件。這些其他構件包括但不限於揮發性記憶體(譬如DRAM)、非揮發性記憶體(譬如ROM)、快閃記憶體、圖形處理器、數位訊號處理器、密碼處理器、晶片組、天線、顯示器、觸控螢幕顯示器、觸控螢幕控制器、電池、音訊編碼解碼器、視頻編碼解碼器、功率放大器、全球定位系統(GPS)裝置、羅盤、加速度計、陀螺儀、揚聲器、相機、大量儲存裝置(例如硬碟機、光碟(CD)、數位影音光碟(DVD)......等)。
通訊晶片806能夠做無線通訊而使資料轉移來往於計算裝置800。「無線」一詞及其衍生詞可以用於描述電路、裝置、系統、方法、技術、通訊頻道......等,其可以透過非固態介質來使用調變的電磁輻射而溝通資料。該詞不暗示關聯的裝置不包含任何電線,雖然它們在某些實施例可能不包含。通訊晶片806可以實施例任何數目的無線標準或協定,包括但不限於Wi-Fi(IEEE 802.11家族)、WiMAX(IEEE 802.16家族)、IEEE 802.20、長期演化(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍牙、其衍生者、以及指定為3G、4G、5G和之後的任何其他無線協定。計算裝置800可以包括多個通訊晶片806。舉例來 說,第一通訊晶片806可以專用於較短範圍的無線通訊,例如Wi-Fi和藍牙;並且第二通訊晶片806可以專用於較長範圍的無線通訊,例如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO和其他。
計算裝置800的處理器804包括封裝在處理器804裡的積體電路晶粒。於某些實施例,處理器的積體電路晶粒可以包括一或更多個MOMFET裝置,其具有通道,依據實施例,該通道具有在通道中產生量子侷限效應的至少一侷限維度。「處理器」一詞可以指任何裝置或部分的裝置,其處理來自暫存器和/或記憶體的電子資料以將該電子資料轉變成可以儲存於暫存器和/或記憶體中的其他電子資料。
通訊晶片806也包括封裝在通訊晶片806裡的積體電路晶粒。依據另一實施例,通訊晶片的積體電路晶粒可以包括一或更多個MOMFET裝置,其具有通道,依據實施例,該通道具有在通道中產生量子侷限效應的至少一侷限維度。
於進一步實施例,容置在計算裝置800裡的另一構件可以包含積體電路,其可以包括一或更多個MOMFET裝置而具有通道,依據實施例,該通道具有在通道中產生量子侷限效應的至少一侷限維度。
於多樣的實施例,計算裝置800可以是膝上型電腦、小筆電、筆記型電腦、超級筆電、智慧型電話、平板、個人數位助理(PDA)、超級行動PC、行動電 話、桌上型電腦、伺服器、印表機、掃描器、監視器、機上盒、娛樂控制單元、數位相機、可攜式音樂播放器或數位影音記錄器。於進一步實施例,計算裝置800可以是處理資料的任何其他電子裝置。
本發明的實施例包括半導體裝置,其包括:源極和汲極,其中源極和汲極是由具有第一功函數的材料所形成;通道,其配置在源極和汲極之間,其中通道是選自半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物、矽化物所構成之群組的材料,並且其中通道具有小於5.0奈米的厚度;以及閘極電極,其藉由閘極介電質而與通道分開,閘極電極具有第二功函數。額外的實施例包括半導體裝置,其中通道是Sn、Pb、As、Sb或Bi。額外的實施例包括半導體裝置,其中通道是FeSi、NiSi、TiSi或CoSi。額外的實施例包括半導體裝置,其中通道具有在大約0.5電子伏特和1.5電子伏特之間的能帶間隙。額外的實施例包括半導體裝置,其中表面終端形成在通道的表面上。額外的實施例包括半導體裝置,其中表面終端是CH3、F、H或OH。額外的實施例包括半導體裝置,其進一步包括絕緣層,其形成在源極和汲極之下,其中通道配置在絕緣層的表面上而在源極和汲極之間。額外的實施例包括半導體裝置,其中源極和汲極的材料相同於通道。額外的實施例包括半導體裝置,其中通道是奈米線或鰭部。
本發明的實施例包括半導體裝置,其包括: 第一源極和第一汲極,其中第一源極和第一汲極是由具有第一功函數的材料所形成;第一通道,其配置在第一源極和第一汲極之間,其中第一通道具有在第一通道中產生量子侷限效應的至少一侷限維度;第一閘極電極,其藉由第一閘極介電質而與第一通道分開,第一閘極電極具有第二功函數;第二源極和第二汲極,其中第二源極和第二汲極是由具有第三功函數的材料所形成;第二通道,其配置在第二源極和第二汲極之間,其中第二通道具有在第二通道中產生量子侷限效應的至少一侷限維度;以及第二閘極電極,其藉由第二閘極介電質而與第二通道分開,第二閘極電極具有第四功函數。本發明的實施例包括半導體裝置,其中第一和第三功函數是相同的,並且其中第二和第四功函數是不同的。本發明的實施例包括半導體裝置,其中第一和第三功函數是不同的,並且其中第二和第四功函數是相同的。本發明的實施例包括半導體裝置,其中第一汲極電耦合於第二源極。本發明的實施例包括半導體裝置,其中第一和第二通道是半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物。本發明的實施例包括半導體裝置,其中第一和第二通道的侷限維度小於大約5.0奈米,並且其中第一和第二通道具有在大約0.5電子伏特和1.5電子伏特之間的能帶間隙。
本發明的實施例包括形成半導體裝置的方法,其包括:在絕緣層上提供源極/汲極(S/D)層,其中S/D層具有第一功函數;形成穿過S/D層的開口以界定 S/D區域;在絕緣層的暴露表面上形成通道,其中通道具有在通道中產生量子侷限效應的至少一侷限維度;在通道上形成閘極介電質;在閘極介電質上形成閘極電極,其中閘極電極具有第二功函數。如申請專利範圍第16項的方法,其中通道是半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物。本發明的實施例包括形成半導體裝置的方法,其進一步包括在通道的表面上配置表面終端物種。本發明的實施例包括形成半導體裝置的方法,其中表面終端物種是CH3、F、H或OH。本發明的實施例包括形成半導體裝置的方法,其中表面終端物種是在形成閘極電極之後才形成。
本發明的實施例包括半導體裝置,其包括:源極和汲極,其中源極和汲極是由具有第一功函數的材料所形成;通道,其配置在源極和汲極之間,其中通道具有在通道中產生量子侷限效應的至少一侷限維度;以及閘極電極,其藉由閘極介電質而與通道分開,閘極電極具有第二功函數。本發明的實施例包括半導體裝置,其中通道是半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物。本發明的實施例包括半導體裝置,其中通道是Sn、Pb、As、Sb、Bi、FeSi、NiSi、TiSi或CoSi。本發明的實施例包括半導體裝置,其中通道的侷限維度小於大約5.0奈米。本發明的實施例包括半導體裝置,其中通道具有在大約0.5電子伏特和1.5電子伏特之間的能帶間隙。
201‧‧‧基板
203‧‧‧絕緣層
205‧‧‧源極/汲極(S/D)區域
212‧‧‧側壁層
214‧‧‧閘極介電質
215‧‧‧侷限通道
216‧‧‧閘極電極
250‧‧‧金屬氧化物金屬場效電晶體(MOMFET)裝置
L‧‧‧通道長度
T‧‧‧通道厚度
W‧‧‧通道寬度

Claims (25)

  1. 一種半導體裝置,其包括:源極和汲極,其中該源極和該汲極是由具有第一功函數的材料所形成;通道,其配置在該源極和該汲極之間,其中該通道具有在該通道中產生量子侷限效應的至少一侷限維度;以及閘極電極,其藉由閘極介電質而與該通道分開,該閘極電極具有第二功函數。
  2. 如申請專利範圍第1項的裝置,其中該通道是半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物。
  3. 如申請專利範圍第2項的裝置,其中該通道是Sn、Pb、As、Sb或Bi。
  4. 如申請專利範圍第2項的裝置,其中該通道是FeSi、NiSi、TiSi或CoSi。
  5. 如申請專利範圍第1項的裝置,其中該通道的該侷限維度小於大約5.0奈米。
  6. 如申請專利範圍第5項的裝置,其中該通道具有在大約0.5電子伏特和1.5電子伏特之間的能帶間隙。
  7. 如申請專利範圍第1項的裝置,其中表面終端形成在該通道的表面上。
  8. 如申請專利範圍第7項的裝置,其中該表面終端是CH3、F、H或OH。
  9. 如申請專利範圍第1項的裝置,其進一步包括: 絕緣層,其形成在該源極和該汲極之下,其中該通道配置在該絕緣層的表面上而在該源極和該汲極之間。
  10. 如申請專利範圍第9項的裝置,其中該通道的該侷限維度是厚度,並且其中該厚度小於大約5奈米。
  11. 如申請專利範圍第1項的裝置,其中該源極和該汲極的材料相同於該通道。
  12. 如申請專利範圍第1項的裝置,其中該通道是奈米線。
  13. 如申請專利範圍第1項的裝置,其中該通道是鰭部。
  14. 一種半導體裝置,其包括:第一源極和第一汲極,其中該第一源極和該第一汲極是由具有第一功函數的材料所形成;第一通道,其配置在該第一源極和該第一汲極之間,其中該第一通道具有在該第一通道中產生量子侷限效應的至少一侷限維度;第一閘極電極,其藉由第一閘極介電質而與該第一通道分開,該第一閘極電極具有第二功函數;第二源極和第二汲極,其中該第二該源極和該第二汲極是由具有第三功函數的材料所形成;第二通道,其配置在該第二源極和該第二汲極之間,其中該第二通道具有在該第二通道中產生量子侷限效應的至少一侷限維度;以及第二閘極電極,其藉由第二閘極介電質而與該第二通 道分開,該第二閘極電極具有第四功函數。
  15. 如申請專利範圍第14項的裝置,其中該第一和該第三功函數是相同的,並且其中該第二和該第四功函數是不同的。
  16. 如申請專利範圍第14項的裝置,其中該第一和該第三功函數是不同的,並且其中該第二和該第四功函數是相同的。
  17. 如申請專利範圍第14項的裝置,其中該第一汲極電耦合於該第二源極。
  18. 如申請專利範圍第14項的裝置,其中該第一和該第二通道是半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物。
  19. 如申請專利範圍第14項的裝置,其中該第一和該第二通道的該侷限維度小於大約5.0奈米,並且其中該第一和該第二通道具有在大約0.5電子伏特和1.5電子伏特之間的能帶間隙。
  20. 一種形成半導體裝置的方法,其包括:在絕緣層上提供源極/汲極(S/D)層,其中該S/D層具有第一功函數;形成穿過該S/D層的開口以界定S/D區域;在該絕緣層的暴露表面上形成通道,其中該通道具有在該通道中產生量子侷限效應的至少一侷限維度;在該通道上形成閘極介電質;以及在該閘極介電質上形成閘極電極,其中該閘極電極具 有第二功函數。
  21. 如申請專利範圍第20項的方法,其中該通道是以原子層沉積(ALD)過程所形成。
  22. 如申請專利範圍第20項的方法,其中該通道是半金屬、鉍化物、稀土磷族元素化物、IV-B族/IV-A族化合物、過渡金屬化合物或矽化物。
  23. 如申請專利範圍第20項的方法,其進一步包括:在該通道的表面上配置表面終端物種。
  24. 如申請專利範圍第23項的方法,其中該表面終端物種是CH3、F、H或OH。
  25. 如申請專利範圍第23項的方法,其中該表面終端物種是在形成該閘極電極之後才形成。
TW104127162A 2014-09-26 2015-08-20 金屬氧化物金屬場效電晶體(momfet) TW201624715A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/057867 WO2016048377A1 (en) 2014-09-26 2014-09-26 Metal oxide metal field effect transistors (momfets)

Publications (1)

Publication Number Publication Date
TW201624715A true TW201624715A (zh) 2016-07-01

Family

ID=55581693

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127162A TW201624715A (zh) 2014-09-26 2015-08-20 金屬氧化物金屬場效電晶體(momfet)

Country Status (6)

Country Link
US (1) US20170358658A1 (zh)
EP (1) EP3198650A4 (zh)
KR (1) KR102353662B1 (zh)
CN (1) CN106605303B (zh)
TW (1) TW201624715A (zh)
WO (1) WO2016048377A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742680B (zh) * 2019-05-24 2021-10-11 台灣積體電路製造股份有限公司 半導體結構及其形成方法
US11414751B2 (en) 2017-09-05 2022-08-16 Applied Materials, Inc. Self-aligned structures from sub-oxides

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3350115A1 (en) 2015-09-14 2018-07-25 University College Cork Semi-metal rectifying junction
US10109477B2 (en) * 2015-12-31 2018-10-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US10553494B2 (en) * 2016-11-29 2020-02-04 Taiwan Semiconductor Manufacturing Company, Ltd. Breakdown resistant semiconductor apparatus and method of making same
KR101932757B1 (ko) * 2017-04-19 2018-12-26 한국과학기술원 단결정 실리콘 박막, 이의 제조방법 및 이를 포함하는 전자소자
FR3069952B1 (fr) * 2017-08-07 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Realisation d'un transistor a structure de canal et regions de source et de drain en semi-metal
US10504999B2 (en) * 2018-03-15 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Forming semiconductor structures with semimetal features
FR3095549B1 (fr) 2019-04-25 2021-05-21 Commissariat Energie Atomique Procede de realisation d’un transistor dont la zone active comporte un materiau semi-metallique
US11165032B2 (en) * 2019-09-05 2021-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor using carbon nanotubes
KR20210043103A (ko) 2019-10-11 2021-04-21 삼성전자주식회사 반도체 패키지

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984475A (ja) * 1982-11-05 1984-05-16 Hitachi Ltd 電界効果型トランジスタ
US20050067629A1 (en) * 2003-01-13 2005-03-31 Woodall Jerry M. Semimetal semiconductor
US7838875B1 (en) 2003-01-22 2010-11-23 Tsang Dean Z Metal transistor device
US20050202615A1 (en) * 2004-03-10 2005-09-15 Nanosys, Inc. Nano-enabled memory devices and anisotropic charge carrying arrays
US7285829B2 (en) * 2004-03-31 2007-10-23 Intel Corporation Semiconductor device having a laterally modulated gate workfunction and method of fabrication
JP4116990B2 (ja) * 2004-09-28 2008-07-09 富士通株式会社 電界効果型トランジスタおよびその製造方法
US7176537B2 (en) * 2005-05-23 2007-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. High performance CMOS with metal-gate and Schottky source/drain
WO2008108383A1 (ja) * 2007-03-02 2008-09-12 Nec Corporation グラフェンを用いる半導体装置及びその製造方法
EP2058844A1 (en) * 2007-10-30 2009-05-13 Interuniversitair Microelektronica Centrum (IMEC) Method of forming a semiconductor device
US8294137B2 (en) * 2009-01-02 2012-10-23 Faquir Chand Jain Twin-drain spatial wavefunction switched field-effect transistors
GB2469451A (en) * 2009-04-14 2010-10-20 Qinetiq Ltd P-Type Semiconductor Devices
US8258543B2 (en) * 2009-12-07 2012-09-04 Intel Corporation Quantum-well-based semiconductor devices
JP2011192667A (ja) 2010-03-11 2011-09-29 Toshiba Corp トランジスタおよびその製造方法
DE102010028460B4 (de) * 2010-04-30 2014-01-23 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verfahren zum Herstellen eines Halbleiterbauelements mit einer reduzierten Defektrate in Kontakten, das Austauschgateelektrodenstrukturen unter Anwendung einer Zwischendeckschicht aufweist
US8809861B2 (en) * 2010-12-29 2014-08-19 Stmicroelectronics Pte Ltd. Thin film metal-dielectric-metal transistor
DE112011105965T5 (de) * 2011-12-20 2014-09-25 Intel Corporation Transistoren mit verformtem Kanalbereich unter Verwendung von Source- und Drain-Spannungserzeugern und System mit denselben
US10535770B2 (en) * 2014-09-24 2020-01-14 Intel Corporation Scaled TFET transistor formed using nanowire with surface termination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11414751B2 (en) 2017-09-05 2022-08-16 Applied Materials, Inc. Self-aligned structures from sub-oxides
TWI778118B (zh) * 2017-09-05 2022-09-21 美商應用材料股份有限公司 來自次氧化物的自對準結構
TWI742680B (zh) * 2019-05-24 2021-10-11 台灣積體電路製造股份有限公司 半導體結構及其形成方法
US11183574B2 (en) 2019-05-24 2021-11-23 Taiwan Semiconductor Manufacturing Co., Ltd. Work function layers for transistor gate electrodes

Also Published As

Publication number Publication date
EP3198650A4 (en) 2018-05-16
EP3198650A1 (en) 2017-08-02
CN106605303B (zh) 2020-12-08
WO2016048377A1 (en) 2016-03-31
CN106605303A (zh) 2017-04-26
KR20170059976A (ko) 2017-05-31
US20170358658A1 (en) 2017-12-14
KR102353662B1 (ko) 2022-01-21

Similar Documents

Publication Publication Date Title
TW201624715A (zh) 金屬氧化物金屬場效電晶體(momfet)
TWI706467B (zh) 具有磊晶生長之源極/汲極區的電晶體之電阻降低方法
KR101790605B1 (ko) Iii-v 반도체 재료 층을 갖는 반도체 디바이스
TWI830060B (zh) 用於控制電晶體子鰭洩漏的技術
TWI637508B (zh) 用於以鰭部為基礎之nmos電晶體的高遷移率應變通道
TWI590337B (zh) 由增加有效閘極長度而增進閘極對電晶體通道的控制的技術
TWI608621B (zh) 有頂阻擋層的具有自對準鰭部的非平面半導體裝置
CN110634939A (zh) 纳米线晶体管和衬底之间的电介质隔离层
KR102241180B1 (ko) Cmos 호환가능 폴리사이드 퓨즈 구조체를 갖는 반도체 구조체
US8945997B2 (en) Integrated circuits having improved split-gate nonvolatile memory devices and methods for fabrication of same
US11177254B2 (en) Stacked transistor device
TWI770052B (zh) 包括採用雙電荷摻雜劑之源極/汲極的電晶體
US11777029B2 (en) Vertical transistors for ultra-dense logic and memory applications
TW201732946A (zh) 用於nmos源極/汲極區域的結晶碳化矽替代材料
CN111095564A (zh) 具有包括晶态合金的金属接触部的半导体器件
US10319638B2 (en) Self-aligned contact cap
JP2010093051A (ja) 電界効果型半導体装置
TW201814901A (zh) 具晶格匹配閘極結構之電晶體
TWI761363B (zh) 積體電路、cmos裝置、電腦系統及形成積體電路的方法