TW201623707A - Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶 - Google Patents

Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶 Download PDF

Info

Publication number
TW201623707A
TW201623707A TW104136873A TW104136873A TW201623707A TW 201623707 A TW201623707 A TW 201623707A TW 104136873 A TW104136873 A TW 104136873A TW 104136873 A TW104136873 A TW 104136873A TW 201623707 A TW201623707 A TW 201623707A
Authority
TW
Taiwan
Prior art keywords
gas
group iii
single crystal
source gas
nitride single
Prior art date
Application number
TW104136873A
Other languages
English (en)
Other versions
TWI690632B (zh
Inventor
永島徹
福田真行
Original Assignee
德山股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德山股份有限公司 filed Critical 德山股份有限公司
Publication of TW201623707A publication Critical patent/TW201623707A/zh
Application granted granted Critical
Publication of TWI690632B publication Critical patent/TWI690632B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明係一種III族氮化物單結晶製造裝置,使用該裝置之III族氮化物單結晶之製造方法,及氮化鋁單結晶,其中,具有:經由使III族原料氣體與氮源氣體反應之時而具有使III族氮化物結晶成長於基板上之反應域的反應器,和加以配設於該反應域,支持基板之支持台,和供給III族原料氣體於反應域之III族原料氣體供給噴嘴,和供給氮源氣體於反應域之氮源氣體供給噴嘴,而氮源氣體供給噴嘴則具有將氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體供給至反應域之構造者為特徵之III族氮化物單結晶製造裝置。

Description

III族氮化物單結晶製造裝置、使用該裝置之III族氮化物單結晶之製造方法、及氮化鋁單結晶
本發明係有關經由使複數之原料氣體反應而使III族氮化物單結晶成長於基板上之新穎的氣相成長裝置與使用該裝置之III族氮化物單結晶的新穎的製造方法。另外,有關新穎的氮化鋁單結晶。
氮化鋁,氮化鎵,氮化銦之III族氮化物半導體結晶係具有廣範圍之帶隙能量的值,此等帶隙能量各為6.2eV程度、3.4eV程度、0.7eV程度。此等III族氮化物半導體係可做成任意組成之混晶半導體,經由此混晶組成,可得到上述能帶隙之間的值。
隨之,經由使用III族氮化物半導體結晶,原理上係成為可製作自紅外光至紫外光為止之廣範圍之發光元件者。特別是近年來,極力於發展使用鋁系III族氮化 物半導體(主要為氮化鋁鎵混晶)之發光元件的開發。經由使用鋁系III族氮化物半導體而成為可產生紫外光範圍之短波長發光,而成為可製造可利用於白色光源用之紫外發光二極體,殺菌用之紫外發光二極體,高密度光碟記憶體之讀寫的雷射,通信用雷射等之發光光源。
使用III族氮化物半導體(例如鋁系III族氮化物半導體)之發光元件係與以往的半導體發光元件同樣地,可經由於基板上依序層積厚度為數微米程度之半導體單結晶之薄膜(具體而言為n型半導體層,發光層,p型半導體層之薄膜)而形成。如此之半導體單結晶之薄膜的形成係可使用分子束磊晶成長(MBE:Molecular Beam Epitaxy)法、有機金屬氣相成長(MOCVD:Metalorganic Chemical Vapor Deposition)法等之結晶成長方法而進行,對於III族氮化物半導體發光元件,亦嘗試採用如此之方法而作為發光元件形成最佳的層積構造者。
目前,對於III族氮化物半導體發光元件的製造,係從做為基板的結晶品質,紫外光透過性,量產性或成本的觀點,一般而言加以採用藍寶石基板。但使III族氮化物成長於藍寶石基板上之情況,因藍寶石基板與形成半導體層積膜之III族氮化物(例如,氮化鋁鎵等)之間的晶格常數或熱膨脹係數等之不同引起,產生有結晶缺陷(錯位差排)或斷裂等,而成為使元件的發光性能下降的原因。
對於為了解決此等之問題,對於在半導體層 積膜之形成時,採用晶格常數接近於半導體層積膜之晶格常數,及熱膨脹係數接近於半導體層積膜之熱膨脹係數之基板者為佳。作為形成III族氮化物半導體薄膜之基板,最佳可說是III族氮化物單結晶基板。例如,作為鋁系III族氮化物半導體薄膜之基板,係氮化鋁單結晶基板或氮化鋁鎵單結晶基板為最佳。
對於作為基板而使用III族氮化物單結晶基板,係從機械強度的觀點而具有該單結晶為某程度(例如10μm以上)之厚度者為佳。MOCVD法係比較於MBE法而結晶成長速度為快之故,可說是對於III族氮化物單結晶基板之製造為最佳。另外,作為較MOCVD法為更快成膜速度之III族氮化物單結晶之成長方法,知道有氫化物氣相磊晶(HVPE:Hydride Vapor Phase Epitaxy)法(參照專利文獻1~3)。HVPE法係與MBE法或MOCVD法做比較時,並不適合於精密地控制膜厚者之另一方面,可以快的成膜成長速度而使結晶性良好的單結晶成長之故,可說是特別適合於單結晶基板之量產。經由MOCVD法或HVPE法之III族氮化物單結晶的成長係將III族原料氣體,與氮氣體供給至反應器中,經由使兩者的氣體在加以加熱之基板上反應之時而加以進行。
關於III族氮化物單結晶之製造,例如對於專利文獻4,係揭示有具有反應器主體,和使III族鹵化物氣體產生之III族源氣體產生部,將III族鹵化物氣體供給至反應器主體之反應區域之III族鹵化物氣體導入管之 氫化物氣相磊晶裝置。對於專利文獻4係加以記載有III族鹵化物氣體導入管之端部導入口貫通在反應器主體之外處理室的端壁,而III族鹵化物氣體導入管之端部導入口則加以連接於設置於反應器主體之內處理室的內部的第1噴嘴者。
〔先前技術文獻〕 〔專利文獻〕
〔專利文獻1〕日本特開2003-303774號公報
〔專利文獻2〕日本特開2006-073578號公報
〔專利文獻3〕日本特開2006-114845號公報
〔專利文獻4〕日本特開2013-060340號公報
〔專利文獻5〕國際公開第2014/031119號小冊子
〔專利文獻6〕日本特開2012-166963號公報
〔專利文獻7〕國際公開WO2012/081670號小冊子
〔專利文獻8〕日本特開2015/017030號公報
在本發明者們更進行檢討時,即使在使用HVPE法之單結晶的成長之中,對於成長氮化鋁單結晶之情況,係原料氣體的反應性為高之故,認為附著於包含噴嘴等之氣相成長裝置內之汙染之原因的附著粒子則進入至結晶中,容易成為結晶缺陷。當附著粒子附著於成長中之 結晶時而成為結晶缺陷,而使用其結晶所製造之發光二極體係產率產生下降。在氮化鋁單結晶之成長中,為了使此附著粒子降低,提案有設置整流隔壁於氣相成長裝置內(例如,參照專利文獻5)。如根據此方法,可降低諾馬斯基微分相差干涉顯微鏡(以100~500倍觀察)所觀察之附著粒子的數量者。
但本發明者們,更進行檢討的結果,即使作為使用整流隔壁,亦發現此附著粒子以外者則成為原因,在諾馬斯基微分相差干涉顯微鏡中未發現的細微結晶缺陷存在於氮化鋁單結晶者。如此之細微缺陷係可經由反射x射線拓樸而檢測出。也就是,即使使用整流隔壁調整裝置內之原料氣體的流動之情況,對於所得到之氮化鋁單結晶,經由反射x線拓樸像而評估時,亦觀察到認為結晶缺陷的明點。
本發明係在經由使III族原料氣體與氮源氣體反應之時而使結晶成長於基板上之氣相成長裝置中,將提供可降低結晶缺陷之III族氮化物單結晶製造裝置者作為課題。另外,提供使用該裝置之結晶成長方法。另外,提供加以降低經由反射x線拓樸像而作為明點所觀察之結晶缺陷的氮化鋁單結晶。
然而,在本說明書中,經由反射x線拓樸像所觀察的明點係相當於經由反射x線拓樸像而觀察到之氮化鋁單結晶(AlN單結晶)基板之例如自(114)面之繞射相時所見的結晶缺陷,對於觀測(114)面之情況,作 為缺陷部分的繞射變強的結果,而作為明點所觀測。對於改變測定之繞射面之情況,係相同缺陷處係亦有做為暗點所投射出的情況。
本發明者們係檢討的結果,經由將氮源氣體,和選自鹵化氫氣體,及鹵素氣體的至少1種鹵系氣體,從相同的供給噴嘴同時供給至反應域之時,發現可解決上述課題者。
本發明之第1形態係具有經由使III族原料氣體與氮源氣體反應之時而具有使III族氮化物結晶成長於基板上之反應域的反應器,和加以配設於該反應域,支持基板之支持台,和供給III族原料氣體於反應域之III族原料氣體供給噴嘴,和供給氮源氣體於反應域之氮源供給噴嘴,而氮源氣體供給噴嘴則具有將氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體供給至反應域之構造者為特徵之III族氮化物單結晶製造裝置。
本發明之第2形態係經由(a)供給III族原料氣體及氮源氣體於有關本發明之第1形態之III族氮化物單結晶製造裝置之反應域之時,具有使該III族原料氣體與該氮源氣體反應之工程,而在工程(a)中,將氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體,從氮源氣體供給噴嘴供給至反應域者為特徵之III族氮化物單結晶的製造方法。
本發明之第3形態係存在於(114)面的反射X線拓樸像之明點的數密度為20個/cm2以下者為特徵之氮化鋁單結晶。
本發明之第4形態係包含形成發光元件層於有關本發明之第3形態之氮化鋁單結晶上的工程者為特徵之晶圓的製造方法。
本發明之第5形態係依上述順序具有經由有關本發明之第4形態而製造晶圓的工程,和切斷該晶圓之工程為特徵之發光二極體之製造方法。
如根據有關本發明之第1形態之III族氮化物單結晶製造裝置,在經由使複數之原料氣體反應而使結晶成長於基板上之氣相成長裝置中,因可抑制III族原料與氮源原料之高反應性之故,可成長加以降低微小之結晶缺陷的III族氮化物結晶者。
如根據有關本發明之第2形態之III族氮化物單結晶之製造方法,可製造加以降低微小之結晶缺陷的III族氮化物單結晶者。
如根據本發明之第3形態,可提供加以降低微小之結晶缺陷,對於紫外線範圍的透過性優越之高品質的III族氮化物單結晶者。
如根據有關本發明之第4形態之晶圓的製造方法,可製造可提升發光元件的製造產率之晶圓者。
如根據有關本發明之第5形態之發光二極體的製造方法,可提升發光二極體的製造產率者。
10‧‧‧反應域
11‧‧‧反應器
12‧‧‧基板(基底基板)
13‧‧‧支持台(承受器)
14‧‧‧擠出氣體導入口
15‧‧‧排氣口
16‧‧‧原料部外部加熱裝置
17‧‧‧成長部外部加熱裝置
20‧‧‧原料部反應域
21‧‧‧原料部反應器
22‧‧‧III族金屬原料
23‧‧‧原料鹵系氣體導入噴嘴
24‧‧‧III族原料氣體供給噴嘴
25‧‧‧III族原料供給噴嘴吹出口
26‧‧‧III族追加鹵系氣體供給噴嘴
27‧‧‧III族追加鹵系氣體合流部
31‧‧‧氮源氣體導入口
32‧‧‧氮源氣體供給噴嘴
33‧‧‧氮源氣體吹出口
34‧‧‧V族追加原料鹵系氣體導入噴嘴
35‧‧‧連接部
36‧‧‧反應域內先行供給氣體計算範圍
100‧‧‧III族氮化物單結晶製造裝置
圖1係模式性地說明有關本發明之一實施形態的氣相成長裝置100的剖面圖。
圖2係在實施例1所得到之氮化鋁結晶之反射X線拓樸像。
圖3係在比較例2所得到之氮化鋁結晶之反射X線拓樸像。
以下,對於本發明之實施形態,參照圖面加以說明。在圖中,係有省略一部分符號者。在本說明書中,對於數值A及B「A~B」係只要無特別另外規定,意味「A以上B以下」。對於在該表記中省略數值A之單位的情況,附加於數值B之單位則作為數值A之單位而加以適用者。然而,以下所示之形態係本發明的例示,本發明並非加以限定於此等形態者。
<1. III族氮化物單結晶製造裝置>
對於有關本發明之第1形態之III族氮化物單結晶製造裝置加以說明。圖1係模式性地說明有關本發明之一實 施形態之III族氮化物單結晶製造裝置100(在以下,有單稱作「裝置100」者)之剖面圖。
III族氮化物單結晶製造裝置100係具有:經由使III族原料氣體及氮源氣體反應而具有使結晶成長於基板上之反應域10的反應器11,和加以配設於反應域10,支持基板(基底基板)12之支持台13,和供給III族原料氣體至反應域10之III族原料氣體供給噴嘴24,和供給氮源氣體至反應域10之氮源氣體供給噴嘴32。
氮源氣體供給噴嘴32係具有將氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體(在以下,有單稱為「鹵系氣體」者)供給至反應域的構造。
鹵系氣體係亦可為自鹵化氫氣體所成之氣體,而亦可為自鹵素氣體所成之氣體,亦可為鹵化氫氣體與鹵素氣體之混合氣體。
在圖1中,加以顯示有導入鹵系氣體至氮源氣體供給噴嘴32之構造的一例。在裝置100中,氮源氣體供給噴嘴32係具有:導入氮源氣體至反應器11內之氮源氣體導入口31,和排出氮源氣體於反應域10之氮源氣體吹出口33,和加以設置於自氮源氣體導入口31至氮源氣體吹出口33為止之間,加以連接供給鹵系氣體(在以下中,有將追加於此氮源氣體之鹵系氣體,稱為「V族追加鹵系氣體」者)之鹵系氣體導入噴嘴34(V族追加鹵系 導入噴嘴34)之連接部35。然而,本發明之III族氮化物單結晶製造裝置係氮源氣體供給噴嘴則在只要可同時供給氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體於反應域,並不加以限定於圖1之構造者。
另外,圖1之裝置100係具有:加以配置於反應域10之上流側,具有使鹵系氣體與III族金屬原料22反應而為使III族原料氣體產生的原料部反應域20之原料部反應器21,和導入鹵系氣體至原料部反應器21之原料鹵系氣體導入噴嘴23。並且,III族原料氣體供給噴嘴24係具備將III族原料氣體排出於反應域10之III原料氣體吹出口25。
III族氮化物單結晶製造裝置100係作為III族原料氣體而使用III族鹵化物氣體,而作為氮源氣體而使用氮源氣體,經由HVPE法而使III族氮化物單結晶成長。對於反應域10之下流側係加以設置有反應器11之氣體排氣口15,而加以供給之各種的氣體係自氣體排氣口15加以排出於反應器11之外部。以下,對於使用HVPE法之情況而加以說明。
對於圖1係雖未加以圖示,但裝置100係更具有外處理室於反應器11之外側亦可。對於反應域10係加以設置支持台(承受器)13。該支持台13係呈可旋轉地支持基板12地,加以連結於旋轉驅動軸(未圖示)亦可。旋轉驅動軸係將來自電動機的動力傳達至支持台13,以適當的旋轉速度而使支持台13旋轉。反應器11係 更具有為了加熱支持台13之高頻率線圈等之局部加熱裝置(未圖示)。然而,作為局部加熱裝置係在只要可適當地加熱支持台,除了高頻率線圈以外,亦可採用阻抗式加熱器其他之公知的加熱手段。
對於原料部反應器21之內部係加以配置III族金屬原料22(例如,鋁,鎵等),經由供給鹵系氣體(具體而言係氯化氫氣體或氯氣等)於原料部反應器21之時,於原料部反應域20,作為III族原料氣體,生成有III族鹵化物氣體(例如,氯化鋁氣體,氯化鎵氣體等)。III族鹵化物氣體係可經由加熱之III族金屬(例如,鋁,鎵,銦)的固體或液體與鹵化氫氣體(例如,溴化氫氣體,氯化氫氣體)或鹵素氣體(例如,氯氣)之反應而使其產生者。為了使其反應進行,而原料部反應器21係經由原料部外部加熱裝置16,加熱為適合反應之溫度(例如,在氯化鋁氣體的產生中係通常150~1000℃程度、理想為300~660℃程度、更理想為300~600℃程度,而在氯化鎵氣體的產生中係通常300~1000℃程度等)。作為原料部外部加熱裝置16,係可無特別加以限定而使用阻抗式加熱器等之公知的加熱手段。
在原料部產生器21所產生之III族鹵化物氣體(III族原料氣體)係經由III族原料氣體供給噴嘴24而加以導入至反應器11內之反應域10。III族原料氣體供給噴嘴24係呈將III族鹵化物氣體(III族原料氣體),從支持台13之側上方,朝向支持台13之上方而吹出地加 以配設。
III族原料氣體供給噴嘴24係於一方的端部具有III族原料氣體供給噴嘴吹出口25,而另一方的端部係加以連接於原料部反應器21。III族原料氣體供給噴嘴24係在自一方的端部至另一方的端部為止之間,具有可拆裝之接合部。經由加以設置可拆裝之接合部於III族原料氣體供給噴嘴24之時,於經由III族氮化物單結晶之成長而析出物產生於III族原料氣體供給噴嘴24之吹出口附近的情況,成為可容易地交換III族原料氣體供給噴嘴24者。對於此接合部係可無特別限制使用螺絲接合等之公知的接合方式者,例如,從拆裝的容易度,或將接合部的氣密性作為良好而減少氣體洩漏的觀點,可理想使用疊合方式之推拔形狀的接合構造者。
另外,於III族原料氣體供給噴嘴24之從一方的端部之III族原料氣體供給噴嘴吹出口25至另一方的端部之原料部反應器21為止之任意位置,加以設置有為了供給鹵系氣體(以下,將追加於此III族原料氣體之鹵系氣體,有稱作「III族追加鹵系氣體」者)之鹵系氣體供給噴嘴26(III族追加鹵系氣體供給噴嘴26)所合流之III族追加鹵系氣體合流部27亦可。III族追加鹵系氣體係為鹵化氫(例如,氯化氫氣體)及/或鹵素氣體(例如,氯氣)。經由使III族追加鹵系氣體合流於在原料部反應器21內部所產生之III族鹵化物氣體之時,成為可將III族鹵化物氣體與III族追加鹵系氣體之氣體組成比控制 成任意的組成。
作為構成為了供給III族原料氣體之原料鹵系氣體供給噴嘴23,原料部反應器21,III族追加鹵系氣體供給噴嘴26,III族追加鹵系氣體合流部27,III族原料氣體供給噴嘴24,及加以設置於III族原料氣體供給噴嘴24之拆裝可能之接合部(未圖示)的材料,可例示耐熱玻璃,石英玻璃,氧化鋁,二氧化鋯,不鏽鋼,或英高鎳等耐腐蝕性合金等,其中,可理想使用石英玻璃者。
氮源氣體供給噴嘴32係從氮源氣體導入口31引導氮源氣體於反應域10。氮源氣體導入口31之氮源氣體吹出口33係呈從支持台13之側上方且原料鹵系氣體供給噴嘴23之III族原料氣體供給噴嘴吹出口25之上方,朝向支持台13之上方,吹出氮源氣體地加以配設。
在裝置100中,於氮源氣體供給噴嘴32之從一方的端部之氮源氣體吹出口33至另一方的端部之氮源氣體導入口31之間的任意位置,加以設置有連接為了供給V族追加鹵系氣體之鹵系氣體導入噴嘴34(V族追加鹵系導入噴嘴34)之連接部35。對於連接部35之上流側,係加以設置有導入V族追加鹵系氣體之V族追加鹵系導入噴嘴34,而自V族追加鹵系氣體導入噴嘴34係加以導入V族追加鹵系氣體。V族追加鹵系氣體係鹵化氫(例如,氯化氫氣體)及/或鹵素氣體(例如,氯氣),在自氮源氣體導入口31所供給之氮源氣體與連接部35而合流。合流之V族追加鹵系氣體係與氮源氣體同時,自氮 源氣體吹出口33加以供給至反應域10。
另外,氮源氣體供給噴嘴32係於一方的端部具有氮源氣體吹出口33,而另一方的端部則加以連接於氮源氣體導入口31。氮源氣體供給噴嘴32係於一方的端部與另一方的端部之間,具有拆裝可能之接合部(未圖示)亦可。經由加以設置可拆裝之接合部於氮源氣體供給噴嘴32之時,於經由III族氮化物單結晶之成長而析出物產生於氮源氣體供給噴嘴32之吹出口附近的情況,成為可容易地交換氮源氣體供給噴嘴32者。對於此接合部係可無特別限制使用螺絲接合等之公知的接合方式者,例如,從拆裝的容易度,或將接合部的氣密性作為良好而減少氣體洩漏的觀點,可理想使用疊合方式之推拔形狀的接合構造者。
另外,經由加以設置氮源氣體吹出口33於較III族原料氣體供給噴嘴吹出口25為上方之時,可均一地供給氮源氣體(氮源氣體)於支持台13上。另外,氮源氣體導入口31係設置於較III原料氣體供給噴嘴吹出口25為上方者為佳,但對於作為氮源氣體而使用氨氣的情況,係氨氣比較容易擴散之故,將氮源氣體吹出口33設置於III族原料氣體吹出口220a之下方亦可。
作為構成為了供給氮源氣體之氮源氣體導入口31,V族追加鹵系氣體導入口34,V族追加鹵系氣體導入噴嘴34,連接部35,氮源氣體供給噴嘴32,及加以設置於氮源氣體供給噴嘴32之拆裝可能之接合部(未圖 示)的材料,可例示耐熱玻璃,石英玻璃,氧化鋁,二氧化鋯,不鏽鋼,或英高鎳等耐腐蝕性合金等,其中,可理想使用石英玻璃者。
自III原料氣體供給噴嘴吹出口25所供給之III族原料氣體,和自氮源氣體吹出口33所供給之氮源氣體則經由在成長部之反應域10進行反應之時,於加以設置於支持台13上之基板12上,III族氮化物單結晶則成長。為了使其反應進行,而基板12係在加熱為適合反應之溫度(例如,在氮化鋁單結晶之成長中係通常1000~1700℃程度、理想為1200~1700℃程度、更理想為1350~1650℃程度,而在氮化鎵單結晶的成長中係通常800~1100℃程度等)。對於基板之加熱係使用如上述局部加熱手段亦可,而使用於反應器11之外部設置成長部外部加熱裝置17,而加熱反應器11全體之手段亦可。亦可各以單獨使用局部加熱手段及成長部外部加熱裝置,而並用亦可。作為成長部外部加熱裝置17,係可無特別加以限定而使用高頻率加熱或阻抗加熱,光加熱等之公知的加熱手段。
在裝置100中,反應器11係從於內部具有反應域10之情況,由石英玻璃,氧化鋁,藍寶石,耐熱玻璃等之耐熱性且耐酸性之非金屬材料所構成者為佳。於反應器11之外周,將反應器11加工用地設置外處理室(未圖示)亦可。外處理室係由與反應器11同樣之材質構成亦可,而外處理室係因未直接地接觸於反應域10之故, 亦可由一般的金屬材料,例如不鏽鋼等加以構成者。
在有關本發明之上述說明中,主要例示經由HVPE法而使III族氮化物單結晶成長之形態之III族氮化物單結晶製造裝置100,但本發明係並非加以限定於該形態。例如,亦可作為經由MOCVD法而使III族氮化物單結晶成長之形態之氣相成長裝置者。更具體而言係可作為III族原料供給部則作為III族原料氣體而供給III族有機金屬化合物氣體(例如,三甲鋁氣體或三甲基鎵氣體等)之形態的氣相成長裝置者。此情況,對於原料部反應器21係未配置III族金屬原料22,而可作為III族原料氣體而供給使III族有機金屬化合物氣化之氣體者。
另外,即使經由HVPE法而使III族氮化物單結晶成長之情況,亦可作為於原料部反應器21未加以形成III族金屬原料22之形態者。例如,亦可作為經由加熱裝置而將另外氣化或自氣體儲藏裝置所釋放之III族鹵化物氣體升溫至所期望的溫度(例如150~1000℃等),作為III族原料氣體而供給的形態者。
另外,例如經由HVPE法而使混晶成長之情況,亦可於原料部反應器配置複數種類之III族金屬原料,經由鹵化物氣體的供給而使III族鹵化物之混合氣體產生,將該混合氣體通過III族原料氣體供給噴嘴24而導入至反應域10者。在另一方面,當作為未配置III族金屬原料之形態的原料部反應器時,即,亦可採用未進行鹵化物氣體與III族金屬的反應,而另外生成III族鹵化物之 混合氣體,經由加熱裝置而將該混合氣體升溫至所期望的溫度(例如150~1000℃等),作為III族原料氣體而供給之形態的原料部反應器者。更且,在圖1之裝置100中係加以設置原料部反應器21於反應器11之內部,但亦可作為加以配置原料部反應器於反應器之外部的形態者。
在有關本發明之上述說明中,氮源氣體供給噴嘴32則例示具有導入鹵系氣體之構造的形態之裝置100。在裝置100中,從V族追加鹵系氣體導入噴嘴34,加以導入V族追加鹵系氣體,與氮源氣體導入口31加以供給之氮源氣體在連接部35合流,合流之V族追加鹵系氣體係與氮源氣體同時自氮源氣體吹出口33加以供給至反應域10。並且,加以供給至反應域10之氮源氣體則經由與自III族原料氣體供給噴嘴吹出口25加以供給至反應域10之III族原料氣體反應之時,於基板12上,經由HVPE法而成長有III族氮化物單結晶。上述之V族追加鹵系氣體係具有在反應域10緩和III族原料氣體與氮源氣體之反應的進行之作用,經由抑制在氣相中之兩氣體的反應或III族氮化物結晶之微粒子生成之時,認為帶來降低成長於基板12上之III族氮化物單結晶中之細微的結晶缺陷之效果者。其結果,不僅降低在所製造之III族氮化物單結晶之反射X線拓樸像作為明點所觀察之細微的結晶缺陷,還認為一帶來降低在諾馬斯基微分相差干涉顯微鏡所觀察之附著粒子的效果。
如氨氣之氮源氣體係容易與V族追加鹵系氣 體反應而形成蒸氣壓低之化合物。因此,在裝置100中,為了作為呈可抑制混合之氮源氣體與V族追加鹵系氣體之氣體溫度,而於裝置外周部具有外部加熱手段者為佳。例如,對於作為氮源氣體而供給氨氣,而作為V族追加鹵系氣體而供給氯化氫氣體及/或氯氣之情況,將自V族追加鹵系氣體與氮源氣體所合流之連接部35至氣體流之下流側之後,至少超過基板12為止之氣體溫度,維持為250℃以上、更理想係335℃以上、又更理想係350℃以上,抑制經由氨氣與氯化氫氣體及/或氯氣之反應而生成之氯化氨之析出者為佳。自連接部35氣體流之下流側的溫度上限值係雖無特別加以限制,但例如,可作為1200℃以下者。另外,對於為了將控制作為容易,自連接部35,將在上流側之氮源氣體及V族追加鹵素氣體之溫度作為250℃以上者為佳,而作為335℃以上者更佳,作為350℃以上者又更佳。雖在較連接部35為上流側之氣體溫度的上限值亦無特別加以限制者,但例如,可作為1200℃以下。另外,為了不易引起析出,亦可以氮氣,氫氣,或稀有氣體等之公知的載氣而稀釋氮源氣體及V族追加鹵系氣體同時而進行供給者。
關於上述V族追加鹵系氣體的加熱,係可如在圖1所示之裝置100,與原料部反應器21同時經由公知的加熱手段加以加熱者,但對於此情況,V族追加鹵系氣體的溫度則成為與原料部反應器21略同樣的溫度。對於欲將V族追加鹵系氣體與原料部反應器21控制成不同 的溫度情況,係亦可作為經由連接部35與原料部反應器21偏移配置成前後(在氣體的流動方向之前後)之時,個別地加熱兩者(例如另外加熱V族追加鹵系氣體)之形態者。
在本發明之III族氮化物單結晶製造裝置中,從更提升降低微小之結晶缺陷的效果之觀點,從氮源氣體供給噴嘴加以供給至反應域之V族追加鹵系氣體的量則對於該V族追加鹵系氣體中之鹵原子的物質量之氮源氣體中之氮原子的物質量而言的比率:RV-H=(V族追加鹵系氣體中之鹵原子的物質量)/(氮源氣體中之氮元素的物質量)則較0為大而成為1000以下的量則為佳。比率RV-H係依據V族追加鹵系氣體及氮源氣體的同時之供給量而加以算出。RV-H係可將在結晶成長裝置中一般使用於氣體的供給量之控制之質量流量(通過每單位時間所賦予的面之物質的量)為基礎而算出者。例如,對於作為氮源氣體而100sccm流通氨氣,同時,作為V族追加鹵系氣體而100sccm流通氯化氫氣體之情況,氮原子的物質量亦因成為相當100sccm,而氯原子的物質量亦成為相當100sccm之故,RV-H係算出為1。對於該比率RV-H為0的情況,係氣相反應的抑制效果則變小,未加以發揮降低III族氮化物單結晶中之細微的結晶缺陷之效果。另一方面,對於該比率RV-H超過1000之情況,氮源氣體與III族原料氣體的反應則不易進行,而有III族氮化物單結晶之成長速度 降低之傾向。當考慮降低附著粒子及細微之結晶缺陷的效果,及III族氮化物單結晶之成長速度時,該比率RV-H係0.05~100者為佳,而0.1~50者為更佳。
本發明之III族氮化物單結晶製造裝置係結晶的成長速度為快之故而原料供給量則容易變多,對於以HVPE法而製造氮化鋁單結晶之情況可特別理想使用。此理由係認為III族原料氣體之氯化鋁與氮源氣體之氨氣的反應則一般而言為快,具有不可逆性之故。對於使氮化鎵結晶與氮化銦結晶成長之情況,氮化物結晶本身則容易以比較低溫引起熱分解之外,環境中之鹵化氫氣體或作為載氣而經常所使用之氫氣與氮化物結晶產生反應,而再次對氯化物或氫化物產生化學變化之故,表面上之氮化物結晶之生成速度係比較慢,而反應係可逆的。另一方面,氮化鋁結晶係因對於如此的特性貧乏之故,對在使氮化鋁結晶成長時,係產生必須呈加以抑制經由III族原料氣體與氮源氣體在反應域中由氣相中產生反應之時的III族氮化物微粒子之生成,和對於III族氮化物單結晶中的細微之結晶缺陷的導入地,精密地控制反應域10。
在有關本發明之上述說明中,例示存在有III族原料氣體供給噴嘴24單管於反應器11內部形態之氣相成長裝置100,但本發明係未加以限定於該實施形態。例如,呈被覆III族原料氣體供給噴嘴24的外周地於III族原料氣體的流路外側,加以形成阻障氣體的流路(未圖示),呈圍繞III族原料氣體供給噴嘴吹出口25地加以形 成阻障氣體吹出口亦可。作為阻障氣體係例如,作為氫,氮,氬,氦等阻障氣體而可無特別限制地使用一般的氣體者。阻障氣體係作為可控制III族原料氣體與氮源氣體在反應域10混合之位置之外,因可作為將在未意圖之位置的氮源氣體與III族原料氣體之混合或反應防範未然之故,可大幅度地抑制對於噴嘴之附著物的析出。另外,III族原料氣體供給噴嘴24之軸心(噴嘴的高度方向之中心位置)係在對於結晶成長未帶來影響之範圍,對於阻障氣體噴嘴之軸心而言高度方向作為偏移(錯位)亦可。
另外,III族氮化物單結晶製造裝置100係具有供給擠出氣體之構造。即,III族原料氣體,氮源氣體,及阻障氣體則對於加以設置有排氣口15側,呈在反應器11內未有逆流而一樣地流通地,將擠出氣體導入至反應器11內,加以設置擠出氣體導入口14亦可。作為擠出氣體係例如,可使用氫,氮,氬,氦等之一般的氣體。更且,經由III族原料氣體,氮源氣體,及阻障氣體則呈對於加以設置有排氣口15側,在反應器11內未逆流而一樣地流通地,將減壓排氣反應器11內部之機構(未圖示)設置於排氣口15之更下流側之時,抑制反應器11內部之氣流的逆流亦可。反應器11內部的壓力係在未對於結晶成長帶來不良影響之範圍中加以選擇。反應器11內部的壓力係通常為0.1~1.5atm,而一般而言為0.2~大氣壓。另外,以同樣的目的,設置如專利文獻5所記載之整流板於裝置內亦可。
氮源氣體吹出口33,及III族原料氣體供給噴嘴吹出口25的剖面形狀係並非特別加以限制者,而可為圓形,橢圓形,矩形等,因應供給之基板的尺寸而自由地選擇形狀者。
<2. III族氮化物單結晶之製造方法>
有關本發明之第2形態之III族氮化物單結晶之製造方法係具有:經由供給III族原料氣體及氮源氣體於有關上述本發明之第1形態之III族氮化物單結晶製造裝置的反應域之時,使III族原料氣體與該氮源氣體反應的工程(在以下有單稱做工程(a)者)。在工程(a)中,經由III族原料氣體與氮源氣體之反應之時,於基板上成長有III族氮化物單結晶。在工程(a)中,從氮源氣體供給噴嘴,加以供給氮源氣體與鹵系氣體於反應域。
在以下中,作為有關本發明之第1形態之III族氮化物單結晶製造裝置,舉例說明使用上述說明之III族氮化物單結晶製造裝置100的形態。
作為在III族氮化物單結晶製造裝置100(參照圖1),從III族原料氣體供給噴嘴24所供給之III族原料氣體,係可無特別限制地採用氯化鋁,溴化鋁等之鹵化鋁;氯化鎵等之鹵化鎵;氯化銦等之鹵化銦等之III族鹵化物氣體,或三甲基鋁,三甲基鎵等之III族有機金屬化合物氣體。對於製造混晶之情況,係使用含有複數之III族原料氣體的混合氣體。採用HVPE法之情況,如上 述,於III族原料氣體供給噴嘴24之上流側的原料部反應器21,配置III族金屬原料22,經由外部加熱裝置16而加熱原料部反應器21(例如,對於使氯化鋁產生的情況,通常150~1000℃程度、理想為300~660℃程度、更理想為300~600℃程度,對於使氯化鎵產生之情況,通常300~1000℃程度等)同時,可將經由供給鹵系氣體(例如,氯化氫氣體或氯氣等)於原料部反應器21而在原料部反應器21所產生的III族鹵化物氣體,通過III族原料氣體供給噴嘴24而導入至反應域10內者。
另外,於自III族原料氣體供給噴嘴24至原料部反應器21為止之任意位置,設置III族追加鹵系氣體合流部27,使III族追加鹵系氣體合流於III族原料氣體亦可。III族追加鹵系氣體係為鹵系氣體(例如,氯化氫氣體或氯氣等)。經由使鹵系氣體合流於在原料部反應器21內部所產生之III族鹵化物氣體之時,可將III族鹵化物氣體與鹵系氣體之氣體組成比控制成任意的組成比。III族追加鹵系氣體之供給的有無係為任意。但對於作為III族原料氣體而使用鹵化鎵,製造氮化鎵單結晶之情況,III族追加鹵系氣體與鹵化鎵氣體之同時的供給量之比率:(III族追加鹵系氣體中的鹵原子之物質量)/(鹵化鎵氣體中的鹵原子之物質量)係理想為0.01~10,而更理想為0.05~1。另外,對於作為III族原料氣體而使用鹵化鋁,成長氮化鋁單結晶之情況,III族追加鹵系氣體與鹵化鋁氣體之同時的供給量之 比率:(III族追加鹵系氣體中的鹵原子之物質量)/(鹵化鋁氣體中的鹵原子之物質量)係理想為0.1~1000,而更理想為0.5~100。上述之比率的算出,亦可依據結晶成長裝置中一般使用於氣體的供給量之控制之質量流量(通過每單位時間所賦予的面之物質的質量)而進行。經由使III族追加鹵系氣體與III族原料氣體共存之時,可抑制例如經由氯化鋁氣體或氯化鎵氣體之不均化反應的III族金屬的析出者。
另一方面,亦可將III族金屬原料,取代於所配置形態之原料部反應器21,而採用供給另外所生成之III族原料氣體(對於HVPE法之情況係III族鹵化物氣體,而對於MOCVD法之情況係III族有機金屬化合物氣體),經由加熱裝置而將此等升溫至所期望之溫度(例如室溫~200℃)為止之形態的III族原料供給部。
此等之III族原料氣體或III族追加鹵系氣體係通常,由經由載氣而稀釋之狀態加以供給。作為載氣係可無特別限制地使用氫氣,氮氣,氦氣,或氬氣,或者此等之混合氣體者,而使用包含氫氣之載氣者為佳。對於以載氣加以稀釋之狀態而供給III族原料氣體之情況,III族原料氣體的濃度係可將III族原料氣體與稀釋該III族原料氣體之載氣的合計量作為基準(100體積%),例如作為0.0001~10體積%。III族原料氣體之供給量係例如可作為0.005~500sccm。然而,如後述,III族原料氣體係在開 始對於鹵系氣體的基板12上之供給之後,供給至反應域10(基板12上)為佳。
從原料部反應器21,藉由III族原料氣體供給噴嘴24而加以導入至反應域10之III族原料氣體進行氮化,為了得到III族氮化物單結晶,從氮源氣體導入口31,藉由氮源氣體供給噴嘴32而將氮源氣體導入至反應域10。此氮源氣體係通常由經由載氣而稀釋之狀態加以供給。作為氮源氣體係可無特別限制地採用含有氮的反應性氣體,但在成本與處理容易性的點,可理想使用氨氣。作為載氣係可無特別限制地使用氫氣,氮氣,氦氣,或氬氣,或者此等之混合氣體者,而使用包含氫氣之載氣者為佳。對於在經由載氣而稀釋氮源氣體之狀態而供給至反應域10之情況,依據裝置的大小等,可決定氮源氣體的供給量,及載氣的供給量者。當考慮III族氮化物單結晶之製造容易度等時,載氣的供給量係為50~10000sccm者為佳,而100~5000sccm則為更佳。氮源氣體的濃度係可將氮源氣體與稀釋該氮源氣體的載氣之合計量作為基準(100體積%),例如作為0.0000001~10體積%。另外,氮源氣體之供給量係例如可作為0.01~1000sccm。將氮源氣體供給至基板12上之順序係並無特別加以限制者,但如後述,於加以供給鹵系氣體及III族原料氣體於反應域10(基板12上)之前,供給氮源氣體於反應域10(基板12上)者為佳。
在裝置100中,於自氮源氣體導入口31至氮 源氣體吹出口33為止之任意處,加以設置有連接部35,由V族追加鹵系氣體導入噴嘴34加以導入V族追加鹵系氣體,而自氮源氣體導入口31所供給之氮源氣體與V族追加鹵系氣體則在連接部35合流,而合流之V族追加鹵系氣體係與氮源氣體同時,自氮源氣體吹出口33加以供給至反應域10。對於自連接部35至下流側之溫度,至連接部35自上流側之溫度,合流於氮源氣體之V族追加鹵系氣體的供給量等之最佳形態,係在上述(<1. III族氮化物單結晶製造裝置>)既已說明過。
對於鹵系氣體的反應域10之供給係在加以供給III族原料氣體於反應域10之前進行開始者為佳。更詳細為在加以供給III族原料氣體於基板12上之前,開始對於鹵系氣體的基板12上之供給者為佳。也就是,在加以供給III族原料氣體與氮源氣體於基板12上而兩者產生反應之前,開始對於鹵系氣體的基板12上之供給者為佳。在包含經由在供給III族原料氣體於基板12上之前,開始對於鹵系氣體之基板12上的供給之時,經由使用同一之上述III族氮化物單結晶製造裝置而反覆工程(a)而進行之時而製造複數之III族氮化物單結晶之工程(工程(b))之形態的III族氮化物單結晶之製造方法中,成為可降低所製造之III族氮化物單結晶之品質不均,安定製造良好品質之III族氮化物單結晶者。較III族原料氣體先行供給之鹵系氣體係亦可為V族追加鹵系氣體,而III族追加鹵系氣體亦可,亦可為其雙方。
在加以供給III族原料氣體於基板12上之前,開始對於鹵系氣體的基板12上之供給之情況,鹵系氣體則從噴嘴的吹出口流出至加以供給至基板12上為止之時間,係可將對於將從加以供給鹵系氣體之噴嘴的排出口部分(在圖1之裝置100中,係氮源氣體吹出口33或III族原料氣體吹出口25)到達至基板12為止之反應器11內的體積(cm3;在圖1之裝置100中,係反應域內先行供給氣體計算範圍36之體積),以鹵系氣體的供給量(或對於,鹵系氣體則例如與載氣等之其他的氣體同時加以供給之情況,係該其他氣體與鹵系氣體之合計得供給量)(cm3/分)相除而求得者。另外,自開始鹵系氣體的導入之後,鹵系氣體則到達至噴嘴的吹出口為止之時間,係可將構成從加以導入鹵系氣體之噴嘴的導入口至吹出口為止之鹵系氣體的移動路徑之配管內的總容積,以鹵素氣體的供給流量(或,對於鹵系氣體與例如載氣等之其他氣體則同時加以流通於同一配管之情況,係該其他氣體與鹵系氣體之合計的供給流量)相除而求得者。開始對於鹵系氣體的反應器11內之導入之後,經過了以此方法所算出之時間之後,經由開始III族原料氣體的供給之時,可確實地在III族原料氣體加以供給至基板12上之前,供給鹵系氣體於基板12上。
III族原料氣體的供給前之鹵系氣體的標準狀態換算之供給量(sccm;在以下中作為「VH0」)係並無特別加以限制者,而可經由裝置之大小等而決定其絕對 量。但從縮小成長開始之後的氣體流動的變化,而製造安定品質之III族氮化物單結晶之觀點,鹵系氣體係不僅在開始III族原料氣體之供給之前,而在開始加以供給III族原料氣體之供給之III族原料氣體之供給之後亦連續加以供給者為佳,從加以開始III族原料氣體的供給之後,亦未使供給量(絕對量)變化者為佳。即,將加以開始III族原料氣體的供給之後的鹵系氣體的標準狀態換算的供給量作為VH(sccm)之情況,VH0=VH者為佳。然而,VH0及VH係作為所供給之全鹵系氣體之合計量者。經由縮小氣體流量的變化之時,在重複製造複數之III族氮化物單結晶時,因相同氣體環境之再現則成為容易之故,降低所製造之複數的III族氮化物單結晶之品質之不均者成為容易。同樣地,對於先行於III族原料氣體而供給氮源氣體之情況,氮源氣體的供給量(絕對量)係未使其在III族原料氣體的開始前後變化者為佳。
供給III族原料氣體時之鹵系氣體的供給量係無特別加以限制者。但,從提高最終所得到之III族氮化物單結晶之結晶品質的觀點,係在供給III族原料氣體時,結晶成長時之鹵系氣體的分率(Hepi=VH/(VH+VIII))則呈滿足以下式(1)地,供給鹵系氣體及III族原料氣體者為佳。
0.5≦VH/(VH+VIII)<1.0 (1)(式(1)中,VH係鹵系氣體的標準狀態換算的供給量(sccm);VIII係III族原料氣體的標準狀態換算的供給 量(sccm))。
然而,在式(1)中,VH與VIII係表示同時之供給量。
經由鹵系氣體的分率(Hepi)呈滿足式(1)地供給鹵系氣體之時,可特別降低III族元素的鹵化物氣體(例如,鹵化鋁氣體)之平衡分壓之故,更可製造高品質之單結晶(例如,對於氮化鋁單結晶的情況,係加以降低存在於(114)面的反射X線拓樸像的明點數之單結晶)者。當考慮結晶品質與成長速度等之工業性的生產時,鹵系氣體的分率(Hepi)係0.55以上,不足1.0者更佳,而0.6以上,不足1.0者又更佳。
經由與金屬鋁或有機金屬氣體與原料生成用鹵系氣體反應而得到III族原料氣體之情況,係經由將金屬鋁或有機金屬氣體與原料生成用鹵系氣體的反應,呈未意圖性殘留有未反應的氣體地控制反應率之時,亦可生成III族原料氣體與鹵系氣體的混合氣體,而供給該混合氣體於反應域10。
一般,作為III族原料氣體而使用III族鹵化物氣體之情況,即對於經由成長速度高之HVPE法而使III族氮化物單結晶成長之情況,係容易於噴嘴附著有堆積物,而容易生成有細微的結晶。此傾向係對於使用反應速度快的鹵化鋁氣體之情況為特別顯著。從此情況,本發明之III族氮化物單結晶製造裝置及III族氮化物單結晶之製造方法係可對於經由HVPE法而使III族氮化物單結 晶成長的情況而理想使用者,而可對於經由HVPE法,而使作為III族元素而包含鋁的III族氮化物(在以下中,有稱為「Al系III族氮化物」者)之單結晶成長之情況特別理想使用者,而可對於經由HVPE法而使氮化鋁之單結晶成長之情況最為理想使用者。從此觀點,在本發明之III族氮化物單結晶之製造方法中,III族原料氣體為III族鹵化物氣體,而但氮源氣體為氨氣者為佳,而III族原料氣體為鹵化氨氣體為特別理想。III族原料氣體為鹵化氨氣體之情況,鹵化氨氣體之供給量係例如,可作為0.001~100sccm者。在使用HVPE法之氮化鋁單結晶之成長中,成長速度為5μm/h以上、理想為10μm/h以上、特別理想為超過15μm/h之情況,加以顯著發揮本發明之效果。成長速度的上限值係無特別加以限制者,但考慮工業性的生產時,例如,可作為200μm/h以下、,理想為100μm/h以下者,而對於設置從外部加熱基板12手段之情況,係例如可作為300μm/h以下者。
在III族氮化物單結晶製造裝置100之反應域10中,對於自III族原料氣體供給噴嘴24流出之III族鹵化物氣體(III族原料氣體)之流量,和自氮源氣體供給噴嘴32流出之氮源氣體之流量之間,係使阻障氣體的流量介入存在亦可。作為流出於III族原料氣體的流量與氮源氣體之流量之間的阻障氣體,係在非活性的點,及分子量為大之故而對於III族原料氣體或氮源氣體之阻障氣體的擴散為慢(阻障效果為高)的點,可理想使用氮氣體或 者氬氣,或此等之混合氣體者。但為了調整阻障氣體的效果,於氮氣體或氬氣或者此等混合氣體,混合氫氣,氦氣,氖氣等之非活性(即,不與III族原料氣體及氮源氣體反應)之低分子量氣體亦可。阻障氣體的供給量係依據裝置之尺寸,抑制混合之效果等而加以決定,並無特別加以限制者,例如可作為50~10000sccm,而理想係例如可作為100~5000sccm者。
作為使III族氮化物單結晶析出之基板12的材質,係例如可無特別限制而採用藍寶石,矽,碳化矽,氧化鋅,氮化鎵,氮化鋁,氮化鋁鎵,砷化鎵,硼化鋯,硼化鈦等。另外,對於基底基板之厚度亦無特別加以限制,例如可作為100~2000μm者。另外,構成基板12之結晶的面方位亦無特別加以限制者,例如可作為+c面、-c面、m面、a面、r面等者。
在使III族原料氣體與氮源氣體反應之前,為了除去附著於基板12之有機物,經由流通含有氫氣之載氣於反應域10之同時,藉由支持台13而加熱基板12之時,進行熱淨化者為佳。基板12之熱淨化係一般經由以1100℃而進行保持基板12,10分鐘程度而進行,但因應基板12之材質而做適宜變更亦可者。例如,作為基板12而使用藍寶石基板之情況,一般而言係以1100℃而進行保持基板12進行10分鐘程度。
之後,通過III族原料氣體供給噴嘴24而將III族原料氣體導入至反應域10,且通過氮源氣體供給噴 嘴32而導入氮源氣體於反應域10之同時,使III族氮化物單結晶成長於所加熱的基板12上。此時,如上述,在加以供給鹵素氣體於基板12上之後,開始III族原料氣體的供給,使III族原料氣體與氮源氣體反應而開始結晶成長者為佳。氮源氣體,III族原料氣體,及鹵素氣體的供給順序係例如,可使用(i)氮源氣體,鹵系氣體,III族原料氣體的順序,(ii)鹵系氣體,氮源氣體,III族原料氣體的順序,或(iii)鹵系氣體,III族原料氣體,氮源氣體之順序者。在上述(i)的情況中,同時地供給氮源氣體與鹵系氣體亦可。在上述(ii)及(iii)的情況中,同時地供給氮源氣體與III族原料氣體亦可。其中,從防止基板12之結晶成長面的分解的觀點,係採用上述(i)之供給順序者為佳。即,工程(a)係依序包含開始對於氮源氣體之基板上的供給之工程,和開始對於鹵系氣體之基板上的工程,和開始對於III族原料氣體之基板上的供給之工程者為佳。
結晶成長時之基板12的加熱溫度係對於使用HVPE法之情況,係理想為1000~1700℃、而對於經由HVPE法而製造氮化鋁單結晶之情況係特別理想為1200~1650℃,對於使用MOCVD法之情況係理想為1000~1600℃。在本發明之III族氮化物單結晶之製造方法的III族氮化物單結晶之成長係對於使用HVPE法之情況(即,作為III族原料氣體而使用III族鹵化物氣體之情況),係通常,以大氣壓附近之壓力下(即,反應器內 部,III族原料氣體供給噴嘴內部,及氮源氣體供給噴嘴內部的壓力成為0.1~1.5atm之條件下,對於製造氮化鋁單結晶之情況係理想為成為0.2atm~大氣壓的條件下)所進行,對於使用MOCVD法之情況(即,作為III族原料氣體而使用III族有機金屬化合物氣體之情況),係通常以100Pa~大氣壓之壓力下加以進行。
使用HVPE法之情況,III族原料氣體(III族鹵化物氣體)之供給量係換算為在對於供給分壓(所供給之全氣體(載氣,III族原料氣體,氮源氣體,阻障氣體,擠出氣體)之標準狀態的體積合計而言之III族原料氣體的標準狀態之體積比例),通常為1Pa~1000Pa。使用MOCVD法之情況,III族原料氣體(III族有機金屬化合物氣體)的供給量係以供給分壓換算,通常為0.1~100Pa。氮源氣體的供給量係並無特別加以限制者,但一般而言係所供給之上述III族原料氣體之0.5~1000倍,而理想為1~200倍。
在成長III族氮化物單結晶之過程中,經由摻雜具有與III族元素及氮所屬之V族元素不同之價數的元素之時,將結晶的電性傳導性控制為n形或p形,或者半絕緣性者,或將所摻雜之不純物,作為在III族氮化物單結晶之成長之活性劑而使其作用之時,亦可將結晶成長方位控制為+c軸方向或-c軸方向、m軸方向、a軸方向等者。作為此等之摻雜劑係可無特別限制地使用包含C、Si、Ge、Mg、O、S等之元素之分子。
成長時間係係呈加以達成所期望之成長膜厚地加以適宜調節。進行一定時間結晶成長之後,經由停止III族原料氣體的供給而結束結晶成長。之後,將基板12降溫至室溫為止。經由以上的操作,可使III族氮化物單結晶成長於基板12上者。
本發明之III族氮化物單結晶製造裝置及III族氮化物單結晶之製造方法係並無特別加以限制者,但可理想使用於使膜厚20μm以上之III族氮化物單結晶,特別是氮化鋁單結晶成長於基板上之情況,而特別理想可使用於使膜厚100μm以上之III族氮化物單結晶,特別是氮化鋁單結晶成長於基板上之情況者。III族氮化物單結晶之厚度的上限係並無特別加以限制者,但例如可作為2000μm以下者。另外,III族氮化物單結晶,特別是氮化鋁單結晶之尺寸係無特別加以限制,但越大時越容易顯著表現出降低附著粒子及細微結晶缺陷的效果。因此,III族氮化物單結晶之尺寸,特別是氮化鋁單結晶之尺寸係作為成長有III族氮化物單結晶於該基板上之面積(結晶成長面的面積),理想為100mm2以上、更理想為400mm2以上、又理想為1000mm2以上。結晶成長面的面積之上限值係無特別加以限定者,但例如可作為10000mm2以下者。
<3. 氮化鋁單結晶>
如上述,本發明之III族氮化物單結晶製造裝置,及 III族氮化物單結晶之製造方法係適合於氮化鋁單結晶之製造。例如,經由使用III族氮化物單結晶製造裝置100之時,緩和在反應域10,V族追加鹵系氣體則與III族原料氣體與氮源氣體的反應之進行,進而可有效地抑制在氣相中的兩氣體之反應,或III族氮化物單結晶之微粒子生成者。其結果,在所得到之III族氮化物單結晶中,可降低附著粒子(經由諾馬斯基微分相差干涉顯微鏡所觀察之厚度0.05~2.0mm、最大外徑1~200μm之粒子)、及細微之結晶缺陷者。因此,即使為經由原料氣體的反應性高,而高品質之結晶成長困難之HVPE法的氮化鋁單結晶,亦可製造降低細微之結晶缺陷的氮化鋁單結晶。具體而言,可製造存在於(114)面的反射X線拓樸像的明點(在以下中,有單稱做「明點」者)之數量密度為0~20個/cm2之氮化鋁單結晶。在該氮化鋁單結晶之附著粒子的數量密度係為0~20/cm2者為佳。
另外,如使用上述III族氮化物單結晶裝置,可以結晶成長面的面積為100mm2以上之尺寸而製造明點的數量密度為0~20個/cm2之高品質之氮化鋁單結晶者。在該氮化鋁單結晶之附著粒子的數量係為0~20個/cm2以下者為佳。結晶成長面的面積係理想為100mm2以上,但上限值係無特別加以限制者,而越大對於工業性而為有利。但考慮工業性的生產時,結晶成長面的面積係作為10000mm2以下者為佳。然而,氮化鋁單結晶之厚度係並無特別加以限制,但理想為20~3000μm。
本發明之氮化鋁單結晶係經由降低明點之時,亦可將在波長265nm之補正吸收係數α265作為0cm-1以上,不足20cm-1者。更且,亦可將波長220nm之補正吸收係數α220作為0cm-1以上,不足20cm-1者。在此補正吸收係數α265及α220係意味表示板狀樣品之直線光透過率的式:T265=(1-R265)2exp(-α265x)/{1-R265 2exp(-2α265x)}…(2a) T220=(1-R220)2exp(-α220x)/{1-R220 2exp(-2α220x)}…(2b)中,T265及T220係表示各波長265nm及波長220nm之直線光透過率,x係顯示板厚(cm),R265及R220係顯示各波長265nm及波長220nm之反射率。在本說明書中,氮化鋁單結晶之波長265nm之補正吸收係數α265係作為經由作為R265=0.160而解出式(2a)而加以算出的值。另外,氮化鋁單結晶之波長220nm之補正吸收係數α220係作為經由作為R220=0.218而解出式(2b)而加以算出的值。
本發明之氮化鋁單結晶係可經由有關本發明之第1形態的III族氮化物單結晶製造裝置,例如上述說明之III族氮化物單結晶製造裝置100,即自氮源氣體供給噴嘴32供給氮源氣體與鹵系氣體於反應域之裝置而製造。此理由係如以下加以推定。對於使用以往的裝置而製造III族氮化物單結晶之情況,係認為III族原料氣體與氮源氣體則容易在反應域10產生混合,經由在反應域中 之氣相反應而生成有III族氮化物結晶的細微粒子,經由此等附著於基板12之時,細微之結晶缺陷(在(114)面之反射X線拓樸像所觀察的明點)則增加者。此現象係認為特別在使用反應性高,含有鋁之原料氣體,包含鋁之氮化物結晶的製造中為顯著。當在反應域中的氣相反應成為顯著時,不僅細微的結晶缺陷增加於III族氮化物單結晶中,在反應域所生成之微粒子更產生粒成長而成為成長粒子,除了對於裝置內亦增加成長粒子之堆積物之外,認為增加有附著於成長中之基板表面之成長粒子的數量。在以往的技術中,經由使用整流隔壁(記載於專利文獻5)或阻障氣體流量等而調整III族氮化物單結晶製造裝置內之氣體的流動之時,抑制附著粒子本身的產生(對於成長粒子之基板表面的附著,嘗試該附著粒子成為原因之結晶缺陷的降低。但在該以往技術中,無法控制至在較成長粒子為更細微之大小所產生之氣相反應者,而加以推定細微之結晶缺陷係無法降低者。如根據有關本發明之第1形態的III族氮化物單結晶製造裝置,認為經由緩和V族追加鹵系氣體則與III族原料氣體和氮源氣體的反應之進行,有效地抑制在氣相中之兩氣體的反應或III族氮化物結晶微粒子的生成之時,可降低經由附著粒子之結晶缺陷,及細微之結晶缺陷的雙方者。在本發明之III族氮化物單結晶製造裝置及III族氮化物單結晶之製造方法中,將V族追加鹵系氣體,對於認為本來不該混合之氮源氣體勉強使其共存之狀態而供給至反應域10。經由此,而有效地加以 阻礙在反應域10,III族原料氣體與氮源氣體之反應,而加以推定顯著地加以得到微粒子生成之抑制效果者。
例如,於以設置整流隔壁之III族氮化物單結晶製造裝置而製作之III族氮化物單結晶基板,施以化學性機械研磨(CMP)之後,經由反射X線拓樸像而評估此研磨表面時,加以觀察到認為結晶缺陷的明點。當詳細地觀察此此明點時,明點係為對應於附著粒子之存在處。此觀察結果,經由反射X線拓樸像而加以觀察之明點係顯示對應於與附著粒子不同之細微之結晶缺陷者。
如此之細微的結晶缺陷係在以往的評估方法之諾馬斯基微分相差干涉顯微鏡(光學顯微鏡)中係無法觀察,可開始經由反射X線拓樸像而觀察。在氮化鋁單結晶之(114)面之反射X線拓樸像中,作為明點所觀察之結晶缺陷係為細微之故,在觀測如X線搖擺曲線測定之結晶(基板)的平均特性的手法中,判別則為困難。另外,在觀察經由以酸或鹼基而蝕刻CMP表面而加以形成於結晶缺陷部分之凹槽的手法(蝕刻槽法)中,因至轉位(在本發明成為明點所觀測之缺陷為小之結晶缺陷)為止成為凹槽之故,缺陷的數量則評估為過大。在反射X線拓樸像作為明點所觀察之結晶缺陷係與分類為刃狀轉位或螺旋轉位等之轉位不同者。
對於經由反射X線拓樸像之結晶缺陷的評估係一般加以使用透過方式之評估。透過方式係將高強度之X線照射於基板,在基板內部中,在結晶面歷經繞射之 後,將自基板透過之繞射X線成像者。因此,對於在基板內部全體中存在有結晶缺陷之情況,係繞射X線為建設性或破壞性,或單純散射變弱的結果,於結晶缺陷部分產生成像對比。有關本發明之第3形態之氮化鋁單結晶的評估,使用反射X線拓樸像之理由係對於在形成作為發光元件或電子裝置而發揮機能之層積構造於氮化鋁單結晶基板上時,因基板最表面之缺陷則影響於該發光元件或電子裝置之機能。例如,形成發光元件於氮化鋁單結晶基板上之情況,當於基板表面存在有結晶缺陷時,成為帶來電流之洩漏等不良情況。呈對於加以構築於氮化鋁單結晶基板上之層積構造的機能發現帶來不良影響之結晶缺陷,係主要經由反射X線拓樸像所觀測之基板表面附近的結晶缺陷。在經由透過X線拓樸像之觀察中,因成為包含基板內部全體之評估之故,無法適當地評估基板表面附近之結晶缺陷者。
另外,在透過X線拓樸像中,作為其X線源,一般在同步輻射光或旋轉對陰極型等之高強度而為高價的構成則成為必要。對此,在反射X線拓樸像中,在使用銅標靶製X線管球之比較低強度而為廉價之光源,亦可充分地評估明點者,可降低評估成本。當然,使用對於X線源以透過方式加以使用之旋轉對陰極型或同步輻射光,亦可進行明點之評估者。
此明點係對應於經由反射X線拓樸像而觀測自氮化鋁單結晶基板之例如(114)面的繞射像時所觀察 之結晶缺陷,對於觀測(114)面之情況,係作為缺陷部分之繞射變強之結果,而作為結果,作為明點加以觀測。對於改變測定之繞射面之情況,係相同缺陷處係亦有做為暗點所觀測的情況。例如,使用(105)面或(214)面的繞射而測定反射X線拓樸像之情況,該缺陷處係作為暗點而顯現出,但在本發明者們之檢討中,經由(114)面測定所得到之明點的位置,和經由(105)面測定所得到之暗點的位置係確認完全一致。
另外,在供給III族原料氣體之前開始對於鹵系氣體之基板12上之供給的形態之III族氮化物單結晶之製造方法,使用同一之III族氮化物單結晶製造裝置(即批次式)反覆製造複數之氮化鋁單結晶之情況,成為可降低所製造之III族氮化物單結晶之品質之不均者。具體而言,可製造存在於(114)面的反射X線拓樸像之明點的數密度之平均值為0~20個/cm2、標準偏差為0~10個/cm2、標準偏差/平均值為0~100%之氮化鋁單結晶。更且,從使LED或電子裝置之產率提升之觀點,係明點的數密度之平均值為0~5個/cm2、標準偏差為0~2個/cm2、標準偏差/平均值為0~60%者為佳。
本發明之氮化鋁單結晶係理想為經由HVPE法而加以製造。作為III族原料氣體而使用氯化鋁氣體,經由HVPE法加以製造之氮化鋁單結晶中之氯含有量係作為氯原子之數量密度,通常為1×1012~1×1019個/cm3、而理想為1×1014~1×1017個/cm3。經由氯含有量為1× 1012~1×1019個/cm3之時,可作為高品質之氮化鋁單結晶者。然而,氮化鋁單結晶中之氯含有量係可經由二次離子質量分析而測定者。經由二次離子質量分析之氮化鋁單結晶中的氯含有量之測定係作為將一次離子種作為Cs+,而將一次加速電壓作為15kV而進行者。
(氮化鋁單結晶之用途)
有關本發明之第3形態之氮化鋁單結晶係結晶缺陷少之故,可作為發光二極體用的成長基板,發光二極體基板,電子裝置用基板而最佳使用。特別是,結晶成長的面積為100mm2以上、在(114)面之反射X線拓樸像所觀察之明點的數量密度為20個/cm2以下之氮化鋁單結晶係經由切斷形成發光元件層於其上方所得到之層積體(晶圓)之時,而製造發光二極體時,可提升產率者。
另外,如根據在(114)面之反射X線拓樸像所觀察之明點的數量密度之標準偏差為2個/cm2以下、標準偏差/平均值為60%以下之氮化鋁單結晶,在反覆製造時,容易預測產率,而庫存管理則成為容易。隨之,可防止過多庫存或庫存不足者。
<4. 晶圓的製造方法>
有關本發明之第4形態之晶圓的製造方法,係包含形成發光元件層於有關本發明之第3形態之氮化鋁單結晶上之工程。
發光元件層之層構成係無特別加以限制者,但作為一例,可舉出包含n型層,p型層,及加以配置於n型層與p型層之間的活性層之層構成者。活性層係亦可為具有量子井構造,而具有體異質接合的層亦可。作為構成發光元件層之各層的半導體,係可特別理想採用III族氮化物半導體。在對於氮化鋁單結晶表面形成發光元件層,係可無特別限制採用MOCVD法等之公知的結晶成長方法。
<5. 發光二極體的製造方法>
有關本發明之第5形態之發光二極體的製造方法,係依序具有經由有關本發明之第4形態之晶圓的製造方法而製造晶圓之工程,和切斷該晶圓之工程。
在切斷晶圓時,可無特別限制採用雷射切割或刀切割,隱形切割等之公知的方法者。
〔實施例〕
以下,舉出實施例而詳細說明本發明,但本發明係未加以限定於以下的實施例者。在以下的實施例及比較例中,顯示作為III族氮化物單結晶而製造氮化鋁單結晶的例。
(經由反射X線拓樸像之結晶缺陷的評估)
對於反射X線拓樸像之測定係使用高分解能薄膜X線繞射裝置(日本PANalytical製X‘Pert Pro MRD)。 自使用Cu標靶之X線管球,以加速電壓45kV、燈絲電流40mA的條件,使特性X線產生,以線焦點取出X線束。所產生的X線束係經由X線反射鏡模組(GOEBEL反射鏡)而作為高強度之平行X線束。此時,於X線反射鏡模組之入口,安裝1/2°發散狹縫(橫限制狹縫)與50μm寬度之縱限制狹縫,做成光束寬度聚焦為約1.2mm之X線束之後,照射於設置於測定台上之對象物的氮化鋁單結晶基板。經由2次元半導體X線檢出器(日本PANalytical製PIXcel3D半導體檢出器)而檢出自氮化鋁單結晶基板之(114)面繞射之CuKα1線,而取得反射X線拓樸像。2次元半導體X線檢出器係256×256像素之故,可經由1次之反射X線拓樸像而測定之基板範圍則於y方向限制為約8.4mm、而於x方向限制為約5.7mm。因此,為了測定基板全面之反射X線拓樸像,將測定台適宜移動於x,y方向,反覆測定基板面內之不同處之反射X線拓樸像,經由連結所取得之基板面內之各位置的反射X線拓樸像之時,取得基板面內全面之反射X線拓樸像。畫像解析所取得之反射X線拓樸像而計數明點的個數,經由以氮化鋁單結晶基板之面積相除之時,算出每單位面積之明點的存在密度(個/cm2)。
測定之氮化鋁單結晶(基板)之結晶面係採用(114)面。此理由係如根據(114)面之測定,因使用上述裝置之情況,可加以得到充分明點的觀察之分解能之故。對於(114)面以外,亦可使用(103)面或(105) 面等之反射X線拓樸像的測定,但對於例如使用上述之裝置而取得(103)面之反射X線拓樸像之情況,分解能不足之故,明點的觀察則成為不明瞭。隨之,至少可取得具有在上述測定條件之分解能以上的分解能的反射X線拓樸像者為佳,但在本發明者盡可能之調查中,為了測定明點而實用之分解能的上限係確認1像素則成為10μm×10μm程度之分解能。對於在較此高分解能進行測定之情況,係反射X線拓樸像之每測定1次之測定範圍則變窄,因對於基板全面的測定需要長時間之故而不理想。對於測定面為不同之情況,係繞射條件改變之故,而有明點作為暗點而加以觀察之情況,但本發明者們確認明點位置與暗點位置係為一致者。另外,對於在基板面內,結晶面產生彎曲,存在有在基板面滿足繞射條件之處與從繞射條件脫離之處的情況,呈在各位置滿足繞射條件地進行氮化鋁單結晶之測定軸校準者為佳。
取得反射X線拓樸像之氮化鋁單結晶基板的表面係進行化學性機械研磨(CMP)研磨,除去表面之研磨損傷層,完成為未於反射X線拓樸像加以觀測到研磨損傷或研磨傷痕之狀態。表面粗度係以原子力顯微鏡之5×5μm2視野觀察,作為平方平均粗度(RMS)而完成為0.15nm以下之狀態。對於存在有研磨傷之情況,係明點為不明瞭之故,明點之數量密度之評估則成為困難。
(附著粒子之評估)
使用諾馬斯基微分相差干涉顯微鏡(日本NIKON製LV150),以觀察倍率100~500倍明視野觀察成為成長之後的對象之氮化鋁單結晶基板表面,作為附著粒子而觀察到氮化鋁單結晶層表面,及存在於該層中之厚度0.05~2.0mm、最大外徑1~200μm大小的附著異物或缺陷。附著粒子的個數係自氮化鋁單結晶層之主表面側,以諾馬斯基微分相差干涉顯微鏡而觀察主表面全體,經由計數存在於基板全體之個數而求得者。
<實施例1> (氮化鋁單結晶層之成長) (基底基板之準備)
作為基底基板而使用經由昇華法而加以製作之直徑22mm,厚度510μm之市售的氮化鋁單結晶基板。以丙酮與異丙醇而超音波洗淨此基底基板之氮化鋁單結晶基板之後,氮化鋁單結晶基板之Al極性側呈成為成長面地,將該氮化鋁單結晶基板設置於HVPE裝置內之BN塗層石墨製承受器上。
(氮化鋁單結晶之製造條件)
對於氮化鋁單結晶層之成長係在圖1所示之形態的HVPE裝置(III族氮化物單結晶製造裝置100)中,使用從III族原料氣體供給噴嘴24之前端,設置整流隔壁於上流側250mm之流通通道內部之裝置。整流隔壁係加以設 置有24個直徑3mm之貫通孔的石英玻璃製的板,熔接設置於石英玻璃製流通通道之內壁。V族追加鹵系氣體供給噴嘴的連接部35係作為與氮源氣體供給噴嘴32,原料部反應器21同時,經由原料部加熱裝置16而加熱至400℃之狀態。
通過整流隔壁之貫通孔,流通從流通通道更上流側擠出載氣。對於擠出載氣係使用以7:3的比例而混合氫與氮之混合載氣。
(III族原料氣體的供給)
於較III族原料氣體供給噴嘴24更上流部之原料部反應器21,配置加以保持於石英玻璃製皿上之6N等級之高純度鋁。將原料部反應器21內部加熱為400℃,經由與載氣同時將氯化氫氣體供給16.8sccm於原料部反應器21之時,使氯化鋁氣體產生。於所產生之氯化鋁氣體,從III族追加鹵系氣體供給噴嘴26,藉由III族追加鹵系氣體合流部27而供給1.1sccm氯化氫氣體,作為包含氫素氮混合載氣1782.1sccm之合計1800sccm的混合氣體,從III族原料供給噴嘴吹出口25導入該混合氣體於反應域10。
(氮源氣體的供給:V族追加鹵系氣體的追加)
另外,從氮源氣體供給噴嘴32係以氨氣31sccm與氯化氫氣體3.1sccm(RV-H係0.1),氫載氣165.9sccm的合 計,供給200sccm於反應域。通過整流隔壁所供給之擠出載氣之質量流量係作為6500sccm。另外,從阻障氣體噴嘴供給氮氣1500sccm。供給至流通通道內之氣體的合計流量係作為10000sccm。另外,成長中的系統內之壓力係保持為0.99atm。
(基底基板的溫度與氮化鋁單結晶之成長)
依照上述條件,自氮源氣體供給噴嘴32而供給氨氣(加以追加有氯化氫氣體之混合氣體)同時,加熱基板12為1500℃。之後,自III族原料氣體供給噴嘴24而供給氯化鋁氣體(加以追加有氯化氫氣體之混合氣體),將氮化鋁單結晶層進行11小時成長。氮化鋁單結晶層之成長後,停止氯化鋁氣體與氨氣之供給,將基板冷卻至室溫為止。
(氮化鋁單結晶層之分析)
對於所得到之氮化鋁單結晶層未有破斷或斷裂,而氮化鋁單結晶層之厚度係396μm。氮化鋁單結晶層之厚度係經由從成長後之氮化鋁單結晶基板之總厚度906μm,扣除在成長前測定之氮化鋁單結晶基板之厚度510μm之時而算出。使用諾馬斯基微分相差干涉顯微鏡而觀察氮化鋁單結晶層之粒子附著時,附著粒子之數量密度係1個/cm2。另外,(002)面之X線搖擺曲線半值寬度係16秒。
接著,為了除去異常成長於基板外周之多結 晶的氮化鋁粒子,而將基板外周形狀切斷成1邊為9.8mm之六角形(作為面積為2.5cm2),再經由機械研磨而將氮化鋁單結晶層側的表面作為平坦化,更且經由CMP研磨而除去氮化鋁單結晶層表面的研磨損傷層。此時之研磨量係142μm,殘存之氮化鋁單結晶層之厚度係254μm。另外,經由原子力顯微鏡之5×5μm2視野觀察而測定平方平均粗度(RMS)係0.10nm。取得CMP研磨之氮化鋁單結晶層全面之(114)面的反射X線拓樸像。經由畫像解析而加以觀察到之明點係9個,經由以基板面積2.5cm2相除之時而明點密度(明點之數量密度)係加以算出為3.6個/cm2(參照圖2)。該氮化鋁單結晶中之氯素含有量係經由以加速電壓15kV而照射Cs+之二次離子質量分析係作為氯原子之數量密度而測定為3×1015個/cm3
接著,為了評估透過率而經由機械研磨而除去種結晶之氮化鋁單結晶基板,得到僅由以HVPE法所成長之氮化鋁單結晶層所成之氮化鋁單結晶層自立基板。具體而言,經由自氮化鋁單結晶基板側的表面進行機械研磨之時,除去氮化鋁單結晶基板,得到厚度185μm之氮化鋁單結晶層自立基板。經由白色干涉顯微鏡(Zygo公司NewView7300)之接物鏡50倍觀察而確認到機械研磨後之基板表面的表面粗度時,平方平均粗度(RMS)的值係1.2nm。使用雙射束方式之紫外.可視分光光度計(日本分光製分光光度計V-7300)而評估此自立基板之直線光透過率時,在波長265nm為62%,而在波長220nm中為 47.6%。在板狀樣品之直線透過率測定中,有著將直線光透過率作為T,將板厚作為x,將反射率作為R,將吸收係數作為α之下式的相關。
T=(1-R)2exp(-αx)/{1-R2exp(-2αx)}
對於反射率係有波長依存性,在使用在紫外線範圍中未看到吸收之氮化鋁單結晶而調查之波長265nm及220nm的反射率係R265=0.160、R220=0.218。假定此等反射率的值之情況,從直線光透過率T及樣品之板厚x,經由上述的式而可求得補正係數α265及α220者,在本樣品中各為8.0cm-1、及15cm-1。
<實施例2>
除未設置整流隔壁,III族追加鹵系氣體導入管26,及III族追加鹵系氣體合流部27以外,係使用與實施例1同樣之裝置,於氮化鋁單結晶基板上,成長氮化鋁單結晶層。經由於配置於III族原料氣體供給噴嘴24之更上流部的高純度鋁,與載氣同時供給10.8sccm氯化氫氣體而使氯化鋁氣體產生。另外,從氮源氣體供給噴嘴32係以氨氣26sccm與氯化氫氣體1.3sccm(RV-H係0.05),及氫載氣172.7sccm(以合計200sccm),供給於反應域10。將基板12的溫度作為1450℃,10小時,成長氮化鋁單結晶。除以上條件以外係做成與實施例1同樣條件。
對於所得到之氮化鋁單結晶層未有破斷或斷裂,而氮化鋁單結晶層之厚度係260μm。使用諾馬斯基微 分相差干涉顯微鏡而觀察氮化鋁單結晶層之粒子附著時,附著粒子之數量密度係5個/cm2。另外,(002)面之X線搖擺曲線半值寬度係21秒。
接著,與實施例1同樣地,將基板外周形狀,切斷為1邊為9.8mm之六角形(作為面積為2.5cm2),於氮化鋁單結晶層側的表面施以機械研磨與CMP。此時之研磨量係75μm,殘存之氮化鋁單結晶層之厚度係185μm。經由原子力顯微鏡之5×5μm2視野觀察而測定平方平均粗度(RMS)係0.13nm。在CMP研磨之氮化鋁單結晶層全面的(114)面之反射X線拓樸像中所觀察的明點係為38個,經由以基板面積2.5cm2相除之時,明點密度(明點之數量密度)係加以算出為15個/cm2。經由二次離子質量分析而測定之氯含有量係作為氯原子的數量密度為4×1015個/cm3
接著,經由機械研磨而除去種結晶之氮化鋁單結晶基板,得到僅由以HVPE法所成長之氮化鋁單結晶層所成之氮化鋁單結晶層自立基板。所得到之氮化鋁單結晶自立基板的厚度為105μm,而經由白色干涉顯微鏡而確認之機械研磨面之平方平均粗度(RMS)的值係1.1nm。在評估此自立基板之直線光透過率時,在波長265nm中為67.2%、波長220nm中為59%,在波長265nm及波長220nm之補正吸收係數α265及α220係各為6.8cm-1、及7.4cm-1
<實施例3>
使用與實施例1同樣之裝置,於氮化鋁單結晶基板上,成長氮化鋁單結晶層。經由於配置於III族原料氣體供給噴嘴24之更上流部的高純度鋁,與載氣同時供給9sccm氯化氫氣體而使氯化鋁氣體產生。於所產生之氯化鋁氣體,藉由III族追加鹵系氣體合流部27而供給7sccm氯化氫氣體,作為包含氫素氮混合載氣1784sccm之合計1800sccm的混合氣體,從III族原料供給噴嘴吹出口25供給該混合氣體於反應域10。從氮源氣體供給噴嘴32係供給氨氣20sccm,氯化氫氣體20sccm(RV-H係1.0),及氫載氣160sccm(以合計200sccm),供給於反應域10。將基板12的溫度作為1450℃,16小時,成長氮化鋁單結晶。除以上條件以外係做成與實施例1同樣條件。
對於所得到之氮化鋁單結晶層未有破斷或斷裂,而氮化鋁單結晶層之厚度係336μm。使用諾馬斯基微分相差干涉顯微鏡而觀察氮化鋁單結晶層之粒子附著時,附著粒子之數量密度係3個/cm2。另外,(002)面之X線搖擺曲線半值寬度係15秒。
接著,與實施例1同樣地,將基板外周形狀,切斷為1邊為9.8mm之六角形(作為面積為2.5cm2),於氮化鋁單結晶層側的表面施以機械研磨與CMP。此時之研磨量係138μm,殘存之氮化鋁單結晶層之厚度係198μm。經由原子力顯微鏡之5×5μm2視野觀察而測定平方平均粗度(RMS)係0.11nm。在CMP研磨之氮 化鋁單結晶層全面的(114)面之反射X線拓樸像中所觀察的明點係為13個,經由以基板面積2.5cm2相除之時,明點密度(明點之數量密度)係加以算出為5.2個/cm2。經由二次離子質量分析而測定之氯含有量係作為氯原子的數量密度為7×1014個/cm3
接著,經由機械研磨而除去種結晶之氮化鋁單結晶基板,得到僅由以HVPE法所成長之氮化鋁單結晶層所成之氮化鋁單結晶自立基板。所得到之氮化鋁單結晶自立基板的厚度為120μm,而經由白色干涉顯微鏡而確認之機械研磨面之平方平均粗度(RMS)的值係1.0nm。在評估此自立基板之直線光透過率時,在波長265nm中為70.1%、波長220nm中為60%,在波長265nm及波長220nm之補正吸收係數α265及α220係各為2.6cm-1、及5.2cm-1
<實施例4>
從氮源氣體供給噴嘴32係供給氨氣20sccm,氯化氫氣體50sccm(RV-H係2.5),及氫載氣130sccm(以合計200sccm),供給於反應域10。將基板12的溫度作為1450℃,16小時,成長氮化鋁單結晶。除以上條件以外係做成與實施例1同樣條件。
對於所得到之氮化鋁單結晶層未有破斷或斷裂,而氮化鋁單結晶層之厚度係272μm。使用諾馬斯基微分相差干涉顯微鏡而觀察氮化鋁單結晶層之粒子附著時, 附著粒子之數量密度係2個/cm2。另外,(002)面之X線搖擺曲線半值寬度係15秒。
接著,與實施例1同樣地,將基板外周形狀,切斷為1邊為9.8mm之六角形(作為面積為2.5cm2),於氮化鋁單結晶層側的表面施以機械研磨與CMP。此時之研磨量係95μm,殘存之氮化鋁單結晶層之厚度係177μm。經由原子力顯微鏡之5×5μm2視野觀察而測定平方平均粗度(RMS)係0.10nm。在CMP研磨之氮化鋁單結晶層全面的(114)面之反射X線拓樸像中所觀察的明點係為13個,經由以基板面積2.5cm2相除之時,明點密度(明點之數量密度)係加以算出為4.1個/cm2。經由二次離子質量分析而測定之氯含有量係作為氯原子的數量密度為8×1014個/cm3
接著,經由機械研磨而除去種結晶之氮化鋁單結晶基板,得到僅由以HVPE法所成長之氮化鋁單結晶層所成之氮化鋁單結晶層自立基板。所得到之氮化鋁單結晶自立基板的厚度為100μm,而經由白色干涉顯微鏡而確認之機械研磨面之平方平均粗度(RMS)的值係1.0nm。在評估此自立基板之直線光透過率時,在波長265nm中為69.8%、波長220nm中為61%,在波長265nm及波長220nm之補正吸收係數α265及α220係各為3.5cm-1、及4.7cm-1
<比較例1>
依照記載於專利文獻5之實施例1,使用設置整流隔壁之裝置,以未供給V族追加鹵系氣體而成長氮化鋁單結晶。整流隔壁之形態係與在本發明之實施例1所使用之整流隔壁同樣,除未設置III族追加鹵素氣體供給噴嘴26,及III族追加鹵系氣體合流部27之外,係使用具有與在記載於本說明書之上述實施例1所使用之HVPE裝置同樣構成之HVPE裝置。
作為基底基板而使用經由昇華法而加以製作之直徑18mm,厚度500μm之市售的氮化鋁單結晶基板。經由於配置於III族原料氣體供給噴嘴24之更上流部的高純度鋁,與載氣同時供給10.8sccm氯化氫氣體而使氯化鋁氣體產生。另外,自氮源氣體供給噴嘴32係將氨氣26sccm、氫載體174sccm(以合計為200sccm),供給至反應域10,10小時,成長氮化鋁單結晶。除以上條件以外係做成與實施例1同樣條件。
對於所得到之氮化鋁單結晶層未有破斷或斷裂,而氮化鋁單結晶層之厚度係320μm。使用諾馬斯基微分相差干涉顯微鏡而觀察氮化鋁單結晶層之粒子附著時,附著粒子之數量密度係2個/cm2。另外,(002)面之X線搖擺曲線半值寬度係25秒。
接著,以與實施例1同樣的步驟,自基板,切斷為1邊為3mm之四角形(作為面積為0.09cm2),於氮化鋁單結晶層側的表面施以機械研磨與CMP。此時之研磨量係115μm,殘存之氮化鋁單結晶層之厚度係 205μm。經由原子力顯微鏡之5×5μm2視野觀察而測定平方平均粗度(RMS)係0.13nm。在CMP研磨之氮化鋁單結晶層全面的(114)面之反射X線拓樸像中所觀察的明點係為6個,經由以基板面積0.09cm2相除之時,明點密度(明點之數量密度)係加以算出為67個/cm2。經由二次離子質量分析而測定之氯含有量係作為氯原子的數量密度為9×1015個/cm3
接著,經由機械研磨而除去種結晶之氮化鋁單結晶基板,得到僅由以HVPE法所成長之氮化鋁單結晶層所成之氮化鋁單結晶自立基板。所得到之氮化鋁單結晶自立基板的厚度為150μm,而經由白色干涉顯微鏡而確認之機械研磨面之平方平均粗度(RMS)的值係1.1nm。在評估此自立基板之直線光透過率時,在波長265nm中為72.4%、波長220nm中為64.2%,在波長265nm及波長220nm之補正吸收係數α265及α220係各為0cm-1、及0cm-1。在此,補正吸收係數則成為0係因將本樣品作為標準試料而設定反射率R265與R220之故。
<比較例2>
自氮源氣體供給噴嘴係供給氨氣31sccm與氫載體169sccm(合計200sccm),但除未供給V族追加鹵系氣體以外係以與本發明之實施例1同樣的條件而進行結晶成長。對於所得到之氮化鋁單結晶層未有破斷或斷裂,而氮化鋁單結晶層之厚度係429μm。使用諾馬斯基微分相差干 涉顯微鏡而觀察氮化鋁單結晶層之粒子附著時,附著粒子之數量密度係6個/cm2。另外,(002)面之X線搖擺曲線半值寬度係19秒。
接著,與實施例1同樣地,將基板外周形狀,切斷為1邊為9.8mm之六角形(作為面積為2.5cm2),於氮化鋁單結晶層側的表面施以機械研磨與CMP。此時之研磨量係140μm,殘存之氮化鋁單結晶層之厚度係289μm。經由原子力顯微鏡之5×5μm2視野觀察而測定平方平均粗度(RMS)係0.12nm。在CMP研磨之氮化鋁單結晶層全面的(114)面之反射X線拓樸像中所觀察的明點係為68個,經由以基板面積2.5cm2相除之時,明點密度(明點之數量密度)係加以算出為27個/cm2(參照圖3)。經由二次離子質量分析而測定之氯含有量係作為氯原子的數量密度為3×1015個/cm3
接著,經由機械研磨而除去種結晶之氮化鋁單結晶基板,得到僅由以HVPE法所成長之氮化鋁單結晶層所成之氮化鋁單結晶自立基板。所得到之氮化鋁單結晶自立基板的厚度為202μm,而經由白色干涉顯微鏡而確認之機械研磨面之平方平均粗度(RMS)的值係1.1nm。在評估此自立基板之直線光透過率時,在波長265nm中為50.7%、波長220nm中為41%,在波長265nm及波長220nm之補正吸收係數α265及α220係各為17cm-1、及21cm-1
將以上的實施例,比較例的結果,彙整顯示 於表1。
實施例5 (基底基板之洗淨)
作為基底基板而使用經由昇華法而製作之直徑22mm,厚度510μm之市售的氮化鋁單結晶基板。以市售的丙酮與異丙醇而超音波洗淨此基底基板之氮化鋁單結晶基板。
基底基板之洗淨後,將氮化鋁單結晶基板之Al極性側,呈成為成長面地設置於HVPE裝置(圖1之裝置)內的BN塗層石墨製支持台(承受器)上。
(氮化鋁單結晶之製造準備)
使用於氮化鋁單結晶之成長的HVPE裝置係採用圖1形態之構成。如圖1之形態,使用從III族原料氣體供給 噴嘴24之前端,設置整流隔壁於上流側250mm之反應器11內部的裝置。整流隔壁係加以設置有24個直徑3mm之貫通孔的石英玻璃製的板,熔接設置於石英玻璃製反應器11之內壁。通過整流隔壁之貫通孔,流通從反應器11之更上流側供給之擠出載氣。對於擠出載氣係使用以7:3的比例而混合氫與氮之氫素氮混合載氣,總流量係作為6500sccm。另外,成長中的反應器11之壓力係保持為0.99atm。
(氮源氣體的供給:V族追加鹵系氣體的追加(氯化氫氣體的先行供給))
從氮源氣體供給噴嘴32,以氨氣20sccm與氯化氫氣體20sccm、氫載氣160sccm之合計為200sccm(鹵系氣體(氯化氫氣體)20sccm/全量(複數氣體)200sccm),供給至反應域10(基底基板12上)。此時,氮源氣體供給噴嘴32之溫度作為400℃,氨氣與氯化氫氣體呈未反應地進行調整。另外,自阻障氣體噴嘴(呈可自氮源氣體供給噴嘴32,及III族原料氣體供給噴嘴24之間供給阻障氣體地加以配置之噴嘴,但未圖示)供給氮氣體1500sccm。
(基底基板之溫度)
上述,自氮源氣體供給噴嘴32供給合計200sccm之前述複數氣體,而自阻障氣體噴嘴供給1500sccm氮氣體 之同時,將基底基板12加熱為1450℃。
(III族追加鹵系氣體的供給(氯化氫氣體之先行供給))
將基底基板12加熱為1450℃之後,經由自III族追加鹵系氣體供給噴嘴26供給氯化氫氣體7sccm,自原料鹵系氣體導入噴嘴23供給氫素氮混合載氣1793sccm之時,自III族原料氣體供給噴嘴24供給合計1800sccm(鹵系氣體(氯化氫氣體)7sccm/全量1800sccm)之氣體。供給至反應器11內之氣體的合計流量係作為10000sccm。
(經由III族原料氣體的供給之成長開始)
在開始氯化氫氣體之先行供給25秒之後,自原料鹵系氣體導入噴嘴23導入9sccm氯化氫氣體,與預先加熱至400℃ 6N等級之高純度鋁反應,而使氯化鋁氣體產生。同時減少9sccm氫素氮混合載氣,作成1784sccm。氯化鋁氣體係自III族原料氣體供給噴嘴24加以供給至基底基板12上,開始結晶成長。至加以供給有III族原料氣體(氯化鋁氣體)為止之氯化氫氣體供給量VH0係作為VH0=VH=27sccm,而加以供給III族原料氣體之後之鹵系氣體(氯化氫氣體)之分率(Hepi)係作為0.90。
(氮化鋁單結晶之成長)
以上述條件之氣體流量與基底基板溫度,16小時成長氮化鋁單結晶。氮化鋁單結晶之成長後,停止氯化鋁氣體,氨氣,氯化氫氣體之供給,冷卻至室溫為止。
(氮化鋁單結晶之評估)
接著,為了除去異常成長於所得到之氮化鋁單結晶之層積基板外周的多結晶之氮化鋁粒子,而切斷為1邊為9.8mm之六角形,經由機械研磨而將成長之氮化鋁單結晶側的表面作為平坦化。更且,經由CMP研磨而除去氮化鋁單結晶面之研磨損傷層。六角形之面積係2.5cm2。之後,取得CMP研磨之氮化鋁單結晶全面之(114)面的反射X線拓樸像。
(反覆製造)
以與以上同條件,使用相同反應器5次製造氮化鋁單結晶,進行評估。所得到之氮化鋁單結晶之明點密度之最小值係1.5個/cm2、最大值係5.2個/cm2。明點密度之平均值係2.8個/cm2,標準偏差係1.4個/cm2,標準偏差/平均密度係52%。將其結果示於表2。
實施例6
與實施例5相同,使用記載於圖1之裝置。(基底基板之洗淨),(氮化鋁單結晶之製造準備)係進行與實施例5同樣的操作。
(氮源氣體的供給:V族追加鹵系氣體的追加(氯化氫氣體的先行供給))
從氮源氣體供給噴嘴32,以氨氣20sccm,氯化氫氣體120sccm、氫載氣60sccm之合計為200sccm(鹵系氣體(氯化氫氣體)120sccm/全量(複數氣體)200sccm),供給至反應域10。從阻障氣體噴嘴供給氮氣1500sccm。此時,氮源氣體供給噴嘴32之溫度作為400℃,氨氣與氯化氫氣體呈未反應地進行調整。
(基底基板之溫度)
上述,自氮源氣體供給噴嘴32供給合計200sccm之前述複數氣體,而自阻障氣體噴嘴供給1500sccm氮氣體之同時,將基底基板12加熱為1450℃。
(III族追加鹵系氣體的供給(氯化氫氣體之先行供給))
將基底基板12加熱為1450℃之後,經由自III族追加鹵系氣體供給噴嘴26供給氯化氫氣體27sccm,自原料鹵系氣體導入噴嘴23供給氫素氮混合載氣1773sccm之時,自III族原料氣體供給噴嘴24供給合計1800sccm(鹵系氣體(氯化氫氣體)27sccm/全量1800sccm)之氣體。供給至反應器11內之氣體的合計流量係作為
(經由III族原料氣體的供給之成長開始)
在開始氯化氫氣體之先行供給25秒之後,自原料鹵系氣體導入噴嘴23導入9sccm氯化氫氣體,與預先加熱至400℃ 6N等級之高純度鋁反應,而使氯化鋁氣體產生。同時減少9sccm氫素氮混合載氣,作成1764sccm。氯化鋁氣體係自III族原料氣體供給噴嘴24加以供給至基底基板12上,開始結晶成長。至加以供給有III族原料氣體(氯化鋁氣體)為止之氯化氫氣體供給量VH0係作為VH0=VH=147sccm,而加以供給III族原料氣體之後之鹵系氣體(氯化氫氣體)之分率(Hepi)係作為0.98。
(氮化鋁單結晶之成長),(氮化鋁單結晶之評估),(反覆製造)係進行與實施例5同樣的操作。對於所得到之5片的氮化鋁單結晶,取得(114)面之反射X線拓樸像的結果,明點密度之最小值係0.5個/cm2、最大值係2.9個/cm2。明點密度之平均值係1.8個/cm2,標準偏差係1.0個/cm2,標準偏差/平均值係59%。將結果示於表2。
10‧‧‧反應域
11‧‧‧反應器
12‧‧‧基板(基底基板)
13‧‧‧支持台(承受器)
14‧‧‧擠出氣體導入口
15‧‧‧排氣口
16‧‧‧原料部外部加熱裝置
17‧‧‧成長部外部加熱裝置
20‧‧‧原料部反應域
21‧‧‧原料部反應器
22‧‧‧III族金屬原料
23‧‧‧原料鹵系氣體導入噴嘴
24‧‧‧III族原料氣體供給噴嘴
25‧‧‧III族原料供給噴嘴吹出口
26‧‧‧III族追加鹵系氣體供給噴嘴
27‧‧‧III族追加鹵系氣體合流部
31‧‧‧氮源氣體導入口
32‧‧‧氮源氣體供給噴嘴
33‧‧‧氮源氣體吹出口
34‧‧‧V族追加原料鹵系氣體導入噴嘴
35‧‧‧連接部
36‧‧‧反應域內先行供給氣體計算範圍
100‧‧‧III族氮化物單結晶製造裝置

Claims (17)

  1. 一種III族氮化物單結晶製造裝置,其特徵為具有:具有經由使III族原料氣體與氮源氣體反應而使III族氮化物結晶成長於基板上之反應域的反應器,和加以配設於前述反應域,支持基板之支持台,和供給III族原料氣體至前述反應域之III族原料氣體供給噴嘴,和供給氮源氣體至前述反應域之氮源氣體供給噴嘴;前述氮源氣體供給噴嘴則具有將氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體,供給至前述反應域的構造者。
  2. 如申請專利範圍第1項記載之III族氮化物單結晶製造裝置,其中,前述氮源氣體供給噴嘴則具有:導入氮源氣體於前述反應器內之氮源氣體導入口,和排出氮源氣體於前述反應域之氮源氣體吹出口,和加以設置於前述氮源氣體導入口與前述氮源氣體吹出口之間,加以連接供給選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體之鹵系氣體導入噴嘴之連接部者。
  3. 如申請專利範圍第2項記載之III族氮化物單結晶製造裝置,其中,具有將自前述氮源氣體供給噴嘴的前述連接部至前述氮源氣體吹出口為止之溫度,維持為250℃以上之氮源氣體供給噴嘴加熱手段。
  4. 如申請專利範圍第1項至第3項任一項記載之III族氮化物單結晶製造裝置,其中,自前述氮源氣體供給噴 嘴加以供給至前述反應域的前述鹵系氣體的量,則該鹵系氣體中之鹵原子的物質量之對於前述氮源氣體中之氮原子的物質量而言的比率:(前述鹵系氣體中的鹵原子之物質量)/(前述氮源氣體中之氮原子的物質量)則較0為大而成為1000以下的量。
  5. 如申請專利範圍第1項至第3項任一項記載之III族氮化物單結晶製造裝置,其中,前述III族原料氣體則為鹵化鋁氣體,前述氮源氣體則為氨氣,前述III族氮化物單結晶則為氮化鋁單結晶。
  6. 一種III族氮化物單結晶之製造方法,其特徵為具有:(a)經由供給III族原料氣體及氮源氣體至記載於如申請專利範圍第1項至第5項任一項記載之III族氮化物單結晶製造裝置之前述反應域之時,使前述III族原料氣體與前述氮源氣體反應之工程;在前述工程(a)中,自前述氮源氣體供給噴嘴,供給前述氮源氣體,和選自鹵化氫氣體及鹵素氣體之至少1種的鹵系氣體至前述反應域者。
  7. 如申請專利範圍第6項記載之III族氮化物單結晶之製造方法,其中,在前述工程(a)中,於供給前述III族原料氣體之前,開始前述鹵系氣體之對於前述基板上的供給。
  8. 如申請專利範圍第6項或第7項記載之III族氮化 物單結晶之製造方法,其中,前述工程(a)係依序具有:(i)開始前述氮源氣體之對於前述基板上的供給之工程,和(ii)開始前述鹵系氣體之對於前述基板上的供給之工程,和(iii)開始前述III族原料氣體之對於前述基板上的供給之工程。
  9. 如申請專利範圍第7項記載之III族氮化物單結晶之製造方法,其中,在前述工程(a)中,連續供給前述鹵系氣體,且在供給前述III族原料氣體時,呈滿足下述式(1)地,供給前述鹵系氣體及前述III族原料氣體者,0.5≦VH/(VH+VIII)<1.0 (1)式(1)中,VH係前述鹵系氣體的標準狀態的供給量(sccm);VIII係前述III族原料氣體的標準狀態的供給量(sccm)。
  10. 如申請專利範圍第7項記載之III族氮化物單結晶之製造方法,其中,包含(b)經由將前述工程(a),使用同一之前述III族氮化物單結晶製造裝置而反覆進行之時,製造複數之III族氮化物單結晶之工程者。
  11. 一種氮化鋁單結晶,其特徵為存在於(114)面的反射X線拓樸像之明點的數量密度為20個/cm2以下者。
  12. 如申請專利範圍第11項記載之氮化鋁單結晶,其中,氯含有量則作為氯原子之數量密度而為1×1012~1×1019個/cm3
  13. 如申請專利範圍第11項或第12項記載之氮化鋁單結晶,其中,結晶成長面的面積為100mm2以上。
  14. 如申請專利範圍第11項或第12項記載之氮化鋁單結晶,其中,在波長265nm之補正吸收係數α265則不足20cm-1者。
  15. 如申請專利範圍第11項或第12項記載之氮化鋁單結晶,其中,在波長220nm之補正吸收係數α220則不足20cm-1者。
  16. 一種晶圓的製造方法,其特徵為包含形成發光元件層於如申請專利範圍第11項至第15項任一項記載之氮化鋁單結晶上之工程。
  17. 一種發光二極體的製造方法,其特徵為依下述順序具有:經由申請專利範圍第16項記載之方法而製造晶圓之工程,和切斷該晶圓之工程者。
TW104136873A 2014-11-10 2015-11-09 Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶 TWI690632B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014228482 2014-11-10
JP2014-228482 2014-11-10
JP2015-101281 2015-05-18
JP2015101281 2015-05-18

Publications (2)

Publication Number Publication Date
TW201623707A true TW201623707A (zh) 2016-07-01
TWI690632B TWI690632B (zh) 2020-04-11

Family

ID=55954355

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108123668A TWI717777B (zh) 2014-11-10 2015-11-09 Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶
TW104136873A TWI690632B (zh) 2014-11-10 2015-11-09 Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108123668A TWI717777B (zh) 2014-11-10 2015-11-09 Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶

Country Status (4)

Country Link
US (2) US10354862B2 (zh)
EP (1) EP3219833B1 (zh)
TW (2) TWI717777B (zh)
WO (1) WO2016076270A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108026630B (zh) * 2015-09-24 2020-07-07 夏普株式会社 蒸镀源和蒸镀装置以及蒸镀膜制造方法
JP6861479B2 (ja) * 2016-06-24 2021-04-21 東京エレクトロン株式会社 プラズマ成膜方法およびプラズマ成膜装置
TWI612176B (zh) * 2016-11-01 2018-01-21 漢民科技股份有限公司 應用於沉積系統的氣體分配裝置
JP6856356B2 (ja) * 2016-11-11 2021-04-07 株式会社トクヤマ 窒化アルミニウム単結晶基板及び、該単結晶基板の製造方法
US10600645B2 (en) * 2016-12-15 2020-03-24 Samsung Electronics Co., Ltd. Manufacturing method of gallium nitride substrate
EP3686323A4 (en) 2017-09-22 2021-07-28 Tokuyama Corporation GROUP III NITRIDE SINGLE CRYSTAL SUBSTRATE
KR102450776B1 (ko) 2017-10-27 2022-10-05 삼성전자주식회사 레이저 가공 방법, 기판 다이싱 방법 및 이를 수행하기 위한 기판 가공 장치
CN111312585B (zh) * 2020-03-05 2023-12-12 润新微电子(大连)有限公司 一种低位错密度氮化物的外延层生长方法
CN116568875A (zh) 2021-08-23 2023-08-08 株式会社德山 Iii族氮化物单晶基板的清洗方法及制造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304664B1 (ko) * 1999-02-05 2001-09-26 윤종용 GaN막 제조 방법
US6632725B2 (en) * 2001-06-29 2003-10-14 Centre National De La Recherche Scientifique (Cnrs) Process for producing an epitaxial layer of gallium nitride by the HVPE method
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US7638346B2 (en) * 2001-12-24 2009-12-29 Crystal Is, Inc. Nitride semiconductor heterostructures and related methods
JP3803788B2 (ja) 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
KR100678407B1 (ko) * 2003-03-18 2007-02-02 크리스탈 포토닉스, 인코포레이티드 Ⅲ족 질화물 장치를 제조하는 방법과 이 방법으로 제조된장치
JP2006073578A (ja) 2004-08-31 2006-03-16 Nokodai Tlo Kk AlGaNの気相成長方法及び気相成長装置
JP2006114845A (ja) 2004-10-18 2006-04-27 Tokyo Univ Of Agriculture & Technology アルミニウム系iii族窒化物の製造方法
US8858708B1 (en) * 2005-01-03 2014-10-14 The United States Of America As Represented By The Secretary Of The Air Force Polycrystalline III-nitrides
JP5931737B2 (ja) * 2010-10-29 2016-06-08 株式会社トクヤマ 光学素子の製造方法
JP5859978B2 (ja) 2010-12-15 2016-02-16 株式会社トクヤマ アルミニウム系iii族窒化物単結晶の製造方法
JP5550579B2 (ja) 2011-02-10 2014-07-16 株式会社トクヤマ 三塩化アルミニウムガスの製造方法
US8778783B2 (en) * 2011-05-20 2014-07-15 Applied Materials, Inc. Methods for improved growth of group III nitride buffer layers
US8980002B2 (en) * 2011-05-20 2015-03-17 Applied Materials, Inc. Methods for improved growth of group III nitride semiconductor compounds
JP5762900B2 (ja) 2011-09-14 2015-08-12 株式会社トクヤマ ハイドライド気相エピタキシー装置およびアルミニウム系iii族窒化物単結晶を製造する方法
EP2796596B1 (en) * 2011-12-22 2021-01-27 National University Corporation Tokyo University of Agriculture and Technology A single-crystalline aluminum nitride substrate and a manufacturing method thereof
JP2013229554A (ja) * 2012-03-30 2013-11-07 Mitsubishi Chemicals Corp 周期表第13族金属窒化物半導体結晶の製造方法、それに用いるノズルおよび製造装置
WO2014031119A1 (en) 2012-08-23 2014-02-27 National University Corporation Tokyo University Of Agriculture And Technology Highly transparent aluminum nitride single crystalline layers and devices made therefrom
JP6070297B2 (ja) * 2013-03-08 2017-02-01 三菱化学株式会社 周期表第13族金属窒化物半導体結晶の製造方法
WO2014200001A1 (ja) 2013-06-10 2014-12-18 株式会社トクヤマ アルミニウム系iii族窒化物単結晶の製造方法

Also Published As

Publication number Publication date
US10354862B2 (en) 2019-07-16
WO2016076270A1 (ja) 2016-05-19
EP3219833B1 (en) 2019-06-26
TWI717777B (zh) 2021-02-01
US11348785B2 (en) 2022-05-31
US20190287799A1 (en) 2019-09-19
TW201940762A (zh) 2019-10-16
TWI690632B (zh) 2020-04-11
EP3219833A4 (en) 2018-05-30
EP3219833A1 (en) 2017-09-20
US20170330745A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
TWI717777B (zh) Iii族氮化物單結晶製造裝置、使用該裝置之iii族氮化物單結晶之製造方法、及氮化鋁單結晶
JP6042545B2 (ja) 高透明性窒化アルミニウム単結晶層、及びこれからなる素子
US8926752B2 (en) Method of producing a group III nitride crystal
WO2009090821A1 (ja) Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
KR101821301B1 (ko) 질화 알루미늄 단결정 기판 및 이들의 제조 방법
TWI520377B (zh) GaN基板及發光裝置
CN111164242B (zh) Iii族氮化物单晶基板
JP6635756B2 (ja) Iii族窒化物単結晶製造装置、該装置を用いたiii族窒化物単結晶の製造方法、及び窒化アルミニウム単結晶
WO2006013957A1 (ja) Ga含有窒化物半導体単結晶、その製造方法、並びに該結晶を用いた基板およびデバイス
EP2500451B1 (en) Method for producing laminate
JP5197283B2 (ja) 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法
US20120183809A1 (en) Production Method of a Layered Body
WO2008029589A1 (fr) Procédé et matériel servant à produire un nitrure d&#39;un élément du groupe iii
JP6765185B2 (ja) Iii族窒化物単結晶の製造方法
JP4959468B2 (ja) Iii族窒化物の製造方法およびその装置
CN103074677A (zh) 一种碲化锌同质外延层的制备方法
JP2019094218A (ja) Iii族窒化物単結晶積層体の製造方法及びiii族窒化物単結晶積層体