TW201143548A - Plasma processing apparatus and plasma processing method - Google Patents

Plasma processing apparatus and plasma processing method Download PDF

Info

Publication number
TW201143548A
TW201143548A TW099136518A TW99136518A TW201143548A TW 201143548 A TW201143548 A TW 201143548A TW 099136518 A TW099136518 A TW 099136518A TW 99136518 A TW99136518 A TW 99136518A TW 201143548 A TW201143548 A TW 201143548A
Authority
TW
Taiwan
Prior art keywords
antenna
coil
plasma
correction
processing
Prior art date
Application number
TW099136518A
Other languages
Chinese (zh)
Other versions
TWI595808B (en
Inventor
Yohei Yamazawa
Chishio Koshimizu
Masashi Saito
Kazuki Denpoh
Jun Yamawaku
Hachishiro Iizuka
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW201143548A publication Critical patent/TW201143548A/en
Application granted granted Critical
Publication of TWI595808B publication Critical patent/TWI595808B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To freely and minutely control a plasma density distribution by using a coil put into an electrically floating state in an inductively coupled plasma process. An inductively coupled plasma processing apparatus is configured such that inductively coupled plasma is generated so as to have a doughnut shape under a dielectric window 52 close to an RF antenna 54 and the doughnut-shaped plasma is dispersed in a large processing space so as to level the plasma density near a susceptor 12 (namely, on a semiconductor wafer W). In order to radially and arbitrarily control the plasma density distribution near the susceptor 12, a floating coil 70 with a capacitor exhibits a passive effect or a positive effect on an RF magnetic field generated by the RF antenna 54, and consequently, on the plasma density distribution of the doughnut-shaped plasma generated in a chamber 10.

Description

201143548 六、發明說明: 【發明所屬之技術領域】 本發明係關於對被處理基板施予電漿處理之技術,尤 其關於電感耦合型之電漿處理裝置以及電漿處理方法。 【先前技術】 半導體裝置或FPD( Flat Panel Display)之製造時的 蝕刻、堆積、氧化、濺渡等之製程中,爲了對處理氣體進 行比較低溫之良好反應,經常利用電漿。以往,該種之電 漿處理經常使用藉由MHz區域之高頻放電所產生之電漿。 藉由高頻放電所產生之電漿,以具體性(裝置性)之電漿 生成法而言,大致分成電容耦合型電漿和電感耦合型電漿 〇 一般而言,電感耦合型之電漿處理裝置係以介電體窗 構成處理容器之壁部之至少一部分(例如頂棚),對設置 在其介電體窗之外的線圈狀之RF天線供給高頻電力。處理 容器係構成能夠減壓之真空腔室,在腔室內之中央部配置 被處理基板(例如半導體晶圓、玻璃基板等),在設定在 介電體窗和基板之間的處理空間導入處理氣體。藉由流至 RF天線之RF電流,在RF天線之周圍產生磁力線貫通介電 體窗而通過腔室內之處理空間的RF磁場,藉由該RF磁場 之時間性變化在處理空間內於方位角方向產生感應電場。 然後,藉由該感應電場在方位角方向被加速之電子與處理 氣體之分子或原子引起電離衝突,生成甜甜圏狀之電漿。 -5 - 201143548 藉由在腔室內設置大處理空間,上述甜甜圏狀之電漿 效率佳地擴散至四方(尤其半徑方向),在基板上電漿之 密度很均勻。但是’僅使用通常之RF天線,在基板上所取 得之電漿密度之均勻性在大部分電漿製程中則不足夠。即 使在電感耦合型之電漿處理裝置中,提升基板上之電漿密 度之均勻性,也被電漿製程之均勻性、再現性進而製造良 率左右,故成爲最重要課題之一,至今也提案出幾個與此 有關的技術。 在以往,代表之電漿密度均勻化的技術係將RF天線分 割成多數區段。在該RF天線分割分式則有對各個天線區段 供給個別高頻電力之第1方式(例如專利文獻1 ),和利用 電容器等之附加電路使各個天線區段之阻抗可調整而由一 個高頻電源控制各分配至全部之天線區段之RF電力的分割 比的第2方式(例如專利文獻2 )。 再者,所知的有使用單一RF天線,在該RF天線之附 近配置被動天線之技法(專利文獻3)。該被動天線係構 成不從高頻電源接受高頻電力之供給的獨立線圈,對於RF 天線(電感性天線)所產生之磁場,動作成減少被動天線 之環路內之磁場強度,同時增加被動天線之環路外附近之 磁場強度。依此,變更腔室內之電漿產生區域中之RF電磁 場之半徑方向分布。 [先前技術文獻] [專利文獻] -6- 201143548 [參考文獻1]美國專利第5401350號公報 [參考文獻2]美國專利第5907221號公報 [專利文獻3]日本特表2005-534150 【發明內容】 [發明所欲解決之課題] 但是,在上述般之RF天線分割方式中,上述第1方式 不僅需要多數高頻電源也需要同數量之匹配器,因此遭遇 高頻供電部之繁雜化顯著且成本高之大瓶頸。再者,上述 第2方式中,因爲各天線區段之阻抗不僅受到其他天線區 段影響也受到電漿之阻抗之影響,故僅以附加電路無法任 意決定分割比,在控制性上有困難,不太被使用。 再者,使用上述專利文獻3所揭示之被動天線之以往 方式,雖然教示有藉由被動天線之存在使得在RF天線(電 感性天線)所產生之磁場受到影響,依此可以變更腔室內 之電漿產生區域中之RF電磁場之半徑方向分布,但是有關 被動天線作用的討論、驗證並不充分,無法想像出使用被 動天線而自由並且高精度地控制電漿密度分布的具體性裝 置構成。 今日之電漿製程隨著基板之大面積化和裝置之微細化 ,必須要有更低壓高密度且大口徑之電漿’也較以往增加 基板上之製程之均勻性而成爲困難之課題。 該點,電感耦合型之電漿處理裝置係在接近於RF天線 之介電體窗之內側生成甜甜圈狀之電漿’並使該甜甜圈狀 201143548 之電漿朝向基板擴散四方,但是由於腔室內之壓力使得電 漿所擴散之型態變化,並容易改變基板上之電漿密度分布 。因此,若無法對RF天線(電感性天線)所產生之磁場進 行補正,使得即使以製程配方變更製程條件,亦可追隨此 而保持基板上之電漿密度之均勻性時,則無法適用今日電 漿處理裝置所要求之多樣且高度之製程性能》 本發明係鑑於上述以往技術而硏究出,提供電漿生成 用之RF天線或高頻供電系統不需要特別的細工,使用簡易 之補正線圈則可自在且精細地控制電漿密度分布之電感耦 合型之電漿處理裝置及電漿處理方法。 [用以解決課題之手段] 本發明之第1觀點中之電漿處理裝置具有處理容器, 其係在頂棚具有介電體窗;線圈狀之RF天線,其係被配置 在上述介電體窗之上;基板保持部,其係用以在上述處理 容器內保持被處理基板;處理氣體供給部,其係爲了對上 述基板施予期待之電漿處理,將期待之處理氣體供給至上 述處理容器內;和高頻供電部,其係爲了在上述處理容器 內藉由電感耦合生成處理氣體之電漿,將適合於處理氣體 之高頻放電之頻率的高頻電力供給至上述RF天線;補正線 圈,其係爲了控制上述處理容器內之上述基板上之電漿密 度分布,在藉由電磁感應而能夠與上述RF天線耦合之位置 被配置在上述處理容器之外;和天線-線圈間隔控制部, 其係用以邊使上述補正線圈對上述RF天線保持平行,邊對 201143548 可調控制上述RF天線和上述補正線圈之間的距離間隔。 在藉由上述第1觀點之電漿處理裝置中,藉由上述般 之構成,尤其藉由具備上述補正線圈和上述天線-線圏間 隔控制部之構成,當從高頻供電部對RF天線供給髙頻電力 之時,對於藉由流通於RF天線之高頻電流而在天線導體之 周圍產生之RF磁場,能夠定型性且安定地取得補正線圈之 作用(局部性降低在與線圈導體重疊之位置由於感應耦合 而生成之核心電漿密度的作用效果),並且亦可以略線性 控制如此之補正線圈效果(局部性降低核心電漿密度之效 果)之程度。依此,可在基板保持部上之基板之附近任意 且精細地控制電漿密度分布,也可以容易達成提升電漿製 程之均勻性。 本發明之第2觀點中之電漿處理裝置具有處理容器, 其係在頂棚具有介電體窗;線圈狀之RF天線,其係被配置 在上述介電體窗之上;基板保持部,其係用以在上述處理 容器內保持被處理基板;處理氣體供給部,其係爲了對上 述基板施予期待之電漿處理,將期待之處理氣體供給至上 述處理容器內;和高頻供電部,其係爲了在上述處理容器 內藉由電感耦合生成處理氣體之電漿,將適合於處理氣體 之高頻放電之頻率的高頻電力供給至上述RF天線;補正線 圈,其係爲了控制上述處理容器內之上述基板上之電漿密 度分布,在藉由電磁感應而能夠與上述RF天線耦合之位置 被配置在上述處理容器之外;和操縱機構,用以在上述RF 天線和上述補正線圈之間進行相對性之升降移動、平行姿 -9- 201143548 勢、傾斜姿勢或週期性起伏運動。 在藉由上述第2觀點之電漿處理裝置中,藉由上述般 之構成,尤其藉由RF天線和補正線圈之間進行相對性之升 降移動、平行姿勢、傾斜姿勢或週期性起伏運動之構成, 不僅取得與藉由上述第1觀點之電漿處理裝置同樣之作用 效果,可以更容易且精細地在方位角方向將補正線圈效果 (局部性降低核心電漿密度分布之效果)之程度,或基板 附近之電漿密度分布予以均勻化,或任意控制。 本發明之電漿處理方法在電漿處理裝置中對基板施予 期待之電漿處理,上述電漿處理裝置具有處理容器,其係 在頂棚具有介電體窗;線圈狀之RF天線,其係被配置在上 述介電體窗之上;基板保持部,其係用以在上述處理容器 內保持被處理基板;處理氣體供給部,其係爲了對上述基 板施予期待之電漿處理,將期待之處理氣體供給至上述處 理容器內;和高頻供電部,其係爲了在上述處理容器內藉 由電感耦合生成處理氣體之電漿,將適合於處理氣體之高 頻放電之頻率的高頻電力供給至上述RF天線,在上述處理 容器之外與上述RF天線平行地配置藉由電磁感應而能夠和 上述RF天線耦合之補正線圈,邊使上述補正線圈對上述 RF天線保持平行,邊可調控制上述RF天線和上述補正線 圈之間的距離間隔,而控制上述基板上之電漿密度分布。 在本發明之電漿處理方法中,藉由上述之技法,尤其 藉由在處理容器之外與RF天線平行地配置藉由電磁感應而 能夠和RF天線耦合之補正線圈,並邊使補正線圈對RF天 -10- 201143548 線保持平行,邊可調控制RF天線和補正線圈之間的距離間 隔,當從高頻供電部對RF天線供給高頻電力之時,對於藉 由流通於RF天線之高頻電流而在天線導體之周圍產生之 RF磁場,能夠定型性且安定地取得補正線圈之作用(局部 性降低在與線圈導體重疊之位置由於感應耦合而生成之核 心電漿密度的作用效果),並且亦可以略線性控制如此之 補正線圈效果(局部性降低核心電漿密度之效果)之程度 。依此,可在基板保持部上之基板之附近任意且精細地控 制電漿密度分布,也可以容易達成提升電漿製程之均勻性 [發明效果] 若藉由本發明之電漿處理裝置或電漿處理法時,藉由 上述般之構成及作用,電漿生成用之RF天線或高頻供電部 不需要特別的細工,使用簡易之補正線圈則可自在且精細 地控制電漿密度分布。 【實施方式】 以下,參照附件圖面說明本發明之最佳實施型態。 [實施型態1] 根據第1圖至第8圖,說明本發明之第1實施型態。 第1圖表示第1實施型態中之電感耦合型電漿處理裝置 之構成。該電感耦合型電漿處理裝置係構成使用平面線圈 -11 - 201143548 形之RF天線的電漿蝕刻裝置,例如具有鋁或不銹鋼等之金 屬製之圓筒型真空腔室(處理容器)10。腔室10被保安接 地。 首先,說明在該電感耦合型電漿蝕刻裝置中不與電漿 生成直接有關係之各部構成。 在腔室10內之下部中央,水平配置有載置當作被處理 基板之例如半導體晶圓W之圓板狀承載器1 2以當作兼作高 頻電極的基板保持台。該承載器1 2係由例如鋁所構成,被 支撐在從腔室10之底延伸於垂直上方之絕緣性筒狀支撐部 14 ° 在沿著絕緣性筒狀支撐部14之外周而從腔室10之底垂 直延伸於上方之導電性筒狀支撐部16和腔室10之內壁之間 形成環狀之排氣路18,在該排氣路18之上部或入口安裝有 環狀之擋板20,並且在底部設置有排氣埠22。爲了使腔室 10內之氣流對承載器12上之半導體晶圓W呈軸對稱均勻, 以在圓周方向以等間隔設置多數排氣埠22的構成爲佳。 在各排氣埠22經排氣管24連接排氣裝置26。排氣裝置 26具有渦輪分子泵等之真空泵,將腔室10內之電漿處理空 間減壓至期待真空度。在腔室1 〇之側壁外安裝有開關半導 體晶圓W之搬入搬出口 27之閘閥28。 在承載器12經匹配器32及供電棒34而電性連接RF偏壓 用之高頻電源30。該高頻電源30係可以可調之功率輸出適 合於控制引進半導體晶圓W之離子能的一定頻率( 13.56MHz以下)之高頻RFL。匹配器32收容有用以在高頻 -12- 201143548 電源30側之阻抗和負荷(主要承載器、電漿、腔室)側之 阻抗之間取得匹配之電抗可變之匹配電路。其匹配電路中 包含自行偏壓生成用之間歇電容器。 在承載器12之上面,設置有用以靜電吸附力保持半導 體晶圓W之靜電吸盤3 6,在靜電吸盤3 6之半徑方向外側設 置有環狀包圍半導體晶圓W周圍之聚焦環38。靜電吸盤36 係將由導電膜所構成之電極36a夾在一對絕緣膜36b、36c 之間,高壓之直流電源4 0係經開關4 2及被覆線4 3而與電極 36a電性連接。藉由自直流電源40被施加之高壓之直流電 壓,可以以靜電力將半導體晶圓W吸附保持在靜電吸盤36 上。 在承載器12之內部設置有例如延伸於圓周方向之環狀 冷媒室或冷媒流路44。在該冷煤室44自冷卻單元(無圖示 )經配管46、4 8循環供給特定溫度之冷媒例如冷卻水cw。 可以藉由冷媒之溫度控制靜電吸盤36上之半導體晶圓W之 處理中之溫度。關於此,來自傳熱氣體供給部(無圖示) 之傳熱氣體例如He氣體經氣體供給管50被供給至靜電吸盤 3 6之上面和半導體晶圓W之背面之間。再者,爲了進行半 導體晶圓W之裝載/卸載,也設置有在垂直方向貫通承載器 12而能夠上下移動之上升銷及其升降機構(無圖示)等。 接著’說明在該電感耦合型電漿蝕刻裝置中與電漿生 成有關係之各部構成。 在腔室1 0之天板,從承載器1 2隔著比較大之距離間隔 ,氣密安裝由石英板所構成之圓形之介電體窗52。在該介 -13- 201143548 電體窗52之上,通常與腔室10或承載器12同軸,水平配置 有線圈狀之RF天線54。該RF天線54較佳係具有例如螺旋 狀線圈(第2圖A)或是在各一周內半徑一定之同心圓(圓 環狀)線圈(第2圖B )之形體,藉由絕緣體所構成之天線 固定構件(無圖示)被固定在介電體窗52上。 在RF天線54之一端經匹配器58及供電線60而電性連接 電漿生成用之高頻電源56之輸出端子。RF天線54之另一端 雖然省略圖示但經接地線而電性連接於接地電位。 高頻電源56係可調之功率輸出適合於藉由高頻放電生 成電漿之一定頻率(13. 5 6MHz以上)之高頻RFH。匹配器 58收容有用以在高頻電源56側之阻抗和負荷(主要RF天線 、電漿、補正線圈)側之阻抗之間取得匹配之電抗可變之 匹配電路。 用以對腔室10內之處理空間供給處理氣體之處理氣體 供給部,具有在較介電體窗52些許低之位置被設置在腔室 10之側壁之內部(或外部)之環狀多歧管或緩衝部62,和 在圓周方向以等間隔之方式從緩衝部62面臨著電漿生成空 間之多數側壁氣體吐出孔64,和從處理氣體供給源66延伸 至緩衝部62之氣體供給管68。處理氣體供給源66包含有流 量控制器及開關閥(無圖示)。 該電感耦合型電漿蝕刻裝置係爲了在徑方向對生成在 腔室10內之處理空間的電感耦合電漿之密度分布進行可調 控制,在設置在腔室10之天板即是介電體窗54上之大氣壓 空間之天線室內,具備有藉由電磁感應而能夠與RF天線54 14- 201143548 耦合之補正線圈70,和用以邊令該補正線圈70對RF天線54 保持平行(即是水平),邊可調控制RF天線54和補正線圏 70之間之距離間隔之天線-線圈間隔控制部72。之後說明 補正線圏70及天線-線圈間隔控制部72之詳細及構成以及 作用。 主控制部74包含例如微電腦,控制該電漿蝕刻裝置內 之各部例如排氣裝置26、高頻電源30、56、匹配器32、58 、靜電吸盤用之開關42 '處理氣體供給源66、天線-線圈 間隔控制部72、冷卻單元(無圖示)、導熱氣體供給部( 無圖示)等之各個動作及裝置全體之動作(順序)。 在該電感耦合電漿蝕刻裝置中,爲了執行蝕刻,首先 使閘閥28呈開啓狀態,將加工對象之半導體晶圓W搬入至 腔室10內,而載置在靜電吸盤36上。然後,關閉閘閥28之 後,從處理氣體供給源66經氣體供給管68、緩衝部62及側 壁氣體吐出孔64以特定流量及流量比將蝕刻氣體(一般爲 混合氣體)導入至腔室10內,並藉由排氣裝置26將腔室10 內之壓力調整成設定値。並且,開啓高頻電源56,以特定 之RF功率輸出電漿生成用之高頻RFH,經匹配器58、供電 線60而將高頻RFH之電流供給至RF天線54。另外,開啓高 頻電源30,以特定之RF功率輸出離子引進控制用之高頻 RFl,經匹配器32、供電棒34而將該高頻RFL施加至承載器 12。再者,藉由導熱氣體供給部將導熱氣體(He氣體)供 給至靜電吸盤36和半導體晶圓W之間的接觸界面,並且開 啓開關42而藉由靜電吸盤36之靜電吸附力使導熱氣體封閉 -15- 201143548 於上述接觸界面。 藉由側壁氣體吐出孔64吐出之蝕刻氣體係均勻地擴散 至介電體窗52下之處理空間。藉由流通於RF天線54之高頻 RFH之電流,在RF天線54之周圍產生磁力線貫通介電體窗 52而通過腔室內之電漿生成空間的RF磁場,藉由該RF磁 場之時間性變化在處理空間內於方位角方向產生RF感應電 場。然後,藉由該感應電場在方位角方向被加速之電子與 蝕刻氣體之分子或原子引起電離衝突,生成甜甜圈狀之電 漿。該甜甜圈狀電漿之自由基或離子係在寬廣空間擴散四 方,自由基係使能夠等方性流入,離子係使能夠被直流偏 壓拉引,而被供給至半導體晶圓W之上面(被處理面)。 如此一來,在晶圓W之被處理面電漿之活性種引起化學反 應和物理反應,被加工膜被蝕刻成期待之圖案。 該電漿蝕刻裝置係如上述般在接近於RF天線54之介電 體窗52之下將電感耦合之電漿生成甜甜圈狀,並使該甜甜 圈狀之電漿分散在寬廣之處理空間內,而在承載器12附近 (即是半導體晶圓W上)使電漿之密度平均化。在此,甜 甜圈狀電漿之密度係依存於電感電場之強度,進而依存於 被供給至RF天線54之高頻RFH之功率(更正確而言爲流通 RF天線54之電流)之大小。即是,越提高高頻RFH之功率 ,甜甜圈狀電漿之密度越高,透過電漿之擴散在承載器12 附近之電漿密度全體性變高。另外,甜甜圈狀電漿擴散於 四方(尤其在徑方向)之型態係主要依存於腔室1〇內之壓 力,有越降低壓力,在腔室10之中心部集中較多電漿,承 -16- 201143548 載器12附近之電漿密度分布在中心部隆起之傾向。再者’ 因應被供給至RF天線54之高頻RFH之功率或被導入至腔室 10內之處理氣體之流量等,甜甜狀電漿內之電漿密度分布 也改變。 在此,「甜甜圈狀之電漿」並非嚴格限定於如在腔室 1 0之徑方向內側(中心部)電漿不上升卻僅在徑方向外側 電漿上升般之環狀電漿,與其說係意指徑方向外側之電漿 體積或密度大於腔室10之徑方向內側。再者,依據處理氣 體所使用之氣體種類或腔室10內之壓力之値等之條件不同 ,也有不成爲在此所稱之「甜甜圈狀之電漿」之情形。 在該電感耦合型電漿蝕刻裝置中,使承載器12附近之 電漿密度分布在徑方向均勻化,且對RF天線54產生之RF 磁場,藉由補正線圈70進行電磁場的補正,並且因應製程 條件(腔室1 〇內之壓力等)藉由天線-線圈間隔控制部72 可調整補正線圈70之高度位置。 以下,說明該電漿蝕刻裝置中之主要特徵部分之補正 線圈70及天線-線圈間隔控制部72之構成及作用。 補正線圈70係由兩端封閉之圓環狀之單卷線圈或多數 線圈所構成,被配置在與RF天線54同軸,在徑方向具有線 圈導體位於RF天線54之內周和外周之間(最佳爲中間附近 )之線圏徑。補正線圈70之材質以導電率高例如銅系之金 屬爲佳。 並且,在本發明中,「同軸」係指多數線圈或天線之 各個中心軸線互相重疊之位置關係,不僅各個之線圈面或 -17- 201143548 天線面在軸方向或縱方向互相偏移之情形,也包含在相同 一面上一致之情形(同心狀之位置關係)^ 天線-線圈間隔控制部72具有保持補正線圈7〇之絕緣 性之水平支撐板74、經滾珠螺桿76與該水平支撐板74作動 結合’使滾珠螺桿76之移送螺桿76a旋轉而可調補正線圈 70之高度位置的步進馬達78,和透過該步進馬達78及滾珠 螺管76而可調控制補正線圈70之高度位置之線圈高度控制 部80,和將水平支撐板74保持水平地引導至上下(垂直) 方向之引導棒82。 更詳細而言,補正線圈70係藉由絕緣性之線圈固定構 件(無圖示)而水平地安裝於水平支撐板74。在水平支撐 板74安裝有與移送螺桿76a螺合之螺帽部76b,也形成有使 引導棒82可滑動地貫通之貫通孔84。滾珠螺桿76之移送螺 桿76a係沿著垂直方向,直接或經減速機構(無圖示)而 與步進馬達78之旋轉軸結合。 當步進馬達78作動而使移送螺桿76a旋轉時,滾珠螺 桿76之螺帽部76b側之水平支撐板74沿著移送螺桿76a而升 降移動,補正線圈70係維持與水平支撐板74—體保持水平 姿勢在垂直方向移動。線圏高度控制部80係接受從主控制 部74指示補正線圈70之高度位置(目標値或設定値)之訊 號,控制步進馬達78之旋轉方向及旋轉量,而控制水平支 撐板74之升降量,並將補正線圈70之高度位置對準目標値 〇 在圖示之構成例中,藉由多數步進馬達78個別驅動在 -18· 201143548 多處與水平支撐板74作動結合之多數滾珠螺桿76。就以另 外之構成例而言,也可以設爲藉由一個步進馬達78經皮帶 機構同時驅動該些多數滾珠螺桿76之構成。 在該實施型態中,也具備實際測量補正線圏70之高度 位置,而將其實測値Sh7〇反饋於線圈高度控制部80之直線 比例尺84。該直線比例尺84係由被安裝於水平支撐板74之 延伸於垂直方向之刻度部86,和爲了光學性讀取該刻度部 86之刻度,安裝於腔室10之本體或延長部之刻度讀取部88 所構成。線圈高度控制部80亦可以使補正線圈70之目標高 度位置與在直線比例尺84所取得之實測値Sh7Q—致。 天線-線圈間隔控制部72係藉由上述般之構成,邊令 補正線圈70保持對配置成水平之RF天線54平行(水平), 邊在一定範圍(例如1mm〜50mm)內任意且精細地可調補 正線圈70對RF天線54之相對性高度位置。最佳係補正線圈 70之高度位置之上限値被設定成對RF天線54所產生之RF 磁場不造成實質上之影響,即是與無補正線圈70之時相等 之較遠位置即可。再者,補正線圈70之高度位置之下限値 ,係在不與RF天線54接觸下,設定在對RF天線54所產生 之RF磁場的影響度最大之接近位置即可。 在此,說明補正線圈70之基本性作用。 首先,如第3圖A所示般,當將補正線圈70之高度位置 設定在上限値附近時,藉由流通RF天線54之高頻RFH之電 流,在天線導體周圍產生之RF磁場Η係形成不受補正線圈 70任何影響而在半徑方向通過介電體窗52之下之處理空間 -19- 201143548 的環狀磁力線。 處理空間中之磁通密度之半徑方向(水平)成分Br係 在腔室10之中心(〇)和周邊部與高頻RFH之電流之大小 無關係常爲零,在半徑方向,於與RF天線54之內周和外周 之略中間附近(以下稱爲「天線中間部」)重疊之位置爲 極大,高頻RFh之電流越大其極大値越高。藉由RF磁場Η 所生成之方位角方向之感應電場之強度分布也在半徑方向 中成爲與磁通密度Br相同之輪廓。如此一來,在介電體窗 52之附近,與RF天線54同軸形成甜甜圈狀電漿。 然後,該甜甜圈狀電漿在處理空間向四方(尤其半徑 方向)擴散。如上述般,其擴散形態雖然依存於腔室1 〇內 之壓力,就以一例而言,如第3圖A所示般,在承載器12附 近之徑方向,電子密度(電漿密度)在與天線中間部對應 之位置相對性高(保持極大狀態)在中心部和周邊部下降 之輪廓。 此時,如第3圖B所示般,當將補正線圈70之高度位置 設定在例如下限値附近時,藉由流通RF天線54之高頻RFh 之電流,在天線導體周圍產生之RF磁場Η係藉由補正線圏 70而受到電磁感應之反作用的影響。該電磁感應之反作用 係作用成與貫穿補正線圈70之迴線內之磁力線(磁通)之 變化相反之作用,在補正線圈70之迴線內產生感應電動勢 而流動電流。 如此一來,藉由來自補正線圈70之電磁感應之反作用 ,在補正線圈70之線圈導體(天線中間部)之略正下方之 -20- 201143548 位置,介電體窗52附近之處理空間中之磁通密度之半徑方 向(水平)成分Br局部性變弱,依此方位角方向之感應電 場之強度也與磁通密度Br相同,在與天線中間部對應之位 置局部性變弱。其結果’在承載器1 2附近電子密度(電漿 密度)於徑方向略被均勻化。 第3圖A所示之電漿之擴散形態爲一例,當例如壓力低 時,在腔室10之中心部過於集中電漿,如第4圖A所示般’ 有承載器12附近之電子密度(電漿密度)相對性在中心部 成爲極大之山形輪廓之情形。 即使在該情形,也如第4圖B所示般,當補正線圈70下 降至例如下限値附近時,則如圖示般,在與補正線圈70之 線圈導體重疊之中間部之位置,介電體窗52附近之處理空 間中之磁通密度之半徑方向(水平)成分Br局部性變弱, 依此電漿往腔室中心部之集中變弱,承載器〗2附近之電漿 密度在徑方向略被均勻化。 本發明者係藉由電磁場模擬檢驗上述般之補正線圈70 之作用。即是,將補正線圈70對RF天線54之相對性高度位 置(距離間隔)當作參數,選擇5mm、10m、20mm、無限 大(無補正線圈)之4種類以當作參數之値,當求出甜甜 圈狀電漿內部(從上面5mm之位置)之半徑方向之電流密 度分布(相當於電漿分布)時,則取得第5圖所示之檢驗 結果。 在該電磁場模擬中,將RF天線54之外徑(半徑)設爲 250mm,將補正線圈70之內周半徑及外周半徑各設爲 -21 - 201143548 100 mm及1 3 0mm。再者,在RF天線54之下方之腔室內處理 空間藉由感應耦合所生成之甜甜圈狀之電漿,係以圓盤形 狀之電阻體85模擬,並將該電阻體之直徑設爲5〇〇mm,將 電阻率設爲lOOQcm,將表皮厚度設爲i〇mm。電漿生成用 之髙頻RFH之頻率爲13.56MHz。 從第5圖可知當在藉由電磁感應與rF天線54結合之高 度位置配置補正線圏70時,甜甜圏狀電漿內之電漿密度在 與補正線圈70之線圈導體重疊之位置(在圖示之例中與天 線中間部重疊之位置)附近局部性下降之情形,和補正線 圈70越接近RF天線54,其局部性降低之程度略直線性變大 〇 在該實施型態中,如上述般,構成將補正線圈70配置 在與RF天線54同軸,在徑方向線圈導體位於RF天線54之 內周和外周之間(最佳爲與天線中間部對向)構成具有補 正線圈70之線圈導體。然後,因藉由天線-線圈間隔控制 部72,構成一面將補正線圈70對水平之RF天線54保持平行 (水平),一面在一定範圍(例如1mm〜50mm)內任意且 精細地可調補正線圈70對RF天線54之相對性高度位置,故 可以裝置性實現以電磁場模擬檢驗之第5圖之特性,並可 以大大提升電漿密度分布控制之自由度及精度。 該實施型態中之感應耦合型電漿蝕刻裝置適合使用於 例如以多數步驟蝕刻加工基板表面之多層膜之運用。以下 ,針對本發明之第6圖所示之多層光阻法所涉及之本發明 之實施例予以說明。 -22- 201143548 在第6圖中’在加工對象之半導體晶圓W之主面,於 本來之被加工膜(例如閘極用之Si膜)100上形成SiN層 102以當作最下層(最終光罩),在其上方形成有機膜104 (例如碳)以當作中間層,在其上方經含Si之反射防止膜 (B ARC ) 106而形成最上層之光阻1〇8。SiN層102、有機 膜104及反射防止膜106之成膜,使用CVD(化學性真空蒸 鍍法)或藉由旋轉塗佈之塗佈膜,光阻108之圖案製作使 用微影技術。 最初,就以第1步驟之蝕刻製程而言,如第6圖(A ) 所示般,將被圖案製作之光阻108當作光罩而蝕刻含Si反 射防止膜106。此時,蝕刻氣體使用CF4/02之混合氣體, 腔室10內之壓力比較低,例如設定成10 mTorr。 最初,就以第2步驟之蝕刻製程而言,如第6圖(B ) 所示般,將光阻108及反射防止膜1〇6當作光罩而蝕刻加工 有機膜104。此時,蝕刻氣體使用〇2之單氣體,腔室10內 之壓力更低,例如設定成5 mTorr。 最後,就以第3步驟之蝕刻製程而言,如第6圖(C) 、(D )所示般,將被圖案製作之反射防止膜106及有機膜 1 〇4當作光罩而蝕刻加工S iN膜1 02。此時,蝕刻氣體使用 CHF3/CF4/ Ar/02之混合氣體,腔室1〇內之壓力比較高,例 如設定成50 mTorr。 在上述般之多重步驟之蝕刻製程中,在每步驟切換製 程條件之全部或一部份(尤其腔室1〇內之壓力),依此在 處理空間內甜甜圈狀電漿之擴散形態變化。在此,於不使 -23- 201143548 補正線圈70全然機能(通電)之時,在第1及第2步驟之製 程(壓力10 mTorr以下),出現如第4圖A所般承載器12附 近之電子密度(電漿密度)相對性在中心部明顯上升之陡 峭山形之輪廓,在第3步驟之製程(壓力50 mTorr)出現 中心部些許上升之平緩山形之輪廓。 若藉由該實施型態’例如在製程配方,以追加在通常 製程條件(高頻之功率、壓力、氣體種類、氣體流量等) 之方式,或是與該些關聯之方式,將補正線圈7 0之高度位 置當作配方資訊或製程參照是參數之一個而予以設定。然 後’於實行上述般之多重步驟方式之蝕刻製程之時,主控 制部7 4從記憶體讀出表示補正線圈7 0之高度位置設定値, 在每步驟透過線圈高度控制部8 0而將補正線圈7 0之高度位 置對準設定値(目標値)。 因此’在上述般之多層光阻法之蝕刻製程(第6圖) 中,如第7圖所示般,在第1步驟(1〇 mTorr)中於比較低 之設定位置h ’在第2步驟(5 mTorr )中於更低之位置h2 ,在第3步驟(5〇 mTorr)中於比較高之位置h3,於每步驟 切換補正線圈70之高度位置。 如此一來’在對一片半導體晶圓W進行單一或一連串 電漿處理中,因應製程條件之變更、切換或變化,能夠可 變調整補正線圈7〇之高度位置。如此一來,透過葉片電漿 製程之全處理時間或全步驟,能夠對藉由流通RF天線54之 高頻RFH之電流而產生在天線導體之周圍之RF磁場Η,任 意、精細、線性地調節補正線圈7 0之作用(電磁場之反作 -24- 201143548 用)即是在與補正線圈7 0之線圈導體重疊之位置附近局部 性降低甜甜圈狀電漿內之電漿密度之效果之程度(強弱) ,依此也可在徑方向均勻保持承載器12附近之電漿密度。 因此,可以容易提升電漿製程之均勻性。 並且,在多重步驟方式中’不執行蝕刻製程之間’如 第7圖所示般,將補正線圈7〇之高度位置返回至與實質上 無補正線圈70之時相等之上限値附近之主位置hp即可。 再者,開始各步驟之製程時,即是高頻RFH之電流開 始流入RF天線54之時,大感應電流流入補正線圈70,功率 難以進入電漿側,也有難以點燃電漿之情形。此時,如第 8圖所示般,各步驟之製程開始時,使補正線圈70暫時退 避至主位置Hp而使電漿確實點燃,從電漿點燃後(例如從 製程開始經過一定時間Ts後)升降移動至預設定之高度位 置 hn(n=l、2、3)艮口可。 如此,若藉由本發明,則可以適合採用於電漿處理之 開始前,使補正線圈7〇充分離開RF天線54,在腔室10內電 漿點燃後經過特定時間之後,使補正線圈70 (及/或RF天 線54)升降移動成兩者接近而將其距離間隔調節成預先設 定之値的手法。 在該實施型態中,如上述般,以滾珠螺桿機構構成用 以可調整補正線圈70對RF天線54之間隔距離或高度位置的 天線-線圈間隔控制部72。但是,亦可以使用例如旋轉體 凸輪或端凸輪等之立體凸輪機構來取代滾珠螺桿機構。即 是,雖然省略詳細構成之圖示,但以天線·線圈間隔控制 -25- 201143548 部72之另外的實施例而言,亦可爲具有將補正線圈70保持 與RF天線54平行之絕緣性之線圈保持體;和經具有旋轉體 之立體凸輪機構而與該線圏保持體結合,使該立體凸輪機 構之旋轉體旋轉而可調補正線圈70之高度位置的馬達;控 制該馬達之旋轉方向及旋轉量而控制補正線圏70之高度位 置的控制部之構成。 或是,就以用以在天線-線圈間隔控制部72中,可調 節補正線圈70之高度位置的另外之實施例而言,升降機構 亦可使用齒條、小齒輪或活塞等之非旋轉型升降軸。再者 ,就以升降機構之驅動源而言,除馬達之外,即使使用例 如汽缸亦可。於驅動源使用馬達之時,並不限定於步進馬 達,即使爲AC馬達、DC馬達、線性馬達等亦可。 就以測量乃至反饋補正線圏7〇之任意高度位置之手段 而言,除上述實施型態中之直線比例尺84之外,亦可以使 用例如編碼器。再者,於使補正線圈70移動而定位在特定 高度之時,可以適合使用光感測器或限制開關等之位置感 測器。 [實施型態2] 根據第9圖至第14圖,說明本發明之第2實施型態。 在該第2實施型態之電漿蝕刻裝置中,係在徑方向使 承載器12附近之電漿密度分布均勻化,且對RF天線54產生 之RF磁場,藉由附電容器之補正線圈90進行電磁場的補正 ’並且藉由天線-線圈間隔控制部72可調整控制附電容器 -26- 201143548 補正線圈90之高度位置。 以下,說明該電感耦合型電漿蝕刻裝置中之主要特徵 部分之附電容器補正線圈90之構成及作用。 補正線圈90係如第9圖所示般,係由兩端夾著切縫( 間隙)G而開放之單卷線圏或是多卷線圈所構成,在其切 縫G設置固定電容器94。該固定電容器9 4如後述般,即使 係例如薄膜電容器或陶瓷電容器般之市面上販賣之泛用型 亦可,或是即使爲一體組裝於補正線圈9 0的特別訂單品或 單獨製作品亦可。 補正線圈9 0最佳爲配置在與RF天線5 4同軸,在徑方向 具有線圈導體位於RF天線54之內周和外周之間(例如,稍 微中間附近)之線圈徑。在方位角方向中之補正線圈9 0之 配置方向係如圖所示般,固定電容器94之位置(即是切縫 G之位置)與RF天線54之RF輸入輸出用之切縫G位置重疊 。補正線圈90之線圈導體之材質係以導電率高之金屬,例 如施予銀電鍍之銅爲佳。 在此,說明附固定電容器94之補正線圈90之作用。本 發明者係針對該實施型態之電感耦合型電漿蝕刻裝置,實 施下述般之電磁場模擬。 即是,將補正線圈90對RF天線54之相對性高度位置( 距離間隔)h當作參數,選擇5mm、1 0m、20mm、無限大 (無補正線圈)之4種類以當作參數h之値,當求出腔室1 〇 內之甜甜圈狀電漿內部(從上面5mm之位置)之半徑方向 之電流密度分布(相當於電漿分布)時,則在各線圈高度 -27- 201143548 位置取得第ι〇圖所示之輪廓。 在該電磁場模擬中,將RF天線54之外徑(半徑)設爲 2 5 0mm,將補正線圏90之內徑(半徑)及外徑(半徑)各 設爲100mm及130mm,將補正線圈90之電容(固定電容器 94之電容)設爲600pF。再者,以第9圖所示之圓盤形狀之 電組體95模擬在RF天線54之下方之腔室內處理空間藉由感 應耦合所生成之甜甜圈狀之電漿,並將該電阻體95之直徑 設爲500mm,將電阻率設爲100 Ω cm,將表皮厚度設爲 10mm。電漿生成用之高頻RFH之頻率爲13.56MHz。 並且,將補正線圈90之電容設定成無限大(相當於拆 下固定電容器94而使補正線圈90之兩端短路之時),其他 當在所有與上述相同之條件下執行相同之電磁場模擬時, 則在各線圈高度位置取得第5圖所示般之輪廓。 如第10圖(a)所示般,越使補正線圈90接近於RF天 線54,甜甜圈狀電漿之電漿密度分布係表示僅有與補正線 圈90之線圈導體重疊之位置(r=110〜130mm)附近局部 性變高,比起此來在徑方向之內側及外側之位置較無補正 線圈90之時變低之傾向。然後,如第1 0圖(b )所示般, 可知該傾向係使補正線圈90越離RF天線54越遠,則越弱。 並且,如第10圖(c )所示般,可知當使補正線圈90適度 (h = 20mm )遠離RF天線54,以與補正線圈90之線圈導體 重疊之位置(r= 110〜130mm)爲境界,較徑方向之內側 區域(r = 0〜110mm)外側之區域(r=130〜250mm)之一 側係電漿密度數階段變高。 -28- 201143548 在該實施型態中,因藉由天線-線圈間隔控制部72, 構成一面將補正線圈90對水平之RF天線54保持平行(水平 ),一面在一定範圍(例如1mm〜50mm)內任意且精細地 可調補正線圈90對RF天線54之相對性高度位置,故可以裝 置性實現以電磁場模擬檢驗之第1 0圖之特性,並可以大大 提升電漿密度分布控制之自由度及精度。 在該第2實施型態中,爲亦能夠以可變電容器96置換 固定電容器94之構成。此時,如第11圖所示般,也具備用 以可變控制可變電容器96之電容的電容可變機構98。可變 電容器96即使係例如變容器或變容二極體般之市面上販賣 之泛用型亦可,或是即使爲一體組裝於補正線圈9 0的特別 訂單品或單獨製作品亦可。 電容可變機構98係由被設置在補正線圈90之環圈內之 上述可變電容器96,和藉由典型的驅動機構或電性驅動電 路對該可變電容器96之靜電電容進行可變控制之電容控制 部 100。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for applying plasma treatment to a substrate to be processed, and more particularly to an inductively coupled plasma processing apparatus and a plasma processing method. [Prior Art] In the processes of etching, stacking, oxidation, and sputtering during the manufacture of a semiconductor device or an FPD (Flat Panel Display), plasma is often used in order to perform a relatively low temperature reaction of the processing gas. In the past, such plasma treatments often used plasma generated by high frequency discharge in the MHz region. The plasma generated by high-frequency discharge is roughly classified into a capacitively coupled plasma and an inductively coupled plasma in terms of a specific (inductive) plasma generation method. In general, an inductively coupled plasma The processing device forms at least a part (for example, a ceiling) of a wall portion of the processing container with a dielectric window, and supplies high-frequency power to a coil-shaped RF antenna provided outside the dielectric window. The processing container constitutes a vacuum chamber capable of decompressing, and a substrate to be processed (for example, a semiconductor wafer or a glass substrate) is disposed in a central portion of the chamber, and a processing gas is introduced into a processing space disposed between the dielectric window and the substrate. . By the RF current flowing to the RF antenna, an RF magnetic field is generated around the RF antenna through the dielectric window and through the processing space in the chamber, and the temporal change of the RF magnetic field is in the azimuthal direction in the processing space. An induced electric field is generated. Then, the electrons accelerated in the azimuthal direction by the induced electric field cause ionization collision with the molecules or atoms of the processing gas to generate a sweet-shaped plasma. -5 - 201143548 By providing a large processing space in the chamber, the above-mentioned sweet-shaped plasma is efficiently diffused to the square (especially in the radial direction), and the density of the plasma on the substrate is uniform. However, the uniformity of the plasma density obtained on the substrate is not sufficient in most plasma processes using only conventional RF antennas. Even in the inductively coupled plasma processing apparatus, the uniformity of the plasma density on the substrate is improved by the uniformity and reproducibility of the plasma process, and thus the yield is one of the most important issues. The proposal has several techniques related to this. In the past, the technique of homogenizing the plasma density represented the division of the RF antenna into a plurality of sections. In the RF antenna division method, there is a first mode in which individual high-frequency power is supplied to each antenna section (for example, Patent Document 1), and an additional circuit such as a capacitor is used to adjust the impedance of each antenna section to be high. The frequency power supply controls the second mode in which the division ratio of the RF power is distributed to all the antenna sections (for example, Patent Document 2). Further, a technique of arranging a passive antenna near the RF antenna using a single RF antenna is known (Patent Document 3). The passive antenna constitutes an independent coil that does not receive the supply of high-frequency power from the high-frequency power source, and acts to reduce the magnetic field strength in the loop of the passive antenna for the magnetic field generated by the RF antenna (inductive antenna) while increasing the passive antenna. The strength of the magnetic field near the outer loop. Accordingly, the radial direction distribution of the RF electromagnetic field in the plasma generating region in the chamber is changed. [Prior Art Document] [Patent Document] -6-201143548 [Reference 1] U.S. Patent No. 5,401,350 [Reference 2] U.S. Patent No. 5,907,221 [Patent Document 3] Japanese Patent Application 2005-534150 [Disclosed] [Problems to be Solved by the Invention] However, in the above-described RF antenna division method, the first aspect requires not only a large number of high-frequency power sources but also a matching number of matching devices, so that the complicated high-frequency power supply unit is complicated and costly. The big bottleneck. Further, in the second aspect described above, since the impedance of each antenna segment is affected not only by the influence of the other antenna segments but also by the impedance of the plasma, the division ratio cannot be arbitrarily determined by the additional circuit, and it is difficult to control. Not very used. Further, in the conventional method of using the passive antenna disclosed in Patent Document 3, it is taught that the magnetic field generated by the RF antenna (inductive antenna) is affected by the presence of the passive antenna, whereby the electric power in the chamber can be changed. The radial electromagnetic field of the plasma generation region is distributed in the radial direction. However, the discussion and verification of the role of the passive antenna are not sufficient, and it is impossible to imagine a specific device configuration that uses a passive antenna to control the plasma density distribution freely and with high precision. With the large-area substrate and the miniaturization of the device, it is necessary to have a lower-pressure, high-density, large-diameter plasma, which has become more difficult than the conventional process of increasing the uniformity of the substrate. At this point, the inductively coupled plasma processing device generates a donut-shaped plasma on the inner side of the dielectric window close to the RF antenna and spreads the plasma of the donut-shaped 201143548 toward the substrate, but The pressure of the chamber changes due to the pressure inside the chamber, and the plasma density distribution on the substrate is easily changed. Therefore, if the magnetic field generated by the RF antenna (inductive antenna) cannot be corrected, even if the process conditions are changed by the process recipe, the uniformity of the plasma density on the substrate can be maintained, and the current electricity cannot be applied. The present invention is based on the above-described prior art, and the RF antenna or the high-frequency power supply system for generating plasma does not require special work, and a simple correction coil is used. An inductively coupled plasma processing apparatus and a plasma processing method capable of controlling the plasma density distribution freely and finely. [Means for Solving the Problem] The plasma processing apparatus according to the first aspect of the present invention includes a processing container having a dielectric window in a ceiling, and a coil-shaped RF antenna disposed in the dielectric window a substrate holding portion for holding a substrate to be processed in the processing container, and a processing gas supply portion for supplying a desired processing gas to the processing container in order to apply a desired plasma treatment to the substrate And a high-frequency power supply unit for supplying high-frequency power suitable for the frequency of the high-frequency discharge of the processing gas to the RF antenna for generating a plasma of the processing gas by inductive coupling in the processing container; In order to control the plasma density distribution on the substrate in the processing container, a position that can be coupled to the RF antenna by electromagnetic induction is disposed outside the processing container; and an antenna-coil spacing control unit. It is used to adjust the distance between the RF antenna and the correction coil while the pair of correction coils are kept parallel to the RF antenna. interval. In the plasma processing apparatus according to the first aspect described above, the RF antenna is supplied from the high-frequency power supply unit, in particular, by the configuration including the correction coil and the antenna-turn interval control unit. In the case of the frequency power, the RF magnetic field generated around the antenna conductor by the high-frequency current flowing through the RF antenna can stably and stably obtain the action of the correction coil (the locality is lowered at the position overlapping with the coil conductor). The effect of the core plasma density generated by inductive coupling), and the degree of such a correction coil effect (the effect of locally reducing the core plasma density) can also be controlled somewhat linearly. According to this, the plasma density distribution can be arbitrarily and finely controlled in the vicinity of the substrate on the substrate holding portion, and the uniformity of the plasma processing can be easily achieved. A plasma processing apparatus according to a second aspect of the present invention includes a processing container having a dielectric window in a ceiling, a coil-shaped RF antenna disposed on the dielectric window, and a substrate holding portion. And a processing gas supply unit for supplying a desired processing gas to the processing container for supplying the desired plasma treatment to the substrate; and a high-frequency power supply unit; In order to generate a plasma of a processing gas by inductive coupling in the processing container, high-frequency power suitable for the frequency of high-frequency discharge of the processing gas is supplied to the RF antenna; and the correction coil is used to control the processing container. a plasma density distribution on the substrate, disposed at a position coupled to the RF antenna by electromagnetic induction, outside the processing container; and an operating mechanism for between the RF antenna and the correction coil Perform relative lift movement, parallel posture -9- 201143548 potential, tilt posture or periodic undulating motion. In the plasma processing apparatus according to the second aspect described above, the above-described configuration is particularly advantageous in that the relative movement of the RF antenna and the correction coil is performed in a relative movement, a parallel posture, a tilt posture, or a periodic fluctuation motion. In addition to the same effect as the plasma processing apparatus according to the first aspect described above, it is possible to more easily and finely adjust the effect of the coil in the azimuth direction (the effect of locally reducing the core plasma density distribution), or The plasma density distribution near the substrate is homogenized or arbitrarily controlled. The plasma processing method of the present invention applies a desired plasma treatment to a substrate in a plasma processing apparatus, the plasma processing apparatus having a processing container having a dielectric window in a ceiling; a coil-shaped RF antenna, the system Arranged on the dielectric window; a substrate holding portion for holding the substrate to be processed in the processing container; and a processing gas supply portion for expecting plasma treatment of the substrate The processing gas is supplied into the processing container; and the high-frequency power supply unit is a high-frequency power suitable for the frequency of the high-frequency discharge of the processing gas in order to generate plasma of the processing gas by inductive coupling in the processing container. The RF antenna is supplied to the RF antenna, and a correction coil that can be coupled to the RF antenna by electromagnetic induction is disposed in parallel with the RF antenna, and the correction coil is controlled to be parallel to the RF antenna. The distance between the RF antenna and the correction coil is spaced to control the plasma density distribution on the substrate. In the plasma processing method of the present invention, by the above-described technique, a correction coil that can be coupled to the RF antenna by electromagnetic induction is disposed in parallel with the RF antenna, in particular, outside the processing container, and the correction coil pair is made RF day-10-201143548 The line is kept parallel, and the distance between the RF antenna and the correction coil can be adjusted to control the distance between the RF antenna and the correction coil when the high frequency power supply unit supplies the high frequency power to the RF antenna. The RF magnetic field generated around the antenna conductor by the frequency current can stably and stably obtain the action of the correction coil (the effect of locally reducing the density of the core plasma generated by the inductive coupling at the position overlapping the coil conductor). It is also possible to slightly control the degree of such a correction coil effect (the effect of locally reducing the core plasma density). According to this, the plasma density distribution can be arbitrarily and finely controlled in the vicinity of the substrate on the substrate holding portion, and the uniformity of the plasma processing can be easily achieved. [Effect of the Invention] If the plasma processing apparatus or the plasma of the present invention is used In the processing method, the RF antenna or the high-frequency power supply unit for plasma generation does not require special work by the above-described configuration and action, and the plasma density distribution can be controlled freely and finely using a simple correction coil. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. [Embodiment 1] A first embodiment of the present invention will be described based on Figs. 1 to 8 . Fig. 1 shows the configuration of an inductively coupled plasma processing apparatus in the first embodiment. The inductively coupled plasma processing apparatus constitutes a plasma etching apparatus using a planar coil -11 - 201143548-shaped RF antenna, for example, a cylindrical vacuum chamber (processing container) 10 made of metal such as aluminum or stainless steel. The chamber 10 is secured to the ground. First, the configuration of each unit which is not directly related to plasma generation in the inductively coupled plasma etching apparatus will be described. In the center of the lower portion of the chamber 10, a disk-shaped carrier 12 on which a semiconductor wafer W, which is a substrate to be processed, is placed horizontally is disposed as a substrate holding table which also serves as a high-frequency electrode. The carrier 12 is made of, for example, aluminum, and is supported by an insulating cylindrical support portion 14 that extends vertically upward from the bottom of the chamber 10, and is separated from the chamber along the outer circumference of the insulating cylindrical support portion 14. An annular exhaust passage 18 is formed between the conductive cylindrical support portion 16 extending vertically above the bottom and the inner wall of the chamber 10, and an annular baffle is mounted on the upper portion or the inlet of the exhaust passage 18. 20, and an exhaust port 22 is provided at the bottom. In order to make the airflow in the chamber 10 axially symmetric with respect to the semiconductor wafer W on the carrier 12, it is preferable to provide a plurality of exhaust ports 22 at equal intervals in the circumferential direction. The exhaust unit 26 is connected to each of the exhaust ports 22 via an exhaust pipe 24. The exhaust unit 26 has a vacuum pump such as a turbo molecular pump, and decompresses the plasma processing space in the chamber 10 to a desired degree of vacuum. A gate valve 28 for moving the loading and unloading port 27 of the switch semiconductor wafer W is mounted outside the side wall of the chamber 1 . The carrier 12 is electrically connected to the high frequency power source 30 for RF bias via the matching unit 32 and the power supply rod 34. The high frequency power supply 30 is an adjustable power output suitable for controlling a certain frequency of the ion energy introduced into the semiconductor wafer W. High frequency RFL below 56MHz). The matcher 32 houses a matching circuit that is adapted to obtain a matching reactance between the impedance of the high frequency -12-201143548 power source 30 side and the impedance of the load (main carrier, plasma, chamber) side. The matching circuit includes an intermittent capacitor for self-bias generation. On the upper surface of the carrier 12, an electrostatic chuck 36 for holding the semiconductor wafer W by electrostatic attraction is provided, and a focus ring 38 surrounding the periphery of the semiconductor wafer W is provided on the outer side in the radial direction of the electrostatic chuck 36. The electrostatic chuck 36 is formed by sandwiching an electrode 36a made of a conductive film between a pair of insulating films 36b and 36c, and a high-voltage DC power source 40 is electrically connected to the electrode 36a via a switch 4 2 and a covered wire 43. The semiconductor wafer W can be adsorbed and held on the electrostatic chuck 36 by electrostatic force by the high-voltage DC voltage applied from the DC power source 40. An annular refrigerant chamber or a refrigerant flow path 44 extending in the circumferential direction is provided inside the carrier 12, for example. In the cold coal chamber 44, a refrigerant of a specific temperature, for example, cooling water cw, is circulated and supplied from a cooling unit (not shown) via pipes 46 and 48. The temperature in the processing of the semiconductor wafer W on the electrostatic chuck 36 can be controlled by the temperature of the refrigerant. In this regard, a heat transfer gas such as He gas from a heat transfer gas supply unit (not shown) is supplied between the upper surface of the electrostatic chuck 36 and the back surface of the semiconductor wafer W via the gas supply pipe 50. Further, in order to load/unload the semiconductor wafer W, a rising pin that can move up and down through the carrier 12 in the vertical direction, a lifting mechanism (not shown), and the like are provided. Next, the configuration of each portion related to plasma generation in the inductively coupled plasma etching apparatus will be described. In the ceiling of the chamber 10, a circular dielectric window 52 composed of a quartz plate is hermetically mounted from the carrier 12 at a relatively large distance. Above the electrical window 52 of the medium -13-201143548, generally coaxial with the chamber 10 or the carrier 12, a coiled RF antenna 54 is disposed horizontally. Preferably, the RF antenna 54 has a shape such as a spiral coil (Fig. 2A) or a concentric (circular) coil (Fig. 2B) having a constant radius in each week, and is formed of an insulator. An antenna fixing member (not shown) is fixed to the dielectric window 52. An output terminal of the high frequency power source 56 for plasma generation is electrically connected to one end of the RF antenna 54 via the matching unit 58 and the power supply line 60. The other end of the RF antenna 54 is electrically connected to the ground potential via a ground line, although not shown. The high-frequency power supply 56 is adjustable in power output suitable for generating a certain frequency of plasma by high-frequency discharge (13.  5 6MHz or higher) high frequency RFH. The matching unit 58 accommodates a matching circuit that has a reactance variable that matches the impedance on the side of the high-frequency power source 56 and the impedance on the side of the load (main RF antenna, plasma, and correction coil). The processing gas supply portion for supplying the processing gas to the processing space in the chamber 10 has a ring-shaped multi-distribution disposed inside (or outside) the side wall of the chamber 10 at a position slightly lower than the dielectric window 52. The tube or buffer portion 62, and a plurality of side wall gas discharge holes 64 facing the plasma generation space from the buffer portion 62 at equal intervals in the circumferential direction, and a gas supply pipe 68 extending from the process gas supply source 66 to the buffer portion 62 . The process gas supply source 66 includes a flow controller and an on-off valve (not shown). The inductively coupled plasma etching apparatus is configured to adjust the density distribution of the inductively coupled plasma generated in the processing space in the chamber 10 in the radial direction, and the solar panel disposed in the chamber 10 is a dielectric body. The antenna chamber in the atmospheric pressure space on the window 54 is provided with a correction coil 70 that can be coupled to the RF antenna 54 14-201143548 by electromagnetic induction, and is used to keep the correction coil 70 parallel to the RF antenna 54 (ie, horizontal) The antenna-coil spacing control unit 72 is provided with an adjustable distance between the RF antenna 54 and the correction line 70. The details, configuration, and function of the correction line 圏 70 and the antenna-coil interval control unit 72 will be described later. The main control unit 74 includes, for example, a microcomputer, and controls various parts in the plasma etching apparatus, such as the exhaust unit 26, the high-frequency power sources 30 and 56, the matching units 32 and 58, and the switch 42 for the electrostatic chuck, the processing gas supply source 66, and the antenna. - Each operation of the coil interval control unit 72, a cooling unit (not shown), a heat transfer gas supply unit (not shown), and the entire operation (sequence) of the apparatus. In the inductively coupled plasma etching apparatus, in order to perform etching, first, the gate valve 28 is opened, and the semiconductor wafer W to be processed is carried into the chamber 10 and placed on the electrostatic chuck 36. Then, after the gate valve 28 is closed, an etching gas (generally a mixed gas) is introduced into the chamber 10 from the processing gas supply source 66 through the gas supply pipe 68, the buffer portion 62, and the side wall gas discharge hole 64 at a specific flow rate and flow rate ratio. The pressure in the chamber 10 is adjusted to a set enthalpy by the venting means 26. Then, the high-frequency power source 56 is turned on, the high-frequency RFH for plasma generation is outputted with a specific RF power, and the current of the high-frequency RFH is supplied to the RF antenna 54 via the matching unit 58 and the power supply line 60. Further, the high-frequency power source 30 is turned on, and the high-frequency RF1 for ion introduction control is outputted at a specific RF power, and the high-frequency RFL is applied to the carrier 12 via the matching unit 32 and the power supply rod 34. Further, a heat transfer gas (He gas) is supplied to the contact interface between the electrostatic chuck 36 and the semiconductor wafer W by the heat transfer gas supply portion, and the switch 42 is turned on to block the heat transfer gas by the electrostatic adsorption force of the electrostatic chuck 36. -15- 201143548 at the above contact interface. The etching gas system discharged by the side wall gas discharge holes 64 is uniformly diffused to the processing space under the dielectric window 52. By the current flowing through the high frequency RFH of the RF antenna 54, a magnetic field is generated around the RF antenna 54 through the dielectric window 52 to generate a space through the plasma in the chamber, and the RF magnetic field changes temporally. An RF induced electric field is generated in the azimuthal direction within the processing space. Then, electrons accelerated in the azimuthal direction by the induced electric field cause ionization collision with molecules or atoms of the etching gas to generate a donut-shaped plasma. The free radical or ion system of the donut-shaped plasma diffuses in a wide space, and the radicals are allowed to flow in an isotropic manner, and the ion system can be pulled by the DC bias and supplied to the upper surface of the semiconductor wafer W. (processed surface). As a result, the active species of the plasma on the surface of the wafer W cause chemical reactions and physical reactions, and the processed film is etched into a desired pattern. The plasma etching apparatus generates a doughnut-shaped plasma inductively coupled under the dielectric window 52 close to the RF antenna 54 as described above, and disperses the doughnut-shaped plasma in a wide range of processing. Within the space, the density of the plasma is averaged near the carrier 12 (i.e., on the semiconductor wafer W). Here, the density of the donut-shaped plasma depends on the intensity of the inductive electric field, and further depends on the power supplied to the high frequency RFH of the RF antenna 54 (more precisely, the current flowing through the RF antenna 54). That is, as the power of the high-frequency RFH is increased, the density of the donut-shaped plasma is higher, and the plasma density near the carrier 12 is increased by the diffusion of the plasma. In addition, the pattern in which the donut-shaped plasma diffuses in the square (especially in the radial direction) mainly depends on the pressure in the chamber 1 , and the pressure is reduced, and more plasma is concentrated in the center portion of the chamber 10 .承-16- 201143548 The plasma density distribution near the carrier 12 tends to bulge at the center. Further, the plasma density distribution in the sweet plasma changes depending on the power supplied to the high frequency RFH of the RF antenna 54 or the flow rate of the processing gas introduced into the chamber 10. Here, the "doughnut-shaped plasma" is not strictly limited to a ring-shaped plasma in which the plasma does not rise in the inner side (center portion) of the radial direction of the chamber 10 but the plasma rises only in the radial direction. Rather, it means that the volume or density of the plasma on the outer side in the radial direction is larger than the radial inner side of the chamber 10. Further, depending on the conditions of the type of gas used for the treatment gas or the pressure in the chamber 10, there is a case where the "doughnut-shaped plasma" is not referred to herein. In the inductively coupled plasma etching apparatus, the plasma density distribution in the vicinity of the carrier 12 is made uniform in the radial direction, and the RF magnetic field generated by the RF antenna 54 is corrected by the correction coil 70, and the process is corrected. The condition (the pressure in the chamber 1 or the like) can be adjusted by the antenna-coil interval control unit 72 to the height position of the correction coil 70. Hereinafter, the configuration and operation of the correction coil 70 and the antenna-coil interval control unit 72, which are the main features of the plasma etching apparatus, will be described. The correction coil 70 is composed of an annular single-coil coil or a plurality of coils closed at both ends, and is disposed coaxially with the RF antenna 54 and has a coil conductor in the radial direction between the inner circumference and the outer circumference of the RF antenna 54 (most Good for the middle of the line). The material of the correction coil 70 is preferably a metal having a high conductivity such as a copper system. Further, in the present invention, "coaxial" refers to a positional relationship in which the central axes of a plurality of coils or antennas overlap each other, and not only the respective coil faces or the antenna faces of the -17-201143548 are offset from each other in the axial direction or the longitudinal direction. Also included is the case where the same side is uniform (concentric positional relationship). The antenna-coil spacing control unit 72 has a horizontal support plate 74 that maintains the insulation of the correction coil 7〇, and is moved by the ball screw 76 and the horizontal support plate 74. A stepping motor 78 that adjusts the height position of the coil 70 by rotating the transfer screw 76a of the ball screw 76, and a coil that can adjust the height position of the correction coil 70 through the stepping motor 78 and the ball screw 76 The height control unit 80 and the guide bar 82 that guides the horizontal support plate 74 horizontally to the up and down (vertical) direction. More specifically, the correction coil 70 is horizontally attached to the horizontal support plate 74 by an insulating coil fixing member (not shown). A nut portion 76b that is screwed to the transfer screw 76a is attached to the horizontal support plate 74, and a through hole 84 that allows the guide rod 82 to slidably penetrate is formed. The transfer screw 76a of the ball screw 76 is coupled to the rotary shaft of the stepping motor 78 either directly or via a speed reduction mechanism (not shown) in the vertical direction. When the stepping motor 78 is actuated to rotate the transfer screw 76a, the horizontal support plate 74 on the nut portion 76b side of the ball screw 76 moves up and down along the transfer screw 76a, and the correction coil 70 is maintained in line with the horizontal support plate 74. The horizontal posture moves in the vertical direction. The winding height control unit 80 receives a signal indicating the height position (target 値 or setting 补) of the correction coil 70 from the main control unit 74, controls the rotation direction and the rotation amount of the stepping motor 78, and controls the elevation of the horizontal support plate 74. The amount and the height position of the correction coil 70 are aligned with the target. In the illustrated example, a plurality of stepping motors 78 individually drive a plurality of ball screws that are combined with the horizontal support plate 74 at a plurality of positions -18·201143548. 76. Alternatively, in another configuration example, a plurality of ball screws 76 may be simultaneously driven by a stepping motor 78 via a belt mechanism. In this embodiment, the height position of the correction line 圏70 is actually measured, and the actual measurement 値Sh7〇 is fed back to the linear scale 84 of the coil height control unit 80. The linear scale 84 is mounted on the scale portion 86 extending in the vertical direction of the horizontal support plate 74, and is read by the scale mounted on the body or the extension of the chamber 10 for optically reading the scale of the scale portion 86. Department 88 is composed. The coil height control unit 80 may also make the target height position of the correction coil 70 coincide with the actual measurement 値Sh7Q obtained at the linear scale 84. The antenna-coil spacing control unit 72 is configured as described above, and the correction coil 70 is held in parallel (horizontal) with respect to the RF antenna 54 arranged horizontally, and is arbitrarily and finely within a certain range (for example, 1 mm to 50 mm). The relative height position of the positive coil 70 to the RF antenna 54 is adjusted. The upper limit 高度 of the height position of the optimum correction coil 70 is set so as not to substantially affect the RF magnetic field generated by the RF antenna 54, i.e., at a position farther than the time when the correction coil 70 is not provided. Further, the lower limit 高度 of the height position of the correction coil 70 may be set to an approximate position at which the degree of influence on the RF magnetic field generated by the RF antenna 54 is maximized without being in contact with the RF antenna 54. Here, the basic action of the correction coil 70 will be described. First, as shown in Fig. 3A, when the height position of the correction coil 70 is set near the upper limit ,, the RF magnetic field generated around the antenna conductor is formed by the current flowing through the high frequency RFH of the RF antenna 54. The annular magnetic lines of force passing through the processing space -19-201143548 below the dielectric window 52 in the radial direction without any influence of the correction coil 70. The radial direction (horizontal) component Br of the magnetic flux density in the processing space is always zero at the center (〇) and the peripheral portion of the chamber 10 and the current of the high-frequency RFH, and is in the radial direction with the RF antenna. The position where the inner circumference of the inner circumference of 54 is slightly overlapped (hereinafter referred to as the "antenna intermediate portion") is extremely large, and the current of the high frequency RFh is increased to be extremely high. The intensity distribution of the induced electric field in the azimuthal direction generated by the RF magnetic field 也在 also becomes the same contour as the magnetic flux density Br in the radial direction. As a result, a donut-shaped plasma is formed coaxially with the RF antenna 54 in the vicinity of the dielectric window 52. Then, the donut-shaped plasma diffuses in the treatment space in a square direction (especially in the radial direction). As described above, although the diffusion form depends on the pressure in the chamber 1 , as an example, as shown in FIG. 3A, in the radial direction near the carrier 12, the electron density (plasma density) is The position corresponding to the intermediate portion of the antenna is relatively high (maintaining the maximum state) and is lowered at the center portion and the peripheral portion. At this time, as shown in FIG. 3B, when the height position of the correction coil 70 is set to, for example, the vicinity of the lower limit ,, the RF magnetic field generated around the antenna conductor by the current of the high frequency RFh flowing through the RF antenna 54 Η It is affected by the reaction of electromagnetic induction by correcting the line 圏70. The reaction of the electromagnetic induction acts to oppose the change in the magnetic flux (magnetic flux) in the loop passing through the correction coil 70, and an induced electromotive force is generated in the return line of the correction coil 70 to flow a current. In this way, by the reaction of the electromagnetic induction from the correction coil 70, in the processing space near the dielectric body window 52 at the position directly below the coil conductor (antenna intermediate portion) of the correction coil 70, -20-201143548 The radial direction (horizontal) component Br of the magnetic flux density is locally weakened, and the intensity of the induced electric field in the azimuthal direction is also the same as the magnetic flux density Br, and is locally weakened at a position corresponding to the intermediate portion of the antenna. As a result, the electron density (plasma density) in the vicinity of the carrier 1 2 was slightly uniformized in the radial direction. The diffusion form of the plasma shown in Fig. 3A is an example. When the pressure is low, for example, the plasma is excessively concentrated in the central portion of the chamber 10, as shown in Fig. 4A, the electron density near the carrier 12. The (plasma density) relativity is a case where the center portion becomes a mountain-shaped outline. Even in this case, as shown in FIG. 4B, when the correction coil 70 is lowered to, for example, the vicinity of the lower limit ,, as shown in the figure, the dielectric portion at the intermediate portion overlapping the coil conductor of the correction coil 70 is dielectrically The radial direction (horizontal) component Br of the magnetic flux density in the processing space near the body window 52 is locally weakened, whereby the concentration of the plasma toward the center of the chamber becomes weak, and the plasma density near the carrier is in the diameter The direction is slightly uniform. The inventors examined the effect of the above-described correction coil 70 by electromagnetic field simulation. That is, the relative height position (distance interval) of the correction coil 70 to the RF antenna 54 is taken as a parameter, and 4 types of 5 mm, 10 m, 20 mm, and infinity (no correction coil) are selected as parameters. When the current density distribution (corresponding to the plasma distribution) in the radial direction of the inside of the donut-shaped plasma (from the position of 5 mm above) is obtained, the inspection result shown in Fig. 5 is obtained. In the electromagnetic field simulation, the outer diameter (radius) of the RF antenna 54 was set to 250 mm, and the inner circumference radius and the outer circumference radius of the correction coil 70 were each set to -21 - 201143548 100 mm and 130 mm. Furthermore, the donut-shaped plasma generated by inductive coupling in the processing space below the RF antenna 54 is simulated by a disk-shaped resistor 85, and the diameter of the resistor is set to 5 〇〇mm, the resistivity was set to 100 Vcm, and the skin thickness was set to i〇mm. The frequency of the frequency RFH used for plasma generation is 13. 56MHz. As can be seen from Fig. 5, when the correction line 圏70 is disposed at a height position combined with the rF antenna 54 by electromagnetic induction, the plasma density in the sweet-shaped plasma is overlapped with the coil conductor of the correction coil 70 (at In the case where the vicinity of the antenna overlaps in the illustrated example, the locality is lowered, and the closer the correction coil 70 is to the RF antenna 54, the degree of locality is slightly linearly increased. In this embodiment, As described above, the correction coil 70 is disposed coaxially with the RF antenna 54, and the coil in the radial direction is located between the inner circumference and the outer circumference of the RF antenna 54 (preferably opposed to the intermediate portion of the antenna) to constitute a coil having the correction coil 70. conductor. Then, the antenna-coil spacing control unit 72 is configured to arbitrarily and finely adjust the correction coil in a predetermined range (for example, 1 mm to 50 mm) while keeping the correction coil 70 parallel (horizontal) to the horizontal RF antenna 54. The relative height position of the 70 pairs of RF antennas 54 makes it possible to implement the characteristics of the fifth diagram of the electromagnetic field simulation test, and can greatly improve the degree of freedom and precision of the plasma density distribution control. The inductively coupled plasma etching apparatus of this embodiment is suitable for use in, for example, etching a multilayer film of a substrate surface in a plurality of steps. Hereinafter, an embodiment of the present invention relating to the multilayer photoresist method shown in Fig. 6 of the present invention will be described. -22-201143548 In Fig. 6, 'the main surface of the semiconductor wafer W to be processed, the SiN layer 102 is formed on the original processed film (for example, Si film for gate) 100 as the lowermost layer (final The photomask) is formed with an organic film 104 (for example, carbon) as an intermediate layer, and a Si-containing anti-reflection film (B ARC ) 106 is formed thereon to form an uppermost photoresist 1 〇 8 . The SiN layer 102, the organic film 104, and the anti-reflection film 106 are formed by using CVD (Chemical Vacuum Evaporation) or a spin-coated coating film, and the pattern of the photoresist 108 is formed using a lithography technique. First, in the etching process of the first step, as shown in Fig. 6(A), the patterned photoresist 108 is used as a mask to etch the Si-containing reflection preventing film 106. At this time, the mixed gas of CF4/02 is used as the etching gas, and the pressure in the chamber 10 is relatively low, for example, set to 10 mTorr. First, in the etching process of the second step, as shown in Fig. 6(B), the photoresist 108 and the anti-reflection film 1〇6 are used as a mask to etch the organic film 104. At this time, the etching gas uses a single gas of 〇2, and the pressure in the chamber 10 is lower, for example, set to 5 mTorr. Finally, in the etching process of the third step, as shown in FIG. 6(C) and (D), the patterned anti-reflection film 106 and the organic film 1 〇4 are etched as a mask. S iN film 102. At this time, the etching gas is a mixed gas of CHF3/CF4/Ar/02, and the pressure in the chamber 1 is relatively high, for example, set to 50 mTorr. In the etching process of the above multiple steps, all or a part of the process conditions (especially the pressure in the chamber 1) are switched at each step, and thus the diffusion pattern of the donut-shaped plasma in the processing space is changed. . Here, when the correction coil 70 is not fully functional (energized), the process of the first and second steps (pressure 10 mTorr or less) occurs in the vicinity of the carrier 12 as shown in FIG. 4A. The electron density (plasma density) is the steep mountain shape that rises sharply at the center. In the third step of the process (pressure 50 mTorr), the contour of the gentle mountain shape with a slight rise in the center appears. If the embodiment is used, for example, in a process recipe, the correction coil 7 is added in the manner of a normal process condition (high-frequency power, pressure, gas type, gas flow rate, etc.) or in association with the method. The height position of 0 is set as one of the parameters as the recipe information or the process reference. Then, when the etching process of the above-described multiple step method is performed, the main control unit 7 reads the height position setting indicating the correction coil 70 from the memory, and corrects the coil height control unit 80 every step. The height position of the coil 70 is aligned with the setting 値 (target 値). Therefore, in the above-described etching process of the multilayer photoresist method (Fig. 6), as shown in Fig. 7, in the first step (1 〇 mTorr), the lower set position h' is in the second step. (5 mTorr) is at a lower position h2, and in a third step (5 〇 mTorr) at a relatively high position h3, the height position of the correction coil 70 is switched at each step. In this way, in a single or a series of plasma processing of a semiconductor wafer W, the height position of the correction coil 7 can be adjusted in accordance with the change, switching or change of the process conditions. In this way, the RF magnetic field 在 around the antenna conductor can be arbitrarily, finely and linearly adjusted by the current of the high frequency RFH flowing through the RF antenna 54 through the full processing time or the full step of the blade plasma process. The effect of the correction coil 70 (for the reverse of the electromagnetic field -24-201143548) is the effect of locally reducing the plasma density in the donut-shaped plasma near the position where the coil conductor of the correction coil 70 overlaps. (Strong and weak), whereby the plasma density near the carrier 12 can be uniformly maintained in the radial direction. Therefore, the uniformity of the plasma process can be easily improved. Further, in the multi-step mode, "the process between the etching processes is not performed", as shown in Fig. 7, the height position of the correction coil 7 is returned to the main position near the upper limit 相等 which is substantially equal to the time when the correction coil 70 is substantially uncorrected. Hp can be. Further, when the process of each step is started, that is, when the current of the high-frequency RFH starts to flow into the RF antenna 54, the large induced current flows into the correction coil 70, and it is difficult for the power to enter the plasma side, and it is difficult to ignite the plasma. At this time, as shown in Fig. 8, at the beginning of the process of each step, the correction coil 70 is temporarily evacuated to the main position Hp to cause the plasma to be ignited, after the plasma is ignited (for example, after a certain period of time Ts from the start of the process) ) Move up and down to the preset height position hn (n = 1, 2, 3). Thus, according to the present invention, it is suitable to use the correction coil 7 〇 sufficiently away from the RF antenna 54 before the start of the plasma treatment, and to make the correction coil 70 after a certain period of time after the plasma is ignited in the chamber 10 (and / or the RF antenna 54) moves up and down to approach the two and adjusts the distance interval to a predetermined threshold. In this embodiment, as described above, the antenna-coil interval control unit 72 for adjusting the distance or height position of the correction coil 70 to the RF antenna 54 is constituted by a ball screw mechanism. However, it is also possible to use a three-dimensional cam mechanism such as a rotating body cam or an end cam instead of the ball screw mechanism. That is, although the detailed configuration is omitted, another embodiment in which the antenna/coil spacing control -25 - 201143548 portion 72 is provided may have insulation that keeps the correction coil 70 parallel to the RF antenna 54. a coil holding body; and a motor coupled to the wire retaining body via a three-dimensional cam mechanism having a rotating body to rotate the rotating body of the three-dimensional cam mechanism to adjust the height position of the coil 70; controlling the rotation direction of the motor and The configuration of the control unit that controls the height position of the correction line 圏 70 by the amount of rotation. Alternatively, in another embodiment in which the height position of the correction coil 70 can be adjusted in the antenna-coil spacing control portion 72, the lifting mechanism can also use a non-rotating type such as a rack, a pinion or a piston. Lifting shaft. Further, in terms of the driving source of the elevating mechanism, it is possible to use, for example, a cylinder other than the motor. When the motor is used as the drive source, it is not limited to the stepping motor, and may be an AC motor, a DC motor, a linear motor or the like. For the purpose of measuring or even feeding back the arbitrary height position of the line 圏7〇, in addition to the linear scale 84 in the above embodiment, for example, an encoder can be used. Further, when the correction coil 70 is moved and positioned at a specific height, a position sensor such as a photo sensor or a limit switch can be suitably used. [Embodiment 2] A second embodiment of the present invention will be described based on Fig. 9 to Fig. 14 . In the plasma etching apparatus of the second embodiment, the plasma density distribution in the vicinity of the carrier 12 is made uniform in the radial direction, and the RF magnetic field generated by the RF antenna 54 is performed by the correction coil 90 with a capacitor. The correction of the electromagnetic field 'and the antenna-coil spacing control portion 72 can adjust the height position of the control coil -26-201143548 to correct the coil 90. Hereinafter, the configuration and operation of the capacitor-correcting coil 90 which is a main feature of the inductively coupled plasma etching apparatus will be described. As shown in Fig. 9, the correction coil 90 is composed of a single-winding coil or a multi-roll coil that is opened by sandwiching a slit (gap) G at both ends, and a fixed capacitor 94 is provided in the slit G. As described later, the fixed capacitor 94 may be a general-purpose type that is commercially available, for example, as a film capacitor or a ceramic capacitor, or may be a special order product or a separate article that is integrally assembled to the correction coil 90. . The correction coil 90 is preferably disposed coaxially with the RF antenna 54 and has a coil diameter in the radial direction between the inner circumference and the outer circumference of the RF antenna 54 (e.g., slightly near the middle). The arrangement direction of the correction coil 90 in the azimuth direction is as shown in the figure, and the position of the fixed capacitor 94 (i.e., the position of the slit G) overlaps with the position of the slit G for RF input and output of the RF antenna 54. The material of the coil conductor of the correction coil 90 is preferably a metal having a high electrical conductivity, for example, copper to which silver plating is applied. Here, the action of the correction coil 90 to which the fixed capacitor 94 is attached will be described. The inventors of the present invention performed the following electromagnetic field simulation for the inductively coupled plasma etching apparatus of this embodiment. That is, the relative height position (distance interval) h of the correction coil 90 to the RF antenna 54 is taken as a parameter, and 4 types of 5 mm, 10 m, 20 mm, and infinity (no correction coil) are selected as the parameter h. When determining the current density distribution (corresponding to the plasma distribution) in the radial direction of the inside of the donut-shaped plasma in the chamber 1 (from the upper 5 mm position), the height of each coil is -27-201143548. Get the outline shown in Figure 。. In the electromagnetic field simulation, the outer diameter (radius) of the RF antenna 54 is set to 250 mm, and the inner diameter (radius) and the outer diameter (radius) of the correction line 圏90 are set to 100 mm and 130 mm, respectively, and the correction coil 90 is used. The capacitance (capacitance of the fixed capacitor 94) is set to 600 pF. Furthermore, the disk-shaped electric package body 95 shown in FIG. 9 simulates a donut-shaped plasma generated by inductive coupling in the chamber processing space below the RF antenna 54, and the resistor body is The diameter of 95 is set to 500 mm, the resistivity is set to 100 Ω cm, and the thickness of the skin is set to 10 mm. The frequency of the high frequency RFH used for plasma generation is 13. 56MHz. Further, the capacitance of the correction coil 90 is set to be infinite (corresponding to when the fixed capacitor 94 is removed and the both ends of the correction coil 90 are short-circuited), and when the same electromagnetic field simulation is performed under the same conditions as described above, Then, the outline shown in Fig. 5 is obtained at each coil height position. As shown in Fig. 10(a), the correction coil 90 is closer to the RF antenna 54, and the plasma density distribution of the donut-shaped plasma indicates that only the coil conductor of the correction coil 90 overlaps (r = The locality in the vicinity of 110 to 130 mm is higher, and the position on the inner side and the outer side in the radial direction tends to be lower than when the correction coil 90 is not provided. Then, as shown in Fig. 10(b), it is understood that the tendency is such that the correction coil 90 is further away from the RF antenna 54, the weaker. Further, as shown in Fig. 10(c), it is understood that when the correction coil 90 is moderately (h = 20 mm) away from the RF antenna 54, the position overlapping with the coil conductor of the correction coil 90 (r = 110 to 130 mm) is considered to be the realm. In the region of the outer side (r = 130 to 250 mm) on the outer side in the radial direction (r = 0 to 110 mm), the side of the plasma density becomes high in several stages. -28-201143548 In this embodiment, the antenna-coil spacing control unit 72 is configured such that the correction coil 90 is parallel (horizontal) to the horizontal RF antenna 54 while being in a certain range (for example, 1 mm to 50 mm). The relative height position of the correction coil 90 to the RF antenna 54 can be adjusted arbitrarily and finely, so that the characteristics of the 10th figure of the electromagnetic field simulation test can be realized by the device, and the degree of freedom of the plasma density distribution control can be greatly improved. Precision. In the second embodiment, the fixed capacitor 94 can be replaced by the variable capacitor 96. At this time, as shown in Fig. 11, a capacitance variable mechanism 98 for variably controlling the capacitance of the variable capacitor 96 is also provided. The variable capacitor 96 may be a general-purpose type that is commercially available, for example, as a varactor or a varactor, or may be a special order product or a separate article that is integrally assembled to the correction coil 90. The variable capacitance mechanism 98 is variably controlled by the variable capacitor 96 disposed in the loop of the correction coil 90, and by the electrostatic drive of the variable capacitor 96 by a typical drive mechanism or an electric drive circuit. Capacitor control unit 100.

電容控制部100係關於可變電容器96之靜電電容’由 主控制部74透過控制訊號Sc接收電容設定値或成爲電容設 置定値之基礎的配方資訊或製程參數等。並且,電容控制 部100係從VPP檢測器102 (第1圖)接收表示被輸入至RF天 線54之前之高頻電壓之波高値VPP的訊號SVPP ’以當作線 圈電容可變控制用之監視訊號或反饋訊號,從線圈電流測 定器104接收流通補正線圈90之感應電流IIND之電流値(有 效値)的訊號S 11N 〇。並且,以RF電流計1 0 5測量流通於RF -29- 201143548 天線54之天線電流(RF電流)IRF2電流値(有效値), 將其測定値SIRF供給至電容控制部100亦可。VPP檢測器102 爲了測量匹配器58之輸出電壓之波高値VPP,可以利用常 備於匹配器5 8者。線圈電流測定器1 04就以一例而言,係 由根據電流感測器1 06和根據該電流感測器1 06之輸出訊號 而運算線圈電流IIND之電流値(有效値)之線圈電流測定 電路108所構成。 電容控制部1 〇〇最佳包含微電腦,亦可以將例如電流 比IIND/Irf或VPP之電容依存性對應於表記憶體,根據自主 控制部74所送出之電容設定値(目標値)或製程配方或製 程參數等之資訊,又藉由使用上述電流監視部或VPP監視 部之反饋控制等,可以選擇最適合於該製程之可變電容器 74之電容位置,或動性可調。 如此一來,藉由各獨立可調控制附可變電容器96之補 正線圈90高度位置及電容,可以更加提升電漿密度分布控 制之自由度及精度。 第1 2圖及第1 3圖係表示附電容器補正線圈90之構成例 。第1 2圖所示之構成例係在補正線圈90形成一個切縫G, 在該處安裝市面上販賣之兩端子型電容器(94、96)。第 13圖所示之構成例係將補正線圈90之切縫G如此地當作固 定電容器94之電極間間隙而予以利用之例。即使將介電體 之薄膜(無圖示)插入至該切縫G亦可。在該構成例中, 隔著切縫G相向之線圈導體之一對開放端部構成電容器電 極。該電容器電極係如第15圖B所示般,亦可以藉由一體 -30- 201143548 安裝延伸於上方(或橫)之擴張部120,將電極面積調整 成任意大小。 再者,亦可設置多數補正線圈90。例如,如第1 4圖所 示般,即使將線圏徑不同之獨立的兩個補正線圈90A、90B 排列配置成同心狀亦可。 就以另外之構成例而言,雖然省略圖示,但亦可將高 度位置不同之獨立多數補正線圈90 A、90B、…排列配置成 同軸狀。 [其他實施型態] 就以與本發明之補正線圈周圍之構成或機能有關之另 外之實施型態而言,如第1 5圖所示般,可以適合具備用以 在與RF天線54同軸上之位置使附電容器之補正線圈90旋轉 運動或旋轉移位之線圈旋轉機構1 80。該線圈旋轉機構1 80 例如具有將補正線圈90水平保持與RF天線54同軸之絕緣性 之基板保持板182、經垂直之旋轉軸184而與該基板保持板 1 8 2之中心部結合之步進馬達1 8 6、透過該步進馬達1 8 6而 控制補正線圏90之旋轉方向、旋轉速度或旋轉角之旋轉控 制部188。即使在步進馬達186和旋轉軸184之間設置減速 機構(無圖示)亦可。並且,接地線55係將RF天線54之另 一端(高頻出口端)電性連接於接地電位。 若藉由該實施例,上述般構成之線圈旋轉機構180, 例如第16圖A及第16圖B所示般,使補正線圈90繞其中心軸 線N旋轉,可以任意控制或選擇旋轉方向、旋轉速度、旋 •31 - 201143548 轉角、往復運動等。 例如,於補正線圈90對RF天線54乃至腔室10內之電漿 的電磁場性之作用面,切縫G附近形成空間性之特異點之 時,藉由線圈旋轉機構180以一定速度使補正線圈90連續 旋轉,依此可以在旋轉方向使特異點之位置均勻’使成爲 無切縫之兩端封閉的補正線圈。 再者,本發明之補正線圏也有流動大感應電流(有時 爲大於流通於RF天線之電流以上的電流)之情形,注意補 正線圈之發熱也極爲重要。 從該觀點,如第17圖A所示般,可以適當設置在補正 線圈90之附近設置空冷風扇而以空冷式進行冷卻之線圏冷 卻部。或是,如第17圖B所示般,也以中空之銅製管構成 補正線圈90,並對其中供給冷媒而防止補正線圈90之過熱 的線圈冷卻部爲佳。 雖然第14圖〜第17圖B所示之實施例係與附電容器之 補正線圈90有關,但無電容器之補正線圈70也可以適用相 同之構成。 就以與本發明之補正線圈周圍之構成或機構之其他實 施型態而言,如第18圖所示般,可以適合具備設成在腔室 10之天板(介電體窗)52之上之天線室內不僅進行補正線 圈70 ( 90 )之升降移動也能夠進行水平姿勢以及任意傾斜 姿勢以及週期性起伏(波浪)運動之線圈操縱機構200。 該線圈操縱機構200具有在圓周方向隔著一定間隔經 絕緣體之連桿202八、2028、202(:而與補正線圏70 ( 90 ) -32- 201143548 結合之棒狀線圈支撐軸202A、202B ' 202C、在垂直方向 使該些線圈支撐軸204A、204B、204C伸縮或進退移動之 直動式之電動致動器206A、206B、206C。 電動致動器206A、206B、206C係以120。間隔被安裝在 天板(介電體窗)52之上方被水平架設之環狀支撐板208 的圓周上。在此,支撐板2 0 8係藉由例如與腔室1 〇結合之 環狀之凸緣部210、以90°間隔被安裝在該凸緣部210之圓 周上的4根柱構件2 1 2,和連結該些柱構件2 1 2和支撐板2 0 8 之水平梁部214,而被固定在腔室10。 電動致動器206A、206B、206C係可在主控制部74之 控制下各以任意之時序、速度及衝程獨立控制線圈支撐軸 202A ' 202B、202C 之進退移動。連桿 202A、202B、202C 具有追隨補正線圈70 ( 90 )之傾斜姿勢的關節功能,減少 補正線圈70 ( 90 )改變姿勢時所產生之應力。 在該線圈操縱機構200中,藉由調節線圈支撐軸204A 、204B、2 04C之衝程量(昇降量),亦可以使補正線圈70 (90 )對RF天線54成爲平行姿勢,亦可以任意角度及任意 方向成爲傾斜姿勢。The capacitance control unit 100 is a recipe information or a process parameter for which the capacitance of the variable capacitor 96 is received by the main control unit 74 through the control signal Sc or is set as the basis of the capacitance setting. Further, the capacitance control unit 100 receives the signal SVPP' indicating the high-frequency voltage of the high-frequency voltage before being input to the RF antenna 54 from the VPP detector 102 (Fig. 1) as a monitor signal for variable coil capacitance control. Or a feedback signal, the coil current measuring device 104 receives the signal S 11N 値 of the current 値 (active 値) of the induced current IIND flowing through the correction coil 90. Further, the antenna current (RF current) IRF2 current 値 (effective 値) flowing through the RF -29-201143548 antenna 54 is measured by the RF current meter 105, and the measurement 値SIRF may be supplied to the capacitance control unit 100. The VPP detector 102 can be used to measure the wave height 値VPP of the matcher 58 and can be utilized by the matcher 58. The coil current measuring device 104 is, for example, a coil current measuring circuit that calculates a current 値 (active 値) of the coil current IIND according to the current sensor 106 and the output signal of the current sensor 106. 108 constitutes. The capacitance control unit 1 〇〇 preferably includes a microcomputer, and may, for example, correspond to a capacitance of a current ratio IIND/Irf or VPP to a table memory, and set a capacitance (target 値) or a process recipe according to a capacitance sent from the autonomous control unit 74. For information such as process parameters and the feedback control of the current monitoring unit or the VPP monitoring unit, the capacitance position of the variable capacitor 74 most suitable for the process can be selected or dynamically adjusted. In this way, the degree of freedom and accuracy of the plasma density distribution control can be further improved by independently adjusting the height position and capacitance of the correction coil 90 of the variable capacitor 96. Figs. 1 and 2 and Fig. 3 show an example of the configuration of the capacitor-correcting coil 90. In the configuration example shown in Fig. 2, a slit G is formed in the correction coil 90, and a commercially available two-terminal type capacitor (94, 96) is mounted there. The configuration example shown in Fig. 13 is an example in which the slit G of the correction coil 90 is used as the inter-electrode gap of the fixed capacitor 94. Even a film (not shown) of a dielectric body can be inserted into the slit G. In this configuration example, one of the coil conductors facing each other through the slit G constitutes a capacitor electrode to the open end. The capacitor electrode is as shown in Fig. 15B, and the electrode area can be adjusted to an arbitrary size by mounting the expansion portion 120 extending upward (or horizontally) by the integral -30-201143548. Further, a plurality of correction coils 90 may be provided. For example, as shown in Fig. 14, even if the two independent correction coils 90A and 90B having different wire diameters are arranged in a concentric arrangement. In another configuration example, although not shown in the drawings, the independent plurality of correction coils 90 A, 90B, ... having different height positions may be arranged in a coaxial manner. [Other Embodiments] In another embodiment relating to the configuration or function around the correction coil of the present invention, as shown in FIG. 5, it may be suitably provided to be coaxial with the RF antenna 54. The position is such that the correction coil 90 with the capacitor is rotated or rotationally displaced by the coil rotating mechanism 180. The coil rotating mechanism 180 has, for example, a substrate holding plate 182 having an insulating property in which the correcting coil 90 is horizontally held coaxially with the RF antenna 54, and a stepping unit that is coupled to the center portion of the substrate holding plate 182 through the vertical rotating shaft 184. The motor 186 controls the rotation control unit 188 of the rotation direction, the rotation speed, or the rotation angle of the correction line 透过 90 by the stepping motor 186. Even if a speed reduction mechanism (not shown) is provided between the stepping motor 186 and the rotary shaft 184. Further, the ground line 55 electrically connects the other end (high-frequency outlet end) of the RF antenna 54 to the ground potential. According to this embodiment, the coil rotating mechanism 180 configured as described above, for example, as shown in Figs. 16 and 16B, rotates the correction coil 90 about its central axis N, and can arbitrarily control or select the rotation direction and rotation. Speed, rotation • 31 - 201143548 Corner, reciprocating motion, etc. For example, when the correction coil 90 acts on the electromagnetic field of the RF antenna 54 or the plasma in the chamber 10, and a spatially specific point is formed near the slit G, the coil rotating mechanism 180 makes the correction coil at a constant speed. 90 continuous rotation, according to which the position of the singular point can be made uniform in the direction of rotation, so that the correction coil is closed at both ends without the slit. Further, in the correction line of the present invention, there is a case where a large induced current flows (sometimes larger than a current flowing through the RF antenna), and it is important to correct the heat generation of the coil. From this point of view, as shown in Fig. 17A, a line cooling portion in which an air-cooling fan is provided in the vicinity of the correction coil 90 and cooled in an air-cooling manner can be appropriately provided. Alternatively, as shown in Fig. 17B, the correction coil 90 is formed of a hollow copper tube, and a coil cooling portion for supplying a refrigerant to prevent overheating of the correction coil 90 is preferable. Although the embodiment shown in Figs. 14 to 17B is related to the correction coil 90 with a capacitor, the capacitor-free correction coil 70 can be applied to the same configuration. In other embodiments of the configuration or mechanism around the correction coil of the present invention, as shown in FIG. 18, it may be suitably provided to be disposed above the sky plate (dielectric window) 52 of the chamber 10. In the antenna room, not only the coil movement mechanism of the correction coil 70 (90) but also the horizontal posture and the arbitrary tilt posture and the periodic fluctuation (wave) motion can be performed. The coil operating mechanism 200 has rod-shaped coil support shafts 202A, 202B that are coupled to the insulators 202, 2028, 202 (in addition to the correction line 圏 70 ( 90 ) -32 - 201143548 ) at regular intervals in the circumferential direction. 202C. Direct-acting electric actuators 206A, 206B, and 206C that move the coil support shafts 204A, 204B, and 204C in the vertical direction, and move forward and backward. The electric actuators 206A, 206B, and 206C are separated by 120. Mounted on the circumference of the annular support plate 208 that is horizontally mounted above the top plate (dielectric window) 52. Here, the support plate 208 is formed by, for example, an annular flange that is combined with the chamber 1 〇 The portion 210 is attached to the four column members 2 1 2 on the circumference of the flange portion 210 at intervals of 90°, and the horizontal beam portion 214 connecting the column members 2 1 2 and the support plate 208 is The electric actuators 206A, 206B, and 206C independently control the advance and retreat movement of the coil support shafts 202A' 202B, 202C at any timing, speed, and stroke under the control of the main control unit 74. 202A, 202B, 202C have joints that follow the tilting posture of the correction coil 70 (90) It is possible to reduce the stress generated when the correction coil 70 (90) changes posture. In the coil operating mechanism 200, the correction coil can also be made by adjusting the stroke amount (lifting amount) of the coil support shafts 204A, 204B, and 204C. 70 (90) The RF antenna 54 is in a parallel posture, and may be inclined at an arbitrary angle and in any direction.

並且,例如第20圖所示般,電動致動器206A、206B、 206C以及線圈支撐軸2(MA、204B、204C係以一定相位間 隔以及相同振幅進行週期性之進退移動,依此也可以使補 正線圈70 ( 90 )執行第21圖A及第21圖B所示之週期性起伏 運動。圖中,[A]、[B]、[C]各模式性表示線圈支撐軸 202A、202B、202C。在圖示之例中,將線圈支撐軸204A -33- 201143548 、2 0 4 B、2 0 4 C之相位間隔設爲1 2 0。,將振幅設爲± 1 5 m m。 並且,通常如該例般爲3相驅動即可,但是設爲例如4相驅 動之時,相位間隔則爲90°。 在該週期性起伏運動中,維持補正線圈7〇 ( 90 )之中 心〇固定或靜止在高度基準値(零)之相同位置之狀態’ 補正線圈70 ( 90 )之最高+15mm頂部位置HP和最低-15mm 之底部位置LP在點對稱之位置互相相向地以一定速度在圓 周方向連續移動,可看到宛如保持一定之傾斜姿勢而波狀 旋轉。第2 1圖A及第2 1圖B中之直線B L係表示通過補正線 圈7 0 ( 9 0 )之底部位置LP的水平線,在相同平面內周期性 旋轉移動。圖中,賦予[A]、[B]、[C]之數値係表示該支撐 軸202A、202B、202C之此時的振幅値。例如,「+7.5」爲 + 7.5mm, 「-15」爲-15mm。 在上述般之週期性起伏運動中,藉由持有與線圈支撐 軸202A、202B、2 02C之衝程量(升降量)不同之量,亦 可改變補正線圈70 ( 90 )之中心0、頂部位置HP以及底部 位置HP之高度。 藉由使補正線圏70 ( 90 )進行上述般之周期性起伏運 動,可以在方位角方向更加容易且精細使補正線圈效果( 局部性降低核心電漿之密度的效果)之程度或基板附近之 電漿密度分布均勻,或任意地予以控制。. 在第18圖之構成例中,雖然固定RF天線54,但是即使 針對RF天線54,亦可以藉由設置與上述線圈操縱機構200 相同之構成的天線操縱機構(無圖示),使RF天線54進行 -34- 201143548 升降移動、水平姿勢、任意之傾斜姿勢或週期性起伏運動 0 上述實施型態中之電感耦合型電漿蝕刻裝置之構成爲 一例,電漿生成機構之各部當然不與電漿生成有直接關係 之各部之構成也可做各種變形。 例如,就以RF天線54及補正天線70之基本型態而言, 亦能爲平面形以外之形態例如圓頂形等。並且,也可爲設 置在腔室10之頂棚以外之處的型式,例如可以爲設置在腔 室10之側壁外之螺旋型式。 再者,亦可以爲相對於矩形被處理基板之腔室構造、 矩形之RF天線構造、矩形之補正線圈構造。 再者,在處理氣體供給部中,亦可設爲自頂棚導入處 理氣體至腔室10內之構成,亦可爲不對承載器12施加直流 偏壓控制用之高頻RFL之型態。另外,本發明亦可適用使 用多數RF天線或天線區段,藉由多數高頻電源或高頻供電 系統,對多數RF天線(或是天線區段)各別供給電漿生成 用之高頻電力之方式之電漿裝置。 並且,依據本發明之電感耦合型之電漿處理裝置或電 漿處理方法並不限定於電漿蝕刻之技術領域,亦可適用於 電漿CVD、電漿氧化、電漿氮化、濺鍍等之其他電漿製程 。再者,本發明中之被處理基板並不限定於半導體晶圓, 亦可爲平面顯示器用之各種基板或光罩、CD基板、印刷基 板等。 -35- 201143548 【圖式簡單說明】 第1圖爲表示本發明之第1實施型態中之電感耦合型電 漿處理裝置之構成的縱剖面圖。 第2圖A爲表示螺旋狀線圈之RF天線之一例的斜視圖 〇 第2圖B爲表示同心圓線圏狀之rf天線之一例的斜視圖 第3圖A爲模式性表示將補正線圈配置在遠離RF天線 之時的電磁場性之作用之一例的圖示。 第3圖B爲模式性表示將補正線圈配置在接近RF天線之 時的電磁場性之作用之一例的圖示。 第4圖A爲模式性表示將補正線圈配置在遠離RF天線 之時的電磁場性之作用之另一例的圖示。 第4圖B爲模式性表示將補正線圈配置在接近RF天線之 時的電磁場性之作用之另一例的圖示。 第5圖爲表示改變補正線圈和RF天線之距離間隔之時 的介電體窗附近之處理空間中之電流密度分布之變化的圖 示。 第6圖爲表示階段性表示多層光阻法之工程的圖示。 第7圖爲表示在藉由多層光阻法之多階段之蝕刻製程 中,可調控制補正線圈之高度位置之方法的圖示。 第8圖爲表示考慮電漿點燃性而可調控制補正線圈之 高度位置的方法之圖示》 第9圖爲模式性表示第2實施型態中之附固定電容器補 •36· 201143548 正線圈之構成及RF天線之配置關係的斜視圖。 第10圖爲表示電感耦合電漿內之半徑方向之電流密度 分布,依存於附固定電容器補正線圈之高度位置而變化之 樣子的圖示。 第1 1圖爲模式性表示第2實施型態中之附可變電容器 補正線圈之構成及RF天線之配置關係的斜視圖。 第1 2圖爲表示附電容器補正線圈之一構成例的圖示。 第13圖爲表示在補正線圈一體組裝電容器之一構成例 的斜視圖。 第14圖爲表示一構成例中之補正線圈之卷線構造的俯 視圖。 第15圖爲表示具備使補正線圈旋轉移動或旋轉移位之 機構的一實施例之裝置構成的縱剖面圖。 第1 6圖A爲表示補正線圈藉由第1 5圖之線圈旋轉機構 而旋轉移動或旋轉移位之樣子的斜視圖。 第〗6圖B爲表示補正線圈藉由第1 5圖之線圈旋轉機構 而旋轉移動或旋轉移位之樣子的斜視圖。 第17圖A爲表示以空冷放冷方式冷卻補正線圈之實施 例的圖示。 第1 7圖B爲表示經冷煤冷卻補正線圈之一實施例的圖 示。 第1 8圖爲表示具備使補正線圈執行升降移動、水平姿 勢、任意傾斜姿勢或週期性起伏運動之線圈操縱機構之構 成的剖面圖。 -37- 201143548 第19圖爲表示上述線圈操縱機構之安裝構成的上視圖 〇 第20圖爲表示藉由3相之電導致動器使補正線圈執行 週期性起伏運動之時之相位-振幅之特性的圖示。 第21圖A爲表示週期性起伏運動中各相位中補正線圈 之姿勢的斜視圖。 第21圖B爲表示週期性起伏運動中各相位中補正線圈 之姿勢的斜視圖。 【主要元件符號說明】 10 :腔室 12 :承載器 26 :排氣裝置 56 :高頻電源 66 :處理氣體供給源 7〇 :補正線圈 72 :天線-線圈間隔控制部 90 :附電容器補正線圈 2〇〇 :線圈操縱機構 -38-Further, for example, as shown in Fig. 20, the electric actuators 206A, 206B, and 206C and the coil support shaft 2 (MA, 204B, and 204C are periodically moved forward and backward at a constant phase interval and the same amplitude, and thus can also be made. The correction coil 70 (90) performs the periodic undulating motion shown in Fig. 21A and Fig. 21B. In the figure, [A], [B], and [C] schematically represent the coil support shafts 202A, 202B, and 202C. In the illustrated example, the phase interval of the coil support shafts 204A - 33 - 201143548 , 2 0 4 B, and 2 0 4 C is set to 1 2 0. The amplitude is set to ± 15 mm. In this example, the three-phase driving is sufficient, but for example, when the four-phase driving is performed, the phase interval is 90°. In the periodic undulating motion, the center of the correction coil 7 〇 ( 90 ) is maintained or stationary. The state of the same position of the height reference 値(zero)' The highest +15 mm top position HP of the correction coil 70 (90) and the bottom position LP of the lowest -15 mm continuously move in the circumferential direction at a certain speed toward each other at the point symmetry position. It can be seen that it is like a slanting posture and it is wavy. Figure 2 1A 2 1 The straight line BL in Fig. B indicates that the horizontal line of the bottom position LP of the correction coil 7 0 (90) is periodically rotated in the same plane. In the figure, [A], [B], [C] are given. The number 値 indicates the amplitude 値 of the support shafts 202A, 202B, and 202C. For example, "+7.5" is +7.5 mm, and "-15" is -15 mm. In the above-mentioned periodic undulating motion, The height of the center 0, the top position HP, and the bottom position HP of the correction coil 70 (90) can also be changed by an amount different from the stroke amount (lift amount) of the coil support shafts 202A, 202B, and 02C. Correction line 圏70 (90) performs the above-mentioned periodic undulating motion, which can more easily and finely adjust the effect of the coil effect (the effect of locally reducing the density of the core plasma) or the plasma density near the substrate in the azimuthal direction. The distribution is uniform or arbitrarily controlled. In the configuration example of Fig. 18, although the RF antenna 54 is fixed, even for the RF antenna 54, an antenna operating mechanism having the same configuration as that of the above-described coil operating mechanism 200 can be provided. (not shown), make RF days Line 54 performs -34-201143548 Lifting movement, horizontal posture, arbitrary tilting posture or periodic undulating motion 0. The configuration of the inductively coupled plasma etching apparatus in the above embodiment is an example, and the parts of the plasma generating mechanism are of course not The configuration of each part in which the plasma generation is directly related may be variously modified. For example, the basic form of the RF antenna 54 and the correction antenna 70 may be a form other than a planar shape such as a dome shape or the like. Further, it may be of a type disposed outside the ceiling of the chamber 10, and may be, for example, a spiral type provided outside the side wall of the chamber 10. Further, it may be a chamber structure with respect to a rectangular substrate to be processed, a rectangular RF antenna structure, or a rectangular correction coil structure. Further, the processing gas supply unit may be configured to introduce the processing gas into the chamber 10 from the ceiling, or may be a type in which the high-frequency RFL for DC bias control is not applied to the carrier 12. In addition, the present invention is also applicable to the use of a plurality of RF antennas or antenna sections, and a plurality of high frequency power supplies or high frequency power supply systems are used to supply high frequency power for plasma generation to a plurality of RF antennas (or antenna sections). The plasma device of the way. Moreover, the inductively coupled plasma processing apparatus or plasma processing method according to the present invention is not limited to the technical field of plasma etching, and can also be applied to plasma CVD, plasma oxidation, plasma nitridation, sputtering, and the like. Other plasma processes. Further, the substrate to be processed in the present invention is not limited to a semiconductor wafer, and may be various substrates for a flat panel display, a photomask, a CD substrate, a printing substrate, and the like. -35-201143548 [Brief Description of the Drawings] Fig. 1 is a longitudinal sectional view showing the configuration of an inductively coupled plasma processing apparatus according to a first embodiment of the present invention. Fig. 2A is a perspective view showing an example of an RF antenna of a helical coil. Fig. 2B is a perspective view showing an example of an rf antenna having a concentric circular shape. FIG. 3A is a schematic view showing the arrangement of the correction coil An illustration of an example of the effect of electromagnetic field when moving away from the RF antenna. Fig. 3B is a view schematically showing an example of the action of the electromagnetic field when the correction coil is disposed close to the RF antenna. Fig. 4A is a view schematically showing another example of the action of the electromagnetic field when the correction coil is disposed away from the RF antenna. Fig. 4B is a view schematically showing another example of the action of the electromagnetic field when the correction coil is disposed close to the RF antenna. Fig. 5 is a view showing a change in current density distribution in a processing space in the vicinity of a dielectric window when the distance between the correction coil and the RF antenna is changed. Fig. 6 is a view showing the construction of the multilayer photoresist method in stages. Fig. 7 is a view showing a method of variably controlling the height position of the correction coil in the multi-stage etching process by the multilayer photoresist method. Fig. 8 is a view showing a method of adjusting the height position of the correction coil in consideration of the ignitability of the plasma. Fig. 9 is a view schematically showing the fixed capacitor in the second embodiment. 36·201143548 Positive coil An oblique view of the configuration relationship of the RF antenna. Fig. 10 is a view showing a current density distribution in the radial direction in the inductively coupled plasma, which varies depending on the height position of the fixed coil of the fixed capacitor. Fig. 1 is a perspective view schematically showing a configuration of a variable capacitor correction coil and an arrangement relationship of RF antennas in the second embodiment. Fig. 1 is a view showing an example of the configuration of a capacitor-correcting coil. Fig. 13 is a perspective view showing an example of a configuration in which a capacitor is integrally assembled in a correction coil. Fig. 14 is a plan view showing the winding structure of the correction coil in a configuration example. Fig. 15 is a vertical cross-sectional view showing the configuration of an apparatus having a mechanism for rotating or rotating the correction coil. Fig. 16 is a perspective view showing a state in which the correction coil is rotationally moved or rotationally displaced by the coil rotating mechanism of Fig. 15. Fig. 6 is a perspective view showing a state in which the correction coil is rotationally moved or rotationally displaced by the coil rotating mechanism of Fig. 15. Fig. 17A is a view showing an embodiment in which the correction coil is cooled by air cooling and cooling. Fig. 17B is a view showing an embodiment of a cold coal cooling correction coil. Fig. 18 is a cross-sectional view showing the configuration of a coil operating mechanism including a lifting coil for performing a lifting movement, a horizontal posture, an arbitrary tilting posture, or a periodic undulating motion. -37-201143548 Fig. 19 is a top view showing the mounting structure of the above-described coil operating mechanism. Fig. 20 is a diagram showing the phase-amplitude characteristics when the three-phase electric actuator causes the correction coil to perform a periodic undulating motion. Icon. Fig. 21A is a perspective view showing the posture of the correction coil in each phase in the periodic undulating motion. Fig. 21B is a perspective view showing the posture of the correction coil in each phase in the periodic undulating motion. [Description of main components] 10: Chamber 12: Carrier 26: Exhaust device 56: High-frequency power supply 66: Process gas supply source 7: Correction coil 72: Antenna-coil interval control unit 90: Capacitor correction coil 2 〇〇: Coil operating mechanism -38-

Claims (1)

201143548 七、申請專利範圍: 1 . 一種電黎處理裝置’具有: 處理容器,其係在頂棚具有介電體窗; 線圈狀之RF天線,其係被配置在上述介電體窗之上; 基板保持部,其係用以在上述處理容器內保持被處理 基板: 處理氣體供給部,其係爲了對上述基板施予期待之電 漿處理,將期待之處理氣體供給至上述處理容器內;和 高頻供電部,其係爲了在上述處理容器內藉由電感耦 合生成處理氣體之電漿,將適合於處理氣體之高頻放電之 頻率的高頻電力供給至上述RF天線; 補正線圈,其係爲了控制上述處理容器內之上述基板 上之電漿密度分布,在藉由電磁感應而能夠與上述RF天線 耦合之位置被配置在上述處理容器之外;和 天線-線圈間隔控制部,其係用以邊使上述補正線圈 對上述RF天線保持平行,邊對可調控制上述RF天線和上 述補正線圈之間的距離間隔。 2.如申請專利範圍第1項所記載之電漿處理裝置,其 中 上述RF天線係被配置在上述介電體窗上, 上述天線-線圈間隔控制部係使上述RF天線或上述補 正線圈之至少一方升降移動而可調整其高度位置。 3 .如申請專利範圍第2項所記載之電漿處理裝置,其 中 -39- 201143548 上述天線-線圈間隔控制部具有: 絕緣性之線圈保持體,用以將上述補正線圈與上述RF 天線保持平行; 馬達,其係經滾珠螺桿機構而與上述線圈保持體結合 ,並使上述滾珠螺桿機構之移送螺桿旋轉而可調整上述補 正線圈之高度位置;和 線圈高度控制部,控制上述馬達之旋轉方向及旋轉量 而控制上述補正線圈之高度位置。 4. 如申請專利範圍第2項所記載之電漿處理裝置,其 中 上述天線-線圈間隔控制部具有: 絕緣性之線圈保持體,用以將上述補正線圈與上述RF 天線保持平行; 馬達,其係經具有旋轉體之立體凸輪機構而與上述線 圈保持體結合,並使上述立體凸輪機構之旋轉體旋轉而可 調整上述補正線圈之高度位置;和 線圈高度控制部,控制上述馬達之旋轉方向及旋轉量 而控制上述補正線圈之高度位置。 5. —種電漿處理裝置,具有: 處理容器,其係在頂棚具有介電體窗; 線圈狀之RF天線,其係被配置在上述介電體窗之上; 基板保持部,其係用以在上述處理容器內保持被處理 基板; 處理氣體供給部,其係爲了對上述基板施予期待之電 -40- 201143548 漿處理,將期待之處理氣體供給至上述處理容器內;和 高頻供電部,其係爲了在上述處理容器內藉由電感耦 合生成處理氣體之電漿,將適合於處理氣體之高頻放電之 頻率的高頻電力供給至上述RF天線; 補Ιξ線圈,其係爲了控制上述處理容器內之上述基板 上之電漿密度分布,在藉由電磁感應而能夠與上述RF天線 耦合之位置被配置在上述處理容器之外;和 操縱機構,用以在上述RF天線和上述補正線圈之間進 行相對性之升降移動、平行姿勢、傾斜姿勢或週期性起伏 運動。 6. 如申請專利範圍第1〜5項中之任一項所記載之電漿 處理裝置,其中 上述補正線圈係由兩端封閉之單卷線圈或多卷線圈所 構成,具有相對於上述RF天線被配置成同軸,在徑方向線 圈導體位於上述RF天線之內周和外周之間的線圈徑。 7. 如申請專利範圍第1〜5項中之任一項所記載之電漿 處理裝置,其中 上述補正線圈係由兩端之開放的單卷或多卷線圈所構 成, 在上述補正線圈之兩開放端之間設置有電容器。 8 ·如申請專利範圍第7項所記載之電漿處理裝置,其 中 上述補正線圈具有相對於上述RF天線被配置成同軸, 在徑方向線圈導體位於上述RF天線之內周和外周之間的線 -41 - 201143548 圈徑。 9 ·如申請專利範圍第1〜8項中之任一項所記載之電獎 處理裝置,其中 具有用以使上述補正線圈冷卻之線圈冷卻部。 10· —種電漿處理方法,係在電漿處理裝置中對基板 施予期待之電漿處理,上述電漿處理裝置具有:處理容器 ,其係在頂棚具有介電體窗;線圈狀之RF天線,其係被配 置在上述介電體窗之上;基板保持部,其係用以在上述處 理容器內保持被處理基板:處理氣體供給部,其係爲了對 上述基板施予期待之電漿處理,將期待之處理氣體供給至 上述處理容器內;和高頻供電部,其係爲了在上述處理容 器內藉由電感耦合生成處理氣體之電漿,將適合於處理氣 體之高頻放電之頻率的高頻電力供給至上述RF天線, 在上述處理容器之外與上述RF天線平行地配置藉由電 磁感應而能夠和上述RF天線耦合之補正線圈, 邊使上述補正線圈對上述RF天線保持平行,邊可調控 制上述RF天線和上述補正線圏之間的距離間隔,而控制上 述基板上之電漿密度分布。 1 1 .如申請專利範圍第1 〇項所記載之電漿處理方法, 其中 在對一片被處理基板所進行之電漿處理中,因應製程 條件之變更、變化或切換,而可調控制上述RF天線與上述 補正線圈之間的距離間隔。 1 2 .如申請專利範圍第1 1項所記載之電漿處理方法’ -42- 201143548 其中 以電漿處理開始前使上述補正線圏對上述R F天線充分 分開,在上述處理容器內電漿點燃經過特定時間後,使上 述補正線圈相對性接近於上述RF天線之方式,移動兩者之 至少一方而將上述距離間隔調整成預先設定之値。 -43-201143548 VII. Patent application scope: 1. A power processing device has: a processing container having a dielectric window in a ceiling; a coil-shaped RF antenna disposed on the dielectric window; a holding unit for holding a substrate to be processed in the processing container: a processing gas supply unit for supplying a desired plasma treatment to the substrate, and supplying the desired processing gas to the processing container; a frequency power supply unit that supplies high-frequency power suitable for a high-frequency discharge of a processing gas to the RF antenna in order to generate a plasma of a processing gas by inductive coupling in the processing container; Controlling a plasma density distribution on the substrate in the processing container, a position at which the RF antenna can be coupled by the electromagnetic induction is disposed outside the processing container; and an antenna-coil spacing control portion for While the correction coil is kept parallel to the RF antenna, the pair is adjustable to control the distance between the RF antenna and the correction coil Separate. 2. The plasma processing apparatus according to claim 1, wherein the RF antenna is disposed on the dielectric window, and the antenna-coil spacing control unit is configured to at least the RF antenna or the correction coil One side can move up and down to adjust its height position. 3. The plasma processing apparatus according to claim 2, wherein the antenna-coil spacing control unit has: an insulating coil holder for keeping the correction coil parallel to the RF antenna a motor that is coupled to the coil holder via a ball screw mechanism and that rotates a transfer screw of the ball screw mechanism to adjust a height position of the correction coil; and a coil height control unit that controls a rotation direction of the motor and The height position of the correction coil is controlled by the amount of rotation. 4. The plasma processing apparatus according to claim 2, wherein the antenna-coil spacing control unit includes: an insulating coil holder for keeping the correction coil parallel to the RF antenna; and a motor And the coil holding body is coupled to the coil holding body via a three-dimensional cam mechanism having a rotating body, and the rotating body of the three-dimensional cam mechanism is rotated to adjust a height position of the correcting coil; and a coil height control unit controls a rotation direction of the motor and The height position of the correction coil is controlled by the amount of rotation. 5. A plasma processing apparatus comprising: a processing container having a dielectric window in a ceiling; a coil-shaped RF antenna disposed on the dielectric window; and a substrate holding portion Holding the substrate to be processed in the processing container; and processing the gas supply unit for supplying the desired processing gas to the processing container, and supplying the desired processing gas to the processing container; a portion for supplying high frequency power suitable for the frequency of high frequency discharge of the processing gas to the RF antenna for generating a plasma of the processing gas by inductive coupling in the processing container; The plasma density distribution on the substrate in the processing container is disposed outside the processing container at a position that can be coupled to the RF antenna by electromagnetic induction; and an operating mechanism for the RF antenna and the correction Relative lift movement, parallel posture, tilt posture or periodic undulating motion between the coils. 6. The plasma processing apparatus according to any one of claims 1 to 5, wherein the correction coil is composed of a single-coil coil or a multi-coil coil closed at both ends, and has a relative antenna antenna The coil diameter is arranged coaxially, and the coil conductor in the radial direction is located between the inner circumference and the outer circumference of the RF antenna. 7. The plasma processing apparatus according to any one of claims 1 to 5, wherein the correction coil is composed of an open single or multi-roll coil at both ends, and two of the correction coils are provided. A capacitor is provided between the open ends. The plasma processing apparatus according to claim 7, wherein the correction coil has a line coaxial with respect to the RF antenna, and a coil conductor in a radial direction is located between an inner circumference and an outer circumference of the RF antenna. -41 - 201143548 Circle diameter. The electric prize processing device according to any one of claims 1 to 8, further comprising a coil cooling unit for cooling the correction coil. 10. A plasma processing method for applying a desired plasma treatment to a substrate in a plasma processing apparatus, the plasma processing apparatus having: a processing container having a dielectric window in a ceiling; a coil-shaped RF An antenna is disposed on the dielectric window; the substrate holding portion is configured to hold the substrate to be processed in the processing container: a processing gas supply unit for applying a desired plasma to the substrate Processing, supplying the desired processing gas into the processing container; and a high-frequency power supply portion for generating a frequency of the high-frequency discharge suitable for the processing gas in order to generate a plasma of the processing gas by inductive coupling in the processing container The high-frequency power is supplied to the RF antenna, and a correction coil that can be coupled to the RF antenna by electromagnetic induction is disposed in parallel with the RF antenna, and the correction coil is kept parallel to the RF antenna. The distance between the RF antenna and the correction line 可调 can be adjusted to control the plasma density distribution on the substrate. 1 1. The plasma processing method according to the first aspect of the patent application, wherein the RF treatment is performed in response to a change, change or switching of a process condition in a plasma treatment of a substrate to be processed The distance between the antenna and the correction coil described above. 1 2 . The plasma processing method as described in claim 1 '42, wherein the correction line 充分 is sufficiently separated from the RF antenna before the start of the plasma treatment, and the plasma is ignited in the processing container. After a predetermined period of time, the correction coil is relatively close to the RF antenna, and at least one of the two is moved to adjust the distance interval to a predetermined value. -43-
TW099136518A 2009-10-27 2010-10-26 Plasma processing apparatus and plasma processing method TWI595808B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009245991 2009-10-27
JP2009245988 2009-10-27
JP2010215111A JP5694721B2 (en) 2009-10-27 2010-09-27 Plasma processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
TW201143548A true TW201143548A (en) 2011-12-01
TWI595808B TWI595808B (en) 2017-08-11

Family

ID=44284589

Family Applications (3)

Application Number Title Priority Date Filing Date
TW099136518A TWI595808B (en) 2009-10-27 2010-10-26 Plasma processing apparatus and plasma processing method
TW099136521A TWI486994B (en) 2009-10-27 2010-10-26 Plasma processing device and plasma processing method
TW099136416A TWI569691B (en) 2009-10-27 2010-10-26 Plasma processing device and plasma processing method

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW099136521A TWI486994B (en) 2009-10-27 2010-10-26 Plasma processing device and plasma processing method
TW099136416A TWI569691B (en) 2009-10-27 2010-10-26 Plasma processing device and plasma processing method

Country Status (4)

Country Link
JP (4) JP5694721B2 (en)
KR (2) KR101758026B1 (en)
CN (2) CN102157325B (en)
TW (3) TWI595808B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615063B (en) * 2013-10-30 2018-02-11 Inductively coupled plasma processing apparatus and self-inducting coil thereof and method thereof for manufacturing semiconductor substrate

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053108A (en) * 2011-12-02 2015-03-19 キヤノンアネルバ株式会社 Ion beam generation device
JP5894785B2 (en) * 2011-12-19 2016-03-30 東京エレクトロン株式会社 Inductively coupled plasma antenna unit and inductively coupled plasma processing apparatus
JP2013134835A (en) * 2011-12-26 2013-07-08 Nissin Electric Co Ltd Plasma processing apparatus
JP2013163841A (en) * 2012-02-10 2013-08-22 Jtekt Corp Carbon film forming apparatus and carbon film forming method
JP5934030B2 (en) * 2012-06-13 2016-06-15 東京エレクトロン株式会社 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
JP6084784B2 (en) * 2012-06-14 2017-02-22 東京エレクトロン株式会社 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
KR20140059422A (en) * 2012-11-08 2014-05-16 엘아이지에이디피 주식회사 Inductively coupled plasma processing apparatus and control method thereof
KR20140066483A (en) * 2012-11-23 2014-06-02 엘아이지에이디피 주식회사 Inductively coupled plasma processing apparatus and control method thereof
JP6008771B2 (en) * 2013-01-21 2016-10-19 東京エレクトロン株式会社 Method for etching a multilayer film
JP6035606B2 (en) * 2013-04-09 2016-11-30 株式会社日立ハイテクノロジーズ Plasma processing method and plasma processing apparatus
JP6232953B2 (en) * 2013-11-11 2017-11-22 富士通セミコンダクター株式会社 Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP6248562B2 (en) 2013-11-14 2017-12-20 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
KR101532376B1 (en) * 2013-11-22 2015-07-01 피에스케이 주식회사 Apparatus for generating plasma using mutual inductive coupling, and apparatus for treating substrate comprising the same
JP6623511B2 (en) 2014-11-05 2019-12-25 東京エレクトロン株式会社 Plasma processing equipment
CN105719928A (en) * 2014-12-03 2016-06-29 中微半导体设备(上海)有限公司 Device and method for compensating non-uniformity of etching rate in ICP etching
KR101663214B1 (en) * 2014-12-03 2016-10-06 인베니아 주식회사 Antenna assembly for plasma processing apparatus and plasma processing apparatus comprising the same
CN104538341B (en) * 2014-12-17 2017-06-27 中国地质大学(北京) A kind of vacuum chamber electrostatic chuck adjusting means
JP6603999B2 (en) * 2015-02-13 2019-11-13 日新電機株式会社 Plasma processing equipment
US10297457B2 (en) 2015-03-19 2019-05-21 Mattson Technology, Inc. Controlling azimuthal uniformity of etch process in plasma processing chamber
CN106816354B (en) * 2015-12-02 2019-08-23 北京北方华创微电子装备有限公司 A kind of lower electrode and reaction chamber
JP6703425B2 (en) * 2016-03-23 2020-06-03 株式会社栗田製作所 Plasma processing method and plasma processing apparatus
CN107333378B (en) * 2016-04-29 2019-05-03 中微半导体设备(上海)股份有限公司 A kind of device for inductively coupled plasma processing and its control method
US10229816B2 (en) * 2016-05-24 2019-03-12 Mks Instruments, Inc. Solid-state impedance matching systems including a hybrid tuning network with a switchable coarse tuning network and a varactor fine tuning network
US11244808B2 (en) * 2017-05-26 2022-02-08 Applied Materials, Inc. Monopole antenna array source for semiconductor process equipment
CN109036817B (en) * 2017-06-08 2021-09-17 北京北方华创微电子装备有限公司 Inductive coupling coil and process chamber
JP7002268B2 (en) * 2017-09-28 2022-01-20 東京エレクトロン株式会社 Plasma processing equipment
JP7061264B2 (en) * 2018-03-20 2022-04-28 日新電機株式会社 Programs for plasma control systems and plasma control systems
CN110318028A (en) * 2018-03-28 2019-10-11 株式会社新柯隆 Plasma source mechanism and film forming device
JP7451490B2 (en) * 2018-07-30 2024-03-18 ノードソン コーポレーション System for processing workpieces using plasma
JP7118864B2 (en) * 2018-11-07 2022-08-16 キヤノントッキ株式会社 Film deposition equipment, manufacturing system, organic EL panel manufacturing system
JP7290065B2 (en) * 2019-05-30 2023-06-13 日新電機株式会社 Plasma processing equipment
KR102041518B1 (en) * 2019-07-18 2019-11-06 에이피티씨 주식회사 A Separate Plasma Source Coil and a Method for Controlling the Same
KR102169658B1 (en) * 2019-08-26 2020-10-23 주식회사 엘에이티 Plasma Etching Device
CN112447579B (en) * 2019-09-04 2023-10-31 中微半导体设备(上海)股份有限公司 Plasma processor, wafer jacking device and method thereof
KR102137913B1 (en) * 2019-10-29 2020-07-24 주식회사 기가레인 Plasma antenna module
JP2021103641A (en) 2019-12-25 2021-07-15 東京エレクトロン株式会社 Inspection method for plasma generation source, and load
JP2023511745A (en) * 2020-01-31 2023-03-22 ラム リサーチ コーポレーション Plenum Assembly for Transformer Coupled Plasma Window Cooling
TWI778353B (en) * 2020-04-21 2022-09-21 明志科技大學 Handheld atmospheric pressure plasma device
JP6780173B1 (en) * 2020-05-29 2020-11-04 株式会社三友製作所 Microplasma processing equipment and microplasma processing method
CN111878338B (en) * 2020-08-20 2021-08-27 西安交通大学 Pulse plasma thruster
JP2022039820A (en) * 2020-08-28 2022-03-10 東京エレクトロン株式会社 Plasma treatment apparatus and plasma treatment method
CN116368269A (en) * 2020-10-13 2023-06-30 周星工程股份有限公司 Substrate processing apparatus
CN115226410A (en) * 2021-02-19 2022-10-21 株式会社日立高新技术 Plasma processing apparatus
JP2022185603A (en) * 2021-06-03 2022-12-15 株式会社アルバック Plasma processing device
CN113223916B (en) * 2021-06-09 2024-05-28 上海邦芯半导体科技有限公司 Inductively coupled plasma device
JP7417569B2 (en) * 2021-10-29 2024-01-18 株式会社Kokusai Electric Substrate processing equipment, semiconductor device manufacturing method and program
JP2024068522A (en) * 2022-11-08 2024-05-20 日新電機株式会社 Plasma Processing Equipment

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494090A (en) * 1990-08-10 1992-03-26 Fuji Denpa Eng Kk Magnetic field controlling method in induction heating electric furnace
US5401350A (en) * 1993-03-08 1995-03-28 Lsi Logic Corporation Coil configurations for improved uniformity in inductively coupled plasma systems
JP3202877B2 (en) * 1994-08-30 2001-08-27 東京エレクトロン株式会社 Plasma ashing device
US5874704A (en) * 1995-06-30 1999-02-23 Lam Research Corporation Low inductance large area coil for an inductively coupled plasma source
US5731565A (en) * 1995-07-27 1998-03-24 Lam Research Corporation Segmented coil for generating plasma in plasma processing equipment
US5907221A (en) * 1995-08-16 1999-05-25 Applied Materials, Inc. Inductively coupled plasma reactor with an inductive coil antenna having independent loops
KR100290813B1 (en) * 1995-08-17 2001-06-01 히가시 데쓰로 Plasma processing equipment
JP3153768B2 (en) * 1995-08-17 2001-04-09 東京エレクトロン株式会社 Plasma processing equipment
US6252354B1 (en) * 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
JP3646901B2 (en) * 1996-08-26 2005-05-11 株式会社アルバック Plasma excitation antenna, plasma processing equipment
US5993594A (en) * 1996-09-30 1999-11-30 Lam Research Corporation Particle controlling method and apparatus for a plasma processing chamber
US6308654B1 (en) * 1996-10-18 2001-10-30 Applied Materials, Inc. Inductively coupled parallel-plate plasma reactor with a conical dome
JP2872976B2 (en) * 1996-11-19 1999-03-24 日本高周波株式会社 Inductively coupled plasma generator
TW376547B (en) * 1997-03-27 1999-12-11 Matsushita Electric Ind Co Ltd Method and apparatus for plasma processing
US6164241A (en) * 1998-06-30 2000-12-26 Lam Research Corporation Multiple coil antenna for inductively-coupled plasma generation systems
US6326597B1 (en) * 1999-04-15 2001-12-04 Applied Materials, Inc. Temperature control system for process chamber
JP4493756B2 (en) * 1999-08-20 2010-06-30 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
TW462207B (en) * 2000-02-24 2001-11-01 Nano Architect Res Corp Method and apparatus for generating high-density uniform plasma by inductively coupling
JP2001358129A (en) * 2000-06-16 2001-12-26 Matsushita Electric Ind Co Ltd Method and apparatus for plasma processing
JP2002008996A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Feed antenna and feed method
JP2002151481A (en) * 2000-08-30 2002-05-24 Samco International Inc Plasma processing apparatus and plasma processing method
JP3775987B2 (en) * 2000-12-26 2006-05-17 松下電器産業株式会社 Plasma processing equipment
US6583572B2 (en) * 2001-03-30 2003-06-24 Lam Research Corporation Inductive plasma processor including current sensor for plasma excitation coil
KR100396214B1 (en) * 2001-06-19 2003-09-02 주성엔지니어링(주) Plasma processing apparatus having parallel resonance antenna for very high frequency
JP2003234338A (en) * 2002-02-08 2003-08-22 Tokyo Electron Ltd Inductively coupled plasma treatment apparatus
CN101160014B (en) * 2002-07-12 2011-12-28 东京毅力科创株式会社 Plasma processing apparatus and method for correcting variable impedance device
US6842147B2 (en) * 2002-07-22 2005-01-11 Lam Research Corporation Method and apparatus for producing uniform processing rates
KR100486712B1 (en) * 2002-09-04 2005-05-03 삼성전자주식회사 Inductively coupled plasma generating apparatus with double layer coil antenna
US6876155B2 (en) * 2002-12-31 2005-04-05 Lam Research Corporation Plasma processor apparatus and method, and antenna
JP2004215473A (en) * 2003-01-06 2004-07-29 Hiroshi Arai Guidance and control technology and peripheral technologies thereof
KR100513163B1 (en) * 2003-06-18 2005-09-08 삼성전자주식회사 Icp antenna and plasma generating apparatus using the same
CA2529794A1 (en) * 2003-06-19 2004-12-29 Plasma Control Systems Llc Plasma production device and method and rf driver circuit with adjustable duty cycle
US20050205211A1 (en) * 2004-03-22 2005-09-22 Vikram Singh Plasma immersion ion implantion apparatus and method
WO2006004281A1 (en) * 2004-03-30 2006-01-12 Adaptive Plasma Technology Corp. Plasma source coil and plasma chamber using the same
JP2006221852A (en) * 2005-02-08 2006-08-24 Canon Anelva Corp Induction coupled plasma generator
JP5247214B2 (en) * 2008-04-04 2013-07-24 株式会社日立製作所 High frequency magnetic field coil and magnetic resonance imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615063B (en) * 2013-10-30 2018-02-11 Inductively coupled plasma processing apparatus and self-inducting coil thereof and method thereof for manufacturing semiconductor substrate

Also Published As

Publication number Publication date
TW201143546A (en) 2011-12-01
KR101758026B1 (en) 2017-07-14
TWI595808B (en) 2017-08-11
TWI569691B (en) 2017-02-01
JP5851681B2 (en) 2016-02-03
CN104768317A (en) 2015-07-08
JP2015062181A (en) 2015-04-02
KR20170038182A (en) 2017-04-06
CN102157325A (en) 2011-08-17
JP2011119657A (en) 2011-06-16
CN104768317B (en) 2017-12-01
JP5694721B2 (en) 2015-04-01
JP2011119658A (en) 2011-06-16
JP5757710B2 (en) 2015-07-29
JP2011119659A (en) 2011-06-16
KR20160130728A (en) 2016-11-14
JP5911032B2 (en) 2016-04-27
TW201207883A (en) 2012-02-16
CN102157325B (en) 2015-05-06
KR101838846B1 (en) 2018-03-14
TWI486994B (en) 2015-06-01

Similar Documents

Publication Publication Date Title
TWI595808B (en) Plasma processing apparatus and plasma processing method
KR101757921B1 (en) Plasma processing apparatus and plasma processing method
JP5554047B2 (en) Plasma processing equipment
US10804076B2 (en) Plasma processing apparatus and plasma processing method
TWI540942B (en) Plasma processing device and plasma processing method
US9218943B2 (en) Plasma processing apparatus and plasma processing method
KR102252016B1 (en) Plasma processing apparatus
KR100274757B1 (en) Plasma treatment apparatus and plasma treatment method
TW463201B (en) Plasma processor with coil having variable RF coupling
US20120248066A1 (en) Plasma processing apparatus and plasma processing method
JP5800532B2 (en) Plasma processing apparatus and plasma processing method
JP2002540582A5 (en)
JP6097317B2 (en) Plasma processing method
JP2002190473A (en) Plasma processing apparatus
JP2002176038A (en) Plasma treatment system
JP2014150064A (en) Plasma processing apparatus