TW201441263A - 控制重組蛋白質中之c端離胺酸、半乳糖、及涎酸含量的製造方法 - Google Patents

控制重組蛋白質中之c端離胺酸、半乳糖、及涎酸含量的製造方法 Download PDF

Info

Publication number
TW201441263A
TW201441263A TW103108900A TW103108900A TW201441263A TW 201441263 A TW201441263 A TW 201441263A TW 103108900 A TW103108900 A TW 103108900A TW 103108900 A TW103108900 A TW 103108900A TW 201441263 A TW201441263 A TW 201441263A
Authority
TW
Taiwan
Prior art keywords
antibody
concentration
medium
edta
antigen
Prior art date
Application number
TW103108900A
Other languages
English (en)
Other versions
TWI630216B (zh
Inventor
Marcel Flikweert
Charles Goochee
Francis Maslanka
Franciscus Johannes Ignatius Nagel
James Ryland
Eugene Schafer
Original Assignee
Janssen Biotech Inc
Janssen Biolog B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51528780&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201441263(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Janssen Biotech Inc, Janssen Biolog B V filed Critical Janssen Biotech Inc
Publication of TW201441263A publication Critical patent/TW201441263A/zh
Application granted granted Critical
Publication of TWI630216B publication Critical patent/TWI630216B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)

Abstract

本發明提供一種產生抗體的方法,例如抗腫瘤壞死因子(TNFα)抗體(例如,infliximab),此抗體之C-末端離胺酸含量為約20%到70%,以及涎酸含量為約1%至約20%,該方法包含:在包含至少0.5μM鋅的培養基中,培養鋅-反應性宿主細胞,其為編碼抗體之DNA所轉染;以及控制培養基之鋅濃度,從而產生抗體。

Description

控制重組蛋白質中之C端離胺酸、半乳糖、及涎酸含量的製造方法
C-末端離胺酸(C-terminal lysine,CTL)會從注射的抗體(包含infliximab)被血流中內源性循環的羧胜肽酶移除(Cai,B.等人,「C-terminal Lysine Processing of Human Immunoglobulin G2 Heavy Chain in Vivo」(Biotechnol.Bioeng.2011;108:404-412)),並因此被認為對產物的安全性和功效具有很少的影響,如果有的話。然而,具有CTL殘基的重組蛋白質其CTL含量可以作為生產一致性和產物均勻性的衡量標準。
與CTL含量相比,重組蛋白質的涎酸含量已經與許多重要人類生理現象相關聯。舉例而言,當涎酸存在於醣蛋白(如紅血球生成素)會促進循環半衰期增長,而缺乏涎酸的紅血球生成素會導致循環時迅速清除蛋白質。此外,增加蛋白質的涎酸含量可以調節蛋白質人類的免疫原性(immunogenicity)。由於涎酸在產物安全性和有效性方面有其重要性,因此涎酸含量之範圍應保持在可反映臨床使用範圍內。
因此,對於投藥給人類的重組蛋白質(如REMICADE®(infliximab)或HUMIRA®(adalimumab))有必要瞭解及控制影響其CTL及涎酸含量的製程相關因素。
本文所揭示用於產生抗體的方法,此抗體例如為抗腫瘤壞死因子α(TNFα)抗體(如單株抗體cA2,本文亦稱為infliximab),此抗體具有期望的C-末端離胺酸(CTL)含量、涎酸含量、半乳糖含量及/或涎酸對半乳糖比率,其係藉由控制培養條件(包括鋅濃度、乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA))濃度及收獲時間所達成。
本發明之一實施例係一種用於產生一抗體之方法,該抗體具有含量為約20%至約70%之一C-末端離胺酸及含量為約1%至約20%之一涎酸,該方法包含:在包含至少0.5μM鋅的培養基中培養一鋅-反應性宿主細胞,其為編碼抗體之DNA所轉染;以及控制培養基之鋅濃度,從而產生抗體。在某些實施例中,抗體之C-末端離胺酸含量為約40%至約70%,舉例而言,約55%至約65%,例如或為約60%。在某些實施例中,抗體之涎酸含量為約3%至約14%。在某些實施例中,抗體之半乳糖含量為約50%至約90%,或為約45%至約85%。在某些實施例中,抗體之一涎酸對半乳糖之比率為約0.05至約0.20。
在某些實施例中,抗體為一抗TNFα抗體或其抗原結合片段,其中抗TNFα抗體或其抗原結合片段(i)競爭性地抑制A2(ATCC登記號PTA-7045)與人類TNFα之結合;以及(ii)以至少1×108升/莫耳之親和力結合至人類TNFα之一中和抗原決定區,其以締合常數(Ka)計量。抗TNFα抗體或其抗原結合片段可為例如一嵌合抗體、一人類抗體或一人類化抗體。在某些實施例中,抗TNFα抗體或其抗原結合片段可為免疫球蛋白類別IgG1、IgG2、IgG3、IgG4或IgM,以及,在某些實施例中,包含一IgG1恆定區。在某些實施例中,抗TNFα抗體或其抗原結合片段係選自由Fab、Fab'、F(ab')2及Fv所組成的群組。
在某些實施例中,抗TNFα抗體或其抗原結合片段包含一人類恆定區和一非人類變異區域,或者一人類恆定區及一人類變異區域。
在某些實施例中,抗體或其抗原-結合片段包含至少一人類輕鏈及至少一人類重鏈。在某些實施例中,輕鏈包含A2(ATCC登記號PTA-7045)之輕鏈的所有抗原結合區。在某些實施例中,重鏈包含A2(ATCC 登記號PTA-7045)之重鏈的所有抗原結合區。在另一些實施例中,輕鏈包含A2(ATCC登記號PTA-7045)之輕鏈的所有抗原結合區,且重鏈包含A2(ATCC登記號PTA-7045)之重鏈的所有抗原結合區。
在某些實施例中,抗TNFα抗體或其抗原結合片段包含一非人類變異區域,其包含一選自SEQ ID NO:3及SEQ ID NO:5所組成群組的胺基酸序列,或者由選自SEQ ID NO:2及SEQ ID NO:4所組成群組的一核酸序列所編碼。
在某些實施例中,抗TNFα抗體或其抗原結合片段具有與單株抗體cA2相同的抗原決定區專一性,以及在某些實施例中,抗TNFα抗體或其抗原結合片段為單株抗體cA2。
在某些實施例中,培養基的鋅濃度之範圍為約0.6μM至約6.5μM,或者約0.6μM至約1.1μM。
在某些實施例中,培養基進一步包含EDTA濃度範圍為約2.5μM至約30μM,或約5μM至約16μM,以及該方法進一步包含控制培養基的EDTA濃度。
在某些實施例中,該方法進一步包含回收抗體,舉例而言,當培養基之鋅-反應性宿主細胞之細胞密度達到每ml約1.5百萬細胞至每ml約11百萬細胞時,或每ml約3百萬細胞至每ml約11百萬細胞時。在某些實施例中,控制鋅濃度直到抗體被回收,或者在鋅-反應性宿主細胞之指數生長期期間內。
在本發明之某些實施例中,控制鋅濃度包含監控培養基的鋅濃度,以及調節培養基的鋅濃度,使得培養基的鋅濃度至少為0.5μM,為約0.6μM或約6.5μM範圍內。
在本發明之某些實施例中,鋅-反應性宿主細胞為一SP2/0細胞。
本發明之另一實施例為一種在培養基中生物合成抗體之程序中用於控制抗體之C-末端離胺酸含量之方法,該抗體之該C-末端離胺酸含量為約20%到70%,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
本發明的另一實施例為一種在培養基中生物合成抗體之程序中用於控制抗體之涎酸含量之方法,該抗體之該涎酸含量為約1%至約20%,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
本發明的又一實施例為一種在培養基中生物合成抗體之程序中用於控制該抗體之半乳糖含量之方法,該抗體之該半乳糖含量為約50%至約90%,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
本發明的又一實施例為一種在培養基中生物合成抗體之程序中用於控制該抗體之涎酸對半乳糖之比率之方法,該抗體之該涎酸對半乳糖之比率為約0.05至約0.20,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
在用以控制CTL、涎酸或半乳糖含量或涎酸對半乳糖之比率的方法的某些實施例,抗體為抗TNFα抗體或其抗原結合片段,及/或抗體是由一SP2/0細胞株所生物合成的。
在一實施例中,抗體是結合至TNF之一抗原決定區的胺基酸的單株抗體,其由融合瘤或重組宿主所產生。在一實施例中,抗體為可辨識A2所辨識的抗原決定區的嵌合抗體。在另一實施例中,抗體為指定為嵌合A2(chimeric A2(cA2),亦即infliximab)的嵌合抗體。
在以下專利中詳述及揭示抗TNF抗體的定性及製造與使用方法,例如「Anti-TNF antibodies,compositions,methods and uses」(George Heavner等人美國專利第7,250,165號,2001年8月1日申請,2007年7月31日頒予)以及「Anti-TNF antibodies,compositions,methods and uses」(Jill Giles-Komar等人美國專利申請案第10/394,471號,公開案號US 2004/0185047,2003年3月21日申請),以及「Recombinant A2-specific TNFα-specific antibodies」(Junming Le等人美國專利第7252823號,2004年2月6日申請,2007年8月7日頒予)(該等案之全文以引用的方式併入本文中)。
在某些實施例中,抗體包括:鼠類mAb A2,其是由指定為c134A細胞株所產生;及嵌合抗體cA2,其是由指定為c168A的細胞株所 產生。細胞株c134A儲存於Janssen Research Development,Welsh & McKean Road,Springhouse,PA.細胞株c134A儲存於Janssen Research & Development,200 Great Valley Parkway,Malvern,Pennsylvania,19355,Janssen Biologics BV,Leiden,The Netherlands。
本文所揭示的方法可用以提升例如商用製造程序之批次均勻性,例如用以生產抗TNFα單株抗體intliximab的製造程序,其可用於治療如人類的自體免疫性疾病。
前述內容將由本發明之後續更具體的敘述及實施例更加清楚,如附圖所示。
本專利或申請文件至少含有一個以彩色製成的圖式。具有彩圖的本專利或專利申請公開文件副本,將由專利局依要求和支付必要的費用後提供。
圖1顯示infliximab樣品的毛細管等電聚焦(capillary isoelectric focusing,cIEF)電泳圖。
圖2為由反相胜肽圖譜中des-lysine(缺少C-末端離胺酸%,縮寫為des-Lys)百分比與cIEF峰值1百分比的對應關係最適線圖,並顯示CTL含量(表達為des-Lys百分比)與峰值1百分比之間的相關性。
圖3為圖形顯示CTL移除(表達為des-lysine百分比,並使用cIEF方法從峰值1數據計算所得)與生物反應器時期的對應關係,並展示改變Zn+2濃度對於CTL移除的效果。Y軸:desl-Lys%;X軸:生物反應器時期,以天為單位。
圖4為圖形顯示具有涎酸的infliximab寡糖百分比(由WAX方法所測定)與生物反應器時期的對應關係,並顯示改變Zn+2濃度對涎酸百分比的效果。Y軸:涎酸%;X軸:生物反應器時期,以天為單位。
圖5為圖形顯示活細胞密度與生物反應器時期的對應關係,並顯示改變Zn+2濃度對於活細胞密度的效果。Y軸:活細胞密度(百萬活細胞/毫升);X軸:生物反應器時期,以天為單位。
圖6為圖形顯示活細胞百分比與生物反應器時期的對應關係,並顯示改變Zn+2濃度對培養存活率的效果。Y軸:活細胞%,X軸:生物反應器時期,以天為單位。
圖7為圖形顯示infliximab濃度與生物反應器時期的對應關係,並顯示改變Zn+2濃度對infliximab濃度的效果。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖8A為圖形顯示CTL移除(表達為des-Lys百分比,並使用cIEF方法從峰值1數據計算所得)與生物反應器時期的對應關係,並顯示在0.76μM Zn+2存在下,改變EDTA濃度對CTL移除的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。Y軸:desl-Lys%;X軸:生物反應器時期,以天為單位。
圖8B為圖形顯示CTL移除(表達為des-Lys百分比,並使用cIEF方法從峰值1數據計算)與生物反應器時期的對應關係,並顯示在1.7μM Zn+2存在下,改變EDTA濃度對CTL移除的效果。Y軸:desl-Lys%;X軸:生物反應器時期,以天為單位。
圖9A為圖形顯示具有涎酸之infliximab寡糖的百分比(由WAX方法所測定)與生物反應器時期的對應關係,並顯示在0.76μM Zn+2存在下,改變EDTA濃度對CTL移除的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。Y軸:涎酸%;X軸:生物反應器時期,以天為單位。
圖9B為圖形顯示具有涎酸之infliximab寡糖的百分比(由WAX方法所測定)與生物反應器時期的對應關係,並顯示在1.7μM Zn+2存在下,改變EDTA濃度對涎酸含量的效果。Y軸:涎酸%;X軸:生物反應器時期,以天為單位。
圖9C為圖形顯示G0F百分比(WAX組份1)與生物反應器時期的對應關係,並顯示在0.76μM Zn+2存在下,改變EDTA濃度對非半乳糖種百分比的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。
圖9D為圖形顯示G0F(WAX組份1)百分比與生物反應器時期的對應關係,並顯示在1.7μM Zn+2存在下,改變EDTA濃度對非半乳糖種百分比的效果。
圖10為圖形顯示活細胞密度與生物反應器時期的對應關係,並顯示在0.76μM Zn+2或1.7μM Zn+2存在下,改變EDTA濃度對活細胞密度的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。Y軸:活細胞密度(百萬活細胞/毫升);X軸:生物反應器時期,以天為單位。
圖11A為圖形顯示活細胞百分比與生物反應器時期的對應關係,並顯示在0.76μM Zn+2或1.7μM Zn+2存在下,改變EDTA濃度對CTL移除的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。Y軸:活細胞%;X軸:生物反應器時期,以天為單位。
圖11B為圖形顯示圖11A所示圖表的第0至25天之放大。Y軸:活細胞密度(百萬活細胞/毫升);X軸:生物反應器時期,以天為單位。
圖12A為圖形顯示infliximab濃度與生物反應器時期的對應關係,並顯示在0.76μM Zn+2或1.7μM Zn+2存在下,改變EDTA濃度對infliximab濃度的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖12B為圖形顯示圖12A所示圖表的第0至25天之放大。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖13A為圖形顯示CTL移除(表達為des-Lys百分比,並使用cIEF方法從峰值1數據計算)與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對CTL移除的影響(結果呈現為由二重複的生物反應器所得的平均)。Y軸:desl-Lys%;X軸:生物反應器時期,以天為單位。
圖13B為圖形顯示具有涎酸之infliximab寡糖的百分比(由WAX方法所測定)與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對涎酸百分比的效果(結果呈現為由兩個重複的生物反應器所得的平均)。Y軸:涎酸%;X軸:生物反應器時期,以天為單位。
圖13C為圖形顯示活細胞密度與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對活細胞密度的效果。Y軸:活細胞密度(百萬活細胞/毫升);X軸:生物反應器時期,以天為單位。
圖13D為圖形顯示活細胞百分比與生物反應器時期的對應關係,並及顯示改變EDTA濃度(μM)對培養存活率的效果。Y軸:活細胞%;X軸:生物反應器時期,以天為單位。
圖13E為圖形顯示infliximab濃度與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對infliximab濃度的效果。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖13F為圖形顯示圖13E所示圖表的第0至25天的放大。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖13G為圖形顯示G0F百分比(WAX組份1)與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對缺乏半乳糖的infliximab寡糖的百分比的效果。X軸:生物反應器時期,以天為單位。
圖14A為圖形顯示CTL移除(表達為des-Lys百分比,並使用cIEF方法從峰值1數據計算)與生物反應器時期的對應關係,並說明改變EDTA濃度(μM)對於CTL移除的效果。X軸:生物反應器時期,以天為單位。
圖14B為圖形顯示具有涎酸之infliximab寡糖的百分比(由WAX方法所測定)與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對涎酸含量的效果。
圖14C為圖形顯示活細胞密度與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對活細胞密度的效果。Y軸:活細胞密度(百萬活細胞/毫升);X軸:生物反應器時期,以天為單位。
圖14D為圖形顯示活細胞百分比與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對培養存活率的效果。Y軸:活細胞%;X軸:生物反應器時期,以天為單位。
圖14E為圖形顯示infliximab濃度與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對infliximab濃度的效果。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖14F為圖形顯示圖14E所示圖表的第0至25天的放大。所示的Y軸濃度mg/mL含有印刷錯誤。濃度是mg/L。Y軸:infliximab濃度(mg/L),X軸:生物反應器時期,以天為單位。
圖15為圖形顯示G0F百分比(WAX組份1)與生物反應器時期的對應關係,並顯示改變EDTA濃度(μM)對缺乏半乳糖的infliximab寡糖的百分比的效果。
圖16顯示最常見的infliximab的中性寡糖G0F、G1F和G2F的生物合成途徑,以及由中性寡糖轉為涎酸化形式的生物合成途徑。
圖17為圖形顯示CTL移除(使用cIEF方法從峰值1數據計算所得)與Zn+2濃度的對應關係,並顯示DOE3和BSA混合編號1實驗在第20日的CTL移除百分比(藍色數據點及線代表平均值)。
圖18為圖形顯示CTL移除(使用cIEF方法從峰值1數據計算所得)與Zn+2濃度的對應關係,並顯示DOE3實驗在第13日的CTL移除百分比。
圖19為圖形顯示涎酸含量與Zn+2濃度的對應關係,並顯示DOE3及BSA混合編號1實驗在第20日的涎酸百分比(線代表平均值)。
圖20為圖形顯示WAX組份1(GOF)與Zn+2濃度的對應關係,並顯示DOE3及BSA混合編號1實驗在第20日的缺乏半乳糖的infliximab寡糖百分比。
圖21為圖形顯示的估計之涎酸對半乳糖比率(估計方式為涎酸百分比/(100-WAX組份1百分比)與Zn+2濃度的對應關係,並顯示DOE3及BSA混合編號1實驗在第20日的估計之涎酸對半乳糖比率。
圖22為圖形顯示CTL移除(使用cIEF方法從峰值1數據計算所得)與EDTA濃度的對應關係,並顯示在1.1-1.2μM Zn+2存在下,混合編號1和編號2實驗在第33至35天的CTL移除百分比。
圖23為圖形顯示涎酸與EDTA濃度的對應關係,並顯示在1.1-1.2μM Zn+2存在下,混合編號1和編號2實驗在第33至35天的涎酸百分比。
圖24為圖形顯示WAX組份1百分比與EDTA濃度的對應關係,並顯示在1.1-1.2μM Zn+2存在下,混合編號1和編號2實驗在第33至35天的缺乏半乳糖的infliximab寡糖的百分比。
圖25為圖形顯示的估計之涎酸對半乳糖比率以(估計方式為涎酸百分比/(100-WAX組份1百分比)與EDTA濃度的對應關係,並顯示在1.1-1.2μM Zn+2存在下,混合編號1和編號2實驗在第33至35天的估計之涎酸對半乳糖比率。
圖26為圖形顯示涎酸百分比(從WAX組份5計算)與G0F百分比(從WAX組份1計算)的對應關係,並顯示DOE3和BSA混合編號1和編號2實驗中涎酸與WAX組份1之百分比的反比關係,其中WAX組份1作為缺乏半乳糖之infliximab寡糖的指示劑。
圖27A及27B提供用以表達嵌合A2抗體的H鏈(pA2HG1apgpt)和L鏈(pA2HuKapgpt)的質體之示意圖。
圖28是人類TNF的胺基酸序列,以SEQ ID NO:1表示。
圖29A至圖29B。圖29A是轉殖cA2輕鏈變異區域的核酸序列(SEQ ID NO:2)和相應胺基酸序列(SEQ ID NO:3)。圖29B是轉殖cA2重鏈變異區域的核酸序列(SEQ ID NO:4)和相應胺基酸序列(SEQ ID NO:5)。
本發明例示性實施例的說明如下。
一實施例提供一種用於產生一抗體之方法,該抗體具有含量為約20%至約70%之一C-末端離胺酸以及含量為約1%至約20%之一涎酸,該方法包含:在包含至少0.5μM鋅的培養基中培養一鋅-反應性宿主細胞,其為編碼抗體之DNA所轉染;以及控制培養基之鋅濃度,從而產生抗體。
CTL含量在本文表達為具有C-末端離胺酸的重鏈的百分比,可以下列方程式計算:CTL含量(%)=(具有CTL的重鏈數量)/(重鏈總數)×100。CTL移除在本文表達為缺乏C末端離胺酸的重鏈(des-Lys)的百分比。因此,「80% des-Lys」相當於20% CTL含量。在本文所述方法的某些實施例中,抗體或者抗TNFα抗體或其抗原結合片段的CTL含量為約40%至約70%,具體而言,為約55%至約65%,更具體而言,為約60%。
涎酸含量在本文表達為含有涎酸的寡糖的百分比,可以下列方程式計算:涎酸含量(%)=(含有涎酸的寡糖數量)/(寡糖總數)×100。此方程式與寡糖中的涎酸殘基之數量無關。換句話說,不管寡糖是否具有例如一個或兩個涎酸殘基,當以計算涎酸含量為目的時,此寡糖只會被計算一次。在本文所述方法的某些實施例中,抗體或者抗TNFα抗體或其抗原結合片段的涎酸含量為約3%至約14%。
半乳糖含量在本文表達為含有半乳糖的寡糖百分比,可以下列方程式計算:半乳糖含量(%)=(含有半乳糖的寡糖數量)/(寡糖總數)×100。此方程式與寡糖中的半乳糖單位之數量無關。換句話說,不管寡糖是否具有例如一個或兩個半乳糖殘基,當以計算半乳糖含量為目的時,此寡糖只會被計算一次。在本文所述方法的某些實施例中,抗體或者抗TNFα抗體或其抗原結合片段的半乳糖含量為約50%至約90%,以及具體而言,為約45%至約85%。
在典型的例子中,抗體(例如infliximab)的兩個重鏈為已糖基化。然而,在部分情況下,一些重鏈仍為未糖基化。舉例而言,在某些實施例中,約94%的抗體分子的雙鏈為已糖基化,而約6%的抗體分子為半糖基化,以及與約0.1%的抗體分子是完全未糖基化。
涎酸對半乳糖之比率是以infliximab的寡糖中涎酸對半乳糖的莫爾比率來計算。在本文所述方法的某些實施例中,抗體或抗TNFα抗體或其抗原結合片段,其涎酸對半乳糖之比率為約0.05至約0.20。
如本文中所使用的「鋅-反應性宿主細胞(Zinc-responsive host cell)」指的是宿主細胞會對其培養基的鋅濃度波動產生反應。舉例而言,可藉由量測改變鋅濃度對由其宿主細胞所產生抗體的CTL含量、涎酸含量、半乳糖含量及涎酸對半乳糖比率的效果,評估宿主細胞對其培養基的鋅濃度波動的反應度。於實施範例中描述用於評估宿主細胞所產生抗體的CTL含量、涎酸含量、半乳糖含量及涎酸對半乳糖之比率的方法。
本發明所提供的培養基包含大於約0.5μM鋅的量。在某些實施例中,培養基中的鋅濃度範圍為約0.6μM至約6.5μM,以及較佳的是,為約0.6μM至1.1μM範圍內。在某些實施例中,培養基中的鋅的量或濃度對於鋅-反應性宿主細胞是無毒的,舉例而言,不會減少或實質減少細胞存活率、細胞生長或抗體生產,特別是培養的前20至25天。
在某些實施例中,培養基進一步包含乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)(本文稱為「EDTA」或「總EDTA」),濃度範圍為約2.5μM至30μM,較佳的是,其濃度範圍為約5μM至約16μM。如本文中所使用的「無鐵EDTA」,指的是未與鐵(Fe+3)螯合的EDTA。無鐵EDTA(簡稱[EDTA-Fe+3])的量或濃度可藉由自總EDTA的量或濃度減去Fe+3的量或濃度計算得到。離子Fe+3為培養基中具有與EDTA最高親和力的金屬離子。因此當Fe+3存在時,會較優先地與細胞培養基中的EDTA結合。無鐵EDTA的濃度代表可與培養基中的Zn+2及其它金屬離子結合的EDTA。
在本文所述方法的某些實施例中,培養基中EDTA及/或無鐵EDTA的量或濃度對於鋅-反應性宿主細胞是無毒的,舉例而言,不會減少或實質減少細胞存活率,細胞生長或抗體生產,特別是培養的前20至25天。
如本文中所使用的「控制」,是指驗證及/或調控。控制包括(直接或間接)感測/測量受控制物質,並使用這些測量提供回饋以朝向期望結果進行校正。舉例而言,控制包括培養基中鋅及/或EDTA及/或無鐵EDTA 濃度進行監控和調節兩者。典型地,在培養期間控制鋅及/或EDTA及/或無鐵EDTA濃度。在本文所述方法的某些實施例中,在鋅-反應性宿主細胞的指數生長期或是培養的前約10至25天期間,控制鋅及/或EDTA及/或無鐵EDTA濃度。
培養基中鋅及/或EDTA及/或無鐵EDTA濃度的控制方法可為(舉例而言):監控培養基中鋅及/或EDTA及/或無鐵EDTA的濃度;以及調節培養基中鋅及/或EDTA及/或無鐵EDTA的濃度。因此,在本文所述方法的某些實施例中,控制鋅的濃度包含監控培養基的鋅濃度並調節培養基的鋅濃度,使得培養基的鋅濃度為至少0.5μM,或約0.6μM至約6.5μM。
監控鋅及/或EDTA及/或無鐵EDTA濃度的方法已為熟習此項技術者所熟知。舉例而言,鋅和其它金屬離子的濃度可以透過感應耦合電漿質譜法(inductively coupled plasma mass spectrometry,ICP-MS)進行測量,而EDTA濃度可由HPLC方法進行測量。
如本文中所使用的「調控」指的是達成或維持秩序。調節包括在必要時維持(例如)培養基中鋅及/或EDTA的濃度,及調整(例如)鋅及/或EDTA的濃度。因此,在培養基所包括的鋅(例如無毒量的鋅)之初始濃度可為(例如)大於約5μM,然後調節至濃度(例如)0.6μM至約1.1μM。舉例而言,調整可以與從指數生長期過渡至穩態階段同時或稍後進行。或者,鋅的濃度可在培養期間保持在(例如)0.6μM至約1.1μM之濃度。
達成鋅及/或EDTA及/或無鐵EDTA的濃度的調控方式可為(舉例而言):直接添加鋅、鐵及/或EDTA到培養基;混合含有鋅、鐵及/或EDTA的原料;處理原料以調整其鋅、鐵及/或EDTA濃度;及/或修改原料的製造程序以達成鋅、鐵及/或EDTA的期望濃度。調控培養基組份的方法已為熟習此項技術者所熟知。
培養基還可包含鋅及/或EDTA以外的其他成份。選擇適合的培養基是在熟習此項技術者之知識範圍內。在某些實施例中,培養基為無血清培養基。
可使用此項技術所熟知用以產生抗體的任何宿主細胞,包括哺乳動物細胞,如SP2/0細胞(如小鼠SP2/0細胞(美國菌種保存中心(American Type Culture Collection,ATCC),Manassas,VA,CRL-1581)),其他 的例示性宿主細胞為NS0(歐洲細胞株庫(European Collection of Cell Cultures,ECACC),Salisbury,Wiltshire,UK,ECACC第85110503號),FO(ATCC CRL-1646)和Ag653(ATCC CRL-1580)的鼠類細胞株。人類骨髓瘤細胞株之一例子為U266(ATTC CRL-TIB-196)。其他可用的細胞株包括由中國倉鼠卵巢(Chinese Hamster Ovary,CHO)細胞所衍生的細胞株,諸如CHO-K1SV(Lonza Biologics,Walkersville,MD)、CHO-K1(ATCC CRL-61)或DG44。細胞的培養方式可以是單細胞懸浮或以貼附依賴性的方式。
各種培養系統已為此項技術所熟知,包括角瓶、滾瓶以及生物反應器(如攪拌槽生物反應器)。培養基可以批量程序加入,其中培養基以單一批量單次加入到細胞,較佳的是,以饋料批量(fed batch)程序加入,其中週期性地添加小批量的培養基。宿主細胞也可以灌注培養方式培養,其涉及從培養物連續地移除一定體積的培養基,並以相當體積的新鮮培養替換被移除的體積。典型地,相較於批量培養,可以灌注培養方式操作以達成較高的細胞密度,並且可維持較長的時間。灌注培養還可達成重複收獲。
產生抗體的方法可以進一步包含回收抗體。在某些實施例中,當培養基中的鋅-反應性宿主細胞達到細胞密度為每ml約1.5百萬細胞至每ml約11百萬細胞時,可以回收抗體;較佳的是,每ml約3百萬細胞到每ml約11百萬細胞。舉例而言,可藉由直接產物捕獲(direct product capture,DPC)回收抗體。在本文所述方法的某些實施例中,鋅的濃度是受控制的,直到回收抗體。
還可藉由控制在產物收獲或回收時的細胞老化而更精確地控制CTL和涎酸含量。因此,在本文所述方法的某些實施例中,可以在從指數生長期過渡至穩態階段同時回收抗體或稍後進行。在其他實施例中,抗體是在培養生長的穩態階段進行回收。在某些實施例中,抗體是在培養的第25天內回收,舉例而言,在10至25天、15至20天或約20天。在其他實施例中,抗體在培養的第25天之後進行回收。
本文還提供一種用於在一培養基中生物合成一抗體之程序中控制抗體之一C-末端離胺酸含量之方法,抗體之C-末端離胺酸含量為約20%到70%,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
本文還提供一種用於在一培養基中生物合成一抗體之程序中控制抗體之一涎酸含量之方法,抗體之涎酸含量為約1%至約20%,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
此處還提供一種用於在一培養基中生物合成一抗體之程序中控制抗體之半乳糖含量之方法,抗體之半乳糖含量為約50%至約90%,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
本文還提供一種用於在一培養基中生物合成一抗體之程序中控制抗體之一涎酸對半乳糖之比率之方法,抗體之一涎酸對半乳糖之比率為約0.05至約0.20,該方法包含:在生物合成抗體期間,監測培養基的鋅濃度;以及在生物合成抗體期間,調節培養基的鋅濃度。
在控制CTL、涎酸、半乳糖含量或涎酸對半乳糖之比率的方法的某些實施例中,抗體是一種抗TNFα抗體或其抗原結合片段及/或抗體是由SP2/0細胞或CHO細胞生物合成。
抗體及其片段
如本文中所使用之「抗體」包括整個抗體及其任何抗原結合片段或其單鏈。
抗體可包括重鏈恆定區(Hc)、重鏈變異區域(Hv)、輕鏈變異區域(Lv)及輕鏈恆定區(Lc)中之至少一者,其中多株抗體、單株抗體、其片段及/或區域至少包括重鏈變異區域(Hv)或輕鏈變異區域(Lv),其結合到抗原的一部分並且抑制及/或中和抗原的至少一種生物活性。
抗體或抗原結合片段可包含抗原結合片段,其具有至少一重鏈變異區域的至少一人類互補性決定區域(complementarity determining region,CDR)(CDR1、CDR2及CDR3)或變體,或者至少一輕鏈變異區域的至少一人類互補性決定區域(CDR1、CDR2及CDR3)或變體。此類抗體之製備可以利用習知技術化學結合抗體的各種不同部分(例如CDR、框架)在一起,利用習知重組DNA技術以製備或表現一(亦即一或多個)編碼該抗體之核酸分子來製備,或利用任何其他合適的方法來製備。
抗體可以是靈長類、哺乳類、鼠類、嵌合、人類化或人類抗體。抗體可包括,例如鼠-人嵌合抗體、鼠類抗體、人類抗體中之至少一者或其任何部分,其具有免疫球蛋白變異區域的至少一抗原結合片段或區域。
嵌合抗體是為分子具有衍生自不同動物物種之不同部分,例如具有從鼠類mAb衍生的變異區域及人類免疫球蛋白恆定區的抗體。舉例而言,抗體可保留來自一物種的至少一個相異域(domain)(通常是變異域),及另一個物種的其餘部分;例如,鼠-人嵌合抗體。抗體主要用以減少使用時的免疫原性(immunogenicity)並提高生產良率,舉例而言,鼠類mAb的融合瘤具有較高良率,但使用於使用人類時會產生較高的免疫原性,因而使用人/鼠嵌合mAb。嵌合抗體和其產生方法已為此項技術所熟知(Cabilly等人Proc.Natl.Acad.Sci.USA 81:3273-3277(1984);Morrison等人Proc.Natl.Acad.Sci.USA 81:6851-6855(1984);Neuberger等人Nature 314:268-270(1985);以及Harlow及Lane Antibodies:a Laboratory Manual Cold Spring Harbor Laboratory(1988))。這些參考文獻之全文以引用的方式併入本文中。
如本文中所使用的術語「嵌合抗體」包括一價、二價或多價免疫球蛋白。一價嵌合抗體為二聚體(HL),其由一嵌合H鏈透過二硫鍵而與嵌合L鏈結合所形成。二價嵌合抗體為四聚體(H2L2),其由兩個HL二聚體透過二硫鍵結合所形成的。多價嵌合抗體之製造,例如可藉由採用會聚集的CH區域(例如,從IgM H鏈,或μ鏈)。
「人類化(Humanized)」抗體(也稱為CDR-移植抗體)之產生程序為減少來自異種來源(通常是嚙齒動物)的單株抗體(monoclonal antibodies,mAb)的免疫原性,並提高效應物(effector)功能(例如,ADCC、補體活化及/或C1q結合)。一般而言,人類化抗體具有其他非人類的來源(例如但不限於,小鼠、大鼠、兔、非人類靈長類動物或其他哺乳動物)之一或多個胺基酸殘基。工程設計的mAb可以是使用分子生物學技術工程所製備。將囓齒動物的互補決定區域(CDR)的簡單CDR-移植進人類框架經常會導致原始mAb結合親和力及/或專一性減損。為了將抗體人類化,人類化抗體之設計可包括變化方式,諸如在CDR殘基中的保存性胺基酸取代,以及將囓齒動物mAb的殘基逆取代到人類框架區域(回復突變,back mutations)。非人類或人類抗體之工程或人類化方法為此項技術所熟知。
如本文中所使用的術語「人類抗體(human antibody)」包括抗體,其具有衍生自或緊密匹配人類種系免疫球蛋白序列的變異和恆定區。本發明之人類抗體可包括非由人類種系免疫球蛋白序列所編碼的胺基酸殘基(例如,藉由體外(in vitro)隨機或位點專一性誘變所誘導的突變或體內(in vivo)體細胞突變)。因此,如本文中所使用的術語「人類抗體」是指一種抗體,其中實質上每一部分的蛋白質(例如,CDR、框架、CL、CH結構域(例如,CH1、CH2、CH3),鉸鏈、(VL、VH))與人類種系抗體為實質類似。
如本文中所使用的術語「人類抗體」亦指一種抗體,其中實質上每一部分的蛋白質(例如,CDR、框架、CL、CH、CH結構域(例如,CH1、CH2、CH3)、鉸鏈、(VL、VH))在人體為實質上不具免疫原性,而只有輕微的序列改變或變異。同樣地,抗體所指定的靈長類動物(猴、狒狒、黑猩猩等)、囓齒動物(小鼠、大鼠、兔、天竺鼠、倉鼠等)和其它哺乳動物,指定這些種、亞屬、屬、亞科及科之專一抗體。可藉由其可表現功能性重組的人類免疫球蛋白(例如,重鏈及/或輕鏈)基因的非人類動物或原核或真核細胞來生產人類抗體。進而言之,當人類抗體為單鏈抗體時,其可包含在天然人類抗體未發現的連結胜肽(linker peptide)。舉例而言,Fv可包含連結胜肽,例如為2至約8個甘氨酸或其他胺基酸殘基,其連接重鏈的變異區域以及輕鏈的變異區域。這樣的連結胜肽被認為是源自人類。
抗體可以是任何免疫球蛋白類別,包括IgG、IgM、IgE、IgA、GILD及其任何子類別。如本文中所使用之「同型」(isotype)意指抗體類別(例如IgM或IgG1),其為重鏈恆定區基因所編碼。在人類中,具有五個重鏈同型和2個輕鏈同型。關於重鏈,IgA1和2;IgD;IgG1、2、3及4;IgE;以及IgM為重鏈的同型。κ和λ是輕鏈的同型。在某些實施例中,重鏈為IgG類別之重鏈。在其他實施例中,重鏈為IgM類別之重鏈。在某些實施例中,重鏈進一步包含J區域之至少約8個胺基酸。
抗體可以是多株抗體、單株抗體(mAb)、抗可以可溶性或結合形式經標示之抗體的抗獨特型(anti-Id)抗體、及彼等之片段、區域或衍生物,可由任何已知技術提供,例如但不限於,酶裂解、胜肽合成或重組技術。此類抗體可以結合到抗原(例如,TNF)的一部分,而抑制抗原結合到抗原受體。
多株抗體是異質性抗體分子族群,其係衍生自以抗原接種動物而得的血清。
單株抗體(mAb)含有對抗原具專一性的實質同質抗體族群。單株抗體組成物顯示對特定抗原決定區具有單一結合專一性。
可藉由已為熟習此項技術者所熟知的技術獲得單株抗體。參見,例如Kohler及Milstein,Nature 256:495-497(1975);美國專利第4,376,110號Ausubel等人eds.,Current Protocols in Molecular Biology,Greene Publishing Assoc.以及Wiley Interscience,N.Y.,(1987,1992);以及Harlow及Lane ANTIBODIES:A Laboratory Manual Cold Spring Harbor Laboratory(1988);Colligan等人eds.,Current Protocols in Immunology,Greene Publishing Assoc.and Wiley Interscience,N.Y.,(1992,1993),這些參考文獻之全文以引用的方式併入本文中。
抗獨特型(anti-idiotypic,anti-Id)抗體是一種能夠辨識獨特決定子(determinant)的抗體,獨特決定子一般與抗體的抗原結合位點相關聯。抗獨特型抗體也可以作為「免疫原(immunogen)」,以在另一動物中誘導免疫反應,產生所謂的抗-抗獨特型抗體(anti-anti-Id antibody)。抗-抗獨特型的抗原決定區可與誘導該抗獨特型的原始mAb之抗原決定區相同。因此,藉由使用抗mAb的獨特型決定子之抗體,可以識別表現具相同專一性之抗體的其它殖株。
抗體片段包括,例如Fab、Fab'、F(ab')2及Fv。這些片段缺乏一完整抗體的Fc片段,更迅速地從循環清除,並且與完整抗體相比較,具有較少的非專一性組織結合(Wahl等人J.Nucl.Med.24:316-325(1983))。這些片段是從完整抗體使用此項技術所熟知的方法所產生,舉例而言,藉由以酵素進行蛋白水解裂解,例如木瓜蛋白酶(產生Fab片段)或胃蛋白酶(產生F(ab')22片段)。
如本文中所使用的術語「抗原結合片段(antigen binding fragment)」是指抗體分子的一部分,其含有抗原相互作用並賦予抗體與抗原專一性與親和力的胺基酸殘基。「抗原」為可與抗體結合的分子或分子的一部分,其可另外誘導動物產生能夠結合到此抗原之抗原決定區的抗體。抗原可具有一個或一個以上的抗原決定區。抗體區域包括「框架 (framework)」胺基酸殘基,其為保持抗原結合殘基之正確構形(conformation)所必需的。
「抗原結合片段」或其部分包括(例如)單鏈抗體和其片段。抗原結合片段的實例包括:(i)Fab片段,即由VL、VH、CL及CH域所組成之單價片段;(ii)F(ab')2片段,即二價片段,包含在絞鏈區域(hinge region)透過二硫橋連結的兩個Fab片段;(iii)Fd片段,由VH及CH域所組成;(iv)一Fv片段,由一抗體之一單臂的VL和VH域所組成;(v)一dAb片段,其中VH和VL域被表現在單一多肽鏈上;及(vi)一或多個單離的互補決定區域(CDR)。可藉由酶裂解、合成或重組技術產生此類片段,如此項技術所熟知及/或如本文所描述。在某些實施例中,片段可包括抗體鏈之一或多個部分,例如重鏈恆定、連結、多樣性或變異區域或輕鏈恆定、連結或變異區域。
抗原結合區域可以是非人類的,例如,源自鼠類。在某些實施例中,抗原結合區域可以衍生自兔子或囓齒動物,例如大鼠或倉鼠。
一嵌合抗體之一抗原結合片段可衍生自對人類抗原具有專一性的非人類抗體。在某些實施例中,用於編碼這種嵌合抗體的DNA之來源包括產生抗體的細胞株,較佳的是混合細胞株,其公知為融合瘤(hybridoma)。在一實施例中,融合瘤為A2融合瘤細胞株。
術語「抗原決定區(epitope)」是指蛋白質決定區,其能專一性結合至一抗體。抗原決定區通常由分子之化學活性表面群組(例如胺基酸或糖側鏈)所構成,且通常具有特定三維結構特性以及荷質比特性。「抗原決定區(epitope)」可以是任何分子之部分,其可被抗體認出並在一個或多個抗體的抗原結合區域處進行結合。藉由「抑制及/或中和抗原決定區」是指一個抗原決定區,當其被抗體結合時,導致含有抗原決定區的分子或生物體體內、體外原位(較佳的體內)喪失生物活性,例如,TNF與TNF受體結合。
舉例而言,抗體可以是單離、重組及/或合成之抗體如本文中所使用之「重組抗體」包括藉由重組方式製備、表現、建立或單離的所有抗體。術語「重組宿主細胞」(或簡稱為「宿主細胞」)是指已引入重組表現載體的細胞。重組宿主細胞包括(例如)CHO細胞株或小鼠骨髓瘤 (myeloma)SP2/0所衍生的細胞株。可使用已知技術產生重組抗體,例如鼠類或嵌合的鼠-人或人-人抗體。參見,例如,Ausubel等人eds.Current Protocols in Molecular Biology,Wiley Interscience,N.Y.(1987,1992,1993);及Sambrook等人Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory Press(1989),該等文獻全文以引用的方式併入本文中。
舉例而言,可藉由按照已知的步驟適當地關聯個別多肽鏈,製備具有相同或不同的變異區域結合專一性的嵌合H鏈和L鏈的抗體、片段或衍生物,例如,根據Ausubel(見上文)、Harlow(見下文)及Colligan(見下文),該等文獻全文以引用的方式併入本文中。
藉由這種方法,分開培養表現嵌合H鏈(或其衍生物)的宿主與表現嵌合L鏈(或其衍生物)宿主,然後分開回收免疫球蛋白鏈並進行關連。或者,可共同培養宿主,讓雙鏈可以在培養基內自發性地關連,接著回收組裝完成的免疫球蛋白、片段或衍生物。
藉由非人類抗hTNFα抗體生產細胞形成融合混合體細胞,典型的情形為以天然或重組人類TNF或是人類TNFα蛋白質序列的胜肽片段對動物脾細胞進行接種。或者,非人類抗TNFα的抗體生產細胞可以是從以TNF接種動物的血液、脾、淋巴結或其他組織所獲得的一B淋巴細胞。
提供永生化(immortalizing)功能的第二融合配對體可為類淋巴母細胞(lymphoblastoid cell)或漿細胞瘤(plasmacytoma)或骨髓瘤細胞,其本身不是抗體生產細胞,但為惡性(malignant)。在某些實施例中,融合配對細胞包括融合瘤SP2/0-Ag14,縮寫為SP2/0(ATCC CRL1581)和骨髓瘤P3×63Ag8(ATCC TIB9),或其衍生物。參照例如Ausubel(見下文)、Harlow(見下文)、及Colligan(見下文),該等文獻全文以引用的方式併入本文中。
如本文中所使用之「經單離之抗體」,係意指一抗體其為實質上不含具有不同抗原專一性的其他抗體。然而,與人類抗原的一抗原決定區專一性結合之一單離抗體,可能會與其他相關抗原具有交叉反應。此外,經單離之抗體可實質上不含其他細胞物質及/或化學物質。
藉由競爭性抑制以確定mAb專一性與親和力的方法可見於(例如)Harlow等人的Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1988);Colligan等人eds.,Current Protocols in Immunology,Greene Publishing Assoc.;及Wiley Interscience,N.Y.,(1992,1993)及Muller,Meth.Enzymol.92:589-601(1983),該等文獻全文以引用的方式併入本文中。
在某些實施例中,此抗體可為具有生物活性的抗體。具有生物活性的抗體可具有原生(非合成)、內源性或相關及已知抗體的至少20%、30%或40%的專一活性,並且較佳的是至少50%、60%或70%,最佳的是至少80%、90%或95%至100%。酵素活性和受質專一性的試驗及定量方法已為熟習此項技術者所熟知。
抗TNFα抗體
在某些實施例中,由本文所述之方法所產生的抗體為抗腫瘤壞死因子-α(anti-tumor necrosis factor-α,TNFα)抗體。如本文中所使用,腫瘤壞死因子-α(TNF-α)及腫瘤壞死因子(TNF)可互換使用,其指的是腫瘤壞死因子-α(TNFα),除非另有特定說明。同樣地,腫瘤壞死因子-α(TNF-α)和腫瘤壞死因子(TNF)抗體,以及抗腫瘤壞死因子-α(TNFα)和抗腫瘤壞死因子(TNF)抗體可互換使用,除非另有特定說明。
TNFα為17kD的蛋白質子單元的可溶性同三聚體(homotrimer)(Smith,等人J.Biol.Chem.262:6951-6954(1987))。Invest.有關TNF的回顧,請參照Beutler等人Nature 320:584(1986),Old,Science 230:630(1986)以及Le等人Lab.Invest.56:234。人類TNFα的完整主要序列(依據Pennica等人Nature 312:724-729(1984))顯示於圖28(SEQ ID NO:1)。
TNF-α可引起發炎促進(pro-inflammatory)反應從而導致組織損傷。腫瘤壞死因子α(TNFα)促成或參與許多病狀,例如但不限於,細菌、病毒或寄生蟲感染、慢性炎症性疾病、自體免疫疾病、惡性腫瘤及/或神經退化性疾病。因此,在某些實施例中,抗體具有中和及/或抑制TNF的活性。
在某些實施例中,此抗體為具有高親和力的人-鼠嵌合抗TNF抗體及其片段或區域,其在體內具有對人類TNFα的強效抑制及/或中和活性。這些抗體和嵌合抗體可包括使用純化的重組hTNFα(SEQ ID NO:1)及其胜肽片段進行免疫反應所產生的抗體。
在某些實施例中,抗體和片段專一地與TNFα結合。在某些實施例中,抗體也可以減少、阻絕、廢除、干擾、阻止及/或抑制體外、原位及/或體內TNF之RNA、DNA或蛋白質合成,TNF釋出、TNF受體信號傳導、膜TNF切割、TNF活性、TNF產物及/或合成。
在某些實施例中,此抗體為cA2。嵌合抗體cA2由高親和性中和抗人類TNFα的小鼠IgG1抗體的抗原結合變異區域(指定為A2)以及人類IgG1,κ免疫球蛋白的恆定區所組成。人類IgG1的Fc區域提升同種異體抗體(allogeneic antibody)效應物功能,增加循環血清半衰期,並降低抗體的免疫原性。嵌合抗體cA2的親合力和抗原決定區專一性是由鼠類抗體A2的變異區域所衍生而得。在一特定實施例中,編碼鼠類抗體A2的變異區域的核酸來源為A2融合瘤細胞株。
在一實施例中,鼠類單株抗體A2是由指定為c134A的細胞株所產生。在一實施例中,嵌合抗體cA2是由指定為c168A的細胞株所產生。
在某些實施例中,抗體或抗原結合片段可包含cA2的重鏈CDR3及/或cA2的輕鏈CDR3中之至少一者。在一特定實施例中,抗體或抗原結合片段可具有一抗原結合區域,其包含具有cA2的相對應CDR1、CDR2及/或CDR3胺基酸序列的至少一重鏈CDR(即,CDR1、CDR2及/或CDR3)的至少一部分。在另一特定實施例中,抗體或抗原結合部分或變體可以具有一抗原結合區域,其包含具有cA2的相對應CDR1、CDR2及/或CDR3胺基酸序列的至少一輕鏈CDR(即,CDR1、CDR2及/或CDR3)的至少一部分。在一實施例中,抗體或抗原結合片段的三個重鏈CDR及三個輕鏈CDR具有mAb A2或cA2中之至少一者的相對應CDR的胺基酸序列,如本文所描述。
嵌合A2的親合力和抗原決定區專一性是由鼠類A2的變異區域衍生所得。在固相ELISA中已觀察到嵌合及鼠類A2之間的TNF交叉競爭,這表明cA2和鼠類A2的抗原決定區專一性為相同。cA2對於TNF-α的專一性可藉由其無法中和淋巴毒素(TNF-β)的細胞毒性作用而獲得證實。嵌合A2以劑量相依方式中和天然及重組人類TNF兩者的細胞毒性作 用。從cA2與重組人類TNF的結合試驗得到,Ca2的親和力常數計算為1.8×109M1
用以測定TNF中和化合物的TNF中和活性的篩選方法可包括體外或體內試驗。此類體外試驗可包括TNF細胞毒性試驗,例如放射免疫試驗,其藉由與TNF(如以單離或重組形式的黑猩猩或人類TNF)接觸來決定細胞死亡的減少,其中TNF中和化合物共同存在時會減少細胞死亡的程度或速度。細胞死亡可以用ID50值決定,其代表可降低50%細胞死亡率的TNF中和化合物濃度。舉例而言,mAb的A2和cA2的ID50被發現為17mg/ml +/- 3mg/ml,例如14至20mg/ml,或是其中的任何範圍或數值。
在某些實施例中,此抗體可以在體內競爭性抑制人類TNFα與鼠類抗TNFα mAb A2、嵌合mAb cA2或具有與A2及/或cA2實質相同的專一結合特性(例如,抗原決定區專一性)的抗體之結合。
由抗體及其片段及區域所辨識的抗原決定區可包括5個或更多胺基酸,其包含下列TNF胺基酸序列的各者或兩者中的至少一胺基酸,而提供由TNF抗體或其片段所辨識及/或結合而具有抗TNF活性的TNF拓樸(topographical)或三維抗原決定區:59-80:Tyr-Ser-Gln-Val-Leu-Phe-Lys-Gly-Gln-Gly-Cys-Pro-Ser-Thr-His-Val-Leu-Leu-Thr-His-Thr-Ile(AA 59-80 of SEQ ID NO:1);以及87-108:Tyr-Gln-Thr-Lys-Val-Asn-Leu-Leu-Ser-Ala-Ile-Lys-Ser-Pro-Cys-Gln-Arg-Glu-Thr-Pro-Glu-Gly(SEQ ID NO:1之AA 87-108)。
在某些實施例中,抗TNF抗體的抗體、片段及區域可辨識包括5胺基酸的抗原決定區,其包含hTNFα之胺基酸殘基87-108或殘基59-80及87-108(SEQ ID NO:1)兩者之至少一胺基酸。在某些實施例中,抗TNF抗體的抗體、片段及區域不辨識來自以下至少一者的抗原決定區:hTNFα之胺基酸11-13、37-42、49-57或155-157(SEQ ID NO:1)。(推定的受體結合位點之提出是由Eck及Sprang(J.Biol.Chem.264(29):17595-17605(1989)所述。)
在一實施例中,此抗體為包含兩個輕鏈和兩個重鏈之抗hTNF嵌合抗體,每鏈包含人類恆定區之至少一部分以及具有人類TNF專一性的非人類起源的一變異(V)區域之至少一部分,此抗體以高親和力與人類TNF之抑制及/或中和抗原決定區結合。
在一實施例中,抗體可用於患者或動物中檢測TNF的診斷方法,此患者或動物疑似患有異常TNF生產關連症狀。在某些實施例中,TNF抗體被用於緩解TNF所涉及的症狀或病狀,例如但不限於細菌、病毒或寄生蟲感染、慢性發炎性疾病、自體免疫疾病、惡性腫瘤及/或神經退化疾病。
用以產生專一針對人類TNFα或TNFβ之mAb的鼠類融合瘤,其是藉由小鼠融合配對體細胞(如SP2/0)與小鼠的脾細胞融合而形成的,脾細胞是來自由純化hTNFα、重組hTNFα、天然的或合成的TNF胜肽,其包括具有5個或更多選自TNF的胺基酸殘基59-80、87-108(SEQ ID NO:1)的胜肽,或其他含有TNF的生物製劑進行接種的小鼠。接種小鼠可以遵循各種不同的習知操作程序。舉例而言,老鼠可以接受初次(primary)和提升(boosting)的TNF接種。
本文所述的抗體與人類TNF之結合可具有廣泛範圍的親和力(KD)。在一實施例中,至少一人類mAb可選擇性地以高親和力與人類TNF結合。舉例而言,人類mAb與人類TNF結合之KD值可等於或小於約10-7M,,例如但不限於0.1至9.9(或其中的任何範圍或數值)×10-7,10-8、10-9、10-10、10-11、10-12、10-13或其中的任何範圍或數值。
可使用任何適合方法實驗測定抗體對抗原之親和力(affinity)或親合力(avidity)。(舉例而言,參照Berzofsky等人「Antibody-Antigen Interactions」(Fundamental Immunology,Paul,W.E.,Ed.,Raven Press:New York,NY(1984));Kuby,Janis Immunology,W.H.Freeman and Company:New York,NY(1992);以及本文所述的方法)。特定抗體-抗原交互作用所測量而得的親和力可能會因在不同條件(例如,鹽濃度、pH值)下測量而發生改變。因此,測量親和力和其他抗原結合參數(例如,KD、Ka、Kd)較佳是以抗體和抗原的標準化溶液以及標準化緩衝液進行,例如本文描述的緩衝液。
抗TNF抗體可包含具有定義的胺基酸序列的重或輕鏈變異區域中之至少一者。舉例而言,在一實施例中,抗TNF抗體包含至少一輕鏈變異區域(選擇性地具有SEQ ID NO:3胺基酸序列)及/或至少一重鏈變異區域(選擇性地具有SEQ ID NO:5胺基酸序列)中之至少一者。可以適合方法製備結合至人類TNF且包含定義的重鏈或輕鏈變異區域的抗體,例如噬菌體展示(Katsube,Y.,等人Int J Mol.Med,1(5):863-868(1998)),或運用轉殖動物的方法,如此項技術所熟知及/或本文所描述。在一實施例中,抗TNF抗體包含分別對應於SEQ ID NO:3的24-34、50-56和89-97胺基酸殘基的輕鏈CDR、CDR1、CDR2及CDR3序列,以及分別對應於SEQ ID NO:5的31-35、50-68和101-109胺基酸殘基的重鏈CDR,HCDR1、HCDR2及HCDR3序列,根據Kabat所描述。
抗TNF抗體可以進一步選擇性地包含一多肽,其為SEQ ID NO:3和5中之至少一者的鄰近胺基酸的70%至100%中之至少一者。
在某些實施例中,免疫球蛋白鏈或其部分(例如,變異區域)的胺基酸具有與SEQ ID NO:3和5中之至少一者的相對應鏈的約70%至100%的同一性(例如,70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、或其中的任何範圍或數值)。舉例而言,輕鏈變異區域的胺基酸序列可與SEQ ID NO:8序列相比較,或者重鏈CDR3的胺基酸序列可與SEQ ID NO:7序列相比較。較佳的是,藉由合適的電腦演算法測定70%至100%胺基酸同一性(亦即,90、91、92、93、94、95、96、97、98、99、100,或其中的任何範圍或數值),如此項技術所熟知。
例示性重鏈和輕鏈變異區域序列提供於SEQ ID NO:3及5。這些抗體可包含抗體的任意數量的連續胺基酸殘基,其中此數量是選自由抗TNF抗體的連續殘基數量的10%至100%的整數所組成的群組。選擇性而言,此連續胺基酸的子序列的長度是至少約10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250或更多個胺基酸,或其中的任何範圍或數值。進言之,子序列的數量可以是從選自從1到20所組成群組的任意整數,例如至少2、3、4或5。
抗體亦具有以高親和力及/或有效抑制及/或中和體內TNF的抗體或其片段或區域,用以進行TNF免疫試驗及治療TNF所導致病狀。這些抗體、片段或區域,其對hTNFα的親和力較佳者為至少108M-1,更佳的是至少109M-1,例如,108-I010M-1、5×108M-1、8×108M-1、2×109M-1、4×109M-1、6×109M-1、8×109M-1,或其中的任何範圍或數值。
TNF抗體還包括高親和力的鼠類和嵌合抗體和片段、區域及衍生物,其具有有效的體內TNFα抑制及/或中和活性,而阻止TNF所誘導的IL-6分泌。在某些實施例中,用於治療人類用途的抗體包括具高親和力的鼠類和嵌合抗TNFα抗體和其片段、區域及衍生物,其可於體內、原位及體外阻絕TNF引起的促凝(procoagulant)活性,包括阻絕TNF誘導細胞粘附分子表現,例如ELAM-I和ICAM-I以及阻絕TNF促進有絲分裂的活性。
於此項技術中描述單株抗TNF抗體的其他實例(參見,例如,美國專利第5231024號;Möller,A.等人Cytokine 2(3):162-169(1990);美國專利申請案第07/943,852號(於1992年9月11日申請);Rathjen等人國際公開案第WO 91/02078號(1991年2月21公開);Rubin等人歐洲專利公開案第0 218 868號(1987年4月22日公開);Yone等人歐洲專利公開案第0 288 088號(1988年10月26日);Liang,等人Biochem.Biophys.Res.Comm.137:847-854(1986);Meager等人Hybridoma 6:305-311(1987);Fendly等人Hybridoma 6:359-369(1987);Bringman等人Hybridoma 6:489-507(1987);及Hirai等人J.Immunol.Meth.96:57-62(1987),該等參考文獻之全文以引用的方式併入本文中)。
下文描述的實施範例結果證明一些重要發現:可藉由控制胞外的Zn+2將CTL移除控制為小於最大濃度。舉例而言,如下所述的SMF-10.1實驗、DOE3實驗、BSA混合實驗編號1和BSA混合實驗編號2實驗組別(experimental arms)所證明,可藉由將胞外Zn+2的濃度數值控制至1.2μM而可控制CTL含量在一定範圍內(例如,40%至70%)。再者,如DOE3實驗所證明,當高Zn+2濃度達到6.3μM時可將CTL含量控制為更高的範圍。
此外,如DOE3實驗、BSA混合實驗編號1和BSA混合實驗編號2的實驗組所證明,在胞外Zn+2濃度的一定範圍內,可以進一步以控制胞外[EDTA]或[EDTA-Fe+3]來控制CTL含量。
另外,涎酸含量可藉由控制胞外的Zn+2將涎酸含量控制為小於最大濃度。舉例而言,如下所述的DOE3實驗、BSA混合實驗編號1和BSA混合實驗編號2的實驗組所證明,可藉由將胞外Zn+2的濃度數值控制至1.2μM以控制涎酸在一定範圍內(例如,4%至13%)。再者,如DOE3實驗所證明,當濃度達到6.3μM時可將涎酸含量控制為更高的範圍。
此外,如DOE3實驗、BSA混合實驗編號1和BSA混合實驗編號2的實驗組所證明,在一定範圍的胞外Zn+2濃度之內,可以進一步藉由控制胞外[EDTA]或[EDTA-Fe+3]來控制涎酸含量。
再者,如SFM-10.3實驗及DOE3實驗所證明,也可以藉由控制胞外Zn+2的濃度%控制抗體生產。
可以透過各種手段來達成控制Zn+2、Fe+3及EDTA濃度以達成控制涎酸添加、CTL移除和抗體生產,包括以下的任何一種、單獨或組合使用:1)直接添加Zn+2、Fe+3及EDTA到培養基;2)透過混合含有鋅、鐵或EDTA的原料作為組份;3)經過處理原料以調整Zn+2、Fe+或EDTA濃度;及/或4)透過修改複雜原料的製造程序以達成鋅、鐵及/或EDTA的期望濃度。
實施範例 材料和方法
本文所述的實驗是在受控的3L Applikon®生物反應器中進行,其操作條件已被證明可提供infliximab商用程序之代表性。
在指定日時,藉由使用蛋白質A層析柱直接產物捕獲(direct product capture,DPC)方式純化infliximab。其可利用毛細管等電聚焦(capillary isoelectric focusing,cIEF)或WAX試驗定性。藉由使用蛋白質A層析柱以DPC方式純化的infliximab在本文稱為「DPC樣品」或「DPC析出液」。
實例1-cIEF方法
使用cIEF計算infliximab寡糖的CTL含量。在分析散裝(pre-formulated bulk,PFB)infliximab時,顯示具有三種電荷異質性來源:(1)CTL變異性;(2)涎酸含量;及(3)脫醯胺(deamidation)反應。早期、中期和晚期的商用生物反應器樣品的典型infliximab析出液,展現infliximab重鏈中CTL移除為大約30%到80%,PFB的平均CTL移除為約40%至60%。輕鏈的CTL不會被移除。早期生物反應器樣品的CTL移除往往較少,而在中、晚期生物反應器樣品開始增加。早期和晚期生物反應器樣品的典型infliximab析出液,展現涎酸含量為IgG寡糖的約3%至14%。典型地,涎酸添加在早期生物反應器樣品較低,而在中、晚期生物反應器樣品較高。反相胜肽圖譜揭示infiximab重鏈和輕鏈的幾個脫醯胺反應位點處的一致性、低程度的脫醯胺反應。
異質電荷典型地導致cIEF電泳圖4到6個峰值。峰值1對應於未帶過量電荷的infliximab;也就是說,此峰值或帶含有兩端的C-末端離胺酸,無涎酸,無脫醯胺反應。第二、第三、第四、第五和第六峰值或帶分別含有1、2、3、4和5個過量電荷,這是由於CTL移除、涎酸添加和脫醯胺反應的組合。
圖1是infliximab樣品的cIEF電泳圖,並顯示峰值1至6的pI值。
由於CTL移除的相對高程度,涎酸添加的低濃度以及脫醯胺反應的一致性,峰值1的相對百分比與CTL移除為高度相關。圖2為des-lysine(des-Lys)百分比與峰值1百分比的對應關係最適線圖,並顯示CTL含量(表達為des-Lys百分比)與峰值1百分比之間的相關性。建立圖2中描繪之相關性所使用之infliximab樣品的des-Lys百分比係藉由胜肽圖譜所決定且峰值1百分比係藉由cIEF所決定。
CTL含量在本文表達為具有C-末端離胺酸的重鏈的百分比,可以下列方程式計算:CTL含量(%)=(具有CTL的重鏈數量)/(重鏈總數)×100。在本文中CTL移除表達為缺少C-末端離胺酸(des-Lys)的重鏈百分比。因此,「80% des-Lys」相當於20%的CTL含量。des-Lys百分比及峰值1百分比(如cIEF所測量)之間的相關性適用於展現CTL移除、涎酸添加及 脫醯胺反應典型百分比的infliximab樣品。因此,此種相關性適用於本文所述的實驗,因為:(1)這些實驗的許多DPC樣品的涎酸添加已由WAX所測定,而結果指出早期生物反應器樣品的涎酸維持為3%,而後期生物反應器樣品為約14%的典型範圍(亦即,涎酸百分比維持在用以產生圖1的相關性的數據範圍內)。及(2)可合理假設脫醯胺反應百分比仍為較低且具一致性,如同用以產生圖1的相關性的實驗樣品的情形。
這些實驗中的CTL移除的之範圍為典型數值30%至60%到更高的數值。在這些條件下,CTL移除將繼續保持為峰值1之百分比的主導因素。
實例2-WAX試驗
WAX試驗用以決定infliximab寡糖的涎酸含量和半乳糖含量。在此試驗中,使用PNGase F從IgG釋放N-連結的寡糖,然後使用鄰胺苯甲酸(anthranilic acid)及氰基硼氫化鈉溶液進行衍生化。使用0.45微米尼龍ACRODISC®過濾器純化樣品,並在Agilent 1100 HPLC以螢光檢測器進行分析。使用市售的N-聚醣標準品解析峰值同一性。
在本文所述的WAX試驗中,組份5A為含有涎酸的infliximab寡糖百分比。組份1與缺乏半乳糖的infliximab寡糖百分比為高度相關。因此(100-組份1百分比)代表含有半乳糖的infliximab寡糖百分比的合理估計。
在infliximab的重鏈中,一個天冬醯胺(asparagine,ASN)殘基可以寡糖進行糖化,其中寡糖可以含有例如一或兩個半乳糖殘基以及一或兩個涎酸殘基。infliximab的半乳糖含量在本文表達為含有半乳糖的寡糖百分比,並且可以使用下列方程式計算:半乳糖含量(%)=(含有半乳糖的寡糖數量)/(寡糖總數)×100。此方程式與寡糖中的半乳糖單位數量無關。換句話說,不管寡糖是否具有例如一個或兩個半乳糖殘基,當以計算半乳糖含量為目的時,此寡糖只會被計算一次。
Infliximab的涎酸含量在本文表達為含有涎酸的寡糖百分比,並且可以使用下列方程式計算:涎酸含量(%)=(含有涎酸的寡糖數量)/(寡糖總數)×100。此方程式與寡糖中的涎酸殘基數量無關。換句話說,不管寡 糖是否具有例如一個或兩個涎酸殘基,當以計算涎酸含量為目的時,此寡糖只會被計算一次。
在通常情況下,infliximab的兩個重鏈會被糖化。然而,在部分情況下,一些重鏈仍為未糖基化。舉例而言,在某些實施例中,約94%的infliximab分子的雙鏈為已糖基化,而約6%的infliximab分子為半糖基化,以及與約0.1%的infliximab分子是完全未糖基化。
涎酸對半乳糖之比率是以infliximab的寡糖中涎酸對半乳糖的莫爾比率來計算。
實例3-收獲暫存研究
兩項研究是以將無細胞的infliximab收獲之暫存時間延長的方式進行。這些研究的目的是為了瞭解CTL移除是否可能發生於胞外(亦即,分泌後)。
涎酸已知是在細胞內、分泌之前被添加到糖蛋白之上。然而,目前已報導中國倉鼠卵巢(chinese hamster ovary,CHO)細胞培養中,分泌的重組糖蛋白會在胞外移除涎酸。對於CHO細胞,會由已裂解的細胞釋放涎酸酶到胞外培養基。因此,這些收獲暫存研究的第二個目的是澄清在infliximab製程之無細胞收獲中是否有涎酸在胞外被移除。
使用量產等級的生物反應器所得到的收獲之收獲暫存研究證明,在各種改變條件(澄清、無細胞收獲在2℃至14℃暫存30天;未澄清收獲在2℃至8℃暫存14天)以及改變生物反應器時期下,暫存收獲對infliximab的cIEF凝膠分佈沒有影響。
為了更加鞏固這些結果,再進行另一次的收獲暫存研究。Infliximab無細胞收獲是從兩個生物反應器所收集。對於每一個生物反應器,一部分之收獲立即藉由蛋白質A層析純化,以產生DPC析出液。另一部分之收獲,在處理成DPC析出液之前以溫度為10℃至14℃(典型的儲存溫度)儲存7天。暫存之收獲的溫度是由冰箱的探測器所監控,並以手動調節控制。然後由cIEF分析四組DPC析出液樣品,以了解是否有電荷分佈改變的任何證據顯示收獲中之CTL或涎酸移除。
此暫存研究顯示,由收獲立即得到的或是在蛋白質A純化前在10℃至12℃溫度暫存7天的收獲得到的DPC析出液在cIEF模式部分無顯著差異。
此收獲暫存研究表明,infliximab重鏈的CTL移除可能是發生在細胞內。同樣地,infliximab寡糖的涎酸含量是在細胞內所決定。
實例4-SFM-10.1實驗
術語SFM-10.1對應於infliximab SFM-10培養基,其缺乏BSA和CM2(B部分)液體(包括含鋅胰島素)。SFM-10.1的實驗目的是探討補充Zn+2對infliximab的產物的影響。
四個實驗條件代表補充七水硫酸鋅合物(zinc sulfate heptahydrate)的SFM-10.1培養基,其以添加0.25、0.5、1.0或2.0mM Zn+2的足夠量加入到最終培養基濃度。每一個實驗的總Zn+2濃度為補充量加上PRIMATONE®(可購自Kerry Ingredients and Flavours,Beloit,WI)所貢獻的Zn+2加總的總和,其測定為0.49μM(基於金屬分析)。因此,在這四種生物反應器的鋅總濃度被合理估計為0.74、1.0、1.5及2.5μM。這些生物反應器中的Fe+3濃度為5.8μM,其係基於所採用的PRIMATONE®批次所進行的金屬分析。EDTA濃度估計為2μM,這是由轉鐵蛋白(transferrin)所貢獻的。EDTA對於Fe+3的親和力比對於Zn+2和其他二價陽離子的親和力更強大。因此,[EDTA-Fe+3]之計算可以表示為可與Zn+2螯合的EDTA濃度。因此,在第一組實驗中,可以預期,沒有自由的EDTA可與胞外Zn+2結合。
圖3為圖形顯示CTL移除(表達為des-Lys百分比,並使用cIEF方法從峰值1數據計算所得)與生物反應器時期的對應關係,並展示改變Zn+2濃度對CTL移除的效果。具有總Zn+2濃度為約1.5和2.5μM的生物反應器在所有時間點展現70%到80%的CTL移除。電荷分佈與生物反應器時期的對應關係並無改變,因為所有時間點(早期、中期、晚期生物反應器樣品)都具有高的CTL移除。具有Zn+2濃度為約1.0mM的生物反應器展現在研究早期60% CTL移除及在取樣點中間與晚期約70%移除。具有Zn+2濃度為約0.74μM的生物反應器展現CTL移除隨著生物反應器時期而增加的對應關係。
圖4為圖形顯示具有涎酸的infliximab寡糖百分比(由WAX方法所測定)與生物反應器時期的對應關係,並顯示改變Zn+2濃度對涎酸百分比的效果。圖4顯示在本實驗中涎酸添加與Zn+2濃度的對應關係並無明顯趨勢。
目前並未知道所謂未造成影響是否真的代表在SFM-10.1培養基的背景下,涎酸含量對胞外Zn+2濃度不敏感,是否代表在給定生物反應器數量較少的情形下,具有實驗雜訊;或者是否是因具有實驗執行的程序問題。
圖5至圖7為圖形顯示活細胞密度、培養存活率及infliximab濃度對時間的關係,並顯示SFM-10.1實驗中改變Zn+2濃度的效果。在約15至20天達到目標細胞密度之前的時期的結果是最明顯的,因為這代表每一個生物反應器是以一致性地操作的時期。在到達目標細胞密度之後,每天從培養區移除細胞以試圖維持目標細胞密度,然而此移除步驟的變異可能造成細胞密度、培養存活率和抗體濃度的波動。
在SFM-10.1實驗中,與具有1.5和2.5μM Zn+2的生物反應器相比較,具有0.74μM Zn+2的生物反應器在到達目標細胞密度之前,具有較慢的細胞生長速度、較低的培養存活率及較低的抗體濃度。具有1.0μM Zn+2的生物反應器在每種情形展現的效能為介於具有0.74μM Zn+2的生物反應器與具有1.5或2.5μM Zn+2的生物反應器之間。
此實驗條件有利於SP2/0細胞累積Zn+2。[EDTA-Fe+3]為小於零,顯示所有的EDTA被Fe+3所螯合,因而不能與胞外培養基中的Zn+2螯合。此外,另一潛在的螯合劑BSA,並未存在於培養基中。
儘管是處在這些有利累積Zn+2的條件之下,實驗結果指出胞外Zn+2濃度為0.74和1.0μM對於CTL移除、初始細胞生長、培養存活率和抗體濃度具有影響,特別是在培養的前20天。結果並未顯示在此實驗條件下Zn+2對於涎酸添加產生明顯的影響。
雖然不希望受任何特定理論的束縛,這些結果與下列假說具有一致性:
˙SP2/0細胞必須累積胞內Zn+2,以支持與具有Zn+2輔酶需求的酵素關連的胞內程序。這包括與CTL移除、細胞生長、細胞分裂和抗體生產相關的酵素。
˙0.74μM到1.0μM量級的Zn+2濃度並未提供足夠的胞外Zn+2,以在生物反應器生產程序之初始階段期間充分供應需要Zn+2的胞內程序。
˙培養的前20天的效果最為明顯。這正是每個細胞因細胞分裂而使胞內Zn+2數量正在不斷減少的時期。也就是說,每次細胞分裂時,累積的Zn+2被分散於子細胞之間。在胞外Zn+2為0.74至1.0μM時,細胞所納入的Zn+2無法跟上因細胞倍增所產生的Zn+2細胞層級減少。因此,細胞中缺乏Zn+2,因而無法展現最佳的細胞生長、培養存活率和抗體產率。
˙經過約20天後,這些細胞接近其灌注培養中的目標細胞密度,並且減緩細胞分裂。從此時起,由於細胞分裂而造成胞內Zn+2減量速度變慢,且細胞納入量足以保證每個細胞隨著時間而增加Zn+2累積。在這些條件下以及在20日之後,細胞逐漸增加其胞內Zn+2的儲存。
˙對於具有0.74μM Zn+2的生物反應器,Zn+2累積模式與生物反應器時期的對應關係是造成cIEF模式與生物反應器時期的對應關係改變的因素。也就是說,在第20天,也就是在培養中胞內的羧胜肽酶(carboxypeptidase)酵素最缺乏所需Zn+2輔酶因子的時機,CTL移除是 在最低值。在細胞分裂減慢之後以及20日之後,由於越來越多的Zn+2累積導致羧胜肽酶的作用增加,而使得CTL移除開始增加。
對於1.5μM和2.5μM Zn+2的實驗組,胞外Zn+2濃度足夠高使得在培養的任何時間點時,細胞的酵素不會遇到Zn+2缺乏的情形。因此,在第20天至60天,具有較高比率的CTL移除。同樣地,細胞生長、培養存活率和抗體產生與培養日期的對應關係是以高比率進行。
實例5-DOE3實驗
接續在SFM-10.1實驗所產生的前導結果,使用商用的infliximab SFM-10培養基進行更詳細的實驗,以探討胞外Zn+2、EDTA和Fe+3濃度對於CTL移除、涎酸添加、細胞生長、培養存活率和抗體生產所造成的影響。
應可理解的是,可以假設在胞外Zn+2結合到EDTA可能抑制細胞內Zn+2累積。因為胞外Fe+3的EDTA結合親和力高於Zn+2的EDTA結合親和力,因此應可理解的是,胞內Zn+2累積的關鍵決定因素可能是[EDTA-Fe+3]。
DOE3實驗包括12個生物反應器。這個實驗所用的培養基是商用的SFM-10培養基。所選用的PRIMATONE®批次、胰島素、轉鐵蛋白和BSA建立0.76μM Zn+2、5.9μM EDTA和0.9μM Fe+3的基本濃度。綜合的實驗條件是藉由補充Zn+2、EDTA及/或Fe+3所建立,如表2所示。
在DOE3實驗中,總Zn+2濃度範圍為0.76至1.7μM,Fe+3濃度範圍為0.90至5.4μM,EDTA濃度範圍介於5.9至26.8μM,而[EDTA-Fe+3]範圍介於0.53至23.6μM。
在DOE3實驗的結果分析中,相較於胞外[EDTA]及[EDTA-Fe+3]的影響,Zn+2的影響是較主要的。因此,將DOE3的實驗結果依每個生物反應器的[Zn+2]的進行分組的方式呈現下列結果是相當合理的。6個生物反應器的目標為0.76μM[Zn+2],而6個生物反應器的目標為1.7μM[Zn+2]。
圖8A為圖形顯示CTL移除(表達為Des-Lys百分比,並使用cIEF方法從峰值1數據計算所得)與生物反應器時期的對應關係,並顯示在0.76μM Zn+2存在下,改變EDTA濃度對CTL移除的效果(生物反應器中Zn+2初始濃度對應於標示「Fe:5 Zn:1 EDTA:10」為6.3μM,而不是0.76μM;目標濃度0.76μM Zn+2從第13日起實施,直至實驗結束)。圖8B為圖形顯示CTL移除(表達為des-Lys百分比,並使用cIEF方法從峰值1數據計算所得)與生物反應器時期的對應關係,並顯示在1.7μM Zn+2存在下,改變EDTA濃度對CTL移除的效果。如同SFM-10.1實驗,DOE3實驗的生物反應器顯示CTL移除百分比與Zn+2濃度之間具有很強的關係。
具有0.76μM Zn+2的生物反應器展現的CTL移除百分比低於具有1.7μM Zn+2的生物反應器展現的CTL移除百分比。具有較高Zn+2濃度的生物反應器在培養的早期、中後期展現605%至75%的CTL移除。具有較低Zn+2濃度的生物反應器在第10至20天展現40%的CTL移除, 並且CTL移除隨培養天數逐漸上升,在結束培養時接近60%的CTL移除。這些結果與SFM-10.1實驗中觀察到的Zn+2濃度的效果具有一致性。
如前文所指出的,標示為「Fe:5,Zn:1,EDTA:10」的生物反應器在13天前經受到非常高的Zn+2濃度6.3μM,這與培養早期階段達到80%的CTL移除相關,這此是本研究中所達成的最高CTL移除。這個生物反應器在其培養基濃度在第13日校正為0.76μM Zn+2以後,其CTL移除百分比逐漸下降。隨著每天約0.7培養體積的灌注率,生產生物反應器的Zn+2濃度將在10天或以內下降到0.76μM。然而,這個生物反應器在0.76μM Zn+2時的CTL移除百分比仍遠高於其同類型生物反應器。也就是說,細胞似乎具有「記住(remember)」過去接觸Zn+2的機制。
雖然不希望受任何特定理論的束縛,但推測此細胞「記憶(memory)」涉及細胞內累積的Zn+2。這些累積的Zn+2無法因胞外Zn+2濃度突然減少所逆轉。很有可能的是,每個細胞累積的Zn+2只會隨著隨後的細胞分裂減少,其中累積的Zn+2被分散到子細胞之間。在DOE3實驗的條件下,在約15至20天細胞到達目標細胞密度之後,細胞分裂的程度是受限的。
「Fe:5,Zn:1,EDTA:10」生物反應器在第10和13日的CTL移除約為80%,高於其他生物反應器在1.7μM Zn+2時。這暗示在DOE3實驗的實驗條件下,1.7μM Zn+2無法飽和細胞的Zn+2需要量。
如同上述所指,DOE3實驗結果與Zn+2濃度具有很強的相關性。然而,在給定Zn+2濃度的結果範圍內,具有證據顯示EDTA(或EDTA-Fe+3)可達成CTL移除效果。在具有0.7μM Zn+2的生物反應器之中,在第13、20和28天具有最低CTL移除的兩個生物反應器具有最高的[EDTA]和[EDTA-Fe+3](「Fe:1 Zn:1 EDTA:25」及「Fe:5 Zn:1 EDTA:28」生物反應器)(圖8A)。相反地,具有最低[EDTA]和[EDTA-Fe+3]的生物反應器具有最高的CTL移除(「Fe:1 Zn:1 EDTA:6」)。
同樣地,在具有1.7μM Zn+2的生物反應器之中,在第13、20和28天具有最低CTL移除的生物反應器具有最高的[EDTA]和[EDTA-Fe+3](「Fe:3 Zn:2 EDTA:27」)(圖8B)。
圖9A和圖9B顯示在DOE3實驗中涎酸含量與[Zn+2]關係的顯著差異。在第10至20天,相較在0.76μM Zn+2的生物反應器(圖9A),具有1.7μM Zn+2的生物反應器,具有顯著較高的涎酸含量(圖9B)對於「晚期」的生物反應器樣品,涎酸含量方面的差異縮小,但在1.7μM Zn+2仍高於在0.76μM Zn+2。
圖9A和圖9B也是上文所討論的細胞「Zn+2記憶」的證據。在「Fe:5,Zn:1,EDTA:10」生物反應器中,此生物反應器在最早的時間點時,涎酸含量非常高,並且在整個培養時期中相較其他具有0.76μM Zn的同類型生物反應器,涎酸含量為較高,即便所有的生物反應器在大約第20日時胞外Zn+2濃度是相同的。
「Fe:5,Zn:1,EDTA:10」生物反應器在第10和13日的CTL移除約為80%,高於其他生物反應器在1.7μM Zn+2時。這代表,在DOE3實驗的實驗條件下,1.7μM Zn+2不足以使細胞的Zn+2需要量達到飽和以支持涎酸添加。如同上文所指出,此DOE3實驗結果與Zn+2濃度具有強烈相關性。然而,在給定Zn+2濃度的結果範圍內,有證據顯[EDTA](或者[EDTA-Fe+3])會影響涎酸添加。圖9A顯示,在具有0.7μM Zn+2的生物反應器之中,當[EDTA]減少時,在第38天涎酸含量為增加。圖9B顯示,當[EDTA]減少時,在第20及38天涎酸含量為增加。
在DOE3實驗中,5個具有0.76μM Zn+2的生物反應器,相較6個具有0.76μM Zn+2的生物反應器,在前20天期間(到達目標細胞密度之前),其細胞生長速度明顯較低。(圖10)。如前所述,標示為「Fe:5,Zn:1,EDTA:10」的生物反應器,在第13天前經歷非常高的Zn+2濃度(6.3μM)。此生物反應器在前20天展現與具有1.7μM Zn+2的生物反應器相匹配的細胞生長行為。這些數據意味著胞外Zn+2濃度為1.7μM即足以飽和細胞對於細胞分裂的胞內Zn+2的需求。
圖11A和圖11B顯示,5個具有0.76μM Zn+2濃度的生物反應器在前30天的培養存活率低於6個具有1.76μM Zn+2濃度的生物反應器的培養存活率。特別值得注意的是,在標示為「Fe:5,Zn:1,EDTA:10」的生物反應器在第10及13日展現很高的培養存活率,但在校正Zn+2濃度的不久之後,即回復到與其同類型具有0.76μM Zn+2濃度的生物反應器相 匹配。這支持有關培養存活率與胞外Zn+2的瞬時濃度相關,而非細胞內Zn+2存量的假設。圖12A和圖12B顯示,5個具有0.76μM Zn+2濃度的生物反應器的抗體濃度在前20天低於6個具有1.7μM Zn+2濃度的生物反應器。標示為「Fe:5,Zn:1,EDTA:10」的生物反應器展現具有與1.7μM Zn+2濃度的生物反應器可相比的抗體濃度,因而支持抗體生產是與累積Zn+2相關,而非與胞外Zn+2的瞬時數值相關的假設。
圖10、圖11A、圖11B、圖12A和圖12B顯示,在DOE3的結果中[EDTA]與活細胞密度、培養存活率和抗體濃度之間並無明顯的相關性。
DOE3實驗包括一定範圍的[Zn+2]、[EDTA]及[EDTA-Fe+3]。舉例而言,[EDTA-Fe+3]的範圍從0.5到23μM。然而,這些實驗結果中最主要的因素是胞外的Zn+2濃度,其範圍從0.76μM至1.7μM(以及「Fe:5,Zn:1,EDTA:10」生物反應器的最初濃度為6.3μM)。與具有0.76μM Zn+2濃度的生物反應器相比較,具有1.7μM胞外Zn2+濃度的生物反應器的CTL移除、涎酸含量、初始細胞生長、初始培養存活率及初始抗體生產顯著較高。(圖8A、圖8B、圖9A、圖9B、圖10、圖11A、圖11B、圖12A及圖12B)。
在給定Zn+2濃度的生物反應器內,有一些證據顯示EDTA(或EDTA-Fe+3)具有CTL移除及涎酸添加的次級效果。(圖8A、圖9A、圖8B及圖9B)。這些結果並未提供證據顯示[EDTA]對於細胞生長、培養存活率和抗體生產具有影響(圖10、圖11A、圖11B、圖12A及圖12B)。[EDTA]的影響會在BSA混合實驗編號1和2(將於下一段落進行討論)更加充分地探討。「Fe:5,Zn:1,EDTA:10」生物反應器,在第13天前經歷非常高的Zn+2濃度(6.3μM),然後返回目標Zn+2濃度0.76μM。這種生物反應器展現與具有1.7μM Zn+2濃度的生物反應器相當的初始細胞生長(圖10)、培養存活率(圖圖11A和圖11B)及抗體產率(圖12A及圖12B)然而,與具有1.7μM Zn+2濃度的生物反應器相比較,此生物反應器表現較高的初始CTL移除和涎酸含量。這種生物反應器展現初始高Zn+2濃度的「記憶」,其良好延續而超出胞外Zn+2濃度對CTL移除、涎酸含量、細胞密度和抗體生產的校正效果(圖8A、圖8B、圖9A、圖9B、圖10、圖12A及圖12B)。然而,此生物反應 器並未展現適用於培養存活率的記憶;也就是說,當胞外Zn+2濃度由6.3μM降至0.76μM時,培養存活率無延遲地校正(圖11A及圖11B)。
圖9C和圖9D是G0F百分比(WAX組份1)與生物反應器時期的對應關係的曲線圖,並顯示在0.76μM Zn+2和1.7μM Zn+2存在下,不同的EDTA濃度對非半乳糖種(non-galactosylated species)百分比的影響。DOE3實驗結果與先前SFM-10.1實驗所表現的假設一致。此外,其他假說亦顯露:
˙CTL移除、涎酸添加、細胞生長和抗體表現都與胞內Zn+2的累積量相關,而非與當前的胞外Zn+2濃度相關。Zn+2的累積儲存是基於胞外Zn+2的過往歷程,而非立即的胞外濃度。這是與過往胞外Zn+2相關的「細胞記憶」的基礎。
˙培養存活率與當前胞外Zn+2濃度相關。
根據本實驗的條件下,胞外Zn+2濃度為1.7μM足以使細胞的Zn+2需要量達到飽和,以支持與細胞生長和抗體表現相關的酵素活動。然而,1.7μM Zn+2不足以使細胞的Zn+2需要量達到飽和以支持CTL移除或涎酸添加。這些假設是由在第13天之前具有6.3μM Zn+2濃度的「Fe:5,Zn:1,EDTA:10」生物反應器所得結果所支持。
實例6-BSA混合實驗編號1和編號2
這兩個實驗採用SFM-10培養基。在每一個實驗中,使用同一批PRIMATONE®和胰島素,以確保恆定的Zn+2和Fe+3濃度。在BSA混合實驗編號1和編號2中,Zn+2濃度分別為1.1μM和1.2μM。
在每個實驗中,對含有高和低濃度EDTA的BSA批次進行鑑別,然後混合以建立生物反應器中一定範圍的EDTA濃度。BSA混合實驗編號1採用了8個生物反應器,在四個EDTA濃度採用重複的生物反應器。BSA混合實驗編號1中重複的生物反應器被標示為「A」和「B」。BSA混合實驗編號2採用8個生物反應器,每一個生物反應器都具有不同的EDTA濃度。表3和表4列出BSA混合實驗編號1和編號2的生物反應器中Zn+2、Fe+3、EDTA和EDTA-Fe濃度。
在兩個BSA混合實驗之中,具有較高的EDTA濃度的生物反應器歷經較少的CTL移除,以及反之亦然,具有較低EDTA濃度的生物反應器經歷增加的CTL移除。效果在每個實驗的第35天最為明顯,然後在之後的培養天數效果減少(圖13A及圖14A)。
在兩種BSA混合實驗之中,具有較高EDTA濃度的生物反應器經歷較少的涎酸含量,以及反之亦然,具有較低EDTA濃度的生物反應器經歷較高的涎酸含量。此效果持續於初期、中期、晚期的生物反應器樣品(圖13B及圖14B)。
在兩種BSA混合實驗之中,具有較高EDTA濃度和較低EDTA濃度的生物反應器展現相當的細胞生長(圖13C和14C)以及相當的培養存活率(圖13D及圖14D)。
在BSA混合實驗中,注意到EDTA濃度對抗體生產的影響較小。在BSA混合實驗編號1中,具有高和低EDTA的生物反應器在達到目標細胞密度之前,具有相當的抗體生產結果。就在達到目標細胞密度後的期間(從約15天到25天)與具有較低EDTA的生物反應器相比較,具有較高EDTA的生物反應器具有較低的抗體表現(圖13E及圖13F)。在BSA混合實驗編號2中,注意到在第10天開始兩個最高的[EDTA]的抗體生產減少,而具有最低[EDTA]的生物反應器在大約第15天展現較高的抗體生產(圖14E及圖14F)。然而,在DOE3實驗中並未觀察到[EDTA]對抗體生產的效果(圖12B)。
對於具有約1.1至1.2μM胞外Zn+2的生物反應器,BSA混合實驗證明EDTA濃度可以對於CTL移除和涎酸添加具有顯著的影響。此外,在從第10到25天的期間中,EDTA濃度可能對抗體生產具有少量的影響,但這種效果在DOE3實驗中並不明顯。在這些Zn+2濃度時,EDTA對細胞生長或培養存活率沒有明顯影響。
因為在BSA混合實驗的生物反應器中Fe+3濃度為恆定,上文提及的[EDTA]與[EDTA-Fe+3]相關性是同樣適用。
在兩種BSA混合實驗中,顯示減少EDTA濃度導致未半乳糖化的寡糖百分比下降(圖13G及圖15)。因此,降低EDTA濃度同時導致更多半乳糖和更多涎酸含量。
雖然不希望受任何特定理論的束縛,由BSA混合實驗的數據支持以下假說:
˙EDTA(或[EDTA-Fe+3])可以影響細胞的Zn+2吸收率。此效果最為明顯時可能是發生在胞外為低濃度Zn+2時,而細胞正經歷胞內Zn+2不足以支持具有Zn+2需求的酵素。
˙這些細胞具有複雜的胞內Zn+2儲存和分佈系統,並且在有限Zn+2時期排定Zn+2分佈的優先順序。在Zn+2受限的情況下,細胞將進行細胞分裂中需要Zn+2的胞內過程視為優先。因此,在BSA混合實驗 編號1和編號2中,EDTA對細胞生長沒有影響,因為在本研究的條件下細胞具有足夠的Zn+2以進行細胞分裂。同樣地,在這個實驗的條件下,EDTA對於抗體表現具有最低限度的影響。與用以細胞生長的Zn+2分佈相比較,用以支持CTL移除和涎酸添加所需的胞內Zn+2分佈具有較低的胞內優先順序。因此,在不影響細胞生長的EDTA條件下,EDTA可以對CTL移除和涎酸添加具有顯著的影響。
Infliximab生物反應器在前15至20天是以類似饋料批次培養方式進行操作。也就是說,細胞以較低的初始細胞密度接種,並在接下來的15至20天持續用新鮮培養基饋料,以支持細胞生長和抗體表現。因此,此處所描述的實驗結果可同樣適用於饋料批次和灌注培養。
實例7-進一步分析DOE3和BSA混合編號1和編號2
實驗DOE3和BSA混合實驗均在同一實驗室使用相同的小型生物反應器模式進行,並且樣品是由同一試驗組別進行分析。因此,應可對DOE3和BSA混合編號1和編號2實驗的結果進行彼此比較。
在DOE3實驗和BSA混合編號1實驗之中,在第20天收集樣品,並藉由cIEF和WAX試驗分析樣品。圖17、圖19、圖20和圖21顯示一起繪製的DOE3實驗和BSA混合編號1實驗在第20天的數據。圖17、圖19和圖20所顯示的結果支持先前所做的分析;亦即,CTL移除隨[Zn+2]增加而增加,涎酸含量隨[Zn+2]增加而增加,以及未半乳糖化寡糖百分比隨[Zn+2]增加而減少。後者兩個結果與進行半乳糖添加和涎酸添加酵素反應提升具有一致性,如圖16所顯示。
圖21顯示涎酸對半乳糖之比率隨[Zn+2]而增加。
圖26為圖形顯示涎酸百分比(從WAX組份5計算)與G0F百分比(WAX組份1的主要非半乳糖組份)的對應關係,並顯示DOE3和BSA混合編號1和編號2實驗中涎酸百分比與非半乳糖寡糖百分比的反比關係。圖26顯示半乳糖添加和涎酸添加於DOE3和BSA混合編號1和編號2實驗中較易連結在一起,此與由半乳糖轉移酶和涎酸轉移酶所催化的反應之間的連結是一致的。換句話說,提高這兩個糖基化反應的因素將引導更多的G0F成為含有涎酸的寡糖。
BSA混合編號1和編號2實驗都包括在第33至35天所採集的樣品。圖22至圖25顯示了由BSA混合編號1和編號2實驗所得到的第33至35天數據。圖22至圖25顯示,在EDTA濃度愈低時,具有愈高的CTL移除、愈高的涎酸含量、愈低的未半乳糖化寡糖百分比以及愈高的涎酸對半乳糖比率。
本文所述的所有專利、已公開申請案和參考文獻的教示該等文獻全文以引用的方式併入本文中。
本發明已以參照其例示性實施例方式特定顯示及描述,熟習此項技術者應可了知可於其中進行形式和細節之各種改變而不悖離由隨附申請專利範圍所涵蓋的本發明範圍。
<110> JANSSEN BIOTECH,INC. FLIKWEERT,Marcel GOOCHEE,Charles MASLANKA,Francis C. NAGEL,Franciscus Johannes Ignatius RYLAND,James R SCHAEFER,Eugene
<120> 用以控制重組蛋白質中C-端賴氨酸、半乳糖和唾液 酸含量的製造方法
<130> JBI5029WOPCT
<140> 未指定
<141> 未指定
<150> 61/791,094
<151> 2013-03-15
<160> 30
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 157
<212> PRT
<213> 人類(Homo sapiens)
<400> 1
<210> 2
<211> 321
<212> DNA
<213> Mus Balb/c
<220>
<221> CDS
<222> (1)...(321)
<400> 2
<210> 3
<211> 107
<212> PRT
<213> Mus Balb/c
<400> 3
<210> 4
<211> 357
<212> DNA
<213> Mus Balb/c
<220>
<221> CDS
<222> (1)...(357)
<400> 4
<210> 5
<211> 119
<212> PRT
<213> Mus Balb/c
<400> 5
<210> 6
<211> 8
<212> PRT
<213> 人類(Homo sapiens)
<400> 6
<210> 7
<211> 7
<212> PRT
<213> 人類(Homo sapiens)
<400> 7
<210> 8
<211> 20
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 8
<210> 9
<211> 27
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 9
<210> 10
<211> 27
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 10
<210> 11
<211> 21
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 11
<210> 12
<211> 16
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 12
<210> 13
<211> 19
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 13
<210> 14
<211> 23
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 14
<210> 15
<211> 18
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 15
<210> 16
<211> 17
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 16
<210> 17
<211> 24
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 17
<210> 18
<211> 17
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 18
<210> 19
<211> 20
<212> DNA
<213> 人造序列
<220>
<223> PCR寡核苷酸
<400> 19
<210> 20
<211> 11
<212> PRT
<213> 人造序列
<220>
<223> 部分序列pHC707
<400> 20
<210> 21
<211> 46
<212> DNA
<213> 人造序列
<220>
<223> 部分序列pHC707
<400> 21
<210> 22
<211> 16
<212> DNA
<213> 人造序列
<220>
<223> 部分序列pHC707
<400> 22
<210> 23
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 部分序列pHC707
<400> 23
<210> 24
<211> 32
<212> DNA
<213> 人造序列
<220>
<223> 部分序列pHC707
<400> 24
<210> 25
<211> 12
<212> PRT
<213> 人造序列
<220>
<223> 部分序列pLC871
<400> 25
<210> 26
<211> 52
<212> DNA
<213> 人造序列
<220>
<223> 部分序列pLC871
<400> 26
<210> 27
<211> 4
<212> PRT
<213> 人造序列
<220>
<223> 部分序列pLC671
<400> 27
<210> 28
<211> 21
<212> DNA
<213> 人造序列
<220>
<223> 部分序列pLC671
<400> 28
<210> 29
<211> 8
<212> PRT
<213> 人造序列
<220>
<223> 部分序列pLC671
<400> 29
<210> 30
<211> 31
<212> DNA
<213> 人造序列
<220>
<223> 部分序列pLC671
<400> 30

Claims (40)

  1. 一種用於產生一抗體之方法,該抗體具有含量為約20%至約70%之一C-末端離胺酸及含量為約1%至約20%之一涎酸,該方法包含:在包含至少0.5μM鋅的培養基中培養一鋅-反應性宿主細胞,其為編碼該抗體之DNA所轉染;以及控制該培養基之鋅濃度,從而產生該抗體。
  2. 如請求項1之方法,其中該抗體之該C-末端離胺酸含量為約40%至約70%。
  3. 如請求項2之方法,其中該抗體之該C-末端離胺酸含量為約55%至約65%。
  4. 如請求項3之方法,其中該抗體之該C-末端離胺酸含量為約60%。
  5. 如請求項1之方法,其中該抗體之該涎酸含量為約3%至約14%。
  6. 如請求項1之方法,其中該抗體為一抗TNFα抗體或其抗原結合片段,其中該抗TNFα抗體或其抗原結合片段(i)競爭性地抑制A2(ATCC登記號PTA-7045)與人類TNFα之結合;以及(ii)以至少1×108升/莫耳之親和力結合至人類TNFα之一中和抗原決定區,其以締合常數(Ka)計量。
  7. 如請求項6之方法,其中該抗TNFα抗體或其抗原結合片段為一人類抗體。
  8. 如請求項6之方法,其中該抗TNFα抗體是一人類化抗體或一嵌合抗體。
  9. 如請求項6之方法,其中該抗TNFα抗體或其抗原結合片段為免疫球蛋白類別IgG1、IgG2、IgG3、IgG4或IgM。
  10. 如請求項9之方法,其中該抗TNFα抗體或其抗原結合片段包含一IgG1恆定區。
  11. 如請求項6之方法,其中該抗TNFα抗體或其抗原結合片段係選自由Fab、Fab'、F(ab')2及Fv所組成的群組。
  12. 如請求項6之方法,其中a)輕鏈包含A2(ATCC登記號PTA-7045)之輕鏈的所有抗原結合區; b)重鏈包含A2(ATCC登記號PTA-7045)之重鏈的所有抗原結合區;或者c)輕鏈包含A2(ATCC登記號PTA-7045)之輕鏈的所有抗原結合區,且重鏈包含A2(ATCC登記號PTA-7045)之重鏈的所有抗原結合區。
  13. 如請求項12之方法,其中該抗TNFα抗體或其抗原結合片段包含一非人類變異區域,其包含一選自SEQ ID NO:3及SEQ ID NO:5所組成群組的胺基酸序列。
  14. 如請求項13之方法,其中該非人類變異區域包含一多肽,其係由選自SEQ ID NO:2及SEQ ID NO:4所組成群組的一核酸序列所編碼。
  15. 如請求項6之方法,其中該抗TNFα抗體或其抗原結合片段具有與單株抗體cA2相同的抗原決定區專一性。
  16. 如請求項15之方法,其中該抗TNFα抗體或其抗原結合片段為單株抗體cA2。
  17. 如請求項1之方法,其中該培養基的鋅濃度之範圍為約0.6μM至約6.5μM。
  18. 如請求項17之方法,其中該培養基的鋅濃度之範圍為約0.6μM至約1.1μM。
  19. 如請求項1之方法,其中該培養基進一步包含總濃度範圍為約2.5μM至約30μM之EDTA,且該方法進一步包含控制該培養基之無鐵EDTA濃度。
  20. 如請求項19之方法,其中該培養基進一步包含游離EDTA,其濃度範圍為約5μM至約16μM。
  21. 如請求項1之方法,其進一步包含回收該抗體。
  22. 如請求項21之方法,其中當該培養基之該鋅-反應性宿主細胞之細胞密度達到每ml約1.5百萬細胞至每ml約11百萬細胞時,回收該抗體。
  23. 如請求項22之方法,其中當該培養基之該鋅-反應性宿主細胞之細胞密度達到每ml約3百萬細胞至每ml約11百萬細胞時,回收該抗體。
  24. 如請求項21之方法,其中控制鋅濃度直到該抗體被回收。
  25. 如請求項1之方法,其中在該鋅-反應性宿主細胞之一指數生長期期間內控制鋅濃度。
  26. 如請求項1之方法,其中控制鋅濃度包含:監控該培養基的鋅濃度;及調節該培養基的鋅濃度,使得該培養基的鋅濃度至少為0.5μM。
  27. 如請求項26之方法,其中該培養基的鋅濃度之範圍為約0.6μM至約6.5μM。
  28. 如請求項1之方法,其中該抗體之一半乳糖含量為約50%至約90%。
  29. 如請求項28之方法,該抗體之一半乳糖含量為45%至約85%。
  30. 如請求項1之方法,其中該抗體之一涎酸對半乳糖之比率為約0.05至約0.20。
  31. 如請求項1之方法,其中該鋅-反應性宿主細胞為一SP2/0細胞。
  32. 一種在培養基中生物合成抗體之程序中用於控制該抗體之C-末端離胺酸含量之方法,該抗體之該C-末端離胺酸含量為約20%到70%,該方法包含:在生物合成該抗體期間,監測該培養基的鋅濃度;以及在生物合成該抗體期間,調節該培養基的鋅濃度。
  33. 一種在培養基中生物合成抗體之程序中用於控制該抗體之涎酸含量之方法,該抗體之該涎酸含量為約1%到20%,該方法包含:在生物合成該抗體期間,監測該培養基的鋅濃度;以及在生物合成該抗體期間,調節該培養基的鋅濃度。
  34. 一種在培養基中生物合成抗體之程序中用於控制該抗體之半乳糖含量之方法,該抗體之該半乳糖含量為50%至約90%,該方法包含:在生物合成該抗體期間,監測該培養基的鋅濃度;以及在生物合成該抗體期間,調節該培養基的鋅濃度。
  35. 一種在培養基中生物合成抗體之程序中用於控制該抗體之涎酸對半乳糖之比率之方法,該抗體之該涎酸對半乳糖之比率為約0.05到0.20,該方法包含:在生物合成該抗體期間,監測該培養基的鋅濃度;以及在生物合成該抗體期間,調節該培養基的鋅濃度。
  36. 如請求項33至35中之一項之方法,其中該抗體為一抗TNFα抗體或其抗原結合片段。
  37. 如請求項36之方法,其中該抗體是一抗TNFα抗體或其抗原結合片段,其中該抗TNFα抗體或其抗原結合片段(i)競爭性地抑制A2(ATCC登記號PTA-7045)與人類TNFα之結合;以及(ii)以至少1×108升/莫耳之親和力結合至人類TNFα之一中和抗原決定區,其以締合常數(Ka)計量。
  38. 如請求項37之方法,其中該抗體為一抗TNFα抗體或其抗原結合片段,其具有與單株抗體cA2相同的抗原決定區專一性。
  39. 如請求項38之方法,其中該抗體為一單株抗體cA2。
  40. 如請求項37之方法,其中該抗體是由一SP2/0細胞株所生物合成。
TW103108900A 2013-03-15 2014-03-13 控制重組蛋白質中之c端離胺酸、半乳糖、及涎酸含量的製造方法 TWI630216B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361791094P 2013-03-15 2013-03-15
US61/791,094 2013-03-15

Publications (2)

Publication Number Publication Date
TW201441263A true TW201441263A (zh) 2014-11-01
TWI630216B TWI630216B (zh) 2018-07-21

Family

ID=51528780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103108900A TWI630216B (zh) 2013-03-15 2014-03-13 控制重組蛋白質中之c端離胺酸、半乳糖、及涎酸含量的製造方法

Country Status (26)

Country Link
US (3) US20140273092A1 (zh)
EP (1) EP2970980B2 (zh)
JP (1) JP2016512029A (zh)
KR (1) KR102216003B1 (zh)
CN (1) CN105378086B (zh)
AR (2) AR095660A1 (zh)
AU (2) AU2014237635B2 (zh)
BR (1) BR112015022971B1 (zh)
CA (1) CA2907140A1 (zh)
CY (1) CY1120980T1 (zh)
DK (1) DK2970980T3 (zh)
EA (1) EA201591807A1 (zh)
ES (1) ES2690047T3 (zh)
HR (1) HRP20181741T1 (zh)
IL (1) IL240689B (zh)
LT (1) LT2970980T (zh)
MX (1) MX366910B (zh)
PH (1) PH12015501837A1 (zh)
PL (1) PL2970980T3 (zh)
PT (1) PT2970980T (zh)
RS (1) RS57791B1 (zh)
SG (1) SG11201507577RA (zh)
SI (1) SI2970980T1 (zh)
TW (1) TWI630216B (zh)
WO (1) WO2014149935A1 (zh)
ZA (1) ZA201507671B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2702077A2 (en) 2011-04-27 2014-03-05 AbbVie Inc. Methods for controlling the galactosylation profile of recombinantly-expressed proteins
WO2013158273A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Methods to modulate c-terminal lysine variant distribution
WO2013158279A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Protein purification methods to reduce acidic species
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
AU2013381687A1 (en) 2013-03-12 2015-09-24 Abbvie Inc. Human antibodies that bind human TNF-alpha and methods of preparing the same
US9499614B2 (en) 2013-03-14 2016-11-22 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosaccharides
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
AU2014237635B2 (en) * 2013-03-15 2020-03-12 Janssen Biologics B.V. Manufacturing methods to control C-terminal lysine, galactose and sialic acid content in recombinant proteins
WO2015024977A1 (en) 2013-08-20 2015-02-26 Lek Pharmaceuticals D.D. CELL CULTURE MEDIUM AND PROCESS FOR CONTROLLING α-AMIDATION AND/OR C-TERMINAL AMINO ACID CLEAVAGE OF POLYPEPTIDES
US9598667B2 (en) 2013-10-04 2017-03-21 Abbvie Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US20150139988A1 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
BR112018008891A8 (pt) 2015-11-03 2019-02-26 Janssen Biotech Inc anticorpos que se ligam especificamente a pd-1 e tim-3 e seus usos
WO2017083224A1 (en) * 2015-11-09 2017-05-18 Bristol-Myers Squibb Company Methods to manipulate quality attributes of polypeptides produced in cho cells
BR112018012344A2 (pt) 2015-12-17 2018-12-04 Janssen Biotech Inc anticorpos que se ligam especificamente a hla-dr e seus usos
KR102587941B1 (ko) 2016-08-12 2023-10-11 얀센 바이오테크 인코포레이티드 향상된 효능작용 및 이펙터 기능을 갖는 조작된 항체 및 다른 Fc-도메인 함유 분자
EP3497126A4 (en) 2016-08-12 2020-04-08 Janssen Biotech, Inc. ANTIBODIES OF FC MODIFIED ANTI-TNFR SUPERFAMILY HAVING IMPROVED AGONIST ACTIVITY AND METHODS OF USE THEREOF
CA3065516A1 (en) 2017-06-05 2018-12-13 Janssen Biotech, Inc. Antibodies that specifically bind pd-1 and methods of use
CA3065171A1 (en) 2017-06-05 2018-12-13 Janssen Biotech, Inc. Engineered multispecific antibodies and other multimeric proteins with asymmetrical ch2-ch3 region mutations
WO2019077628A1 (en) * 2017-10-16 2019-04-25 Council Of Scientific & Industrial Research ZINC SUPPLEMENTATION TO DECREASE GALACTOSYLATION OF RECOMBINANT GLYCOPROTEINS
MA52772A (fr) 2018-05-24 2021-04-14 Janssen Biotech Inc Anticorps anti-tmeff2 monospécifiques et multispécifiques et leurs utilisations
US20220033487A1 (en) * 2018-12-31 2022-02-03 Momenta Pharmaceuticals, Inc. Methods of Producing Ustekinumab
UY38803A (es) 2019-07-26 2021-01-29 Janssen Biotech Inc Proteínas que comprenden dominios de unión al antígeno de la peptidasa 2 relacionada con la calicreína y usos de las mismas
CA3148121A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Materials and methods for improved single chain variable fragments
PE20230001A1 (es) 2020-03-13 2023-01-05 Janssen Biotech Inc Materiales y metodos para la union de siglec-3/cd33
CA3184189A1 (en) 2020-05-27 2021-12-02 Janssen Biotech, Inc. Proteins comprising cd3 antigen binding domains and uses thereof
CA3190307A1 (en) 2020-07-29 2022-02-03 Janssen Biotech, Inc. Proteins comprising hla-g antigen binding domains and their uses
UY39467A (es) 2020-10-13 2022-04-29 Janssen Biotech Inc Inmunidad mediada por células t de bioingeniería, materiales y otros métodos para modular el grupo de diferenciación iv y / o viii
WO2022084915A1 (en) 2020-10-22 2022-04-28 Janssen Biotech, Inc. Proteins comprising delta-like ligand 3 (dll3) antigen binding domains and their uses
KR20230137393A (ko) 2021-01-28 2023-10-04 얀센 바이오테크 인코포레이티드 Psma 결합 단백질 및 이의 용도
EP4314056A1 (en) 2021-03-24 2024-02-07 Janssen Biotech, Inc. Proteins comprising cd3 antigen binding domains and uses thereof
TW202304986A (zh) 2021-03-24 2023-02-01 美商健生生物科技公司 靶向cd22及cd79b的抗體
KR20240055002A (ko) 2021-09-13 2024-04-26 얀센 바이오테크 인코포레이티드 암 치료를 위한 CD33 x Vδ2 다중특이성 항체
WO2023046322A1 (en) 2021-09-24 2023-03-30 Janssen Pharmaceutica Nv Proteins comprising cd20 binding domains, and uses thereof
WO2023089587A1 (en) 2021-11-22 2023-05-25 Janssen Biotech, Inc. Compositions comprising enhanced multispecific binding agents for an immune response
WO2024089551A1 (en) 2022-10-25 2024-05-02 Janssen Biotech, Inc. Msln and cd3 binding agents and methods of use thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4870163A (en) 1985-08-29 1989-09-26 New York Blood Center, Inc. Preparation of pure human tumor necrosis factor and hybridomas producing monoclonal antibodies to human tumor necrosis factor
DE3631229A1 (de) 1986-09-13 1988-03-24 Basf Ag Monoklonale antikoerper gegen humanen tumornekrosefaktor (tnf) und deren verwendung
EP0288088B1 (en) 1987-04-24 1994-03-09 Teijin Limited Detection of tumor necrosis factor; monoclonal antibody and kit
JP3443119B2 (ja) 1989-08-07 2003-09-02 ペプテック リミテッド 腫瘍壊死因子結合リガンド
US7192584B2 (en) 1991-03-18 2007-03-20 Centocor, Inc. Methods of treating psoriasis with anti-TNF antibodies
US5919452A (en) 1991-03-18 1999-07-06 New York University Methods of treating TNFα-mediated disease using chimeric anti-TNF antibodies
US6277969B1 (en) * 1991-03-18 2001-08-21 New York University Anti-TNF antibodies and peptides of human tumor necrosis factor
DK1097945T3 (da) 1991-03-18 2007-11-05 Univ New York Monoklonale og kimære antistoffer, der er specifikke for human tumornekrosefaktor
FR2807767B1 (fr) 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
UA81743C2 (uk) 2000-08-07 2008-02-11 Центокор, Инк. МОНОКЛОНАЛЬНЕ АНТИТІЛО ЛЮДИНИ, ЩО СПЕЦИФІЧНО ЗВ'ЯЗУЄТЬСЯ З ФАКТОРОМ НЕКРОЗУ ПУХЛИН АЛЬФА (ФНПα), ФАРМАЦЕВТИЧНА КОМПОЗИЦІЯ, ЩО ЙОГО МІСТИТЬ, ТА СПОСІБ ЛІКУВАННЯ РЕВМАТОЇДНОГО АРТРИТУ
CA2450289A1 (en) 2003-03-20 2005-05-19 Imclone Systems Incorporated Method of producing an antibody to epidermal growth factor receptor
US20040185047A1 (en) 2003-03-21 2004-09-23 Jill Giles-Komar Anti- TNF antibodies, compositions, methods and uses
CA2583027A1 (en) 2004-11-02 2006-10-19 Ares Trading S.A. Serum-free cell culture medium for mammalian cells
EP2283043B1 (en) * 2008-04-07 2014-08-13 Bayer HealthCare, LLC Methods of recombinant production of glycoproteins
DK2702164T3 (en) * 2011-04-29 2016-02-01 Biocon Res Ltd METHOD FOR REDUCING heterogeneity OF ANTIBODIES AND METHOD OF PRODUCING THESE ANTIBODIES
US9475858B2 (en) 2011-07-08 2016-10-25 Momenta Pharmaceuticals, Inc. Cell culture process
WO2013158273A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Methods to modulate c-terminal lysine variant distribution
AU2014237635B2 (en) * 2013-03-15 2020-03-12 Janssen Biologics B.V. Manufacturing methods to control C-terminal lysine, galactose and sialic acid content in recombinant proteins

Also Published As

Publication number Publication date
SG11201507577RA (en) 2015-10-29
US11149085B2 (en) 2021-10-19
CN105378086B (zh) 2019-05-28
WO2014149935A1 (en) 2014-09-25
ZA201507671B (en) 2017-11-29
AU2014237635B2 (en) 2020-03-12
AU2014237635A1 (en) 2015-09-03
EA201591807A1 (ru) 2016-02-29
US20140273092A1 (en) 2014-09-18
ES2690047T3 (es) 2018-11-19
US20160237149A1 (en) 2016-08-18
RS57791B1 (sr) 2018-12-31
EP2970980A4 (en) 2016-09-07
EP2970980B1 (en) 2018-08-15
TWI630216B (zh) 2018-07-21
AU2020203864B2 (en) 2022-05-26
AR095660A1 (es) 2015-11-04
EP2970980A1 (en) 2016-01-20
PL2970980T3 (pl) 2019-01-31
MX366910B (es) 2019-07-30
PH12015501837B1 (en) 2015-11-09
SI2970980T1 (sl) 2018-11-30
BR112015022971B1 (pt) 2022-05-17
BR112015022971A2 (pt) 2017-11-14
EP2970980B2 (en) 2022-07-27
IL240689A0 (en) 2015-10-29
KR20150129025A (ko) 2015-11-18
LT2970980T (lt) 2018-10-25
CA2907140A1 (en) 2014-09-25
CY1120980T1 (el) 2019-12-11
US20220089712A1 (en) 2022-03-24
JP2016512029A (ja) 2016-04-25
MX2015012361A (es) 2016-04-28
HRP20181741T1 (hr) 2018-12-28
PT2970980T (pt) 2018-11-19
IL240689B (en) 2021-12-01
PH12015501837A1 (en) 2015-11-09
KR102216003B1 (ko) 2021-02-16
AR124871A2 (es) 2023-05-17
CN105378086A (zh) 2016-03-02
AU2020203864A1 (en) 2020-07-02
DK2970980T3 (en) 2018-10-22

Similar Documents

Publication Publication Date Title
US20220089712A1 (en) Manufacturing Methods To Control C-Terminal Lysine, Galactose And Sialic Acid Content In Recombinant Proteins
US20210017270A1 (en) Antigen binding proteins to oncostatin m (osm)
KR20100020946A (ko) 신규한 화합물
JP2021526022A (ja) 抗インターロイキン17a抗体、医薬組成物、およびその使用
BRPI0711908B1 (pt) Anticorpo anti-interleucina-18 humanizado, composição farmacêutica, uso de um anticorpo anti-interleucina 18, e, método de produção de um anticorpo
MX2012008765A (es) Proteinas de enlace a cd127.
US11261246B2 (en) Anti-IL-22R antibodies
JP2023076596A (ja) TGF-βRII結合タンパク質
EP4296357A1 (en) Novel anti-pad4 antibody

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees