TW201333624A - 用以減少機率效應之光源光罩最佳化 - Google Patents

用以減少機率效應之光源光罩最佳化 Download PDF

Info

Publication number
TW201333624A
TW201333624A TW101150666A TW101150666A TW201333624A TW 201333624 A TW201333624 A TW 201333624A TW 101150666 A TW101150666 A TW 101150666A TW 101150666 A TW101150666 A TW 101150666A TW 201333624 A TW201333624 A TW 201333624A
Authority
TW
Taiwan
Prior art keywords
lithography
design
cost function
substrate
design variables
Prior art date
Application number
TW101150666A
Other languages
English (en)
Other versions
TWI467321B (zh
Inventor
Steven George Hansen
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Publication of TW201333624A publication Critical patent/TW201333624A/zh
Application granted granted Critical
Publication of TWI467321B publication Critical patent/TWI467321B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本文揭示一種用於改良用於使用一微影投影裝置將一設計佈局之一部分成像至一基板上之一微影程序的電腦實施方法,該方法包含定義一多變數成本函數,該多變數成本函數為該微影程序之一機率效應之一函數。

Description

用以減少機率效應之光源光罩最佳化
本文中之描述係關於微影裝置及程序,且更特定言之,係關於一種用以最佳化供微影裝置或程序中使用之照明光源及/或圖案化器件/設計佈局之工具。
微影投影裝置可用於(例如)積體電路(IC)之製造中。在此狀況下,圖案化器件(例如,光罩)可含有或提供對應於IC之個別層的電路圖案(「設計佈局」),且可藉由諸如經由圖案化器件上之電路圖案而輻照已經塗佈有輻射敏感材料(抗蝕劑)層之基板(例如,矽晶圓)上之目標部分(例如,包含一或多個晶粒)的方法將此電路圖案轉印至該目標部分上。一般而言,單一基板含有複數個鄰近目標部分,電路圖案係藉由微影投影裝置而順次地轉印至複數個鄰近目標部分,一次轉印至一個目標部分。在一種類型之微影投影裝置中,整個圖案化器件上之電路圖案一次性轉印至一個目標部分上;此裝置通常被稱作晶圓步進器。在通常被稱作步進掃描裝置之替代裝置中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化器件進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化器件上之電路圖案之不同部分漸進地轉印至一個目標部分。一般而言,由於微影投影裝置將具有放大因數M(通常<1),故基板被移動之速率F將為投影光束掃描圖案化器件之速率的因數M倍。可(例如)自以引用方式併入本文中之US 6,046,792搜集到關於如本文所描述之微影器件的更多資訊。
在將電路圖案自圖案化器件轉印至基板之前,基板可經歷各種工序,諸如,上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序,諸如,曝光後烘烤(PEB)、顯影、硬烘烤,及經轉印電路圖案之量測/檢測。此工序陣列用作製造一器件(例如,IC)之個別層的基礎。基板接著可經歷各種程序,諸如,蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光等等,該等程序皆意欲精整該器件之個別層。若在器件中需要若干層,則針對每一層來重複整個工序或其變體。最終,在基板上之每一目標部分中將存在一器件。接著藉由諸如切塊或鋸切之技術使此等器件彼此分離,據此,可將個別器件安裝於載體上、連接至銷釘,等等。
如所提及,微影蝕刻術(microlithography)為IC之製造中的中心步驟,其中形成於基板上之圖案界定IC之功能元件,諸如,微處理器、記憶體晶片,等等。相似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體製造程序繼續進步,幾十年來,功能元件之尺寸已不斷地減少,同時每器件的諸如電晶體之功能元件之量已穩固地增加,其遵循通常被稱作「莫耳定律」(Moore's law)之趨勢。在當前先進技術下,使用微影投影裝置來製造器件層,微影投影裝置使用來自深紫外線照明 光源之照明而將設計佈局投影至基板上,從而創製具有充分地低於100奈米(亦即,小於來自照明光源(例如,193奈米照明光源)之輻射之波長的一半)之尺寸的個別功能元件。
供印刷尺寸小於微影投影裝置之經典解析度極限之特徵的此程序根據解析度公式CD=k1×λ/NA通常被稱作低k1微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248奈米或193奈米),NA為微影投影裝置中之投影光學件之數值孔徑,CD為「臨界尺寸」--通常為所印刷之最小特徵大小,且k1為經驗解析度因數。一般而言,k1愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影投影裝置及/或設計佈局。此等步驟包括(例如,但不限於)NA及光學相干設定之最佳化、定製照明方案、相移圖案化器件之使用、設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。如本文所使用之術語「投影光學件」應被廣泛地解釋為涵蓋各種類型之光學系統,包括(例如)折射光學件、反射光學件、孔隙及反射折射光學件。術語「投影光學件」亦可包括用於集體地或單個地引導、塑形或控制投影輻射光束的根據此等設計類型中任一者而操作之組件。術語「投影光學件」可包括在微影投影裝置中之任何光學組件,而不管該光學組件在微影投影裝置之光徑上位於何 處。投影光學件可包括用於在來自光源之輻射通過圖案化器件之前塑形、調整及/或投影該輻射的光學組件,及/或用於在該輻射通過圖案化器件之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除光源及圖案化器件。
作為一實例,OPC著手處理如下事實:投影於基板上之設計佈局之影像的最終大小及置放將不等同於或僅簡單地取決於該設計佈局在圖案化器件上之大小及置放。應注意,術語「光罩」、「比例光罩」、「圖案化器件」在本文中可被互換地利用。又,熟習此項技術者應認識到,特別是在微影模擬/最佳化之內容背景中,術語「光罩」/「圖案化器件」及「設計佈局」可被互換地使用,此係因為:在微影模擬/最佳化中,未必使用實體圖案化器件,而是可使用設計佈局以表示實體圖案化器件。對於存在於某設計佈局上之小特徵大小及高特徵密度,給定特徵之特定邊緣之位置將在某種程度上受到其他鄰近特徵之存在或不存在的影響。此等近接效應起因於自一特徵耦合至另一特徵的微小量之輻射及/或諸如繞射及干涉之非幾何光學效應。相似地,近接效應可起因於在通常跟隨微影之曝光後烘烤(PEB)、抗蝕劑顯影及蝕刻期間之漫射及其他化學效應。
為了確保設計佈局之經投影影像係根據給定目標電路設計之要求,需要使用設計佈局之複雜數值模型、校正或預失真來預測及補償近接效應。論文「Full-Chip Lithography Simulation and Design Analysis-How OPC Is Changing IC Design」(C.Spence,Proc.SPIE,第5751卷,第1至14頁(2005年))提供當前「以模型為基礎」之光學近接校正程序的綜述。在一典型高端設計中,設計佈局之幾乎每一特徵皆具有某種修改,以便達成經投影影像至目標設計之高保真度。此等修改可包括使邊緣位置或線寬移位或偏置,以及應用意欲輔助其他特徵之投影的「輔助」特徵。
在一晶片設計中通常存在數百萬個特徵的情況下,將以模型為基礎之OPC應用於一目標設計會涉及良好的程序模型及相當多的計算資源。然而,應用OPC通常不為「嚴正科學(exact science)」,而為並不總是補償所有可能近接效應之經驗反覆程序。因此,需要藉由設計檢測(亦即,使用經校準數值程序模型之密集型全晶片模擬)來驗證OPC之效應(例如,在應用OPC及任何其他RET之後的設計佈局),以便最小化將設計瑕疵建置至圖案化器件圖案中的可能性。此情形係藉由如下各者驅使:製造高端圖案化器件之巨大成本,其在數百萬美元的範圍內;以及對產品製作時程之影響,其係因重做或修復實際圖案化器件(一旦其已被製造)而引起。
OPC及全晶片RET驗證兩者可基於如(例如)美國專利申請案第10/815,573號及Y.Cao等人之名為「Optimized Hardware and Software For Fast,Full Chip Simulation」(Proc.SPIE,第5754卷,405(2005年))之論文所描述的數 值模型化系統及方法。
一個RET係關於設計佈局之全域偏置之調整。全域偏置為設計佈局中之圖案與意欲印刷於基板上之圖案之間的差。舉例而言,具有25奈米直徑之圓形圖案可藉由設計佈局中之50奈米直徑圖案或藉由設計佈局中之20奈米直徑圖案但以高劑量印刷於基板上。
除了對設計佈局或圖案化器件之最佳化(例如,OPC)以外,亦可與圖案化器件最佳化聯合地或分離地最佳化照明光源,以致力於改良總微影保真度。術語「照明光源」及「光源」在本文件中可被互換地使用。自1990年代以來,已引入諸如環形、四極及偶極之許多離軸照明光源,且該等離軸照明光源已提供針對OPC設計之更多自由度,藉此改良成像結果。如吾人所知,離軸照明為用以解析圖案化器件中所含有之精細結構(亦即,目標特徵)的被證實方式。然而,相比於傳統照明光源,離軸照明光源通常提供針對空中影像(AI)之較小輻射強度。因此,變得需要試圖最佳化照明光源以在較精細解析度與減少輻射強度之間達成最佳平衡。
可(例如)在Rosenbluth等人之名為「Optimum Mask and Source Patterns to Print A Given Shape」(Journal of Microlithography,Microfabrication,Microsystems 1(1),第13至20頁(2002年))之論文中得知眾多照明光源最佳化途徑。將光源分割成若干區,該等區中每一者對應於光瞳光譜之某一區。接著,將光源分佈假定為在每一光源區中均 一,且針對程序窗(process window)來最佳化每一區之亮度。然而,光源分佈在每一光源區中均一之此假定並不總是有效,且結果,此途徑之有效性受損。在Granik之名為「Source Optimization for Image Fidelity and Throughput」(Journal of Microlithography,Microfabrication,Microsystems 3(4),第509至522頁(2004年))之論文所闡述的另一實例中,綜述若干現有光源最佳化途徑,且提議將光源最佳化問題轉換成一系列非負最小平方最佳化的基於照明器像素之方法。儘管此等方法已示範一些成就,但其通常需要多次複雜反覆進行收斂。另外,可難以判定一些額外參數(諸如,Granik方法中之γ)之適當/最佳值,γ規定在最佳化用於基板影像保真度之光源與該光源之平滑度要求之間的取捨。
對於低k1光微影,光源及圖案化器件兩者之最佳化有用於確保用於臨界電路圖案之投影的可行程序窗。一些演算法(例如,Socha等人之Proc.SPIE,2005年,第5853卷,第180頁)在空間頻域中將照明離散化成獨立光源點且將光罩離散化成繞射階,且基於可由光學成像模型自光源點強度及圖案化器件繞射階而預測之程序窗度量(諸如,曝光寬容度)來分離地公式化成本函數(其被定義為選定設計變數之函數)。如本文所使用之術語「設計變數」包含微影投影裝置之參數集合,例如,微影投影裝置之使用者可調整的參數。應瞭解,微影投影程序之任何特性(包括光源、圖案化器件、投影光學件及/或抗蝕劑特性之特性)可 在最佳化中之設計變數當中。成本函數常常為設計變數之非線性函數。使用標準最佳化技術以最小化成本函數。
相關地,不斷地減低設計規則之壓力已驅使半導體晶片製造者在現有193奈米ArF微影的情況下更深入於低k1微影時代。朝向較低k1之微影施予對RET、曝光工具及針對微影親和設計之需要的大量需求。未來可使用1.35 ArF超數值孔徑(NA)曝光工具。為了幫助確保電路設計可以可工作程序窗產生至基板上,光源圖案化器件最佳化(在本文中被稱作光源光罩最佳化或SMO)正變成用於2x奈米節點之顯著RET。
2009年11月20日申請且被公開為WO2010/059954之名為「Fast Freeform Source and Mask Co-Optimization Method」的共同讓渡之國際專利申請案第PCT/US2009/065359號中描述允許在無約束之情況下且在可實行時間量內使用成本函數來同時地最佳化光源及圖案化器件的光源及圖案化器件(設計佈局)最佳化方法及系統,該專利申請案之全文據此係以引用方式併入。
2010年6月10日申請且被公開為美國專利申請公開案第2010/0315614號之名為「Source-Mask Optimization in Lithographic Apparatus」的共同讓渡之美國專利申請案第12/813456號中描述涉及藉由調整光源之像素來最佳化光源的另一光源及光罩最佳化方法及系統,該專利申請案之全文據此係以引用方式併入。
本文揭示一種用於改良用於使用一微影投影裝置將一設 計佈局之一部分成像至一基板上之一微影程序的電腦實施方法,該方法包含:定義一多變數成本函數,該多變數成本函數為該微影程序之一或多個機率效應之一函數,該一或多個機率效應為複數個設計變數之函數,該複數個設計變數為該微影程序之特性;及藉由調整該等設計變數中之一或多者來重新組態該微影程序之該等特性中之一或多者直至滿足某一終止條件為止。此處,為該微影程序之一或多個機率效應之一函數的該多變數成本函數並不排除該多變數成本函數可同時為其他變數之一函數。
儘管在本文中可特定地參考IC製造,但應明確地理解,本文中之描述具有許多其他可能應用。舉例而言,本文中之描述可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示器面板、薄膜磁頭,等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,應認為本文中對術語「比例光罩」、「晶圓」或「晶粒」之任何使用可分別與更通用之術語「光罩」、「基板」及「目標部分」互換。
在本文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有365奈米、248奈米、193奈米、157奈米或126奈米之波長),及EUV(極紫外線輻射,例如,具有在5奈米至20奈米之範圍內之波長)。
如本文所使用之術語「最佳化」意謂調整微影投影裝 置,使得微影之結果及/或程序具有更理想特性,諸如,設計佈局在基板上之投影之較高準確度、較大程序窗,等等。
另外,微影投影裝置可為具有兩個或兩個以上基板台(及/或兩個或兩個以上圖案化器件台)之類型。在此等「多載物台」器件中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。舉例而言,以引用方式併入本文中之US 5,969,441中描述雙載物台微影投影裝置。
上文所提及之圖案化器件包含或可形成設計佈局。可利用CAD(電腦輔助設計)程式來產生設計佈局,此程序常常被稱作EDA(電子設計自動化)。大多數CAD程式遵循預定設計規則集合,以便創製功能設計佈局/圖案化器件。藉由處理及設計限制來設定此等規則。舉例而言,設計規則定義電路器件(諸如,閘、電容器,等等)或互連線之間的空間容許度,以便確保該等電路器件或線彼此不會以不理想方式相互作用。設計規則限制通常被稱作「臨界尺寸」(CD)。可將電路之臨界尺寸定義為線或孔之最小寬度,或兩個線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製作中之目標中之一者係在基板上如實地再生原始電路設計(經由圖案化器件)。
如本文所使用之術語「光罩」或「圖案化器件」可被廣泛地解釋為指代可用以向入射輻射光束賦予經圖案化橫截 面之通用圖案化器件,經圖案化橫截面對應於待在基板之目標部分中創製之圖案;術語「光閥」亦可用於此內容背景中。除了經典光罩(透射或反射;二元、相移、混合式,等等)以外,其他此等圖案化器件之實例亦包括:
-可程式化鏡面陣列。此器件之一實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此裝置所隱含之基本原理為(例如):反射表面之經定址區域反射入射輻射作為繞射輻射,而未經定址區域反射入射輻射作為非繞射輻射。在使用適當濾光器的情況下,可自該反射光束濾出該非繞射輻射,從而僅留下該繞射輻射;以此方式,該光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適電子構件來執行所需矩陣定址。可(例如)自以引用方式併入本文中之美國專利第5,296,891號及第5,523,193號搜集到關於此等鏡面陣列之更多資訊。
-可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此建構之一實例。
作為簡要介紹,圖1說明例示性微影投影裝置10A。主要組件為:輻射光源12A,其可為深紫外線準分子雷射光源或包括極紫外線(EUV)光源的其他類型之光源(如上文所論述,微影投影裝置自身無需具有輻射光源);照明光學件,其界定部分相干性(被表示為均方偏差)且可包括塑形來自光源12A之輻射的光學件14A、16Aa及16Ab;圖案化器件18A;及透射光學件16Ac,其將圖案化器件圖案之影像投影至基板平面22A上。投影光學件之光瞳平面處的可 調整濾光器或孔隙20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學件之數值孔徑NA=sin(Θmax)。
在一系統之最佳化程序中,可將該系統之優值(figure of merit)表示為成本函數。最佳化程序歸結為求得系統之最小化成本函數之參數(設計變數)集合的程序。成本函數可具有取決於最佳化之目標的任何合適形式。舉例而言,成本函數可為系統之某些特性(評估點)相對於此等特性之所欲值(例如,理想值)之偏差的加權均方根(RMS);成本函數亦可為此等偏差之最大值(亦即,最差偏差)。本文中之術語「評估點」應被廣泛地解釋為包括系統之任何特性。 歸因於系統之實施之實務性,系統之設計變數可限於有限範圍及/或可相互相依。在微影投影裝置之狀況下,約束常常係與硬體之物理屬性及特性(諸如,可調諧範圍,及/或圖案化器件可製造性設計規則)相關聯,且評估點可包括在基板上之抗蝕劑影像上之實體點,以及諸如劑量及焦點之非物理特性。
在微影投影裝置中,光源提供照明(亦即,光);投影光學件經由圖案化器件而引導及塑形照明且將照明引導及塑形至基板上。此處,術語「投影光學件」被廣泛地定義為包括可變更輻射光束之波前的任何光學組件。舉例而言,投影光學件可包括組件14A、16Aa、16Ab及16Ac中至少一些。空中影像(AI)為在基板位階處之輻射強度分佈。曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層作為其 中之潛伏「抗蝕劑影像」(RI)。可將抗蝕劑影像(RI)定義為抗蝕劑在抗蝕劑層中之溶解度之空間分佈。可使用抗蝕劑模型以自空中影像演算抗蝕劑影像,可在共同讓渡之美國專利申請案第12/315,849號中得知此情形之實例,該專利申請案之揭示內容之全文據此係以引用方式併入。抗蝕劑模型係僅關於抗蝕劑層之屬性(例如,在曝光、PEB及顯影期間發生之化學程序之效應)。微影投影裝置之光學屬性(例如,光源、圖案化器件及投影光學件之屬性)規定空中影像。由於可改變用於微影投影裝置中之圖案化器件,故需要使圖案化器件之光學屬性與微影投影裝置之至少包括光源及投影光學件之其餘部分的光學屬性分離。
圖2中說明用於模擬微影投影裝置中之微影的例示性流程圖。光源模型31表示光源之光學特性(包括輻射強度分佈及/或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件造成的對輻射強度分佈及/或相位分佈之改變)。設計佈局模型35表示一設計佈局之光學特性(包括由給定設計佈局33造成的對輻射強度分佈及/或相位分佈之改變),該設計佈局為在圖案化器件上或由圖案化器件形成之特徵之配置的表示。可自設計佈局模型35、投影光學件模型32及設計佈局模型35模擬空中影像36。可使用抗蝕劑模型37自空中影像36模擬抗蝕劑影像37。舉例而言,微影之模擬可預測抗蝕劑影像中之輪廓及CD。
更具體言之,應注意,光源模型31可表示光源之光學特 性,該等特性包括(但不限於)NA-均方偏差(σ)設定,以及任何特定照明光源形狀(例如,離軸輻射光源,諸如,環形、四極及偶極,等等)。投影光學件模型32可表示投影光學件之光學特性,該等特性包括像差、失真、折射率、實體大小、實體尺寸,等等。設計佈局模型35亦可表示實體圖案化器件之物理屬性,如(例如)全文以引用方式併入本文中之美國專利第7,587,704號所描述。模擬之目標係準確地預測(例如)邊緣置放、空中影像強度斜率及CD,該等邊緣置放、空中影像強度斜率及CD接著可與所欲設計進行比較。所欲設計通常被定義為可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式而提供之預OPC設計佈局。
自此設計佈局,可識別被稱作「剪輯(clip)」之一或多個部分。在一實施例中,提取一剪輯集合,該集合表示設計佈局中之複雜圖案(通常為約50個至1000個剪輯,但可使用任何數目個剪輯)。熟習此項技術者應瞭解,此等圖案或剪輯表示設計之小部分(亦即,電路、格胞或圖案),且特別地,該等剪輯表示需要特定關注及/或驗證之小部分。換言之,剪輯可為設計佈局之部分,或可相似或具有臨界特徵係藉由體驗而識別(包括由顧客提供之剪輯)、藉由試誤法而識別或藉由執行全晶片模擬而識別的設計佈局之部分的相似行為。剪輯通常含有一或多個測試圖案或量規圖案(gauge pattern)。
可由顧客基於設計佈局中需要特定影像最佳化之已知臨 界特徵區域而先驗地提供初始較大剪輯集合。或者,在另一實施例中,可藉由使用識別臨界特徵區域的某種自動化(諸如,機器視覺)或手動演算法而自整個設計佈局提取初始較大剪輯集合。
在一微影投影裝置中,作為一實例,可將成本函數表達為:
其中(z 1,z 2,...,z N )為N個設計變數或其值。f p (z 1,z 2,...,z N )可為設計變數(z 1,z 2,...,z N )之函數,諸如,針對(z 1,z 2,...,z N )之設計變數之值集合在一評估點處之特性之實際值與所欲值之間的差。w p 為與f p (z 1,z 2,...,z N )相關聯之權重常數。可向比其他評估點或圖案更臨界的評估點或圖案指派較高w p 值。亦可向具有較大數目次出現率之圖案及/或評估點指派較高w p 值。評估點之實例可為在基板上之任何實體點或圖案、在虛擬設計佈局上之任何點,或抗蝕劑影像,或空中影像,或其組合。f p (z 1,z 2,...,z N )亦可為諸如LWR之一或多個機率效應之函數,LWR為設計變數(z 1,z 2,...,z N )之函數。成本函數可表示微影投影裝置或基板之任何合適特性,例如,焦點、CD、影像移位、影像失真、影像旋轉、機率效應、產出率、CDU,或其組合。CDU為局域CD變化(例如,局域CD分佈之標準偏差的三倍)。在一實施例中,成本函數表示CDU、產出率及機率效應(亦即,為CDU、產出率及機率效應之函數)。在一實施例中,成本函數表示EPE、產出率及機率效應(亦即,為EPE、產出率及機率效應之函數)。在一實施例中,設計變數(z 1,z 2,...,z N )包含劑量、圖案化器件 之全域偏置、來自光源之照明之形狀,或其組合。由於正是抗蝕劑影像常常規定基板上之電路圖案,故成本函數常常包括表示抗蝕劑影像之一些特性的函數。舉例而言,此評估點之f p (z 1,z 2,...,z N )可簡單地為抗蝕劑影像中之一點至彼點之所欲位置之間的距離(亦即,邊緣置放誤差EPE p (z 1,z 2,...,z N ))。設計變數可為任何可調整參數,諸如,光源、圖案化器件、投影光學件、劑量、焦點等等之可調整參數。投影光學件可包括可用以調整輻照光束之波前及強度分佈及/或相移之形狀的被集體地稱為「波前操控器」之組件。投影光學件較佳地可調整在沿著微影投影裝置之光徑之任何部位處(諸如,在圖案化器件之前、在光瞳平面附近、在影像平面附近、在焦平面附近)的波前及強度分佈。投影光學件可用以校正或補償由(例如)光源、圖案化器件、微影投影裝置之溫度變化、微影投影裝置之組件之熱膨脹造成的波前及強度分佈之某些失真。調整波前及強度分佈可改變評估點及成本函數之值。可自一模型模擬此等改變或實際地量測此等改變。當然,CF(z 1,z 2,....z N )不限於方程式1中之形式。CF(z 1,z 2,...,z N )可呈任何其他合適形式。應注意,f p (z 1,z 2,...,z N )之正常加權均方根(RMS)被定義為,因此,最小化f p (z 1,z 2,...,z N )之加權RMS會等效於最小化方程式1所定義之成本函數。因此,本文中可出於記數法簡單起見而互換地利用f p (z 1,z 2,...,z N )之加權RMS及方程式 1。
另外,若考慮最大化PW(程序窗),則吾人可將來自不同PW條件之同一實體部位認為是(方程式1)中之成本函數中的不同評估點。舉例而言,若考慮N個PW條件,則吾人可根據評估點之PW條件來分類評估點且將成本函數寫為:
其中(z 1,z 2,...,z N )為在第u個PW條件(u=1,...,U)下f p (z 1,z 2,....z N )之值。當f p (z 1,z 2,...,z N )為EPE時,則最小化上述成本函數會等效於最小化在各種PW條件下之邊緣移位,因此,此情形導致最大化PW。詳言之,若PW亦由不同光罩偏置構成,則最小化上述成本函數亦包括MEEF(光罩誤差增強因數)之最小化,MEEF被定義為基板EPE與誘發性光罩邊緣偏置之間的比率。
設計變數可具有約束,該等約束可被表達為(z 1,z 2,...,z N ) Z,其中Z為設計變數之可能值集合。對設計變數之一個可能約束可由微影投影裝置之所要產出率強加。所要產出率可限制劑量,且因此具有針對機率效應之蘊涵(例如,對機率效應強加下限)。較高產出率通常導致較低劑量、較短較長曝光時間及較大機率效應。對基板產出率及機率效應最小化之考慮可約束設計變數之可能值,此係因為機率效應為設計變數之函數。在沒有由所要產出率強加之此約束的情況下,最佳化可得到不切實際之設計變數的值集合。舉例而言,若劑量係在設計變數當中,則在沒有此約束的情況下,最佳化可得到使產出率經濟上不 可能之劑量值。然而,約束之有用性不應被解釋為必要性。
因此,最佳化程序係求得在約束(z 1,z 2,...,z N ) Z下最小化成本函數之設計變數的值集合,亦即,求得:
圖3中說明根據一實施例的最佳化微影投影裝置之一般方法。此方法包含定義複數個設計變數之多變數成本函數的步驟302。設計變數可包含選自如下各者之任何合適組合:照明光源之特性(300A)(例如,光瞳填充比率,即,該光源之傳遞通過光瞳或孔隙之輻射的百分比)、投影光學件之特性(300B),及設計佈局之特性(300C)。舉例而言,設計變數可包括照明光源之特性(300A)及設計佈局之特性(300C)(例如,全域偏置),但不包括投影光學件之特性(300B),此情形導致SMO。或者,設計變數可包括照明光源之特性(300A)、投影光學件之特性(300B)及設計佈局之特性(300C),此情形導致光源光罩透鏡最佳化(SMLO)。在步驟304中,同時地調整設計變數,使得成本函數移動朝向收斂。在步驟306中,判定是否滿足預定義終止條件。預定終止條件可包括各種可能性,亦即:成本函數可被最小化或最大化,如由所使用之數值技術所需要;成本函數之值已等於臨限值或已超越臨限值;成本函數之值已達到預設誤差極限內;或達到反覆之預設數目。若滿足步驟306中之條件中任一者,則該方法結束。若不滿足步驟 306中之條件中任一者,則反覆地重複步驟304及306直至獲得所要結果為止。
在一微影投影裝置中,光源、圖案化器件及投影光學件可被交替地最佳化(被稱作「交替最佳化」)或同時地最佳化(被稱作「同時最佳化」)。如本文所使用之術語「同時」、「同時地」、「聯合」及「聯合地」意謂允許光源、圖案化器件、投影光學件之特性之設計變數及/或任何其他設計變數同時改變。如本文所使用之術語「交替」及「交替地」意謂不允許所有設計變數同時改變。
在圖3中,同時地執行所有設計變數之最佳化。此流程可被稱為同時流程或共最佳化流程。或者,交替地執行所有設計變數之最佳化,如圖4所說明。在此流程中,在每一步驟中,固定一些設計變數,而最佳化其他設計變數以最小化成本函數;接著在下一步驟中,固定不同變數集合,而最佳化其他者以最小化成本函數。交替地執行此等步驟直至符合收斂或某些終止條件為止。如圖4之非限制性實例流程圖所示,首先獲得設計佈局(步驟402),接著在步驟404中執行光源最佳化之步驟,其中最佳化(SO)照明光源之所有設計變數以最小化成本函數,而固定所有其他設計變數。接著在下一步驟406中,執行光罩最佳化(MO),其中最佳化圖案化器件之所有設計變數以最小化成本函數,而固定所有其他設計變數。交替地執行此兩個步驟直至在步驟408中符合某些終止條件為止。可使用各種終止條件,諸如,成本函數之值變得等於臨限值、成本函 數之值超越臨限值、成本函數之值達到預設誤差極限內,或達到反覆之預設數目,等等。應注意,使用SO-MO交替最佳化作為用於交替流程之一實例。交替流程可採取許多不同形式,諸如,SO-LO-MO交替最佳化,其中交替地且反覆地執行SO、LO(透鏡最佳化)及MO;或首先可執行SMO一次,接著交替地且反覆地執行LO及MO;等等。最後,在步驟410中獲得最佳化結果之輸出,且程序停止。
如之前所論述,圖案選擇演算法可與同時或交替最佳化整合。舉例而言,當採用交替最佳化時,首先可執行全晶片SO,識別「熱點」及/或「溫點」,接著執行MO。鑒於本發明,次最佳化之眾多排列及組合對於達成所要最佳化結果係可能的。
圖7A展示最佳化之一例示性方法,其中最小化成本函數。在步驟502中,獲得設計變數之初始值,包括其調諧範圍(若存在的話)。在步驟S504中,設置多變數成本函數。在步驟S506中,針對第一反覆步驟(i=0)在圍繞設計變數之起始點值之足夠小鄰域內展開成本函數。在步驟S508中,應用標準多變數最佳化技術以最小化成本函數。應注意,最佳化問題可在S508中之最佳化程序期間或在該最佳化程序中之稍後階段施加約束,諸如,調諧範圍。步驟S520指示出針對已經選擇以最佳化微影程序之經識別評估點的給定測試圖案(亦被稱為「量規」)進行每一反覆。在步驟S510中,預測微影回應。在步驟S512中,比較步驟S510之結果與在步驟S522中所獲得之所要或理想微影回應 值。若在步驟S514中滿足終止條件(亦即,最佳化產生足夠接近所要值之微影回應值),則在步驟S518中輸出設計變數之最終值。輸出步驟亦可包括輸出使用設計變數之最終值的其他函數,諸如,輸出在光瞳平面(或其他平面)處之波前像差調整映像(map)、經最佳化光源映像,及經最佳化設計佈局,等等。若不滿足終止條件,則在步驟S516中,用第i反覆之結果來更新設計變數之值,且程序返回至步驟S506。下文詳細地闡述圖7A之程序。
在一例示性最佳化程序中,不假定或近似設計變數(z 1,z 2,...,z N )與f p (z 1,z 2,...,z N )之間的關係,惟f p (z 1,z 2,...,z N )足夠平滑(例如,存在一階導數,(n=1,2,...N))除外,此情形通常在一微影投影裝置中有效。可應用諸如高斯-牛頓(Gauss-Newton)演算法、萊文貝格-馬誇特(Levenberg-Marquardt)演算法、梯度下降演算法、模擬退火、遺傳演算法之演算法以求得
此處,使用高斯-牛頓演算法作為一實例。高斯-牛頓演算法為適用於一般非線性多變數最佳化問題之反覆方法。在設計變數(z 1,z 2,...,z N )採取值(z 1i ,z 2i ,...,z Ni )的第i反覆中,高斯-牛頓演算法在(z 1i ,z 2i ,...,z Ni )附近線性化f p (z 1,z 2,...,z N ),且接著在(z 1i ,z 2i ,...,z Ni )附近演算值(z 1(i+1),z 2(i+1),...,z N(i+1)),該等值給出CF(z 1,z 2,...,z N )之最小值。設計變數(z 1,z 2,...,z N )在第(i+1)反覆中採取值(z 1(i+1),z 2(i+1),...,z N(i+1))。此反覆繼續直至收斂(亦即,CF(z 1,z 2,...,z N )不再簡化)或達到反覆之預設數目為止。
具體言之,在第i反覆中,在(z 1i ,z 2i ,...,z Ni )附近,
在方程式3之近似下,成本函數變成:
其為設計變數(z 1,z 2,...,z N )之二次函數。每一項皆恆定,惟設計變數(z 1,z 2,...,z N )除外。
若設計變數(z 1,z 2,...,z N )不在任何約束下,則可藉由N個線性方程式進行求解來導出(z 1(i+1),z 2(i+1),...,z N(i+1)):,其中n=1,2,...N
若設計變數(z 1,z 2,...,z N )在呈J個不等式(例如,(z 1,z 2,...,z N )之調諧範圍)(針對j=1,2,...J)及K個等式(例如,該等設計變數之間的相互相依性)(針對k=1,2,...K)之形式的約束下,則最佳化程序變成經典二次程式化問題,其中A nj B j C nk D k 為常數。可針對每一反覆來強加額外約束。舉例而言,可引入「阻尼因數」△ D 以限制(z 1(i+1),z 2(i+1),...,z N(i+1))與(z 1i ,z 2i ,...,z Ni )之間的差,使得方程式3之近似成立。可將此等約束表達為z ni -△ D z n z ni +△ D 。可使用(例如)由Jorge Nocedal及Stephen J.Wright之Numerical Optimization(第二版)(Berlin New York:Vandenberghe.Cambridge University Press)所描述之方法來導出(z 1(i+1),z 2(i+1),...,z N(i+1))。
代替最小化f p (z 1,z 2,..,z N )之RMS,最佳化程序可將評估點 當中之最大偏差(最差缺陷)之量值最小化至其所欲值。在此途徑中,可將成本函數替代地表達為,其中CL p f p (z 1,z 2,...,z N )之最大允許值。此成本函數表示評估點當中之最差缺陷。使用此成本函數之最佳化會最小化最差缺陷之量值。反覆貪心演算法(iterative greedy algorithm)可用於此最佳化。
可將方程式5之成本函數近似為: 其中q為偶數正整數,諸如,至少4,較佳地為至少10。方程式6模仿方程式5之行為,同時允許分析上執行最佳化且藉由使用諸如最深下降方法、共軛梯度方法等等之方法來加速最佳化。
最小化最差缺陷大小亦可與線性化f p (z 1,z 2,...,z N )進行組合。具體言之,如在方程式3中一樣近似f p (z 1,z 2,...,z N )。接著,將對最差缺陷大小之約束寫為不等式E Lp f p (z 1,z 2,...,z N ) E Up ,其中E Lp E Up 為指定針對f p (z 1,z 2,...,z N )之最小及最大允許偏差之兩個常數。在代入方程式3的情況下,針對p=1,...P,此等約束變換成:
由於方程式3通常僅在(z 1i ,z 2i ,...,z Ni )附近有效,故在此附近不能達成所要約束E Lp f p (z 1,z 2,...,z N ) E Up (其可藉由不等式當中之任何衝突判定)的狀況下,可放寬常數E Lp E Up 直至可達成該等約束為止。此最佳化程序在(z 1i ,z 2i ,...,z Ni )附近最小化最差缺陷大小。接著,每一步驟逐漸地減少最差缺陷大小,且反覆地執行每一步驟直至符合某些終止條件為止。此情形將導致最差缺陷大小之最佳減少。
用以最小化最差缺陷之另一方式係在每一反覆中調整權重w p 。舉例而言,在第i反覆之後,若第r評估點為最差缺陷,則可在第(i+1)反覆中增加w r 使得向彼評估點之缺陷大小之減少給出較高優先級。
另外,可藉由引入拉格朗日乘數(Lagrange multiplier)來修改方程式4及方程式5中之成本函數以達成對缺陷大小之RMS之最佳化與對最差缺陷大小之最佳化之間的折衷,亦即, 其中λ為指定對缺陷大小之RMS之最佳化與對最差缺陷大小之最佳化之間的取捨之預設常數。詳言之,若λ=0,則此方程式變成方程式4且僅最小化缺陷大小之RMS;而若λ=1,則此方程式變成方程式5且僅最小化最差缺陷大 小;若0<λ<1,則在最佳化中考量最小化缺陷大小之RMS及最小化最差缺陷大小兩者。可使用多種方法來求解此最佳化。舉例而言,相似於先前所描述之方式,可調整每一反覆中之加權。或者,相似於最小化來自不等式之最差缺陷大小,可將方程式6'及6"之不等式視為在二次程式化問題之求解期間的設計變數之約束。接著,對最差缺陷大小之界限可被遞增地放寬,或其遞增地增加最差缺陷大小之權重、計算每一可達成最差缺陷大小之成本函數值,且選擇最小化總成本函數之設計變數值作為用於下一步驟之初始點。藉由反覆地進行此操作,可達成此新成本函數之最小化。
在(例如)使用EUV(極紫外線輻射,例如,具有在5奈米至20奈米之範圍內之波長)光源或非EUV光源之微影投影裝置中,減少輻射強度可導致較強機率效應,諸如,諸如孔之小二維特徵之明顯線寬粗糙度(LWR)及局域CD變化。在使用EUV光源之微影投影裝置中,減少輻射強度可歸因於自該光源輸出之低總輻射、來自塑形來自該光源之輻射之光學件的輻射損失、通過投影光學件之透射損失、在恆定劑量下導致較少光子之高光子能量,等等。機率效應可歸因於諸如以下各者之因素:光子散粒雜訊、光子產生次級電子、抗蝕劑中之光子產生酸。EUV被要求之特徵之小的大小進一步混合此等機率效應。較小特徵中之機率效應為生產良率中之顯著因素,且辨明在微影投影裝置之多種最佳化程序中之夾雜。
在相同輻射強度下,每一基板之較低曝光時間導致微影投影裝置之較高產出率,但導致較強機率效應。在給定輻射強度下給定特徵中之光子散粒雜訊係與曝光時間之平方根成比例。在使用EUV及其他輻射光源之微影中存在對出於增加產出率之目的而降低曝光時間的期望。因此,本文所描述之考慮最佳化程序中之機率效應的方法及裝置不限於EUV微影。
在一實施例中,成本函數包括至少一f p (z 1,z 2,...,z N ),f p (z 1,z 2,...,z N )為諸如2D特徵之LWR或局域CD變化之一或多個機率效應的函數。舉例而言, 其中NPh為來自光源之光子之通量密度;NAc係關於在基礎淬火之後由光子在抗蝕劑中產生之酸的數密度;且α為諸如劑量敏感度或使方程式7匹配於特定抗蝕劑中之特定特徵之實際LWR之經驗因數的係數。可量測、以經驗為主地判定或自各種模型模擬NPh及NAc。方程式7中之例示性f p (z 1,z 2,...,z N )量測線特徵之LWR或2D特徵之CD變化。當然,f p (z 1,z 2,...,z N )可具有為一或多個機率效應之函數的任何其他合適形式。在另一實例中,f p (z 1,z 2,...,z N )為一或多個機率效應及諸如EPE之其他度量之組合的函數。
圖5展示方程式7中之f p (z 1,z 2,...,z N )對自嚴密模型化演算之機率效應的緊密匹配。對於具有NA=0.33且具有7奈米抗蝕劑模糊之光源,針對自上部曲線至下部曲線分別具有20 奈米、22奈米、24奈米、26奈米、28奈米、30奈米及32奈米半間距的線進行嚴密模型化。嚴密模型化在最佳化工序期間計算上過於昂貴。在圖5中,符號為藉由嚴密模型化預測之LWR。不同符號對應於不同密集線半間距值。曲線為方程式7對嚴密模型化之結果的擬合。
圖6展示針對27奈米寬線在微影投影裝置之若干照明條件(NA=0.25及NA=0.33)下使用方程式7中之模型進行的LWR之預測。較小部分相干因數σ及較大NA得到較小LWR。
為一或多個機率效應之函數的f p (z 1,z 2,...,z N )可具有其他形式,諸如, 式8),其中h為微影程序之諸如CDU、產出率、EPE、劑量之任何特性的函數。
最佳化微影投影裝置可擴展程序窗。較大程序窗在程序設計及晶片設計方面提供更多靈活性。程序窗可被定義為抗蝕劑影像係在抗蝕劑影像之設計目標之某一極限內的焦點及劑量值集合。應注意,此處所論述之所有方法亦可延伸至可藉由除了曝光劑量及散焦以外之不同或額外基參數建立的一般化程序窗定義。此等參數可包括(但不限於)諸如NA、均方偏差、像差、偏振或抗蝕劑層之光學常數的光學設定。舉例而言,如較早所描述,若PW亦由不同光罩偏置組成,則最佳化包括MEEF(光罩誤差增強因數)之 最小化,MEEF被定義為基板EPE與誘發性光罩邊緣偏置之間的比率。定義於焦點及劑量值上之程序窗在本發明中僅用作一實例。下文描述根據一實施例的最大化程序窗之方法。
在第一步驟中,自程序窗中之已知條件(f 0,ε 0)(其中f 0為標稱焦點且ε 0為標稱劑量)開始,在附近(f 0±△f,ε 0±△ε)最小化以下成本函數中之一者:
若允許標稱焦點f 0及標稱劑量ε 0移位,則其可與設計變數(z 1,z 2,...,z N )聯合地被最佳化。在下一步驟中,若可求得(z 1,z 2,...,z N ,f,ε)之值集合而使得成本函數在預設極限內,則接受(f 0±△f,ε 0±△ε)作為程序窗之部分。
或者,若不允許焦點及劑量移位,則用在標稱焦點f 0及標稱劑量ε 0下固定之焦點及劑量來最佳化設計變數(z 1,z 2,...,z N )。在一替代實施例中,若可求得(z 1,z 2,...,z N )之值集合而使得成本函數在預設極限內,則接受(f 0±△f,ε 0±△ε)作為程序窗之部分。
本發明中較早所描述之方法可用以最小化方程式27、 27'或27"之各別成本函數。若設計變數為投影光學件之特性(諸如,任尼克(Zernike)係數),則最小化方程式27、27'或27"之成本函數會導致基於投影光學件最佳化(亦即,LO)之程序窗最大化。若設計變數為除了投影光學件之特性以外的光源及圖案化器件之特性,則最小化方程式27、27'或27"之成本函數會導致基於SMLO之程序窗最大化,如圖3所說明。若設計變數為光源及圖案化器件之特性,則最小化方程式27、27'或27"之成本函數會導致基於SMO之程序窗最大化。方程式27、27'或27"之成本函數亦可包括至少一f p (z 1,z 2,...,z N ),諸如,方程式7或方程式8中之f p (z 1,z 2,...,z N ),其為諸如2D特徵之LWR或局域CD變化之一或多個機率效應的函數。
圖8展示同步SMLO程序可如何使用高斯牛頓演算法以用於最佳化的一個特定實例。在步驟S702中,識別設計變數之開始值。亦可識別每一變數之調諧範圍。在步驟S704中,使用設計變數來定義成本函數。在步驟S706中,圍繞設計佈局中之所有評估點之開始值來展開成本函數。在選用步驟S710中,執行全晶片模擬以覆蓋全晶片設計佈局中之所有臨界圖案。在步驟S714中獲得所要微影回應度量(諸如,CD或EPE),且在步驟S712中與彼等量之預測值進行比較。在步驟S716中,判定程序窗。步驟S718、S720及S722相似於如關於圖7A所描述之對應步驟S514、S516及S518。如之前所提及,最終輸出可為光瞳平面中之波前像差映像,其經最佳化以產生所要成像效能。最終輸出亦可 為經最佳化光源映像及/或經最佳化設計佈局。
圖7B展示用以最佳化成本函數之例示性方法,其中設計變數(z 1,z 2,...,z N )包括可僅假定離散值之設計變數。
該方法始於定義照明光源之像素群組及圖案化器件之圖案化器件圖案塊(patterning device tile)(步驟802)。通常,像素群組或圖案化器件圖案塊亦可被稱作微影程序分量之劃分。在一例示性途徑中,將照明光源劃分成117個像素群組,且實質上如上文所描述,針對圖案化器件來定義94個圖案化器件圖案塊,從而引起總共211個劃分。
在步驟804中,選擇微影模型作為光微影模擬之基礎。光微影模擬產生用於演算光微影度量或回應之結果。將特定光微影度量定義為待最佳化之效能度量(步驟806)。在步驟808中,設置照明光源及圖案化器件之初始(預最佳化)條件。初始條件包括照明光源之像素群組及圖案化器件之圖案化器件圖案塊的初始狀態,使得可參考初始照明形狀及初始圖案化器件圖案。初始條件亦可包括光罩偏置、NA及焦點斜坡範圍。儘管步驟802、804、806及808被描繪為依序步驟,但應瞭解,在本發明之其他實施例中,可以其他序列執行此等步驟。
在步驟810中,對像素群組及圖案化器件圖案塊進行分級。像素群組及圖案化器件圖案塊可在分級中被交錯。可使用各種分級方式,包括:依序地(例如,自像素群組1至像素群組117且自圖案化器件圖案塊1至圖案化器件圖案塊94)、機率地、根據該等像素群組及圖案化器件圖案塊之 實體部位(例如,將較接近於照明光源之中心之像素群組分級得較高),及根據該像素群組或圖案化器件圖案塊之變更如何影響效能度量。
一旦對像素群組及圖案化器件圖案塊進行分級,就調整照明光源及圖案化器件以改良效能度量(步驟812)。在步驟812中,以分級次序分析像素群組及圖案化器件圖案塊中每一者,以判定像素群組或圖案化器件圖案塊之變更是否將引起改良型效能度量。若判定出效能度量將被改良,則相應地變更像素群組或圖案化器件圖案塊,且所得改良型效能度量及經修改照明形狀或經修改圖案化器件圖案形成用於比較之基線以用於隨後分析經較低分級之像素群組及圖案化器件圖案塊。換言之,保留改良效能度量之變更。隨著進行及保留對像素群組及圖案化器件圖案塊之狀態之變更,初始照明形狀及初始圖案化器件圖案相應地改變,使得經修改照明形狀及經修改圖案化器件圖案由步驟812中之最佳化程序引起。
在其他途徑中,亦在812之最佳化程序內執行圖案化器件多邊形形狀調整以及像素群組及/或圖案化器件圖案塊之成對輪詢。
在一替代實施例中,交錯式同時最佳化工序可包括變更照明光源之像素群組,且若發現效能度量之改良,則逐步提高及逐步減低劑量以期待進一步改良。在一另外替代實施例中,劑量或強度之逐步提高及逐步減低可藉由圖案化器件圖案之偏置改變替換以期待同時最佳化工序中之進一 步改良。
在步驟814中,進行關於效能度量是否已收斂之判定。舉例而言,若在步驟810及812之最後若干反覆中已見證很少或無效能度量改良,則效能度量可被認為已收斂。若效能度量尚未收斂,則在下一反覆中重複810及812之步驟,其中使用來自當前反覆之經修改照明形狀及經修改圖案化器件作為用於下一反覆之初始照明形狀及初始圖案化器件(步驟816)。
圖9展示來自左上部畫面所示之具有固定環形0.9/0.2σ孔徑之光源(亦即,孔徑光源)及來自孔徑在左下部畫面中被展示之經最佳化光源的27奈米密集垂直線之例示性LWR,其中NA=0.33。SMO使用包括方程式7或方程式8之f p (z 1,z 2,...,z N )之成本函數。如圖9清楚地所示,SMO在減少LWR(方程式7)、CDU及其組合(方程式8)方面有效。
上文所描述之最佳化方法可用以增加微影投影裝置之產出率。舉例而言,成本函數可包括為曝光時間之函數的f p (z 1,z 2,...,z N )。此成本函數之最佳化較佳地受到機率效應或其他度量之度量約束或影響。具體言之,用於增加微影程序之產出率之電腦實施方法可包括最佳化為微影程序之一或多個機率效應之函數且為基板之曝光時間之函數的成本函數,以便最小化曝光時間。
圖10為說明可輔助實施本文所揭示之最佳化方法及流程之電腦系統100的方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構,及與匯流排102耦接以用於 處理資訊之處理器104(或多個處理器104及105)。電腦系統100亦包括耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令的主記憶體106,諸如,機率存取記憶體(RAM)或其他動態儲存器件。主記憶體106亦可用於在待由處理器104執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令的唯讀記憶體(ROM)108或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件110,且儲存器件110耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102而耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入器件114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如,滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸線(第一軸線(例如,x)及第二軸線(例如,y))上之兩個自由度,其允許該器件指定在一平面中之位置。亦可將觸控面板(螢幕)顯示器用作輸入器件。
根據一實施例,可由電腦系統100回應於處理器104執行主記憶體106中所含有之一或多個指令之一或多個序列而執行最佳化程序之部分。可將此等指令自另一電腦可讀媒 體(諸如,儲存器件110)讀取至主記憶體106中。主記憶體106中所含有之指令序列之執行使處理器104執行本文所描述之程序步驟。呈多處理配置之一或多個處理器亦可用以執行主記憶體106中所含有之指令序列。在一替代實施例中,可代替或結合軟體指令而使用硬連線電路。因此,本文中之描述不限於硬體電路及軟體之任何特定組合。
如本文所使用之術語「電腦可讀媒體」指代參與將指令提供至處理器104以供執行之任何媒體。此媒體可採取許多形式,包含(但不限於)非揮發性媒體、揮發性媒體及傳輸媒體。舉例而言,非揮發性媒體包括光碟或磁碟,諸如,儲存器件110。揮發性媒體包括動態記憶體,諸如,主記憶體106。傳輸媒體包括同軸電纜、銅線及光纖,包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通信期間所產生之聲波或光波。舉例而言,常見形式之電腦可讀媒體包括軟碟、可撓性碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或晶匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
可在將一或多個指令之一或多個序列攜載至處理器104以供執行時涉及各種形式之電腦可讀媒體。舉例而言,最初可將指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送 指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器以將資料轉換成紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自主記憶體106擷取及執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存器件110上。
電腦系統100亦較佳地包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦接,網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供對對應類型之電話線之資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施中,通信介面118發送及接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光學信號。
網路鏈路120通常經由一或多個網路而向其他資料器件提供資料通信。舉例而言,網路鏈路120可經由區域網路122而向主機電腦124或向由網際網路服務業者(ISP)126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」128)而提供資料通信服務。區域網路122及網際網路128兩者皆使用攜載數位資料串流之電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號(該等信 號將數位資料攜載至電腦系統100及自電腦系統100攜載數位資料)為輸送資訊的例示性形式之載波。
電腦系統100可經由該(該等)網路、網路鏈路120及通信介面118而發送訊息且接收資料(包括程式碼)。在網際網路實例中,伺服器130可能經由網際網路128、ISP 126、區域網路122及通信介面118而傳輸用於應用程式之經請求程式碼。一個此類經下載應用程式可提供(例如)該實施例之照明最佳化。經接收程式碼可在其被接收時由處理器104執行,及/或儲存於儲存器件110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波之形式的應用程式碼。
圖11示意性地描繪照明光源可利用本文所描述之方法予以最佳化的例示性微影投影裝置。該裝置包含:-照明系統IL,其用以調節輻射光束B。在此特定狀況下,該照明系統亦包含輻射光源SO;-第一物件台(例如,光罩台)MT,其具備用以固持圖案化器件MA(例如,比例光罩)之圖案化器件固持器,且連接至用以相對於項目PS來準確地定位該圖案化器件之第一定位器;-第二物件台(基板台)WT,其具備用以固持基板W(例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器;-投影系統(「透鏡」)PS(例如,折射、反射或反射折射光學系統),其用以將圖案化器件MA之經輻照部分成像至 基板W之目標部分C(例如,包含一或多個晶粒)上。
如本文所描繪,裝置為透射類型(亦即,具有透射光罩)。然而,一般而言,其亦可為(例如)反射類型(具有反射光罩)。或者,裝置可使用另一種圖案化器件作為經典光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。
光源SO(例如,水銀燈或準分子雷射)產生輻射光束。舉例而言,此光束係直接地或在已橫穿諸如光束擴展器Ex之調節構件之後被饋入至照明系統(照明器)IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈的外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,照射於圖案化器件MA上之光束B在其橫截面中具有所要均一性及強度分佈。
關於圖11應注意,光源SO可在微影投影裝置之外殼內(此常常為當光源SO為(例如)水銀燈時之狀況),但其亦可在微影投影裝置遠端,其所產生之輻射光束被導向至該裝置中(例如,憑藉合適引導鏡面);此後一情境常常為當光源SO為準分子雷射(例如,基於KrF、ArF或F2雷射作用)時之狀況。
光束PB隨後截取被固持於圖案化器件台MT上之圖案化器件MA。在已橫穿圖案化器件MA的情況下,光束PB傳遞通過透鏡PL,透鏡PL將光束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移 動基板台WT,例如,以便使不同目標部分C定位於光束PB之路徑中。相似地,第一定位構件可用以(例如)在自圖案化器件庫機械地擷取圖案化器件MA之後或在掃描期間相對於光束B之路徑來準確地定位圖案化器件MA。一般而言,將憑藉未在圖11中被明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在晶圓步進器(相對於步進掃描工具)之狀況下,圖案化器件台MT可僅僅連接至短衝程致動器,或可固定。
所描繪工具可用於兩種不同模式中:-在步進模式中,使圖案化器件台MT保持基本上靜止,且將整個圖案化器件影像一次性(亦即,單次「閃光」)投影至目標部分C上。接著使基板台WT在x及/或y方向上移位,使得不同目標部分C可由光束B輻照;-在掃描模式中,基本上相同情境適用,惟在單次「閃光」中不曝光給定目標部分C除外。取而代之,圖案化器件台MT可在給定方向(所謂「掃描方向」,例如,y方向)上以速率v移動,使得造成投影光束B遍及圖案化器件影像進行掃描;同時發生地,基板台WT以速率V=Mv在相同或相對方向上同時地移動,其中M為透鏡PL之放大率(通常,M=1/4或=1/5)。以此方式,可在不必損害解析度之情況下曝光相對大目標部分C。
圖12示意性地描繪照明光源可利用本文所描述之方法予以最佳化的另一例示性微影投影裝置1000。
微影投影裝置1000包括:- 光源收集器模組SO;- 照明系統(照明器)IL,其經組態以調節輻射光束B(例如,EUV輻射);- 支撐結構(例如,光罩台)MT,其經建構以支撐圖案化器件(例如,光罩或比例光罩)MA,且連接至經組態以準確地定位該圖案化器件之第一定位器PM;- 基板台(例如,晶圓台)WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓)W,且連接至經組態以準確地定位該基板之第二定位器PW;及- 投影系統(例如,反射投影系統)PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如,包含一或多個晶粒)上。
如此處所描繪,裝置1000為反射類型(例如,使用反射光罩)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以光罩可具有包含(例如)鉬與矽之多堆疊的多層反射器。在一實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度為四分之一波長。可用X射線微影來產生甚至更小波長。由於大多數材料在EUV及x射線波長下具吸收性,故圖案化器件構形(topography)上之經圖案化吸收材料薄片(例如,多層反射器之頂部上之TaN吸收體)界定特徵將印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)之處。
參看圖12,照明器IL自光源收集器模組SO接收極紫外線 輻射光束。用以產生EUV輻射之方法包括(但未必限於)用在EUV範圍內之一或多種發射譜線將具有至少一元素(例如,氙、鋰或錫)之材料轉換成電漿狀態。在一種常常被稱為雷射產生電漿「LPP」之此類方法中,可藉由用雷射光束來輻照諸如具有譜線發射元素之材料小滴、串流或叢集的燃料而產生電漿。光源收集器模組SO可為包括雷射(圖12中未繪示)之EUV輻射系統之部件,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射(例如,EUV輻射),該輻射係使用安置於光源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,雷射與源收集器模組可為分離實體。
在此等狀況下,不認為雷射形成微影裝置之部件,且輻射光束係憑藉包含(例如)合適引導鏡面及/或光束擴展器之光束遞送系統而自雷射傳遞至光源收集器模組。在其他狀況下,舉例而言,當光源為放電產生電漿EUV產生器(常常被稱作DPP源)時,光源可為光源收集器模組之整體部件。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如,琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分 佈。
輻射光束B入射於被固持於支撐結構(例如,光罩台)MT上之圖案化器件(例如,光罩)MA上,且係由該圖案化器件圖案化。在自圖案化器件(例如,光罩)MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2(例如,干涉量測器件、線性編碼器或電容性感測器),可準確地移動基板台WT,例如,以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化器件(例如,光罩)MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,光罩)MA及基板W。
所描繪裝置1000可用於以下模式中至少一者中:
1.在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如,光罩台)MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。
2.在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如,光罩台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如,光罩台)MT之速度及方向。
3.在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如,光罩台)MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射光源,且在基板台WT之每一移動之後或在一掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。
圖13更詳細地展示裝置1000,其包括光源收集器模組SO、照明系統IL及投影系統PS。光源收集器模組SO經建構及配置成使得可將真空環境維持於光源收集器模組SO之圍封結構220中。可藉由放電產生電漿源形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)產生EUV輻射,其中創製極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。藉由(例如)造成至少部分離子化電漿之放電來創製極熱電漿210。為了輻射之有效率產生,可能需要為(例如)10帕斯卡之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一實施例中,提供受激發錫(Sn)電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由定位於光源腔室211中之開口中或後方的選用氣體障壁或污染物截留器230(在一些狀況下,亦被稱作污染物障壁或箔片截留器)而自光源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染截留器230亦可包括氣體障壁,或氣體障 壁與通道結構之組合。如在此項技術中所知,本文進一步所指示之污染物截留器或污染物障壁230至少包括通道結構。
收集器腔室211可包括可為所謂掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240被反射以沿著由點虛線「O」指示之光軸而聚焦於虛擬光源點IF中。虛擬光源點IF通常被稱作中間焦點,且光源收集器模組經配置成使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬光源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24,琢面化場鏡面器件22及琢面化光瞳鏡面器件24經配置以提供在圖案化器件MA處輻射光束21之所要角分佈,以及在圖案化器件MA處輻射強度之所要均一性。在由支撐結構MT固持之圖案化器件MA處輻射光束21之反射後,隨即形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。
比所示元件多之元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影裝置之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖13所示之反射元件多1至6個的額外反射元件。
如圖13所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255經安置成圍繞光軸O軸向地對稱,且此類型之收集器光學件CO係較佳地結合放電產生電漿源(常常被稱為DPP源)予以使用。
或者,光源收集器模組SO可為如圖14所示之LPP輻射系統之部件。雷射LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而創製具有數十電子伏特之電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間所產生之高能輻射係自電漿發射、由近正入射收集器光學件CO收集,且聚焦至圍封結構220中之開口221上。
本文所揭示之概念可模擬或數學上模型化用於成像次波長特徵之任何通用成像系統,且可特別有用於能夠產生具有愈來愈小之大小之波長的新興成像技術。已經在使用中之新興技術包含能夠藉由使用ArF雷射來產生193奈米之波長且甚至能夠藉由使用氟雷射來產生157奈米之波長的EUV(極紫外線)微影。此外,EUV微影能夠藉由使用同步加速器或藉由以高能電子來撞擊材料(固體或電漿)而產生在20奈米至5奈米之範圍內的波長,以便產生在此範圍內之光子。
雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可用於任何類型之微影成像 系統,例如,用於在不同於矽晶圓之基板上之成像的微影成像系統。
可使用以下條項來進一步描述本發明:
1.一種用於改良用於使用一微影投影裝置將一設計佈局之一部分成像至一基板上之一微影程序的電腦實施方法,該方法包含:定義一多變數成本函數,該多變數成本函數為該微影程序之一機率效應之一函數,該機率效應為複數個設計變數之一函數,該複數個設計變數為該微影程序之特性;及藉由調整該等設計變數中之一或多者來重新組態該微影程序之該等特性中之一或多者直至滿足某一終止條件為止。
2.如條項1之方法,其中該設計佈局之該部分包含選自以下各者之一或多者:一整個設計佈局;一剪輯;被知道具有一或多個臨界特徵的一設計佈局之一區段;一熱點或一溫點已被識別的該設計佈局之一區段;及一或多個臨界特徵已被識別的該設計佈局之一區段。
3.如條項1或2之方法,其中該終止條件包括選自以下各者之一或多者:該成本函數之最小化;該成本函數之最大化;達到反覆之某一數目;達到等於或超出某一臨限值的該成本函數之一值;達到某一計算時間;達到在一可接受誤差極限內的該成本函數之一值;及/或最小化該微影程序中之一曝光時間。
4.如條項1至3中任一項之方法,其中該等設計變數中之 一或多者為用於該微影裝置之一照明光源之特性,及/或該等設計變數中之一或多者為該設計佈局之特性,及/或該等設計變數中之一或多者為該微影裝置之投影光學件之特性,及/或該等設計變數中之一或多者為該基板之一抗蝕劑之特性。
5.如條項1至4中任一項之方法,其中該反覆重新組態包含規定該等設計變數中至少一些之一範圍的約束。
6.如條項5之方法,其中該等設計變數中至少一些係在表示該微影投影裝置之一硬體實施中之實體限定的約束下。
7.如條項6之方法,其中該等約束包括選自如下各者之一或多者:一調諧範圍;控管圖案化器件可製造性之一規則;及/或該等設計變數之間的相互相依性。
8.如條項6之方法,其中該等約束包括該微影投影裝置之一產出率。
9.如條項1至8中任一項之方法,其中該成本函數為以下微影度量中之一或多者之一函數:邊緣置放誤差;臨界尺寸;抗蝕劑輪廓距離;最差缺陷大小;及/或最佳焦點移位。
10.如條項1至9中任一項之方法,其包含在執行該反覆重新組態之前選擇特性上表示該設計佈局之該部分之特徵的一目標圖案子集。
11.如條項1至10中任一項之方法,其中同時地執行各種設計變數之最佳化直至滿足該終止條件為止。
12.如條項1至10中任一項之方法,其中交替地執行各種設計變數之最佳化,從而使該等設計變數中至少一者保持固定,而最佳化該另一設計變數,且重複該交替最佳化程序直至滿足該終止條件為止。
13.如條項1至12中任一項之方法,其包含藉由在每一反覆中於圍繞一起始點之某些相對小鄰域內演算線性擬合係數來反覆地最小化該成本函數。
14.如條項13之方法,其中藉由選自由如下各者組成之一群組之一方法來最小化該成本函數:高斯-牛頓演算法;萊文貝格-馬誇特演算法;梯度下降演算法;模擬退火;及遺傳演算法。
15.如條項1至14中任一項之方法,其中該成本函數包含一抗蝕劑影像或一空中影像之特性。
16.如條項1至15中任一項之方法,其中藉由求解一二次程式化問題來最小化該成本函數。
17.如條項1至16中任一項之方法,其中該成本函數為僅為該微影裝置之一投影光學件之特性之該等設計變數的一函數,而其他設計變數為經指派值。
18.如條項1至16中任一項之方法,其中該成本函數表示在該設計佈局之該部分中求得一熱點之一機率。
19.如條項1至18中任一項之方法,其中該機率效應包含線寬粗糙度(LWR)、該微影投影裝置之一產出率及/或局域CD變化。
20.如條項19之方法,其中使用該機率效應之一模型來 模擬該機率效應。
21.如條項1至20中任一項之方法,其中該機率效應係由如下各者造成:光子散粒雜訊;光子產生次級電子;該基板之一抗蝕劑中之光子產生酸;光子可活化粒子或電子可活化粒子在該基板之一抗蝕劑中之分佈;光子可活化粒子或電子可活化粒子在該基板之一抗蝕劑中之密度;或其一組合。
22.一種用於增加用於使用一微影投影裝置將一設計佈局之一部分成像至一基板上之一微影程序之一產出率的電腦實施方法,該方法包含: 定義一多變數成本函數,該多變數成本函數為該微影程序之一機率效應之一函數且為該微影投影裝置中該基板之一曝光時間之一函數,該機率效應為複數個設計變數之一函數,該複數個設計變數為該微影程序之特性;及 藉由調整該等設計變數中之一或多者來重新組態該微影程序之該等特性中之一或多者直至滿足某一終止條件為止。
23.如條項22之方法,其中該終止條件為該曝光時間被最小化。
24.如條項1至23中任一項之方法,其中該多變數成本函數為該局域CD變化、該微影投影裝置之一產出率及該微影程序之一機率效應的一函數。
25.如條項1至23中任一項之方法,其中該多變數成本函數為一邊緣置放誤差、該微影投影裝置之一產出率及該微 影程序之一機率效應的一函數。
26.一種包含一電腦可讀媒體之電腦程式產品,該電腦可讀媒體具有記錄於其上之指令,該等指令在由一電腦執行時實施以上條項中任一項之方法。
以上描述意欲為說明性的而非限制性的。因此,對於熟習此項技術者將顯而易見,可如在不脫離下文所闡明之申請專利範圍之範疇的情況下所描述而進行修改。
10A‧‧‧微影投影裝置
12A‧‧‧輻射光源
14A‧‧‧光學件/組件
16Aa‧‧‧光學件/組件
16Ab‧‧‧光學件/組件
16Ac‧‧‧透射光學件/組件
18A‧‧‧圖案化器件
20A‧‧‧孔隙
21‧‧‧輻射光束
22‧‧‧琢面化場鏡面器件
22A‧‧‧基板平面
24‧‧‧琢面化光瞳鏡面器件
26‧‧‧經圖案化光束
28‧‧‧反射元件
30‧‧‧反射元件
31‧‧‧光源模型
32‧‧‧投影光學件模型
35‧‧‧設計佈局模型
36‧‧‧空中影像
37‧‧‧抗蝕劑模型
100‧‧‧電腦系統
102‧‧‧匯流排
104‧‧‧處理器
105‧‧‧處理器
106‧‧‧主記憶體
108‧‧‧唯讀記憶體(ROM)
110‧‧‧儲存器件
112‧‧‧顯示器
114‧‧‧輸入器件
116‧‧‧游標控制件
118‧‧‧通信介面
120‧‧‧網路鏈路
122‧‧‧區域網路
124‧‧‧主機電腦
126‧‧‧網際網路服務業者(ISP)
128‧‧‧網際網路
130‧‧‧伺服器
210‧‧‧極紫外線(EUV)輻射發射電漿/極熱電漿/高度離子化電漿
211‧‧‧光源腔室
212‧‧‧收集器腔室
220‧‧‧圍封結構
221‧‧‧開口
230‧‧‧氣體障壁/污染物截留器/污染截留器/污染物障壁
240‧‧‧光柵光譜濾光器
251‧‧‧上游輻射收集器側
252‧‧‧下游輻射收集器側
253‧‧‧掠入射反射器
254‧‧‧掠入射反射器
255‧‧‧掠入射反射器
1000‧‧‧微影投影裝置
AD‧‧‧調整構件
B‧‧‧輻射光束
C‧‧‧目標部分
CO‧‧‧聚光器/輻射收集器/近正入射收集器光學件
IF‧‧‧干涉量測構件(圖11)/虛擬光源點(圖13及圖14)/中間焦點(圖13及圖14)
IL‧‧‧照明系統/照明器/照明光學件單元
IN‧‧‧積光器
LA‧‧‧雷射
M1‧‧‧圖案化器件對準標記
M2‧‧‧圖案化器件對準標記
MA‧‧‧圖案化器件
MT‧‧‧第一物件台/圖案化器件台/支撐結構
O‧‧‧光軸
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧項目/投影系統
PS1‧‧‧位置感測器
PS2‧‧‧位置感測器
PW‧‧‧第二定位器
SO‧‧‧光源收集器模組/輻射光源
W‧‧‧基板
WT‧‧‧第二物件台/基板台
圖1為微影系統之各種子系統的方塊圖。
圖2為對應於圖1中之子系統之模擬模型的方塊圖。
圖3為說明聯合最佳化之實例方法學之態樣的流程圖。
圖4展示根據一實施例的另一最佳化方法之實施例。
圖5展示方程式7對來自嚴密模型化之結果的緊密匹配。
圖6展示在微影投影裝置之若干照明條件下使用方程式7中之模型進行的LWR之預測。
圖7(包括圖7A及圖7B)及圖8展示各種最佳化程序之實例流程圖。
圖9展示根據一實施例的來自最佳化之例示性結果。
圖10為實例電腦系統之方塊圖。
圖11為微影投影裝置之示意圖。
圖12為另一微影投影裝置之示意圖。
圖13為圖12中之裝置的更詳細視圖。
圖14為圖12及圖13之裝置之光源收集器模組SO的更詳細視圖。

Claims (15)

  1. 一種用於改良用於使用一微影投影裝置將一設計佈局之一部分成像至一基板上之一微影程序的電腦實施方法,該方法包含:定義一多變數成本函數,該多變數成本函數為該微影程序之一機率效應之一函數,該機率效應為複數個設計變數之一函數,該複數個設計變數為該微影程序之特性;及藉由調整該等設計變數中之一或多者來重新組態該微影程序之該等特性中之一或多者直至滿足某一終止條件為止。
  2. 如請求項1之方法,其中該機率效應包含線寬粗糙度(LWR)、該微影投影裝置之一產出率及/或局域臨界尺寸(CD)變化。
  3. 如請求項2之方法,其中使用該機率效應之一模型來模擬該機率效應。
  4. 如請求項1之方法,其中該機率效應係由如下各者造成:光子散粒雜訊;光子產生次級電子;該基板之一抗蝕劑中之光子產生酸;光子可活化粒子或電子可活化粒子在該基板之一抗蝕劑中之分佈;光子可活化粒子或電子可活化粒子在該基板之一抗蝕劑中之密度;或其一組合。
  5. 如請求項1之方法,其中該設計佈局之該部分包含選自以下各者之一或多者:一整個設計佈局;一剪輯;被知 道具有一或多個臨界特徵的一設計佈局之一區段;一熱點或一溫點已被識別的該設計佈局之一區段;及一或多個臨界特徵已被識別的該設計佈局之一區段。
  6. 如請求項1之方法,其中該終止條件包括選自以下各者之一或多者:該成本函數之最小化;該成本函數之最大化;達到反覆之某一數目;達到等於或超出某一臨限值的該成本函數之一值;達到某一計算時間;達到在一可接受誤差極限內的該成本函數之一值;及/或最小化該微影程序中之一曝光時間。
  7. 如請求項1之方法,其中該等設計變數中之一或多者為用於該微影裝置之一照明光源之特性,及/或該等設計變數中之一或多者為該設計佈局之特性,及/或該等設計變數中之一或多者為該微影裝置之投影光學件之特性,及/或該等設計變數中之一或多者為該基板之一抗蝕劑之特性。
  8. 如請求項1之方法,其中該反覆重新組態包含規定該等設計變數中至少一些之一範圍的約束。
  9. 如請求項8之方法,其中該等設計變數中至少一些係在表示該微影投影裝置之一硬體實施中之實體限定的約束下。
  10. 如請求項9之方法,其中該等約束包括該微影投影裝置之一產出率。
  11. 如請求項1之方法,其中該成本函數為以下微影度量中之一或多者之一函數:邊緣置放誤差;臨界尺寸;抗蝕 劑輪廓距離;最差缺陷大小;及/或最佳焦點移位。
  12. 如請求項1之方法,其中該成本函數包含一抗蝕劑影像或一空中影像之特性。
  13. 如請求項1之方法,其中該多變數成本函數為一邊緣置放誤差、該微影投影裝置之一產出率及該微影程序之一機率效應的一函數。
  14. 一種用於增加用於使用一微影投影裝置將一設計佈局之一部分成像至一基板上之一微影程序之一產出率的電腦實施方法,該方法包含:定義一多變數成本函數,該多變數成本函數為該微影程序之一機率效應之一函數且為該微影投影裝置中該基板之一曝光時間之一函數,該機率效應為複數個設計變數之一函數,該複數個設計變數為該微影程序之特性;及藉由調整該等設計變數中之一或多者來重新組態該微影程序之該等特性中之一或多者直至滿足某一終止條件為止。
  15. 如請求項14之方法,其中該終止條件為該曝光時間被最小化。
TW101150666A 2012-01-10 2012-12-27 用以減少機率效應之光源光罩最佳化 TWI467321B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261585136P 2012-01-10 2012-01-10

Publications (2)

Publication Number Publication Date
TW201333624A true TW201333624A (zh) 2013-08-16
TWI467321B TWI467321B (zh) 2015-01-01

Family

ID=48744861

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101150666A TWI467321B (zh) 2012-01-10 2012-12-27 用以減少機率效應之光源光罩最佳化

Country Status (5)

Country Link
US (2) US9213783B2 (zh)
JP (1) JP2013145880A (zh)
KR (1) KR101463100B1 (zh)
NL (1) NL2009982A (zh)
TW (1) TWI467321B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255925A (zh) * 2014-05-02 2016-12-21 Asml荷兰有限公司 稠密特征的热点的减少
TWI564674B (zh) * 2014-02-11 2017-01-01 Asml荷蘭公司 用於計算任意圖案中之隨機變異之模型
TWI567508B (zh) * 2014-03-18 2017-01-21 Asml荷蘭公司 圖案置放誤差感知之最佳化

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008311A (en) * 2011-04-04 2012-10-08 Asml Netherlands Bv Integration of lithography apparatus and mask optimization process with multiple patterning process.
NL2008957A (en) 2011-07-08 2013-01-09 Asml Netherlands Bv Methods and systems for pattern design with tailored response to wavefront aberration.
US9489479B2 (en) * 2012-05-04 2016-11-08 Asml Netherlands B.V. Rule and lithographic process co-optimization
US9395622B2 (en) * 2014-02-20 2016-07-19 Globalfoundries Inc. Synthesizing low mask error enhancement factor lithography solutions
US10025201B2 (en) * 2014-04-14 2018-07-17 Asml Netherlands B.V. Flows of optimization for lithographic processes
KR101939313B1 (ko) 2014-06-25 2019-01-16 에이에스엠엘 네델란즈 비.브이. 에칭 변동 감내 최적화
WO2016010776A1 (en) * 2014-07-13 2016-01-21 Kla-Tencor Corporation Metrology using overlay and yield critical patterns
KR102404639B1 (ko) * 2015-02-02 2022-06-03 삼성전자주식회사 전자 빔 노광 방법 및 그를 포함하는 기판 제조 방법
TWI620980B (zh) 2015-02-13 2018-04-11 Asml荷蘭公司 影像對數斜率(ils)最佳化
CN107430351B (zh) * 2015-03-16 2019-06-11 Asml荷兰有限公司 用于确定抗蚀剂变形的方法
TWI571701B (zh) * 2015-04-30 2017-02-21 力晶科技股份有限公司 偵測微影熱點的方法
KR20180072768A (ko) * 2015-10-19 2018-06-29 에이에스엠엘 네델란즈 비.브이. 패터닝 공정 오차를 보정하는 장치 및 방법
WO2017067748A1 (en) 2015-10-19 2017-04-27 Asml Netherlands B.V. Method and apparatus to reduce effects of nonlinear behavior
US10691863B2 (en) 2015-10-19 2020-06-23 Asml Netherlands B.V. Method and apparatus to correct for patterning process error
WO2017067757A1 (en) 2015-10-19 2017-04-27 Asml Netherlands B.V. Method and apparatus to correct for patterning process error
US10915689B2 (en) 2015-10-19 2021-02-09 Asml Netherlands B.V. Method and apparatus to correct for patterning process error
US10416566B2 (en) * 2015-12-14 2019-09-17 Asml Netherlands B.V. Optimization of source and bandwidth for new and existing patterning devices
CN112198762B (zh) 2015-12-22 2023-09-19 Asml荷兰有限公司 用于过程窗口表征的设备和方法
KR102148875B1 (ko) 2015-12-31 2020-08-28 에이에스엠엘 네델란즈 비.브이. 에칭-어시스트 피처
WO2017114662A1 (en) 2015-12-31 2017-07-06 Asml Netherlands B.V. Selection of measurement locations for patterning processes
WO2017162471A1 (en) 2016-03-24 2017-09-28 Asml Netherlands B.V. Optimization of a lithographic projection apparatus accounting for an interlayer characteristic
US10197908B2 (en) * 2016-06-21 2019-02-05 Lam Research Corporation Photoresist design layout pattern proximity correction through fast edge placement error prediction via a physics-based etch profile modeling framework
US10345714B2 (en) 2016-07-12 2019-07-09 Cymer, Llc Lithography optics adjustment and monitoring
TWI647528B (zh) 2016-07-12 2019-01-11 荷蘭商Asml荷蘭公司 用於視覺化設計佈局之計算分析之效能度量的方法及系統
US10007191B2 (en) 2016-07-15 2018-06-26 Kla-Tencor Corporation Method for computer modeling and simulation of negative-tone-developable photoresists
WO2018033363A1 (en) 2016-08-19 2018-02-22 Asml Netherlands B.V. Modeling post-exposure processes
WO2018099742A1 (en) 2016-12-02 2018-06-07 Asml Netherlands B.V. Model for estimating stochastic variation
CN110121681B (zh) 2016-12-28 2022-04-01 Asml荷兰有限公司 在制造过程中引导过程模型和检查的方法
US11016395B2 (en) 2016-12-28 2021-05-25 Asml Netherlands B.V. Methods of determining scattering of radiation by structures of finite thicknesses on a patterning device
CN110325921B (zh) * 2017-01-26 2022-02-18 Asml荷兰有限公司 微调过程模型的方法
KR102449586B1 (ko) 2017-02-24 2022-10-04 에이에스엠엘 네델란즈 비.브이. 기계 학습에 의해 공정 모델들을 결정하는 방법들
TWI735747B (zh) 2017-02-28 2021-08-11 美商克萊譚克公司 度量方法及模組,分段疊對目標,及電腦程式產品
US10262408B2 (en) * 2017-04-12 2019-04-16 Kla-Tencor Corporation System, method and computer program product for systematic and stochastic characterization of pattern defects identified from a semiconductor wafer
US10599046B2 (en) 2017-06-02 2020-03-24 Samsung Electronics Co., Ltd. Method, a non-transitory computer-readable medium, and/or an apparatus for determining whether to order a mask structure
WO2018228820A1 (en) 2017-06-14 2018-12-20 Asml Netherlands B.V. Lithographic apparatus and method
EP3688529B1 (en) * 2017-09-27 2023-12-13 ASML Netherlands B.V. Method of determining control parameters of a device manufacturing process
EP3462240A1 (en) 2017-09-27 2019-04-03 ASML Netherlands B.V. Method of determining control parameters of a device manufacturing process
KR102440337B1 (ko) 2017-12-22 2022-09-05 에이에스엠엘 네델란즈 비.브이. 결함 확률에 기초한 프로세스 윈도우
US10572697B2 (en) 2018-04-06 2020-02-25 Lam Research Corporation Method of etch model calibration using optical scatterometry
CN111971551A (zh) 2018-04-10 2020-11-20 朗姆研究公司 机器学习中的光学计量以表征特征
KR20200131342A (ko) 2018-04-10 2020-11-23 램 리써치 코포레이션 레지스트 및 에칭 모델링
US10818001B2 (en) 2018-09-07 2020-10-27 Kla-Tencor Corporation Using stochastic failure metrics in semiconductor manufacturing
US11354484B2 (en) * 2018-11-08 2022-06-07 Asml Netherlands B.V. Failure model for predicting failure due to resist layer
EP3650940A1 (en) 2018-11-09 2020-05-13 ASML Netherlands B.V. A method in the manufacturing process of a device, a non-transitory computer-readable medium and a system configured to perform the method
KR102641682B1 (ko) 2019-02-20 2024-02-27 에이에스엠엘 네델란즈 비.브이. 반도체 디바이스의 제조 프로세스를 특성화하기 위한 방법
JP2022522433A (ja) * 2019-02-25 2022-04-19 アプライド マテリアルズ イスラエル リミテッド 希少確率欠陥を検出するシステムおよび方法
US10990019B2 (en) 2019-04-09 2021-04-27 Kla Corporation Stochastic reticle defect dispositioning
US20220229374A1 (en) * 2019-04-25 2022-07-21 Asml Netherlans B.V. Method of determining characteristic of patterning process based on defect for reducing hotspot
US11061373B1 (en) 2019-08-20 2021-07-13 Siemens Industry Software Inc. Method and system for calculating probability of success or failure for a lithographic process due to stochastic variations of the lithographic process
CN114514473A (zh) * 2019-09-25 2022-05-17 美商新思科技有限公司 基于缺陷概率分布和关键尺寸变化的光刻改进
EP3822703A1 (en) 2019-11-18 2021-05-19 ASML Netherlands B.V. Method for determining a field-of-view setting
WO2021069153A1 (en) 2019-10-08 2021-04-15 Asml Netherlands B.V. Method for determining a field-of-view setting
US11119404B2 (en) * 2019-10-10 2021-09-14 Kla Corporation System and method for reducing printable defects on extreme ultraviolet pattern masks
KR20210069161A (ko) 2019-12-02 2021-06-11 삼성전자주식회사 Euv 레티클 제조 방법 및 그를 포함하는 반도체 소자의 제조 방법
US11475201B2 (en) * 2020-02-24 2022-10-18 Synopsys, Inc. Inclusion of stochastic behavior in source mask optimization
US11468222B2 (en) 2020-02-24 2022-10-11 Synopsys, Inc. Stochastic signal prediction in compact modeling
US11640490B2 (en) 2020-02-25 2023-05-02 Synopsys, Inc. Source mask optimization by process defects prediction
US11874597B2 (en) 2020-02-25 2024-01-16 Synopsys, Inc. Stochastic optical proximity corrections
JP2024500075A (ja) 2020-12-23 2024-01-04 エーエスエムエル ネザーランズ ビー.ブイ. 帯域幅及びスペックルに基づくリソグラフィプロセスの最適化
KR20230152037A (ko) 2021-03-03 2023-11-02 에이에스엠엘 네델란즈 비.브이. 패터닝 공정의 구성

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US5296891A (en) 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
EP0824722B1 (en) 1996-03-06 2001-07-25 Asm Lithography B.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
TWI252516B (en) 2002-03-12 2006-04-01 Toshiba Corp Determination method of process parameter and method for determining at least one of process parameter and design rule
US7363099B2 (en) 2002-06-07 2008-04-22 Cadence Design Systems, Inc. Integrated circuit metrology
KR100468741B1 (ko) * 2002-06-22 2005-01-29 삼성전자주식회사 노광 장치의 어퍼처 설계를 위한 시뮬레이션 방법 및장치, 그리고 시뮬레이션 방법을 기록한 기록매체
US7003758B2 (en) 2003-10-07 2006-02-21 Brion Technologies, Inc. System and method for lithography simulation
JP2005294716A (ja) 2004-04-05 2005-10-20 Nikon Corp 荷電粒子線露光におけるショットノイズの予測方法
KR101429098B1 (ko) 2004-06-04 2014-09-22 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
US7266803B2 (en) 2005-07-29 2007-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Layout generation and optimization to improve photolithographic performance
US7617477B2 (en) 2005-09-09 2009-11-10 Brion Technologies, Inc. Method for selecting and optimizing exposure tool using an individual mask error model
JP2008258361A (ja) * 2007-04-04 2008-10-23 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP4989279B2 (ja) * 2007-04-05 2012-08-01 株式会社東芝 パラメータ値調整方法、半導体装置製造方法およびプログラム
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
US20090275038A1 (en) * 2008-04-07 2009-11-05 Transnetyx, Inc. Method and apparatus for forensic screening
US8806387B2 (en) * 2008-06-03 2014-08-12 Asml Netherlands B.V. Model-based process simulation systems and methods
WO2009148976A1 (en) * 2008-06-03 2009-12-10 Brion Technologies, Inc. Lens heating compensation methods
JP2010045309A (ja) * 2008-08-18 2010-02-25 Fujitsu Microelectronics Ltd 露光方法及び半導体装置の製造方法
CN102224459B (zh) * 2008-11-21 2013-06-19 Asml荷兰有限公司 用于优化光刻过程的方法及设备
NL2003919A (en) 2008-12-24 2010-06-28 Asml Netherlands Bv An optimization method and a lithographic cell.
US8786824B2 (en) 2009-06-10 2014-07-22 Asml Netherlands B.V. Source-mask optimization in lithographic apparatus
NL2005523A (en) * 2009-10-28 2011-05-02 Asml Netherlands Bv Selection of optimum patterns in a design layout based on diffraction signature analysis.
US8589827B2 (en) 2009-11-12 2013-11-19 Kla-Tencor Corporation Photoresist simulation
NL2005804A (en) * 2010-01-14 2011-07-18 Asml Netherlands Bv Method and apparatus for enhancing signal strength for improved generation and placement of model-based sub-resolution assist features (mb-sraf).
US8372565B2 (en) 2010-08-31 2013-02-12 International Business Machines Corporation Method for optimizing source and mask to control line width roughness and image log slope
NL2007577A (en) * 2010-11-10 2012-05-14 Asml Netherlands Bv Optimization of source, mask and projection optics.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI564674B (zh) * 2014-02-11 2017-01-01 Asml荷蘭公司 用於計算任意圖案中之隨機變異之模型
TWI567508B (zh) * 2014-03-18 2017-01-21 Asml荷蘭公司 圖案置放誤差感知之最佳化
US10386727B2 (en) 2014-03-18 2019-08-20 Asml Netherlands B.V. Pattern placement error aware optimization
CN106255925A (zh) * 2014-05-02 2016-12-21 Asml荷兰有限公司 稠密特征的热点的减少

Also Published As

Publication number Publication date
US20130179847A1 (en) 2013-07-11
KR20130082110A (ko) 2013-07-18
US9213783B2 (en) 2015-12-15
US20160110488A1 (en) 2016-04-21
NL2009982A (en) 2013-07-15
US9934346B2 (en) 2018-04-03
KR101463100B1 (ko) 2014-11-20
JP2013145880A (ja) 2013-07-25
TWI467321B (zh) 2015-01-01

Similar Documents

Publication Publication Date Title
TWI467321B (zh) 用以減少機率效應之光源光罩最佳化
TWI564674B (zh) 用於計算任意圖案中之隨機變異之模型
TWI795944B (zh) 訓練用以預測用於光罩之後光學接近校正(opc)之機器學習模型的方法、判定用於光罩之後opc影像之方法及判定對設計佈局之校正之方法
TWI596422B (zh) 用於改良微影處理程序之電腦實施方法及相關電腦程式產品
TWI590006B (zh) 用於改良微影製程的方法及電腦程式產品
TWI624765B (zh) 用以改良微影程序之電腦實施方法及電腦程式產品
TWI567508B (zh) 圖案置放誤差感知之最佳化
TWI579656B (zh) 輔助特徵及光源之最佳化
CN107430347B (zh) 图像对数斜率(ils)优化
TWI806002B (zh) 用於判定遮罩圖案及訓練機器學習模型之非暫時性電腦可讀媒體
TWI545392B (zh) 用於模擬圖案化器件之散射輻射場的電腦實施方法及相關電腦程式產品
TW201706724A (zh) 著色感知最佳化
TWI822578B (zh) 用於基於缺陷而判定圖案化程序之特性以減少熱點的方法
TW202119137A (zh) 在裝置製程中的方法、非暫態電腦可讀媒體、及組態以執行該方法的系統
US20230333483A1 (en) Optimization of scanner throughput and imaging quality for a patterning process
TW202303264A (zh) 使用目標圖案及參考層圖案以判定用於光罩之光學接近校正的機器學習模型