TW201434914A - 具增加之不滲透性之丁基橡膠 - Google Patents

具增加之不滲透性之丁基橡膠 Download PDF

Info

Publication number
TW201434914A
TW201434914A TW102146504A TW102146504A TW201434914A TW 201434914 A TW201434914 A TW 201434914A TW 102146504 A TW102146504 A TW 102146504A TW 102146504 A TW102146504 A TW 102146504A TW 201434914 A TW201434914 A TW 201434914A
Authority
TW
Taiwan
Prior art keywords
composition
butyl rubber
iir
monomer
fots
Prior art date
Application number
TW102146504A
Other languages
English (en)
Inventor
Tricia Breen Carmichael
Akhil Vohra
Lorenzo Ferrari
Natalie Suhan
Original Assignee
Lanxess Inc
Univ Windsor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Inc, Univ Windsor filed Critical Lanxess Inc
Publication of TW201434914A publication Critical patent/TW201434914A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/24Incorporating phosphorus atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明關於一種以電漿及化學處理的組合為基礎之表面改質方法,提供一未填充的丁基橡膠表面對有機矽烷類具有高度反應性,其使得形成有機矽烷自組裝單層(SAM)。接著藉SiCl4的蒸汽沉積之該丁基橡膠表面電漿氧化反應產生一適用於固定有機矽烷類之親水性表面。經由蒸汽沉積,在此具n-十八烷基三氯矽烷(OTS)及三氯(1H,1H,2H,2H-全氟辛基)矽烷(FOTS)之親水性丁基橡膠表面上製造SAMs,分別造成透氣性減少15%及25%,於丁基橡膠之透光性沒有任何變化。

Description

具增加之不滲透性之丁基橡膠
本發明關於一種具有表面處理之丁基橡膠,其賦予增加之不滲透性。更詳言之,本發明關於一種丁基橡膠,其包含一具側鏈乙烯基(pendant vinyl group)之單體。甚更詳言之,本發明關於一種展現透光性(optical transparency)之丁基橡膠,其選擇性未填充。亦揭示一種製作該表面處理的丁基橡膠之方法。
聚(異丁烯-共-異戊二烯)、或IIR為合成彈性體,係習知的丁基橡膠,從1940年代,已透過異丁烯(isobutylene)與少量的異戊二烯(1至2mole%)之無規陽離子共聚合反應而製得,結果是它的分子結構,使IIR具備良好的不透氣性(air impermeability)、高損耗模量(loss modulus)、氧化穩定性及延長的抗疲勞性(extended fatigue resistance)。
據了解丁基橡膠為一異烯烴與一種或多種(較佳地共軛的)多烯烴類(作為共單體)之共聚物,商業的丁基橡膠包含主要部分的異烯烴與微量的(經常不超過2.5mol%)的共軛多烯烴。通常以漿液方法,使用氯甲烷(methyl chloride)作為稀釋劑及Friedel-Crafts觸媒作為聚合反應起始劑之一部分,製備丁基橡膠或丁基聚合物,這方法進一步敘述於U.S.專利案號No.2,356,128及Ullmanns Encyclopedia of Industrial Chemistry,volume A 23,1993,288-295頁。
這丁基橡膠之鹵化反應在彈性體內產生反應性烯丙基系鹵化物(allylic halide)官能度,常用的丁基橡膠鹵化方法敘述於(例如)Ullmann's Encyclopedia of Industrial Chemistry(Fifth,Completely Revised Edition,Volume A231 Editors Elvers,et al.)及/或"Rubber Technology"(Third Edition)by Maurice Morton,Chapter 10(Van Nostrand Reinhold Company © 1987),特別是297-300頁。
烯丙基系鹵化物官能度的存在以使親核烷基化反應,已顯示利用以氮及/或磷為基底的親核物(nucleophiles)處理溴化丁基橡膠(BIIR),於固態中,導致生成具令人關注的物理的及化學的性質之IIR-系離子體(見:Parent,J.S.;Liskova,A.;Whitney,R.A;Resendes,R.Journal of Polymer Science,Part A:Polymer Chemistry 43,5671-5679,2005;Parent,J.S.;Liskova,A.;Resendes,R.Polymer 45,8091-8096,2004;Parent,J.S.;Penciu,A.;Guillen-Castellanos,S.A.;Liskova,A.;Whitney,R.A.Macromolecules 37,7477-7483,2004),該離子體官能度由以氮或磷為基底的親核物與在該鹵化丁基橡膠之烯丙基系鹵化物位置之反應所生成,以分別製造一銨或鏻(phosphonium)離子基,該等以鹵化丁基橡膠為基底的離子體之物理性質,諸如生胚強度(green strength)、模量、填料相互作用等,均優於它們的非-離子體系對應物之彼等性質。
改善該不透氣性的同時保有其它所希望的性質(例如,拉伸強度、硬度等)仍是重要的,例如,諸如航太、飛機、及高真空系統之領域具有極高氣體阻隔性(gas barrier)要求,其很難或不可能在符合目前的IIR技術同時保有所希望的物理性質,雖然於一些情況下填料可用以增加不滲透性,於特殊應用(特別是彼等希望有透光性),有利的是降低或消除共同使用的填料,於該等情況下,特別希望的是增加丁基橡膠之不滲透性而不依賴使用填料。
本文敘述一種以電漿及化學處理之組合為基礎的簡易、有效的表面改質方法,其致使該IIR表面對有機矽烷類具有高度反應性,使能夠形成增加IIR對氧之不滲透性之全氟化有機矽烷自組裝單層(SAM)(圖1)。對照於常用的將填料添加至該IIR調配物之方法,此欲改善丁基橡膠之不透氣性之方法有二項重要優點:首先,改善該不滲透性之材料改質作用限制於該IIR基材的表面,其留有實質上未改變之所希望的整體性質(bulk properties)諸如拉伸強度、硬度等,其次,這方法明顯地不包含透明 的IIR調配物之透光性,而填料常常使該等材料為不透明的。
根據本發明之一領域,提供一種丁基橡膠組成物,包含衍生自至少一種異烯烴單體之重複單元;及,衍生自至少一種多烯烴單體之重複單元,其中該組成物包含一具一有機矽烷自組裝單層之表面。
根據本發明之另一領域,提供一種增加丁基橡膠組成物之不滲透性之方法,包含:提供一丁基橡膠聚合物,包含衍生自至少一種異烯烴單體之重複單元及衍生自一種或多種多烯烴單體之重複單元;氧化該丁基橡膠之一表面;以醇處理該表面,及使得該醇蒸發;將該處理的表面曝露至一鹵化矽;及,在適於形成一自組裝單層之條件下,將該鹵化矽曝露的表面與一蒸汽沉積於該表面之有機三氯矽烷反應。
本發明之另外領域,此項技術領域中熟悉者參考下述說明將顯而易知。
為了可更清楚地了解本發明,因此現將參考隨附圖式說明較佳的具體實施,其中:圖1顯示丁基橡膠的表面改質作用及隨後形成有機矽烷SAM(自組裝單層)之示意說明;圖2為形成BB2030-DPPS丁基橡膠之反應機構;圖3為過氧化固化BB2030-DPPS丁基橡膠之反應機構;圖4A顯示對Teflon薄片之間的PDMS塗覆的晶圓,製備固化未填充的丁基橡膠薄片之樣品示意圖;圖4B顯示對在具Teflon薄片的一面上的PDMS塗覆的晶圓,製備固化填充的丁基橡膠薄片之樣品示意圖;圖5顯示氧化的U-IIR基材(鑽石形)及以異丙醇擦拭的氧化的U-IIR基材(方形)之靜態水接觸角,對射頻(RF)氧電漿的曝露時間之函數關係圖;圖6顯示(a)原有的(native)U-IIR、(b)U-IIR[ox]、(c)U-IIR[ox]/SiO2、及(d)U-IIR[ox]/SiO2/FOTS之ATR-FTIR光譜;圖7顯示(a)U-IIR[ox]/SiO2、及(b)U-IIR[ox]/SiO2/FOTS之XPS 探測掃描圖(survey scans);圖8顯示以甲苯沖洗之後,(a)U-IIR[ox]、(b)U-IIR[ox]/FOTS、(c)U-IIR[ox]/SiO2/FOTS、及(d)U-IIR[ox]/FOTS之ATR-FTIR光譜(1400至1000cm-1);圖9顯示U-IIR[ox]/SiO2/FOTS之水的靜態接觸角對時間之函數關係圖;圖10顯示原有的U-IIR(虛線)及U-IIR[ox]/SiO2/FOTS(實線)之透射光譜對照;
該丁基橡膠離子體由一鹵化丁基橡膠聚合物所製備,丁基橡膠聚合物通常衍生自至少一種異烯烴單體、至少一種多烯烴單體與選擇地另外的可共聚的單體。
於一具體實施,該離子體可包含衍生自一異烯烴單體與一共軛二烯單體之重複單元。於另一具體實施,該丁基離子體可包含衍生自一異烯烴單體、一共軛二烯單體與一苯乙烯系單體之重複單元。
該丁基橡膠聚合物不受限於特定的異烯烴,由本發明預期使用之如此項技術領域中熟悉者已知的任何異烯烴包括具有(例如)4至16範圍內的碳原子之異烯烴。於本發明之一具體實施,預期使用的是具有4至7個碳原子之異烯烴。用於本發明之異烯烴實例包括異丁烯、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、4-甲基-1-戊烯及其混合物,較佳的異烯烴為異丁烯(isobutene)(異丁烯(isobutylene))。
同樣地,該丁基橡膠聚合物不受限於特定的多烯烴,如此項技術領域中熟悉者已知的與該異烯烴類可共聚的多烯烴類可用於實現本發明,以共軛二烯多烯烴單體為較佳,此類多烯烴類實例包括(例如)彼等具有4至14範圍的碳原子,適合的多烯烴類實例包括異戊二烯、丁二烯、2-甲基丁二烯、2,4-二甲基丁二烯、間戊二烯(piperyline)、3-甲基-1,3-戊二烯、2,4-己二烯、2-新戊基丁二烯、2-甲基(methyl)-1,5-己二烯、2,5-二甲基(dimethly)-2,4-己二烯、2-甲基-1,4-戊二烯、2-甲基-1,6-庚二烯、環戊二烯、甲基環戊二烯、環己二烯、1-乙烯基-環己二烯及其混合物,較佳的多烯烴 包含異戊二烯。
除了上述提及的多烯烴類外,適用於本發明之丁基橡膠可包括一共-單體,諸如烷基-取代的乙烯基芳香族共-單體,包括(但不受限於)C1-C4烷基取代的苯乙烯,此類共-單體的特定實例包括(例如)a-甲基苯乙烯、p-甲基苯乙烯、氯苯乙烯、環戊二烯及甲基環戊二烯。於本發明之這具體實施,該丁基橡膠聚合物可包括(例如)異丁烯、異戊二烯與對-甲基苯乙烯之無規共聚物。
為了形成鹵化丁基橡膠聚合物或鹵化丁基橡膠聚合物,一旦由該單體混合物形成該丁基橡膠聚合物,該丁基橡膠聚合物可進行一鹵化反應程序。溴化反應或氯化反應,可根據此項技術領域中熟悉者已知的方法實行(例如)敘述於Rubber Technology,3rd Ed.,Edited by Maurice Morton,Kluwer Academic Publishers,pp.297-300及其中所引用的其它文獻之方法。
於一具體實施,用於本發明之鹵化丁基橡膠包括具有異丁烯及低於2.2mol%異戊二烯之鹵化丁基橡膠,其可商業上獲自LANXESS Deutschland GmbH及販售的品名BB2030TM
在鹵化反應期間,該丁基聚合物之一些或全部的多烯烴內容物(content)被轉換成烯丙基系鹵化物,因此於該鹵化丁基聚合物中的烯丙基系鹵化物為衍生自原本存在於該丁基聚合物中的多烯烴單體之重複單元,該鹵化丁基聚合物之總烯丙基系鹵化物含量不能超過母丁基聚合物(parent butyl polymer)之起始的多烯烴含量。
該鹵化丁基聚合物之烯丙基系鹵化物位置則可與至少一種根據下式之含有氮或磷之親核物反應, 其中:A為氮或磷;及,R1、R2及R3獨立地為選擇及包含:直線的或分支的C1-C18烷基取代基;芳基取代基,其為單環系或由稠合的C4-C8環所構成;或,其組合,其中R1、R2或R3之至少一者含有側鏈乙烯基。
通常,適當的親核物會含有至少一個中性的磷或氮中心,其具備一未共用的電子對(lone pair of electrons),為電子上及立體上均可易於參予親核取代反應(nucleophilic substitution reaction)。
於一具體實施,該以氮或磷為基底的親核物包含一側鏈乙烯基,適合的親核物包括(但不受限於)二苯基膦基苯乙烯(diphenylphosphinostyrene)(DPPS)、烯丙基二苯基膦、二烯丙基苯基膦、二苯基乙烯基膦、三烯丙基苯基膦、N-乙烯基己內醯胺、N-乙烯基酞醯亞胺、9-乙烯基咔唑、N-[3-(二甲基胺基)丙基]甲基丙烯醯胺(methacrylamide)、二苯基乙烯基膦-甲基-N-乙烯基乙醯胺、N-烯丙基-N-丁基-2-丙烯-1-胺、1-乙烯基-2-吡咯啶酮、2-異丙烯基-2-噁唑啉、2-乙烯基吡啶-4-乙烯基吡啶、N-乙基-2-乙烯基咔唑或其混合物。
特別適用的親核物之一實例,為二苯基膦基苯乙烯(DPPS),如下所示。
當與在該起始聚合物的多烯烴位置所製得的含有烯丙基系鹵化物之鹵化丁基橡膠反應時,該反應產物產生一在該側鏈乙烯基位置具有不飽和度之丁基橡膠離子體,除了任何殘餘的不飽和度之外,這不飽和度為保留於該鹵化丁基橡膠起始材料中。不飽和度使得該離子體有過氧化可固化性,而沒有一般發生在當有不足的烯烴系鍵存在時之分子量降解及鏈切斷之情形,該反應程序圖述於圖2。
與該丁基橡膠反應之親核物含量可於0.05至5莫耳當量(molar equivalent)、更佳地0.5至4莫耳當量及甚更佳地1至3莫耳當量之範圍,以存在於該鹵化丁基聚合物中的烯丙基系鹵化物之總莫耳含量為基準。
該鹵化丁基聚合物及親核物可經反應約0.25至90分鐘,當在一內部混合機中進行反應時,在高於80℃之溫度(諸如80至180℃),該反應較佳為介於1至90鐘,更佳地1至60分鐘。
由於該親核物與該鹵化丁基聚合物之烯丙基系鹵化物官能度反應,該產生的離子體部分為衍生自一烯丙基系鹵化物之重複單元。在該丁基離子體中的離子體部分之總量因此不能超過在該鹵化丁基聚合物中的烯丙基系鹵化物之起始含量;然而,可存在殘餘的烯丙基系鹵化物及/或殘餘的多烯烴類。該產生的以鹵化丁基為基底的離子體較佳地具備至少0.05mol%、較佳地至少0.75mol%、更佳地至少1.0mol%的該離子體部分,至多不超過用於製造該丁基離子體之鹵化丁基聚合物的原本烯丙基系鹵化物量。殘餘的烯丙基系鹵化物可以一非-零含量至多不超過用於製造該丁基離子體之鹵化丁基聚合物的原本烯丙基系鹵化物量之含量存在。殘餘的多烯烴可以一非-零含量至多不超過用於製造該鹵化丁基聚合物之丁基聚合物的原本多烯烴量之含量存在。
於一些具體實施,為了保持透光性,希望的是在本發明之化合物中未使用任何填料。當固化時,該等不含填料的化合物因此必須具備需要的物理性質,而沒有填料再-強化作用的效益。然而,於其它具體實施,可使用特定的光學上透明的填料以增進該最終固化的化合物之物理性質。可使用之適合的光學上透明的填料實例包括Aerosil®透明的煙製矽石(fumed silica)及可取得的替代商品名之產品。
於一具體實施,為了形成一自組裝單層(SAM),先前述及的丁基橡膠為經表面改質的。於一具體實施,該丁基橡膠表面進行電漿氧化反應及氧化切斷產物之移除,以在表面上產生一低密度的適用官能基團(-OH,-COOH);該等基團之後藉由SiCl4之吸附作用及水解作用而固定一表面矽酸鹽層。這程序產生一密集陣列(dense array)的Si-OH表面基團,其可用於與一有機三氯矽烷蒸汽反應,以在該表面上形成一有機矽烷SAM。實驗上已顯示,相對於未改質的丁基橡膠基材,由有機三氯矽烷(例如全氟辛基三氯矽烷(FOTS))形成的SAMs降低了氧之滲透速至多25%(或15-25%)。未填充的SAM組成物期望地展現對氧之滲透性為低於200cc-mm/(m2-日)、低於190cc-mm/(m2-日)、低於175cc-mm/(m2-日),或於168至200cc-mm/(m2-日)之範圍。填充的SAM組成物期望地展現對氧之滲透性為低於170cc-mm/(m2-日)、低於160cc-mm/(m2-日)、低於140cc-mm/(m2-日)、低於130cc-mm/(m2-日)、低於120cc-mm/(m2-日)、低於 110cc-mm/(m2-日)、低於100cc-mm/(m2-日),或於90至166cc-mm/(m2-日)之範圍。
一種增加該丁基橡膠組成物之不滲透性之方法,包含氧化該丁基橡膠之一表面,可使用各種方法氧化該表面,適合的方法係使用一含有氧之電漿法,例如一RF電漿法。於一適合的電漿處理裝置,例如Harrick電漿清潔器(Model:PDC-001),該丁基橡膠可利用含有氧之RF電漿處理1至30分鐘、或10至20分鐘。其它適合的方法為此項技術領域中熟悉者已知的。
雖然已知利用RF電漿處理對丁基橡膠表面造成破壞,但誘發鍵切斷反應之RF電漿誘發的鍵切斷反應之產物可藉利用醇(例如異丙醇)處理該電漿處理的表面而被移除。一種利用醇處理該表面之方法,包含以該醇擦拭該表面。其它適合方法可包含在該醇中浸漬或浴洗該表面。接著處理,可容許蒸發該醇,藉此曝露一具充分氧化的丁基橡膠官能度之表面,以提供隨後的SAM層之固定。
在醇處理之後,該丁基橡膠表面可曝露至一鹵化矽,該鹵化矽可包含四鹵化矽,例如四氯化矽(SiCl4),該鹵化矽藉在該處理的丁基橡膠表面上的羥基官能基團而吸收,該鹵化矽之後被水解而在該丁基橡膠上產生一密集陣列的SiOH表面基團。該鹵化矽之曝露時間可為1至180秒、10至90秒或15至60秒左右。該表面基團之後可用於進一步與一有機矽烷(例如有機三氯矽烷)反應,以形成該SAM。
該有機三氯矽烷可經由各種手段而沉積在該鹵化矽曝露的丁基橡膠表面上,適合的沉積方法實例為物理蒸汽沉積法(PVD),適合的有機三氯矽烷實例包含三氯(1H,1H,2H,2H-全氟辛基)矽烷(FOTS)、n-十八烷基三氯矽烷(OTS)、其組合。
儘管是缺少先前認為使得過氧化固化而沒有不當的鏈切斷及分子量降解所需要的高殘餘多烯烴量,該側鏈乙烯基的存在使根據本發明之化合物適用於過氧化固化,。
適用於本發明之以過氧化物為基底的固化系統可包含過氧化物固化劑,例如過氧化二異丙苯、二-tert-丁基過氧化物、苯甲醯基過氧化物、2,2’-雙(tert.-丁基過氧基)二異丙基苯(Vulcup® 40KE)、苯甲醯基過 氧化物、2,5-二甲基-2,5-二(tert-丁基過氧基)-己炔-3、2,5-二甲基-2,5-二(苯甲醯基過氧基)己烷、(2,5-雙(tert.-丁基過氧基)-2,5-二甲基己烷及類似物。諸如此類過氧化物固化劑包含過氧化二異丙苯及為商業上可獲得之品名DiCup 40CTM,另一過氧化物固化劑為2,5-雙(tert.-丁基過氧基)-2,5-二甲基己烷(商業上可獲得之品名Trigonox 101-45B-PD-AM)。於一具體實施,該過氧化物固化劑,以每百份橡膠(per hundred parts of rubber)之0.1至7份(phr)之量使用。於另一具體實施,該過氧化物固化劑以0.3至6phr之量使用。於再另一具體實施,該過氧化物固化劑以約4phr之量使用。
於本發明中亦可使用過氧化物固化輔劑(co-agent),適合的過氧化物固化輔劑包括(例如)三烯丙基異氰脲酸酯(TAIC)(商業上可獲自DuPont之品名DIAK 7TM)、N,N’-m-伸苯基二馬來醯亞胺(已知為HVA-2TM(DuPont Dow))、三烯丙基氰脲酸酯(TAC)或液態聚丁二烯(已知為Ricon D 153TM(供應自Ricon Resins)),過氧化物固化輔劑可以等同於或低於該過氧化物固化劑之量使用。
該組成物之固化可藉提供適用於固化該過氧化物固化劑之條件下實行,例如80至250℃、較佳地100至200℃、更佳地120至170℃之範圍的高溫。
利用含有增加量的不飽和度之丁基聚合物加強過氧化固化的組成物之狀態,這可利用在該聚合物主鏈中具有高量的多烯烴量之聚合物或透過來自該以磷或氮為基底的親核物之側鏈乙烯基的增加不飽和度之加入來達成。總不飽和度量超過0.5mol%(或高於1.0mol%),導致期望上加強的固化狀態。藉使用在該聚合物主鏈中具高量的異戊二烯(例如於超過3.5mol%)之丁基橡膠聚合物作為起始材料,可達成加強固化狀態。
於一具體實施,過氧化固化的丁基橡膠化合物包含一高於4.5dNm、高於5.3dNm、高於6.3dNm、高於11.9dNm、或4至15dNm之固化狀態MH-ML
於一具體實施,希望的是根據本發明之組成物為光學上透明的。此可特徵為,在0.51mm或以下之厚度,對選自350至750nm波長之可見光,透射率為高於或等於65%。例如,本發明之固化的組成物,在0.51mm之厚度,對630nm之波長,可展現高於或等於75%之透光性, 較佳地高於或等於80%,更佳地高於或等於83%,或83%至99.9%、83%至99%、83至95%或83至92%之範圍內。此項技術領域中熟悉者使用Beer’s定律及0.51mm之厚度可易於將該等透射率值範圍轉換成吸收係數(absorption co-efficient)。
為了使它們能夠被控制、加工及最終使用於各項應用,亦希望的是根據本發明之組成物展現低表面膠黏性。
希望的是形成適用於各項應用之固化的組成物,其具有前述物理性、流變性、滲透性、透明性及膠黏性性質的一些或全部之組合。
於本發明之一些具體實施,亦可添加如此項技術領域中熟悉者已知的穩定劑、抗氧化劑、膠黏劑及/或其它添加劑。然而,重要的是該等添加劑的選擇及/或添加量係符合保持該材料之透光性。
於該組成物包括該離子體、固化劑、及/或其它添加劑之具體實施,可使用習用的摻合(compounding)技術將成分摻合一起。適合的摻合技術包括,例如,使用(例如)一內部混合機(諸如Banbury混合機)、一小型內部混合機(諸如Haake或Brabender混合機)、或一雙輥研磨混合機將該複合物之成分混合一起。擠壓機亦可提供良好的混合、及容許較短的混合時間。可以二或以上階段進行該混合,及該混合可在不同裝置中完成,例如一階段在一內部混合機中及一階段在一擠壓機中。對於摻合技術之另外文獻,見Encyclopedia of Polymer Science and Engineering,Vol.4,p.66 et seq.(Compounding),如此項技術領域中熟悉者已知的其它技術另適用於摻合。此外,填料、固化劑、及/或其它添加劑可被加至該離子體。可由本發明之化合物以光-電設備之塗層(coatings)或封裝體(encapsulants)之形式製作過氧化固化的物件,諸如LED’s、光纖(fiber optics)、光-電耦合體等。
於該製造過氧化固化的化合物之方法之一具體實施,希望的是,首先將該包含側鏈乙烯基之親核物與該鹵化丁基橡膠摻混(admix),之後藉將它與一過氧化物固化劑摻混而過氧化固化。這方法經常製造具高的固化狀態之橡膠,但由於離子體形成作用產生的“不定的(nervy)”組織,有降低透光性之損失。於其它具體實施,希望的是藉將該鹵化丁基橡膠與包含該側鏈乙烯基之親核物及該過氧化物固化劑二者摻混而形成過氧化固 化的化合物,以藉此在該化合物之固化期間原位形成該離子體。從過程觀點來看這方法是較簡易,乃因其只需要一單步驟,而產生於該主鏈中除了容許過氧化可固化性之具不足二烯量之鹵化丁基橡膠等級之過氧化固化的加強狀態。然而,為了製造具有期望上高的固化狀態及短固化時間之固化的化合物,該原位方法亦可使用在該主鏈中具有高量的異戊二烯之鹵化丁基橡膠等級。對照於以多階段方法製得的化合物,原位製得的固化的化合物期望上具有至少顯著的固化狀態,及可具有加強的固化狀態。由於所產生的“不定的”組織,它們亦展現減少之透光性。
為了增加透光性,希望的是根據本發明之組成物具有低表面粗度。本發明之固化的組成物之均方根(root mean squared)(RMS)表面粗度可於0.1至100nm、較佳地0.1至50nm、更佳地0.1至10nm之範圍,於0.1至10nm之範圍的RMS表面粗度可特徵為一超光滑表面。
為了獲得一超光滑表面,本發明之模製表面可塗覆有離型劑,該離型劑包括例如聚(二甲基)矽氧烷(PDMS)。雖然PDMS對氣體展現差的不滲透性,會導致封裝的電子產品或塗覆的電極之氧化反應,但PDMS為非導電性(electrically non-conductive)及光學上透明的。PDMS可藉各種已知技術(諸如旋塗)施塗至一模具表面,表面亦可塗覆有Teflon®以獲得一仍適用於本發明之一些具體實施之較不光滑表面,亦可施塗Teflon®與PDMS之組合而使該PDMS層可更易於從模具表面被移除,這於特定應用中可有利地循環使用該PDMS。於一具體實施,該模具表面另包含矽晶圓(silicon wafer)作為PDMS或Teflon®/PDMS塗層之基材。
該模具可經加熱以實行固化該混合的化合物,例如,該模具可經加熱至100至200℃、130至180℃或約175℃之溫度。該模製方法可進行1至10分鐘,較佳地4至8分鐘。希望的是該模製方法不能進行過度長期的時間,以防止灼熱(scorching)該離子體,而減少它的透光性。
具增加的氧不滲透性之高透明的丁基橡膠固化的物件適用於多種應用領域,諸如可延伸的/可撓性電子產品、太陽能電池、封裝材料及薄膜。
實施例
溴化丁基2030TM為LANXESS Inc.的商品,及RB70為一實驗試驗產品(具異戊二烯量為6.9%之聚異丁烯-共-異戊二烯,經由漿液聚合反應方法製作的);其餘材料使用,如可得的:p-苯乙烯基二苯基膦(DPPS)(Hokko Chemical Industry),TrigonoxTM 101-45B-PD-AM(Akzo Nobel),Sylgard-184TM PDMS聚(二甲基矽氧烷)(Aldrich),3”矽晶圓(University Wafer),三氯(1H,1H,2H,2H-全氟辛基)矽烷(FOTS)(Aldrich),及n-十八烷基三氯矽烷(OTS)(Aldrich);ACS級水被用於水接觸角測量。
在60℃及60rpm下,將聚合物添加至一配設有高剪切(輥組)刀片之BrabenderTM內部混合機;單獨將該橡膠磨碎(masticated)60秒,接著添加DPPS;在4分鐘混合及在6分鐘後傾倒(dumped)混合物之後,添加該過氧化物;一旦合併所有成分,該化合物以6 x ¾英吋切削器及6個末端位置操作(endwise passes)精碎(refined);混合該白色-及黑色-填充的調配物,接著一類似程序,但在該橡膠被磨碎之後與該填料混合;該未填充的調配物,白色-及黑色-填充的丁基橡膠的調配物敘述於表1。
MDR
檢測該t90及扭矩差值(delta torques),根據ASTM D-5289,利用Moving Die Rheometer(MDR 2000E),使用振盪頻率為1.7Hz及1°弧度,總運行時間30分鐘,未填充的調配物在175℃,及所有其它填充的調配物在160℃;該流變性結果表列於表2。
在二個矽晶圓之間塗覆有聚(二甲基矽氧烷)(PDMS),藉模製新研磨的BB2030-DPPS橡膠製備未填充的丁基橡膠(U-IIR)基材,PDMS功用作為釋離層。
該矽晶圓(3”直徑)首先以Piranha溶液(98% H2SO4與30%H2O2之7:3(v/v)混合物)清洗5分鐘,接著以去離子水沖洗及在120℃ 熱板上乾燥;之後,在3000 RPM持續50 s,將Sylgard-184TM PDMS預聚物旋塗在該晶圓表面上;在60℃烤箱中將該PDMS塗層固化過夜。
未填充的丁基橡膠(U-IIR)基材之製備
在二個PDMS-塗覆的矽晶圓之間,藉模製該BB2030-DPPS丁基橡膠調配物製備U-IIR橡膠基材:將10g的新摻合的BB2030-DPPS置於一具2mm厚度之½巨模具(macro mold),其介於二個PDMS-塗覆的矽晶圓與在該晶圓之任一面上的一個Teflon薄片(0.26mm厚)之間;在20 tons壓力下,將該模具置於一配設有一壓板溫度設為175℃之溫度控制器之手動雕製機(manual carver press)(Model 3853-0);此在175℃下固化8分鐘(圖4A);從該橡膠薄片中移除該晶圓,同時在還熱時提供超光滑橡膠薄片(~0.4mm厚)。
填充的-IIR基材之製備
依上述相同方式製備該白色-及黑色-填充的IIR基材,除了對只在一面上之PDMS塗覆的晶圓上的該丁基薄片直接固化;該等丁基薄片只需要在一面上有一平滑表面,及此使晶圓再使用(圖4B);白色-填充的及黑色-填充的調配物均在160℃下被固化t90+5分鐘。
IIR基材之氧化反應
IIR基材(~0.5mm厚,6.0×6.0cm2),在一BransonTM超音波機(Model 3510)中,各藉超音波作用以丙酮及異丙醇清洗10分鐘,及之後,在一HarrickTM電漿清潔機(Model:PDC-001)中,在O2壓力為10psig及流速為10.6mL.min-1,中度放電設定,以氧電漿處理15分鐘;該氧化的樣品之後以異丙醇溫和地擦拭,及在氮氣流中乾燥。
四氯化矽處理
將該氧化的IIR樣品連接至一載玻片(glass slide),及在周圍環境條件下,在室溫,在整個玻璃上面朝下懸浮於含有0.1mL的四氯化矽之替氏皿(petri dish)持續30 s;該樣品之後於蒸餾水中浸泡10分鐘,及 在氮氣流中乾燥。
在IIR基材上SAMs之製造
藉物理蒸汽沉積法(PVD),將三氯(1H,1H,2H,2H-全氟辛基)矽烷(FOTS)與n-十八烷基三氯矽烷(OTS)之SAMs沉積於SiCl4-改質的丁基橡膠樣品上;於真空乾燥器中,將該樣品倒置懸浮在整個含有3至5滴有機矽烷之250mL燒杯,大約20h。
接觸角測量
使用座滴(sessile drop)方法,在一Ramé-HartTM(Model:100-25-M)接觸角測角儀上,測量水接觸角;由三個樣品之至少四滴取平均值。
傅立葉轉換紅外光譜
使用配設有DTGS偵測器之BrukerTM IFS 66/v光譜儀,收集衰減總反射率(FTIR-ATR)FTIR-ATR光譜;該p-偏振光從該表面法線(surface normal)45°角入射;對各個樣品,使用ZnSe晶體,在4cm-1之解析度,收集2048次掃描。
滲透性測量
使用Mocon Ox-TranTM Model 2/61滲透試驗系統,定量該表面-改質的丁基橡膠樣品對氧之滲透性;首先在五個點測量該樣品之厚度;若在該五個點之任何點之間的厚度差值>25%時,捨棄樣品;在滲透性測量前,將該樣品在儀器中以氧預調節10小時;在40℃及0%相對溼度下,整體3至5個20分鐘循環測量氧滲透性,透過該樣品及該滲透速率(以cc.mm/[m2.日]),以檢測該透氧性(oxygen transmission)(以cc/[m2.日]);測量各類型的三個樣品之最小值。
結果 未填充的U-IIR表面之氧化反應
在U-IIR上的水之接觸角為95.5°,指示U-IIR本質上為缺乏極性官能基團之疏水性表面(表3);然而,形成的烷基三氯矽烷SAM在表面上存在羥基或羧酸官能基團的效益,其與該水解的烷基三氯矽烷之矽醇基進行縮合反應,將它固定至該表面;U-IIR表面曝露至氧電漿於6至15分鐘範圍的時間,及藉測量水接觸角,監控該表面之親水性(圖5);雖然U-IIR以氧電漿處理6至13分鐘範圍的時間,初始將該水接觸角降至~68°(指示已發生氧化反應),這接觸角下降是由於在該表面上所物理吸附的(physisorbed)該鍵切斷作用之氧化的產物;藉利用異丙醇擦拭該表面,可易於移除這氧化的產物層,顯露具接觸角為~95°之底層表面(underlying surface),類似於該起始值;然而,將該氧化反應時間增加至15分鐘,化學上改變該底層表面;在電漿氧化反應15分鐘之後,該接觸角降至48.0°;在移除該氧化的切斷產物之後,接觸角增加至74.6°,比初始值低~20°;將這改質的U-IIR表面指定為U-IIR[ox];儘管是在低密度,該U-IIR[ox]之接觸角與在該表面的極性基團之存在一致,其可能是氧化的官能基團(-OH,-COOH,酮基)之異質(heterogeneous)混合物(圖1);對照於原有的U-IIR之光譜,該U-IIR[ox]之ATR-FTIR光譜顯示未改變(圖6),與由接觸角指示的氧化的基團之低的表面密度一致;雖然未偵測到來自羰基延伸的峰,但在3100至3550cm-1區域(其對應於O-H延伸振動)的寬峰之強度略微增加可能來自表面羥基之引入;然而,該O-H延伸區域的寬度及在該表面上物理吸附的水之含量的可能差值使得強度對照上不可信任。
矽酸鹽層形成
由於鏈切斷反應,在該U-IIR表面藉氧化反應引入足夠密度的極性官能基團是不可行的;因此,實行另外的表面處理,其經設計為增加表面羥基之密度;在溼空氣中,以四氯化矽蒸汽處理該氧化的/擦拭的U-IIR表面,藉SiCl4之吸附作用及水解作用,在該U-IIR表面製造二氧化矽層(圖1);這材料被指定為U-IIR[ox]/SiO2;此程序實際上增加在該表面上的極性基團之密度,將該水接觸角減少至<20°;該改質的表面之FTIR-ATR光譜,在3100至3550cm-1,由於O-H延伸振動,顯示一明顯的寬峰,與在該U-IIR[ox]/SiO2表面上存在羥基-終端的SiO2層一致(圖6c)。
自組裝單層(SAM)形成
將U-IIR[ox]/SiO2曝露至OTS或FOTS之蒸汽,在該U-IIR[ox]/SiO2表面上製造一SAM(圖1);對照U-IIR[ox]/SiO2(圖7a)及U-IIR[ox]/SiO2/FOTS(圖7b)之XPS探測掃描圖,確認在該表面上存在氟化吸附體(fluorinated adsorbates);該U-IIR[ox]/SiO2之探測掃描圖顯示,來自氧、碳、及磷之峰,與U-IIR之調配物一致,連同有矽的2s及2p峰;U-IIR[ox]/SiO2/FOTS之探測掃描圖顯示來自矽、氧、及碳之峰,以及氟之1s及2s峰;沒有來自磷之峰,可能是由於該FOTS覆蓋層之衰減的P 2s及P 2p光電發射效應(photoemission);U-IIR[ox]/SiO2/OTS及U-IIR[ox]/SiO2/FOTS表面之水接觸角分別為101.2°及107.5°;U-IIR[ox]/SiO2/FOTS之FTIR-ATR光譜(圖6d)顯示,一旦形成FOTS SAM,在3100至3550cm-1來自延伸的O-H之信號減弱,其由於表面羥基與FOTS之反應而形成鍵結至該表面之Si-O-Si;該ATR-FTIR光譜亦顯示,在1000至1400cm-1區域之C-F延伸帶,確認在該表面上存在FOTS分子。
U-IIR[ox]基材以FOTS改質,以確認在該U-IIR表面上形成穩定的FOTS SAM所需要的U-IIR[ox]/SiO2基材之SiO2層;該U-IIR[ox]/FOTS之水接觸角為99.8°,及該ATR-FTIR光譜顯示在1148cm-1有一C-F延伸峰;雖然這數據指示FOTS存在於該表面,但該U-IIR[ox]/FOTS之水接觸角及C-F延伸峰的強度均明顯地低於U-IIR[ox]/SiO2/FOTS之水接觸角及強 度;圖8a-c顯示,在1400至1000cm-1光譜區域,U-IIR[ox]、T-IIR[ox]/FOTS、及U-IIR[ox]/SiO2/FOTS之ATR-FTIR光譜;藉利用甲苯沖洗U-IIR[ox]/FOTS及U-IIR[ox]/SiO2/FOTS之樣品,比較二個FOTS層的穩定度;在U-IIR[ox]/FOTS之ATR-FTIR光譜中,來自C-F延伸的峰消失(圖8d),指示沖洗移除該FOTS層,而U-IIR[ox]/SiO2/FOTS之ATR-FTIR光譜保持不變;由這研究得到結論,該SiO2層將該FOTS SAM固定至該U-IIR[ox]基材,使該FOTS吸附體能夠化學吸附;省略該SiO2層,造成在該U-IIR[ox]基材上形成一物理吸附的FOTS層,其可易於以沖洗移除。
滲透性試驗
對照於原有的U-IIR基材,未填充的丁基橡膠基材之表面改質作用明顯地改善阻隔性質(barrier properties)(表4);透過原有的U-IIR、U-IIR[ox]/SiO2/OTS、及U-IIR[ox]/SiO2/FOTS基材,測量氧之滲透速率;因為滲透速率測量包括利用氧調節10小時及之後在整體3至5個20分鐘循環測量透氧速率,在滲透試驗前,測試FOTS SAM之穩定度,以確保該SAM在試驗期間為穩定的;整體96小時之水接觸角測量顯示沒有變化,指示U-IIR[ox]/SiO2/FOTS基材與滲透試驗所需的時間為適合的(圖9);對照於原有的U-IIR樣品,U-IIR[ox]/SiO2/OTS及U-IIR[ox]/SiO2/FOTS之氧滲透性分別減少15%及25%;對照於U-IIR[ox]/SiO2/OTS,較低滲透性的U-IIR[ox]/SiO2/FOTS與記錄的欲降低滲透性之表面氟化的能力一致。
†三個樣品之平均值*一個樣品之測量
研究各種填充的丁基橡膠基材,以檢測是否這表面改質方法亦改善該等表面之不滲透性;對照於原有的丁基基材,在阻隔性質,各種填充的丁基基材(白色-及黑色-填充二者)之表面改質作用未顯示任何顯著改善作用(表5);透過原有的OTS處理的、及FOTS處理的基材,測量氧之滲透速率;因此,這表面改質方法最佳適用於未填充的丁基基材。
透光性
對照於原有的U-IIR及U-IIR[ox]/SiO2/FOTS之透射光譜,以量化該表面處理在透光性上的影響;圖10顯示,當該材料被轉換成U-IIR[ox]/SiO2/FOTS時,原有的U-IIR之透射光譜相對上未改變;該表面處理在透光性上具有可忽略的效果,使這透氣性下降之方法尤其適合於需要透明的、不滲透的IIR材料之應用。
結論
已研發出一種改質IIR表面之方法,其以RF電漿處理為基礎;與前述記錄一致,RF電漿不會破壞該IIR表面;然而,現已證明,RF電漿-誘發的鍵切斷反應之產物可藉簡易的擦拭該IIR表面而移除,以顯露一足以固定一SiO2層之具氧化的官能度之表面;依此方式,表面羥基之數目被增加至支持在該IIR表面上形成穩定的SAMs;當由氟化的吸附體形成SAM時,觀察到該未填充的IIR基材對氧之氣體滲透性顯著下降,不 包括透光性;對照於該原有的U-IIR,當分別以OTS及FOTS改質表面時,樣品展現氧滲透性15%及25%下降。
雖然為說明目的前述已詳細敘述本發明,據了解的是這詳述僅是為了該目的,及,除了可如申請專利範圍所限定外,由此項技術領域中熟悉者可作的變化並未偏離本發明之精神及範疇。

Claims (26)

  1. 一種丁基橡膠組成物,包含衍生自至少一種異烯烴單體之重複單元;及衍生自至少一種多烯烴單體之重複單元,其中該組成物包含一具有機矽烷自組裝單層之表面。
  2. 根據申請專利範圍第1項之組成物,其中該異烯烴單體包含C4至C8異單烯烴單體。
  3. 根據申請專利範圍第2項之組成物,其中該異烯烴單體為異丁烯。
  4. 根據申請專利範圍第1項之組成物,其中該多烯烴單體包含C5至C11共軛脂肪族二烯單體。
  5. 根據申請專利範圍第4項之組成物,其中該多烯烴單體為異戊二烯。
  6. 根據申請專利範圍第1項之組成物,其中該衍生自至少一種多烯烴單體之重複單元包含至少一種多烯烴單體與至少一種以氮或磷為基底的親核物之反應產物(接著鹵化反應)。
  7. 根據申請專利範圍第6項之組成物,其中在鹵化反應前,該多烯烴單體以總含量0.5至2.5mol%存在。
  8. 根據申請專利範圍第6項之組成物,其中該以氮或磷為基底的親核物包含一側鏈乙烯基。
  9. 根據申請專利範圍第8項之組成物,其中該親核物選自包括二苯基膦基苯乙烯(DPPS)、烯丙基二苯基膦、二烯丙基苯基膦、二苯基乙烯基膦、三烯丙基苯基膦、N-乙烯基己內醯胺、N-乙烯基酞 醯亞胺、9-乙烯基咔唑、N-[3-(二甲基胺基)丙基]甲基丙烯醯胺、二苯基乙烯基膦基-甲基-N-乙烯基乙醯胺、N-烯丙基-N-丁基-2-丙烯-1-胺、1-乙烯基-2-吡咯啶酮、2-異丙烯基-2-噁唑啉、2-乙烯基吡啶-4-乙烯基吡啶、N-乙基-2-乙烯基咔唑及其混合物所構成組群。
  10. 根據申請專利範圍第6項之組成物,其中當提供一小於或等於0.51mm之厚度時,對630nm之波長,該組成物展現至少75%之透光性。
  11. 根據申請專利範圍第1項之組成物,其中該組成物為過氧化固化的。
  12. 根據申請專利範圍第1項之組成物,其中該組成物為未填充的。
  13. 根據申請專利範圍第1項之組成物,其中該有機矽烷自組裝單層經由與一有機三氯矽烷蒸汽之表面反應而形成的。
  14. 根據申請專利範圍第1項之組成物,其中接著形成的自組裝單層之該組成物對氧之不滲透性增加15至25%。
  15. 一種增加丁基橡膠組成物之不滲透性之方法,包含:a)提供一丁基橡膠聚合物,包含衍生自至少一種異烯烴單體之重複單元與衍生自一種或多種多烯烴單體之重複單元;b)氧化該丁基橡膠之一表面;c)利用醇處理該表面;d)將該處理的表面曝露至一鹵化矽;及,e)在適於形成一自組裝單層之條件下,將該鹵化矽曝露的表面與一有機三氯矽烷反應。
  16. 根據申請專利範圍第15項之方法,其中該方法另包含在步驟b)前:鹵化該丁基聚合物,以形成一烯丙基系鹵部分;摻混一以氮或磷為基底的親核物與該鹵化丁基橡膠聚合物;及,將該烯丙基系鹵部分與該親核物反應,以形成一過氧化可固化的丁基橡膠離子體。
  17. 根據申請專利範圍第16項之方法,其中該以氮或磷為基底的親核物包含一側鏈乙烯基。
  18. 根據申請專利範圍第16項之方法,其中該方法另包含:摻混一過氧化物固化劑與該以氮或磷為基底的親核物及該鹵化丁基橡膠聚合物;及在過氧化物固化劑之適合的條件下固化。
  19. 根據申請專利範圍第17項之方法,其中當提供小於或等於0.51mm之厚度時,該組成物對630nm之波長展現至少75%之透光性。
  20. 根據申請專利範圍第15項之方法,其中該鹵化矽為四鹵化矽。
  21. 根據申請專利範圍第20項之方法,其中該四鹵化矽包含SiCl4
  22. 根據申請專利範圍第15項之方法,其中該表面係藉含有氧的RF電漿氧化的。
  23. 根據申請專利範圍第22項之方法,其中該表面係藉RF電漿氧化6至15秒期間。
  24. 根據申請專利範圍第15項之方法,其中該有機三氯矽烷包含三氯(1H,1H,2H,2H-全氟辛基)矽烷(FOTS)、n-十八烷基三氯矽烷(OTS)、或其組合。
  25. 根據申請專利範圍第15項之方法,其中該有機三氯矽烷經由物理蒸汽沉積法(PVD)沉積。
  26. 根據申請專利範圍第15項之方法,其中該橡膠組成物對氧之不滲透性增加15至25%。
TW102146504A 2012-12-18 2013-12-17 具增加之不滲透性之丁基橡膠 TW201434914A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261738681P 2012-12-18 2012-12-18

Publications (1)

Publication Number Publication Date
TW201434914A true TW201434914A (zh) 2014-09-16

Family

ID=50977457

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146504A TW201434914A (zh) 2012-12-18 2013-12-17 具增加之不滲透性之丁基橡膠

Country Status (11)

Country Link
US (1) US9745388B2 (zh)
EP (1) EP2935451B1 (zh)
JP (1) JP6441228B2 (zh)
KR (1) KR20150129656A (zh)
CN (1) CN105358619B (zh)
CA (1) CA2894638A1 (zh)
RU (1) RU2656050C2 (zh)
SA (1) SA515360604B1 (zh)
SG (1) SG11201504717YA (zh)
TW (1) TW201434914A (zh)
WO (1) WO2014094123A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230675B2 (ja) 2019-05-10 2023-03-01 コニカミノルタ株式会社 バリアー膜、バリアー膜の作製方法、バリアー膜積層体及び電子デバイス
CN113912936B (zh) * 2021-09-30 2023-02-17 成都金发科技新材料有限公司 一种增韧抗静电的聚丙烯组合物及其制备方法和应用

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356128A (en) 1939-10-20 1944-08-22 Jasco Inc Mixed olefinic polymerization process and product
JPH04131581A (ja) 1990-09-25 1992-05-06 Bridgestone Corp 低透過性ゴムホース
JP2500816B2 (ja) * 1991-04-30 1996-05-29 松下電器産業株式会社 化学吸着膜の製造方法
JPH07130586A (ja) 1993-11-04 1995-05-19 Matsushita Electric Ind Co Ltd ブチルゴムの表面処理方法およびそれを用いた複合材料
US5459198A (en) * 1994-07-29 1995-10-17 E. I. Du Pont De Nemours And Company Fluoroinfused composites, articles of manufacture formed therefrom, and processes for the preparation thereof
JP3267838B2 (ja) 1995-08-09 2002-03-25 株式会社ニチリン 複合フレキシブルホース
JP3952533B2 (ja) 1997-04-23 2007-08-01 三井化学株式会社 ポリオレフィン樹脂組成物
JP3708308B2 (ja) * 1997-10-28 2005-10-19 シンコー技研株式会社 タイヤ用バッグとその製造方法
US6552108B1 (en) * 2000-10-11 2003-04-22 Exxonmobil Chemical Patents Inc. Rubber blends having improved stability and green strength
JP2004522811A (ja) 2000-10-18 2004-07-29 エクソンモービル・ケミカル・パテンツ・インク エラストマー組成物
UA46481A (uk) * 2001-07-24 2002-05-15 Національний Університет "Львівська Політехніка" Спосіб модифікації полімерних поверхонь
WO2004058874A1 (en) * 2002-12-18 2004-07-15 Bridgestone Corporation Method for clay exfoliation, compositions therefore, and modified rubber contaiing same
CA2489036C (en) * 2004-12-03 2013-02-12 Lanxess Inc. Peroxide curable butyl formulations for rubber articles
US7579398B2 (en) * 2005-02-02 2009-08-25 Bridgestone Corporation Nano-composite and compositions therefrom
WO2007130417A2 (en) * 2006-05-01 2007-11-15 Nanopack, Inc. Barrier coatings for films and structures
CA2604409C (en) 2006-12-22 2015-04-07 Lanxess Inc. Butyl rubber ionomer nanocomposites
JP4236686B2 (ja) * 2007-04-19 2009-03-11 横浜ゴム株式会社 変性ブチルゴム組成物
FR2925062B1 (fr) 2007-12-18 2011-03-04 Michelin Soc Tech Composition de caoutchouc notamment pour la fabrication de pneumatique
WO2009130233A1 (en) * 2008-04-25 2009-10-29 Basf Se Modified halogenated polymer surfaces
RU2500694C2 (ru) 2008-10-14 2013-12-10 Эксонмобил Кемикэл Пейтентс Инк. Нанокомпозит на основе полимера и глины и способ его получения
CN101477304B (zh) * 2008-11-04 2011-08-17 南京大学 在复杂形状表面复制高分辨率纳米结构的压印方法
JP2010241915A (ja) * 2009-04-02 2010-10-28 Yokohama Rubber Co Ltd:The 表面改質ゴム成形体の製造方法
JP2011219520A (ja) * 2010-04-05 2011-11-04 Yokohama Rubber Co Ltd:The 表面改質ゴム成形体の製造方法
TW201235359A (en) 2010-11-24 2012-09-01 Lanxess Inc Ionomers comprising pendant vinyl groups and processes for preparing same
JP5849308B2 (ja) * 2011-08-31 2016-01-27 住友ゴム工業株式会社 表面改質フッ素樹脂フィルムの製造方法及び表面改質フッ素樹脂フィルム

Also Published As

Publication number Publication date
WO2014094123A1 (en) 2014-06-26
JP6441228B2 (ja) 2018-12-19
US9745388B2 (en) 2017-08-29
RU2656050C2 (ru) 2018-05-30
CN105358619A (zh) 2016-02-24
US20150329649A1 (en) 2015-11-19
SG11201504717YA (en) 2015-07-30
EP2935451B1 (en) 2019-01-16
RU2015129313A (ru) 2017-01-26
KR20150129656A (ko) 2015-11-20
JP2016500398A (ja) 2016-01-12
CA2894638A1 (en) 2014-06-26
SA515360604B1 (ar) 2016-09-05
EP2935451A1 (en) 2015-10-28
EP2935451A4 (en) 2016-08-03
CN105358619B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
KR102216535B1 (ko) 충전된 부틸 고무 이오노머 컴파운드
US20200154587A1 (en) Electronic devices comprising butyl rubber
JP2009531475A (ja) ブチルゴムナノ複合材を製造するための重合方法
TW201434914A (zh) 具增加之不滲透性之丁基橡膠
EP2935380B1 (en) Transparent peroxide curable butyl rubber
WO2015127563A1 (en) Process for the production of modified butyl rubber
EP2935342B1 (en) Ionomer comprising pendant vinyl groups and processes for preparing same