JP6084784B2 - Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method - Google Patents

Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method Download PDF

Info

Publication number
JP6084784B2
JP6084784B2 JP2012134593A JP2012134593A JP6084784B2 JP 6084784 B2 JP6084784 B2 JP 6084784B2 JP 2012134593 A JP2012134593 A JP 2012134593A JP 2012134593 A JP2012134593 A JP 2012134593A JP 6084784 B2 JP6084784 B2 JP 6084784B2
Authority
JP
Japan
Prior art keywords
window member
plasma
closed circuit
divided
conducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012134593A
Other languages
Japanese (ja)
Other versions
JP2013258098A (en
Inventor
山澤 陽平
陽平 山澤
一樹 傳寳
一樹 傳寳
木村 隆文
隆文 木村
輿水 地塩
地塩 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49899299&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6084784(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012134593A priority Critical patent/JP6084784B2/en
Priority to TW102120159A priority patent/TWI569693B/en
Priority to KR1020130067634A priority patent/KR101718182B1/en
Priority to CN201310236940.6A priority patent/CN103517536B/en
Publication of JP2013258098A publication Critical patent/JP2013258098A/en
Application granted granted Critical
Publication of JP6084784B2 publication Critical patent/JP6084784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ICP(Inductive Coupling Plasma)アンテナを用いてプラズマを生成するプラズマ処理装置、プラズマ生成装置、アンテナ構造体、及びプラズマ生成方法に関する。   The present invention relates to a plasma processing apparatus, a plasma generation apparatus, an antenna structure, and a plasma generation method for generating plasma using an ICP (Inductive Coupling Plasma) antenna.

チャンバと、チャンバの外に配置されたICP(Inductive Coupling Plasma)アンテナとを備えるプラズマ処理装置では、ICPアンテナと対向するチャンバの天井部が誘電体、例えば、石英からなる誘電体窓によって構成される。このプラズマ処理装置では、高周波電源に接続されたICPアンテナを高周波電流が流れ、該高周波電流はICPアンテナに磁力線を発生させる。発生した磁力線は誘電体窓を透過してチャンバ内においてICPアンテナに沿って磁界を生じさせる。該磁界が時間的に変化すると誘導電界を生じ、該誘導電界によって加速された電子がチャンバ内に導入された処理ガスの分子や原子と衝突してプラズマが生じる。誘導電界はICPアンテナに沿うように発生するため、チャンバ内においてプラズマもICPアンテナに沿うように発生する。   In a plasma processing apparatus including a chamber and an ICP (Inductive Coupling Plasma) antenna disposed outside the chamber, the ceiling portion of the chamber facing the ICP antenna is configured by a dielectric window made of a dielectric, for example, quartz. . In this plasma processing apparatus, a high-frequency current flows through an ICP antenna connected to a high-frequency power source, and the high-frequency current generates lines of magnetic force in the ICP antenna. The generated magnetic field lines pass through the dielectric window and generate a magnetic field along the ICP antenna in the chamber. When the magnetic field changes with time, an induced electric field is generated, and electrons accelerated by the induced electric field collide with molecules or atoms of the processing gas introduced into the chamber to generate plasma. Since the induction electric field is generated along the ICP antenna, plasma is also generated along the ICP antenna in the chamber.

誘電体窓は減圧環境であるチャンバの内部と大気圧環境であるチャンバの外部とを仕切るため、圧力差に耐えうる剛性が確保できる厚みが必要である。また、チャンバに収容されてプラズマ処理が施される基板、例えば、FPD(Flat Panel Display)の大型化は今後も進展することが予想されるため、基板と対向する誘電体窓を大型化する必要があり、大型化された際の剛性を確保する必要があることから、誘電体窓をさらに厚くする必要がある。   Since the dielectric window partitions the inside of the chamber, which is a reduced pressure environment, from the outside of the chamber, which is an atmospheric pressure environment, the dielectric window needs to have a thickness that can secure rigidity capable of withstanding the pressure difference. In addition, it is expected that the size of a substrate housed in a chamber and subjected to plasma processing, for example, FPD (Flat Panel Display), will continue to increase, so it is necessary to increase the size of the dielectric window facing the substrate. Since it is necessary to ensure rigidity when the size is increased, it is necessary to further increase the thickness of the dielectric window.

ところが、誘電体窓が厚くなればなるほど、誘電体窓の重量は増加し、またコストも上昇するので、チャンバの天井部を剛性が高く安価な導電体、例えば、金属からなる導電体窓によって構成することが提案されている。導電体窓では金属が磁力線を遮蔽するため、該導電体窓を貫通するスリットを設け、該スリットを介して磁力線を透過させる。但し、設けられるスリットの数や大きさには制限があるため、導電体窓では磁力線の透過効率が低下し、その結果、チャンバ内においてプラズマの生成効率が低下する。   However, as the dielectric window becomes thicker, the weight of the dielectric window increases and the cost also rises. Therefore, the ceiling of the chamber is made of a highly rigid and inexpensive conductor such as a conductor window made of metal. It has been proposed to do. Since the metal shields the magnetic field lines in the conductor window, a slit penetrating the conductor window is provided, and the magnetic field lines are transmitted through the slit. However, since the number and size of slits to be provided are limited, the transmission efficiency of magnetic lines of force is reduced in the conductor window, and as a result, plasma generation efficiency is reduced in the chamber.

一方、コンデンサ付きのフローティングコイルをチャンバの外であって、ICPアンテナの近傍に設けることが提案されている(例えば、特許文献1参照。)。このフローティングコイルにはICPアンテナが発生する磁力線による電磁誘導によって誘導電流が流れ、該誘導電流はフローティングコイルに磁力線を発生させ、発生した磁力線は誘電体窓を透過してチャンバ内においてフローティングコイルに沿って磁界を生じさせる。すなわち、チャンバ内にはICPアンテナに沿う磁界だけでなくフローティングコイルに沿う磁界も発生するため、フローティングコイルが補助アンテナの役割を果たし、チャンバ内において生じる誘導電界が強くなり、その結果、プラズマの生成効率の低下を防止することができる。   On the other hand, it has been proposed to provide a floating coil with a capacitor outside the chamber and in the vicinity of the ICP antenna (see, for example, Patent Document 1). In this floating coil, an induced current flows due to electromagnetic induction by magnetic lines generated by the ICP antenna. The induced current generates magnetic lines in the floating coil, and the generated magnetic lines pass through the dielectric window and follow the floating coil in the chamber. To generate a magnetic field. That is, in the chamber, not only the magnetic field along the ICP antenna but also the magnetic field along the floating coil is generated, so that the floating coil serves as an auxiliary antenna, and the induced electric field generated in the chamber becomes strong, resulting in the generation of plasma. A decrease in efficiency can be prevented.

特開2011−119659号JP2011-119659A

導電体窓と対向するICPアンテナにおいても、上述の特許文献1の技術を適用して誘導電界を補強することが考えられるが、上述した特許文献1の技術では、ICPアンテナや導電体窓とは別に独立したフローティングコイルを設ける必要があるため、装置の構成が複雑になるという問題がある。     Also in the ICP antenna facing the conductor window, it is conceivable to reinforce the induction electric field by applying the technique of Patent Document 1 described above. However, in the technique of Patent Document 1 described above, the ICP antenna and the conductor window are Since it is necessary to provide a separate floating coil, there is a problem that the configuration of the apparatus becomes complicated.

本発明の目的は、装置の構成を簡素化できるとともに、プラズマの生成効率の低下を防止することができるプラズマ処理装置、プラズマ生成装置、アンテナ構造体、及びプラズマ生成方法を提供することにある。   An object of the present invention is to provide a plasma processing apparatus, a plasma generation apparatus, an antenna structure, and a plasma generation method capable of simplifying the configuration of the apparatus and preventing a decrease in plasma generation efficiency.

上記目的を達成するために、本発明のプラズマ処理装置は、基板を収容する処理室と、該処理室の内部に配置されて前記基板を載置する載置台と、前記処理室の外部において前記載置台と対向するように配置されて高周波電源に接続される誘導結合アンテナとを備えるプラズマ処理装置において、前記誘導結合アンテナと対向する前記処理室の一の壁部であって、前記処理室の他の壁部と電気的に直接導通しない前記一の壁部を構成し、且つ前記載置台及び前記誘導結合アンテナの間に介在する、導電体からなる窓部材と、前記窓部材に両端が接続される導線とを備え、前記窓部材及び前記導線は閉回路を形成し、前記導線は少なくとも1つのコンデンサを有し、前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差することを特徴とする。 In order to achieve the above object, a plasma processing apparatus of the present invention includes a processing chamber that accommodates a substrate, a mounting table that is disposed inside the processing chamber and mounts the substrate, and a front surface outside the processing chamber. In a plasma processing apparatus comprising an inductively coupled antenna disposed to face a mounting table and connected to a high frequency power source, the plasma processing apparatus is one wall portion of the processing chamber facing the inductively coupled antenna, A window member made of a conductor constituting the one wall portion that is not directly electrically connected to another wall portion and interposed between the mounting table and the inductively coupled antenna, and both ends connected to the window member and a conductive wire that is, the window member and the conductive wire to form a closed circuit, wherein the conductors have at least one capacitor, said closed circuit is not present in said window member in a plane parallel to, the closed The surface where the circuit exists And Kimado member is characterized by crossing.

上記目的を達成するために、本発明のプラズマ処理装置は、基板を収容する処理室と、該処理室の内部に配置されて前記基板を載置する載置台と、前記処理室の外部において前記載置台と対向するように配置されて高周波電源に接続される誘導結合アンテナとを備えるプラズマ処理装置において、前記誘導結合アンテナと対向する前記処理室の一の壁部であって、前記処理室の他の壁部と電気的に直接導通しない前記一の壁部を構成し、且つ前記載置台及び前記誘導結合アンテナの間に介在する、導電体からなる窓部材と、前記窓部材に両端が接続される導線とを備え、前記窓部材及び前記導線は閉回路を形成し、前記導線は少なくとも1つのコンデンサを有し、前記窓部材は複数の分割片に分割され、前記導線の一端は一の前記分割片に接続され、前記導線の他端は他の前記分割片に接続され、前記一の分割片及び前記他の分割片は隣接するとともに間に配置された誘電体によって分離されて互いに電気的に導通しないように直接接触せず、前記一の分割片及び前記他の分割片の間の前記誘電体の一部が薄く形成されることを特徴とする。 In order to achieve the above object, a plasma processing apparatus of the present invention includes a processing chamber that accommodates a substrate, a mounting table that is disposed inside the processing chamber and mounts the substrate, and a front surface outside the processing chamber. In a plasma processing apparatus comprising an inductively coupled antenna disposed to face a mounting table and connected to a high frequency power source, the plasma processing apparatus is one wall portion of the processing chamber facing the inductively coupled antenna, A window member made of a conductor constituting the one wall portion that is not directly electrically connected to another wall portion and interposed between the mounting table and the inductively coupled antenna, and both ends connected to the window member The window member and the conductor form a closed circuit, the conductor has at least one capacitor, the window member is divided into a plurality of divided pieces, and one end of the conductor is one Contact the split piece The other end of the conducting wire is connected to the other divided piece, and the one divided piece and the other divided piece are adjacent to each other and separated by a dielectric disposed therebetween so that they are not electrically connected to each other. A part of the dielectric between the one divided piece and the other divided piece is formed thinly without being in direct contact with the first divided piece.

上記目的を達成するために、本発明のプラズマ生成装置は、減圧室内にプラズマを生成させるプラズマ生成装置であって、前記減圧室の外部に配置されて高周波電源に接続される誘導結合アンテナと、該誘導結合アンテナ及び前記減圧室内のプラズマの間に介在する、導電体からなる窓部材と、前記窓部材に両端が接続される導線とを備え、前記窓部材及び前記導線は閉回路を形成し、前記導線は少なくとも1つのコンデンサを有し、前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差することを特徴とする。 In order to achieve the above object, a plasma generation apparatus of the present invention is a plasma generation apparatus for generating plasma in a decompression chamber, the inductively coupled antenna being disposed outside the decompression chamber and connected to a high frequency power source, A window member made of a conductor interposed between the inductively coupled antenna and the plasma in the decompression chamber; and a conductor wire connected at both ends to the window member; the window member and the conductor wire form a closed circuit. the conductors have at least one capacitor, said closed circuit is not present in said window member in a plane parallel to, and the surface on which the closed circuit is present and wherein the window member is characterized by crossing.

上記目的を達成するために、本発明のアンテナ構造体は、高周波電源に接続される誘導結合アンテナを備えるアンテナ構造体において、前記誘導結合アンテナ及び前記誘導結合アンテナにより生成されるプラズマの間に介在する、導電体からなる窓部材と、前記窓部材に両端が接続される導線とを備え、前記窓部材及び前記導線は閉回路を形成し、前記導線は少なくとも1つのコンデンサを有し、前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差することを特徴とする。 In order to achieve the above object, an antenna structure according to the present invention includes an inductively coupled antenna connected to a high frequency power source, and is interposed between the inductively coupled antenna and the plasma generated by the inductively coupled antenna. to a window member made of a conductor, and a conductor having both ends connected to the window member, said window member and said wire form a closed circuit, wherein the conductors have at least one capacitor, the closed The circuit does not exist in a plane parallel to the window member, and the plane on which the closed circuit exists intersects the window member .

上記目的を達成するために、本発明のプラズマ生成方法は、高周波電源に接続される誘導結合アンテナと、前記誘導結合アンテナ及びプラズマの間に介在する導電体からなる窓部材と、導線とを備え、前記導線は少なくとも1つのコンデンサを有するアンテナ構造体を用いたプラズマ生成方法であって、前記導線の両端を前記窓部材に接続して閉回路を形成し、前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量を調整し、前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差するように、前記導線が両端で窓部材と接続されることを特徴とする。 In order to achieve the above object, a plasma generation method of the present invention includes an inductively coupled antenna connected to a high frequency power source, a window member made of a conductor interposed between the inductively coupled antenna and the plasma, and a conductive wire. The conductive wire is a plasma generation method using an antenna structure having at least one capacitor, wherein both ends of the conductive wire are connected to the window member to form a closed circuit, and the reactance of the closed circuit becomes negative The capacitance of the capacitor is adjusted so that the closed circuit does not exist in a plane parallel to the window member, and the surface where the closed circuit exists and the window member intersect each other. It is connected to a window member at both ends .

本発明によれば、高周波電源に接続される誘導結合アンテナと対向する、導電体からなる窓部材に導線の両端が接続されて閉回路が形成され、導線は少なくとも1つのコンデンサを有する。これにより、誘導結合アンテナから発生する磁界が電磁誘導によって閉回路に誘導電流を生成し、該誘導電流は閉回路を構成する窓部材に沿って磁界を生じさせ、当該窓部材に沿って生じた磁界が誘導電界を生じさせ、結果としてプラズマを生成するので、コンデンサの容量を変化させて閉回路のリアクタンスを調整して閉回路に生成された誘導電流を制御することにより、独立したフローティングコイルを設けることなくプラズマの生成効率の低下を防止することができる。すなわち、装置の構成を簡素化できるとともに、プラズマの生成効率の低下を防止することができる。   According to the present invention, a closed circuit is formed by connecting both ends of a conductor to a window member made of a conductor facing an inductively coupled antenna connected to a high-frequency power source, and the conductor has at least one capacitor. As a result, the magnetic field generated from the inductively coupled antenna generates an induced current in the closed circuit by electromagnetic induction, and the induced current is generated along the window member that generates a magnetic field along the window member constituting the closed circuit. Since the magnetic field generates an induced electric field, and as a result, plasma is generated, an independent floating coil can be created by controlling the induced current generated in the closed circuit by changing the capacitance of the capacitor and adjusting the reactance of the closed circuit. A decrease in plasma generation efficiency can be prevented without the provision. That is, the configuration of the apparatus can be simplified, and a decrease in plasma generation efficiency can be prevented.

本発明の実施の形態に係るプラズマ処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the plasma processing apparatus which concerns on embodiment of this invention. 図1における窓部材及びICPアンテナの構成を概略的に示す斜視図である。It is a perspective view which shows schematically the structure of the window member and ICP antenna in FIG. 図2における閉回路に生成される誘導電流を説明するための図である。It is a figure for demonstrating the induced current produced | generated by the closed circuit in FIG. 閉回路の有無と処理空間における電子密度の分布との関係を示すグラフである。It is a graph which shows the relationship between the presence or absence of a closed circuit, and the distribution of the electron density in processing space. 図2の窓部材及びICPアンテナの第1の変形例を示す斜視図である。It is a perspective view which shows the 1st modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第2の変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第3の変形例を示す斜視図である。It is a perspective view which shows the 3rd modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第4の変形例を示す斜視図である。It is a perspective view which shows the 4th modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第5の変形例を示す斜視図である。It is a perspective view which shows the 5th modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第6の変形例を示す斜視図である。It is a perspective view which shows the 6th modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第7の変形例を示す斜視図である。It is a perspective view which shows the 7th modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第8の変形例を示す斜視図である。It is a perspective view which shows the 8th modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第9の変形例を示す斜視図である。It is a perspective view which shows the 9th modification of the window member of FIG. 2, and an ICP antenna. 図2の窓部材及びICPアンテナの第10の変形例を示す斜視図である。It is a perspective view which shows the 10th modification of the window member and ICP antenna of FIG. 図2の窓部材及びICPアンテナの第11の変形例を示す斜視図である。It is a perspective view which shows the 11th modification of the window member of FIG. 2, and an ICP antenna. 本発明の実施の形態に係るプラズマ生成装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the plasma production apparatus which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の実施の形態に係るプラズマ処理装置について説明する。   First, a plasma processing apparatus according to an embodiment of the present invention will be described.

図1は、本発明の実施の形態に係るプラズマ処理装置の構成を概略的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a configuration of a plasma processing apparatus according to an embodiment of the present invention.

図1において、プラズマ処理装置10は、例えば、FPD用のガラス基板(以下、単に「基板」という。)Sを収容するチャンバ11(処理室、減圧室)と、該チャンバ11の底部に配置されて基板Sを上面に載置する載置台12と、チャンバ11の外部においてチャンバ11の内部の載置台12と対向するように配置されるICPアンテナ13(誘導結合アンテナ)と、チャンバ11の天井部を構成し、載置台12及びICPアンテナ13の間に介在する窓部材14とを備える。   In FIG. 1, a plasma processing apparatus 10 is disposed, for example, at a chamber 11 (processing chamber, decompression chamber) that houses a glass substrate (hereinafter simply referred to as “substrate”) S for FPD, and at the bottom of the chamber 11. A mounting table 12 for mounting the substrate S on the upper surface, an ICP antenna 13 (inductive coupling antenna) disposed outside the chamber 11 so as to face the mounting table 12 inside the chamber 11, and a ceiling portion of the chamber 11 And a window member 14 interposed between the mounting table 12 and the ICP antenna 13.

チャンバ11は略筐体状であり、例えば、2880mm×3130mmのサイズを有する第10世代の基板Sを収容可能に大きさが設定されている。チャンバ11は排気装置15を有し、該排気装置15はチャンバ11を真空引きしてチャンバ11の内部を減圧環境にする。一方、チャンバ11の外部は大気圧環境であり、窓部材14はチャンバ11の内部と外部とを仕切る。窓部材14は導電体、例えば、アルミ等の金属又は半導体、例えば、シリコンによって構成される。   The chamber 11 has a substantially casing shape, and is sized to accommodate a 10th generation substrate S having a size of 2880 mm × 3130 mm, for example. The chamber 11 has an exhaust device 15, and the exhaust device 15 evacuates the chamber 11 to make the inside of the chamber 11 a reduced pressure environment. On the other hand, the outside of the chamber 11 is an atmospheric pressure environment, and the window member 14 partitions the inside of the chamber 11 from the outside. The window member 14 is made of a conductor, for example, a metal such as aluminum, or a semiconductor, for example, silicon.

窓部材14は、少なくとも絶縁部材、若しくは絶縁被膜(いずれも図示しない)を介して、チャンバ11に設けられた支持部12によって支持されている。これにより、窓部材14とチャンバ11は直接的に接触せず、電気的に導通しない。また、窓部材14及びチャンバ11の間を隔絶する上記絶縁部材、若しくは絶縁被膜の厚みを制御することにより、窓部材14及びチャンバ11の間に誘導結合が生じるのを抑制することもできる。   The window member 14 is supported by a support portion 12 provided in the chamber 11 via at least an insulating member or an insulating coating (both not shown). As a result, the window member 14 and the chamber 11 are not in direct contact and are not electrically connected. In addition, by controlling the thickness of the insulating member or insulating film that isolates the window member 14 and the chamber 11 from each other, it is possible to suppress inductive coupling between the window member 14 and the chamber 11.

窓部材14は少なくとも載置台12に載置された基板Sの全面を覆うことが可能な大きさを有する。なお、窓部材14は、後述するように、複数の分割片35から構成されてもよい。   The window member 14 has a size that can cover at least the entire surface of the substrate S mounted on the mounting table 12. In addition, the window member 14 may be comprised from the some division | segmentation piece 35 so that it may mention later.

載置台12は、導電性部材からなり、基台として機能する直方体状のサセプタ16と、該サセプタ16の上面に形成された静電チャック17とを有する。サセプタ16は給電棒18及び整合器19を介して高周波電源20に接続される。高周波電源20は、比較的低い高周波電力、例えば、13.56MHz以下の高周波電力をサセプタ16へ供給し、該サセプタ16においてバイアス電位を発生させる。これにより、載置台12及び窓部材14の間の処理空間PSで生成されるプラズマ中のイオンを載置台12に載置される基板Sへ引き込む。   The mounting table 12 is made of a conductive member, and includes a rectangular parallelepiped susceptor 16 that functions as a base, and an electrostatic chuck 17 formed on the upper surface of the susceptor 16. The susceptor 16 is connected to a high frequency power source 20 through a power supply rod 18 and a matching unit 19. The high frequency power supply 20 supplies relatively low high frequency power, for example, high frequency power of 13.56 MHz or less to the susceptor 16, and generates a bias potential in the susceptor 16. As a result, ions in the plasma generated in the processing space PS between the mounting table 12 and the window member 14 are drawn into the substrate S mounted on the mounting table 12.

静電チャック17は電極板21を内蔵する誘電性部材からなり、該電極板21には直流電源22が接続される。静電チャック17は直流電源22から印加される直流電圧に起因する静電気力によって基板Sを載置台12へ静電吸着する。   The electrostatic chuck 17 is made of a dielectric member containing an electrode plate 21, and a DC power source 22 is connected to the electrode plate 21. The electrostatic chuck 17 electrostatically attracts the substrate S to the mounting table 12 by electrostatic force caused by a DC voltage applied from the DC power supply 22.

チャンバ11の側壁には処理ガス導入口23が設けられ、処理ガス供給装置24から供給される処理ガスをチャンバ11内へ導入する。ただし、処理の均一性の観点からはチャンバ11の側壁からでなくチャンバ11の上部から処理ガスを供給する方が望ましいため、例えば、窓部材14を複数の分割片35で構成するような場合には、各分割片35を支える梁部にガス導入口を設けてもよい。   A processing gas introduction port 23 is provided on the side wall of the chamber 11, and the processing gas supplied from the processing gas supply device 24 is introduced into the chamber 11. However, since it is desirable to supply the processing gas not from the side wall of the chamber 11 but from the upper part of the chamber 11 from the viewpoint of processing uniformity, for example, when the window member 14 is constituted by a plurality of divided pieces 35. May be provided with a gas inlet in a beam portion supporting each divided piece 35.

ICPアンテナ13は窓部材14の上面に沿って配置される環状の導線、若しくは導体板からなり、整合器25を介して高周波電源26に接続される。なお、本明細書及び特許請求の範囲において、導線と導体板を総称して導線と称する。   The ICP antenna 13 is formed of an annular conductor or a conductor plate disposed along the upper surface of the window member 14, and is connected to a high frequency power supply 26 through a matching unit 25. In addition, in this specification and a claim, a conducting wire and a conductor board are named generically and are called a conducting wire.

プラズマ処理装置10では、高周波電流がICPアンテナ13を流れ、該高周波電流はICPアンテナ13に磁力線を発生させる。発生した磁力線は、従来のように窓部材が誘電体で形成されている場合には当該窓部材を透過するが、本実施の形態のように、窓部材14が導電体で形成されている場合には窓部材14の周縁部を通り、窓部材14にスリットが形成されている場合にはスリットを通過し、窓部材14が複数の分割片35で構成されている場合には各分割片35の間隙を通り、チャンバ11内において磁界を構成する。該磁界が時間的に変化すると誘導電界を生じ、該誘導電界によって加速された電子がチャンバ11内に導入された処理ガスの分子や原子と衝突してプラズマが生じる。   In the plasma processing apparatus 10, a high-frequency current flows through the ICP antenna 13, and the high-frequency current generates lines of magnetic force in the ICP antenna 13. The generated magnetic field lines pass through the window member when the window member is formed of a dielectric as in the conventional case, but when the window member 14 is formed of a conductor as in the present embodiment. Passes through the peripheral edge of the window member 14 and passes through the slit when the window member 14 is formed with a slit, and each divided piece 35 when the window member 14 is composed of a plurality of divided pieces 35. A magnetic field is formed in the chamber 11 through the gap. When the magnetic field changes with time, an induced electric field is generated, and electrons accelerated by the induced electric field collide with molecules or atoms of the processing gas introduced into the chamber 11 to generate plasma.

生成されるプラズマ中のイオンはサセプタ16のバイアス電位によって基板Sへ引き込まれ、同プラズマ中のラジカルは移動して基板Sへ到達し、それぞれ基板Sへプラズマ処理、例えば、物理的エッチング処理や化学的エッチング処理を施す。   Ions in the generated plasma are attracted to the substrate S by the bias potential of the susceptor 16, and radicals in the plasma move to reach the substrate S, and each of the substrates S is subjected to plasma processing, for example, physical etching processing or chemicals. Etching process is performed.

図2は、図1における窓部材及びICPアンテナの構成を概略的に示す斜視図である。   FIG. 2 is a perspective view schematically showing the configuration of the window member and the ICP antenna in FIG.

図2において、窓部材14は矩形を呈し、ICPアンテナ13は窓部材14と平行に配された直線状の平行部13aと、平行部13aの両端から窓部材14に対して垂直に立ち上がる2つの垂直部13b,13cとを有する。平行部13aは窓部材14の対角線に部分的に沿って配され、垂直部13bは整合器25を介して高周波電源26に接続され、垂直部13cは接地される。平行部13a及び垂直部13bの接続部13d、並びに、平行部13a及び垂直部13cの接続部13eと、窓部材14との間には絶縁材27が配され、ICPアンテナ13は窓部材14から絶縁される。   In FIG. 2, the window member 14 has a rectangular shape, and the ICP antenna 13 includes two linear parallel portions 13 a arranged in parallel with the window member 14, and two rising vertically from the both ends of the parallel portion 13 a with respect to the window member 14. And vertical portions 13b and 13c. The parallel portion 13a is disposed partially along the diagonal line of the window member 14, the vertical portion 13b is connected to the high frequency power supply 26 through the matching unit 25, and the vertical portion 13c is grounded. An insulating material 27 is disposed between the window member 14 and the connecting portion 13d of the parallel portion 13a and the vertical portion 13b, and the connecting portion 13e of the parallel portion 13a and the vertical portion 13c, and the window member 14 is connected to the ICP antenna 13. Insulated.

また、プラズマ処理装置10は、窓部材14の一の対角線に関する両頂点14a,14bに両端が接続される導線28を有し、該導線28はコンデンサ29を有する。   Further, the plasma processing apparatus 10 has a conductive wire 28 whose both ends are connected to both vertices 14 a and 14 b related to one diagonal line of the window member 14, and the conductive wire 28 has a capacitor 29.

導線28及び窓部材14は図中破線で示す環状の閉回路30を形成するが、閉回路30 が窓部材14と平行な面内に存在せず、閉回路30が存在する面と窓部材14とが交差するように、導線28が両端で窓部材14と接続される。また、ICPアンテナ13の平行部13aは窓部材14の上面に沿って配置されるため、ICPアンテナ13と閉回路30は近接する。なお、本実施の形態では、ICPアンテナ13、窓部材14及び導線28がアンテナ構造体を構成する。   The conducting wire 28 and the window member 14 form an annular closed circuit 30 indicated by a broken line in the figure, but the closed circuit 30 does not exist in a plane parallel to the window member 14, and the surface where the closed circuit 30 exists and the window member 14. Are connected to the window member 14 at both ends thereof. Further, since the parallel portion 13a of the ICP antenna 13 is disposed along the upper surface of the window member 14, the ICP antenna 13 and the closed circuit 30 are close to each other. In the present embodiment, the ICP antenna 13, the window member 14, and the conducting wire 28 constitute an antenna structure.

図3は、図2における閉回路に生成される誘導電流を説明するための図である。   FIG. 3 is a diagram for explaining the induced current generated in the closed circuit in FIG.

図3において、ICPアンテナ13に高周波電流31が流れると、該高周波電流31はICPアンテナ13の回りに磁力線32を発生させる。閉回路30はICPアンテナ13に近接するので、ICPアンテナ13の回りに発生する磁力線32は、閉回路30が形成する環状部30aを通過する。このとき、磁力線32の電磁誘導によって閉回路30に誘導電流33が流れ、該誘導電流33は環状部30aを通過する磁力線(以下、「副磁力線」という。)34を発生させる。   In FIG. 3, when a high frequency current 31 flows through the ICP antenna 13, the high frequency current 31 generates a magnetic force line 32 around the ICP antenna 13. Since the closed circuit 30 is close to the ICP antenna 13, the magnetic lines of force 32 generated around the ICP antenna 13 pass through the annular portion 30 a formed by the closed circuit 30. At this time, an induced current 33 flows in the closed circuit 30 by electromagnetic induction of the magnetic lines of force 32, and the induced current 33 generates magnetic lines of force (hereinafter referred to as “sub-magnetic lines of force”) 34 that pass through the annular portion 30 a.

本実施の形態では、磁力線32が窓部材14の周縁部を通る等して処理空間PSにおいて磁界(以下、「主磁界」という。)を生じさせるが、磁力線32は窓部材14に沿って分布するため、主磁界も窓部材14に沿って発生する。また、副磁力線34も窓部材14 の周縁部を通る等して処理空間PSにおいて磁界(以下、「副磁界」という。)を生じさせるが、副磁力線34も窓部材14に沿って発生する。したがって、主磁界と副磁界は処理空間PSにおいて重畳する。   In the present embodiment, the magnetic field lines 32 pass through the peripheral edge of the window member 14 to generate a magnetic field (hereinafter referred to as “main magnetic field”) in the processing space PS, but the magnetic field lines 32 are distributed along the window member 14. Therefore, the main magnetic field is also generated along the window member 14. Further, the secondary magnetic field lines 34 also pass through the peripheral edge of the window member 14 to generate a magnetic field (hereinafter referred to as “sub-magnetic field”) in the processing space PS, but the secondary magnetic field lines 34 are also generated along the window member 14. Therefore, the main magnetic field and the sub magnetic field overlap in the processing space PS.

このとき、処理空間PSにおいて主磁界と副磁界が逆向きであれば、互いに打ち消し合うため、磁界によって処理空間PSにおいて発生する誘導電界が弱くなり、プラズマの生成効率が低下する。   At this time, if the main magnetic field and the sub magnetic field are opposite to each other in the processing space PS, they cancel each other, so that the induced electric field generated in the processing space PS by the magnetic field is weakened, and the plasma generation efficiency is reduced.

そこで、本実施の形態では、主磁界と副磁界の向きを同じ向きにするために、誘導電流33の流れる方向を高周波電流31が流れる方向と同じにする。上述した特許文献1において開示されているように、閉回路30を流れる誘導電流33は下記近似式(1)で示される。
IND ≒ −MωIRF/(L−1/Cω) … (1)
ここで、IINDは誘導電流33、MはICPアンテナ13及び閉回路30の間の相互インダクタンス、ωは角周波数、IRFは高周波電流31、Lは閉回路30の自己インダクタンス、Cはコンデンサ29の静電容量、L−1/Cωは閉回路30のリアクタンスである。
Therefore, in the present embodiment, the direction in which the induced current 33 flows is the same as the direction in which the high-frequency current 31 flows in order to make the directions of the main magnetic field and the sub-magnetic field the same. As disclosed in Patent Document 1 described above, the induced current 33 flowing through the closed circuit 30 is expressed by the following approximate expression (1).
I IND ≈ −MωI RF / (L S −1 / C S ω) (1)
Here, I IND is an induction current 33, M is a mutual inductance between the ICP antenna 13 and the closed circuit 30, ω is an angular frequency, I RF is a high frequency current 31, L S is a self-inductance of the closed circuit 30, and C S is The capacitance of the capacitor 29, L S −1 / C S ω, is the reactance of the closed circuit 30.

上記近似式(1)より、閉回路30のリアクタンスを負にすると、IIND(誘導電流33)の符号(正又は負)がIRF(高周波電流31)の符号と同じになり、誘導電流33の流れる方向は高周波電流31が流れる方向と同じとなるため、本実施の形態では閉回路30のリアクタンスが負になるようにコンデンサ29の静電容量(C)が調整される。なお、コンデンサ29が容量固定コンデンサの場合は、当該コンデンサ29を取り替えることによって静電容量が調整される。 From the above approximate expression (1), when the reactance of the closed circuit 30 is made negative, the sign (positive or negative) of I IND (inductive current 33) becomes the same as the sign of I RF (high frequency current 31). Is the same as the direction in which the high-frequency current 31 flows. In this embodiment, the capacitance (C S ) of the capacitor 29 is adjusted so that the reactance of the closed circuit 30 becomes negative. If the capacitor 29 is a fixed capacitance capacitor, the capacitance is adjusted by replacing the capacitor 29.

上述したように、閉回路30のリアクタンスを負にすることにより、誘導電流33の流れる方向を高周波電流31が流れる方向と同じにして処理空間PSにおいて主磁界と副磁界を同じ向きにすることができ、処理空間PSにおいて発生する誘導電界を強くすることができる。その結果、例え、磁力線32が窓部材14の周縁部を通る等して処理空間PSに到達する際に減衰したとしても、プラズマの生成効率が低下するのを防止することができる。   As described above, by making the reactance of the closed circuit 30 negative, the direction in which the induced current 33 flows can be made the same as the direction in which the high-frequency current 31 flows, so that the main magnetic field and the sub magnetic field have the same direction in the processing space PS. The induced electric field generated in the processing space PS can be strengthened. As a result, even if the magnetic field lines 32 are attenuated when passing through the peripheral edge of the window member 14 and reaching the processing space PS, it is possible to prevent the plasma generation efficiency from being lowered.

すなわち、本実施の形態に係るプラズマ処理装置10によれば、独立したフローティングコイルを設けることなく、装置の構成を簡素化することができるとともに、プラズマの生成効率の低下を防止することができる。   That is, according to the plasma processing apparatus 10 according to the present embodiment, it is possible to simplify the configuration of the apparatus and prevent a decrease in plasma generation efficiency without providing an independent floating coil.

また、誘導電流33を効率よく生成するには、上記近似式(1)より、閉回路30のリアクタンスの絶対値を小さくするのが好ましく、コンデンサ29の静電容量を大きくするのが好ましい。   Further, in order to efficiently generate the induced current 33, it is preferable to reduce the absolute value of the reactance of the closed circuit 30 and to increase the capacitance of the capacitor 29 from the approximate expression (1).

図4は、閉回路の有無と処理空間における電子密度の分布との関係を示すグラフである。   FIG. 4 is a graph showing the relationship between the presence or absence of a closed circuit and the distribution of electron density in the processing space.

本発明者等が、プラズマ処理装置10において、絶縁材27を除去するとともにICPアンテナ13を接続部13d,13eで窓部材14に直接接続して、窓部材14を載置台12と対をなす平行平板電極として機能させた場合の電子密度を「●」で示し、コンデンサ29の静電容量を極小にして閉回路30のリアクタンスを極大にすることによって閉回路30に誘導電流33を流さず、ICPアンテナ13のみを機能させた場合の電子密度を「▲」で示し、コンデンサ29の静電容量を大きくして閉回路30のリアクタンスを小さくすることによって閉回路30に誘導電流33を流し、ICPアンテナ13のみならず閉回路30に誘導電流33を流して閉回路30もアンテナとして機能させた場合の電子密度を「×」で示す。   In the plasma processing apparatus 10, the inventors remove the insulating material 27 and connect the ICP antenna 13 directly to the window member 14 through the connecting portions 13 d and 13 e, so that the window member 14 and the mounting table 12 are paired in parallel. The electron density when functioning as a flat plate electrode is indicated by “●”, the capacitance of the capacitor 29 is minimized, and the reactance of the closed circuit 30 is maximized. The electron density when only the antenna 13 is functioned is indicated by “▲”, and the induced current 33 is caused to flow through the closed circuit 30 by increasing the capacitance of the capacitor 29 and reducing the reactance of the closed circuit 30, thereby generating an ICP antenna. The electron density when not only 13 but also the closed circuit 30 functions as an antenna by causing the induced current 33 to flow through the closed circuit 30 is indicated by “x”.

窓部材14を載置台12と対をなす平行平板電極として機能させた場合、プラズマが処理空間PSに均一に分布して電子密度も均一となるが、処理空間PSには電界のみが発生し、磁界が発生しないため、処理空間PSにおいて電子が加速されずに処理ガスの分子や電子とあまり衝突せず、結果としてプラズマの生成効率が低下し、全体的に電子密度が低くなることが分かった。   When the window member 14 functions as a parallel plate electrode paired with the mounting table 12, the plasma is uniformly distributed in the processing space PS and the electron density is uniform, but only an electric field is generated in the processing space PS. Since no magnetic field is generated, electrons are not accelerated in the processing space PS and do not collide with the molecules and electrons of the processing gas so much. As a result, the plasma generation efficiency is lowered, and the electron density is lowered overall. .

また、ICPアンテナ13のみを機能させた場合、処理空間PSにおいて主磁界が発生するものの、平行部13aは窓部材14の両頂点14a,14b近傍には存在していないため、主磁界は窓部材14の中心部近傍で特に強くなり、その結果、電子密度が窓部材14の中心部近傍で特に高くなることが分かった。   When only the ICP antenna 13 is functioned, a main magnetic field is generated in the processing space PS, but the parallel portion 13a does not exist in the vicinity of both vertices 14a and 14b of the window member 14, and therefore the main magnetic field is generated by the window member. It was found that the strength was particularly strong in the vicinity of the center portion of 14, and as a result, the electron density was particularly high near the center portion of the window member 14.

これらに対して、ICPアンテナ13のみならず閉回路30もアンテナとして機能させた場合、処理空間PSにおいて主磁界だけでなく副磁界も発生するため、処理空間PSにおいて強い磁界が発生し、結果として処理空間PSの全体において電子密度が高くなることが分かった。特に、導線28と窓部材14の接続位置である両頂点14a,14bは、 窓部材14の周縁部の近くに存在し、高い磁束密度で磁力線が通過することが可能であるため、両頂点14a,14bの近傍で副磁界が強くなり、もって、電子密度も両頂点14a,14bの近傍で局地的に高くなることが分かった。   On the other hand, when not only the ICP antenna 13 but also the closed circuit 30 functions as an antenna, not only a main magnetic field but also a sub-magnetic field is generated in the processing space PS, so that a strong magnetic field is generated in the processing space PS. It turned out that an electron density becomes high in the whole processing space PS. In particular, the two apexes 14a and 14b, which are the connection positions of the conducting wire 28 and the window member 14, exist near the peripheral edge of the window member 14, and the magnetic lines of force can pass therethrough with a high magnetic flux density. , 14b, the sub-magnetic field becomes stronger, and thus the electron density is locally increased near both vertices 14a, 14b.

すなわち、本実施の形態に係るプラズマ処理装置10によれば、ICPアンテナ13のみならず閉回路30に誘導電流33を流して閉回路30もアンテナとして機能させることにより、処理空間PSに強い磁界を発生させてプラズマの生成効率を向上することができることが分かった。   That is, according to the plasma processing apparatus 10 according to the present embodiment, a strong magnetic field is applied to the processing space PS by causing the closed circuit 30 to function as an antenna by causing the induced current 33 to flow not only to the ICP antenna 13 but also to the closed circuit 30. It was found that the generation efficiency of plasma can be improved.

また、上述したように、導線28と窓部材14の接続位置は高い磁束密度で磁力線が通過することが可能であり、当該接続位置近傍で副磁界を強くすることができるため、処理空間PSのプラズマの分布に応じて導線28と窓部材14の接続位置を変更することにより、処理空間PSにおけるプラズマの分布を均一にすることができる。例えば、処理空間PSにおいてプラズマの密度を高めたい部分に対向する位置で導線28を窓部材14へ接続すれば、プラズマの密度を高めたい部分における副磁界を強くすることができ、もって、当該部分において副磁界によるプラズマの生成効率を向上してプラズマの密度を高くすることができる。   Further, as described above, the connection position between the conductive wire 28 and the window member 14 can pass the magnetic lines of force with a high magnetic flux density, and the sub-magnetic field can be strengthened in the vicinity of the connection position. By changing the connection position between the conductor 28 and the window member 14 according to the plasma distribution, the plasma distribution in the processing space PS can be made uniform. For example, if the conductor 28 is connected to the window member 14 at a position facing the portion where the plasma density is to be increased in the processing space PS, the sub-magnetic field in the portion where the plasma density is desired to be increased can be increased. The plasma generation efficiency by the sub magnetic field can be improved and the plasma density can be increased.

以上、本発明について、実施の形態を用いて説明したが、本発明は上述した実施の形態に限定されるものではない。   Although the present invention has been described above by using the embodiment, the present invention is not limited to the above-described embodiment.

例えば、ICPアンテナ13の平行部13aは、窓部材14の対角線に沿って配される必要はなく、図5に示すように、窓部材14の長辺と平行に配されてもよい(第1の変形例)。また、導線28も窓部材14の両頂点14a,14bに接続される必要はなく、窓部材14とともに形成する閉回路30の環状部30aを磁力線32が通過可能であれば、特に、接続箇所は制約されない。例えば、ICPアンテナ13の平行部13aが窓部材14の長辺と平行に配される場合、図5に示すように、導線28を窓部材14の両短辺14c,14dに接続して閉回路30を窓部材14の長辺と平行に形成してもよい。   For example, the parallel portion 13a of the ICP antenna 13 does not need to be arranged along the diagonal line of the window member 14, and may be arranged in parallel with the long side of the window member 14 as shown in FIG. Variation of). Further, the conductive wire 28 does not need to be connected to both the vertices 14a and 14b of the window member 14, and particularly if the magnetic lines 32 can pass through the annular portion 30a of the closed circuit 30 formed together with the window member 14, the connecting portion is Not constrained. For example, when the parallel part 13a of the ICP antenna 13 is arranged in parallel with the long side of the window member 14, the conductor 28 is connected to both short sides 14c and 14d of the window member 14 as shown in FIG. 30 may be formed parallel to the long side of the window member 14.

さらに、導線28は窓部材14の周縁部に接続される必要はなく、図6に示すように、閉回路30の環状部30aを磁力線32が通過可能である限り、導線28を窓部材14の周縁部以外の箇所に接続してもよい(第2の変形例)。すなわち、閉回路30は窓部材14よりも小さくてもよい。また、導線28を窓部材14の周縁部以外の箇所に接続して閉回路30を小さくすることにより、副磁界を生じさせる範囲を限定して処理空間PSにおけるプラズマの分布の局所的な改善を行うことができる。   Further, the conductor 28 does not need to be connected to the peripheral portion of the window member 14, and as shown in FIG. 6, the conductor 28 is connected to the window member 14 as long as the magnetic lines 32 can pass through the annular portion 30 a of the closed circuit 30. You may connect to places other than a peripheral part (2nd modification). That is, the closed circuit 30 may be smaller than the window member 14. Further, the conductor 28 is connected to a portion other than the peripheral portion of the window member 14 to reduce the closed circuit 30, thereby limiting the range in which the secondary magnetic field is generated and locally improving the plasma distribution in the processing space PS. It can be carried out.

また、ICPアンテナ13における平行部13aは直線状に形成されていなくてもよく、例えば、図7に示すように、巻回されてコイル状に形成されていてもよく(第3の変形例)、さらに、導線28も、閉回路30の環状部30aを磁力線32が通過可能であれば、例えば、図8に示すように、磁力線32が通過する通過面30bを形成するように巻回されてコイル状に形成されてもよい(第4の変形例) 。   Moreover, the parallel part 13a in the ICP antenna 13 may not be formed in a straight line shape, and may be wound and formed in a coil shape as shown in FIG. 7, for example (third modified example). Furthermore, if the magnetic line 32 can pass through the annular portion 30a of the closed circuit 30, the conductive wire 28 is also wound so as to form a passage surface 30b through which the magnetic line 32 passes, for example, as shown in FIG. It may be formed in a coil shape (fourth modification).

さらに、閉回路30が存在する面と窓部材14とは交差する必要はなく、例えば、閉回路30が存在する面と窓部材14とが平行であってもよい(第5の変形例)。この場合、図9に示すように、導線28によって環状部28aを形成し、該環状部28aが存在する面が窓部材14と平行となる。   Furthermore, the surface where the closed circuit 30 exists and the window member 14 do not need to intersect. For example, the surface where the closed circuit 30 exists and the window member 14 may be parallel (fifth modification). In this case, as shown in FIG. 9, an annular portion 28 a is formed by the conducting wire 28, and the surface on which the annular portion 28 a exists is parallel to the window member 14.

また、窓部材14は複数の分割片35に分割され、各分割片35は互いに誘電体(図示しない)によって分離されて互いに電気的に導通しないように直接接触しなくてもよい(第6の変形例)。この場合、図10に示すように、隣接する2つ分割片35は導線36(別の導線)によって接続されて互いに導通し、導線28の一端は一の分割片35に接続され、導線28の他端は他の分割片35に接続される。特に、一の分割片35では、導線36が接続される場所から離れた縁部35aへ導線28の一端が接続され、他の分割片35でも、導線36が接続される場所から離れた縁部35bへ導線28の他端が接続される。これにより、隣接する2つの分割片35の配列方向に沿う閉回路30を形成することができる。なお、図11に示すように、導線36もコンデンサ37を有していてもよい(第7の変形例) 。   Further, the window member 14 is divided into a plurality of divided pieces 35, and the divided pieces 35 are separated from each other by a dielectric (not shown) and do not have to be in direct contact with each other so as not to be electrically connected to each other (sixth) Modification). In this case, as shown in FIG. 10, the adjacent two divided pieces 35 are connected by a conductive wire 36 (another conductive wire) and are electrically connected to each other, and one end of the conductive wire 28 is connected to the one divided piece 35. The other end is connected to another divided piece 35. In particular, in one divided piece 35, one end of the conductive wire 28 is connected to an edge portion 35a away from the place where the conducting wire 36 is connected, and in the other divided piece 35, the edge portion away from the place where the conducting wire 36 is connected. The other end of the conducting wire 28 is connected to 35b. Thereby, the closed circuit 30 along the arrangement direction of two adjacent divided pieces 35 can be formed. In addition, as shown in FIG. 11, the conducting wire 36 may also have the capacitor | condenser 37 (7th modification).

閉回路30を構成する分割片35の数は2つに限られず、例えば、処理空間PSにおいて広範囲の副磁界を発生させる場合には、3つ以上の分割片35を組み合わせて閉回路30を形成するのが好ましい。すなわち、複数の分割片35の組み合わせを変更することによって処理空間PSにおける副磁界の分布を任意に調整することができる。   The number of divided pieces 35 constituting the closed circuit 30 is not limited to two. For example, when generating a wide range of sub-magnetic fields in the processing space PS, the closed circuit 30 is formed by combining three or more divided pieces 35. It is preferable to do this. That is, the distribution of the sub magnetic field in the processing space PS can be arbitrarily adjusted by changing the combination of the plurality of divided pieces 35.

さらに、複数の分割片35で閉回路30を構成する場合、閉回路30の環状部30aを磁力線32が通過可能であれば、ICPアンテナ13は全ての分割片35に対向する必要はない。例えば、図12に示すように、導線28の一端が一の分割片35の頂部35cに接続され、導線28の他端が他の分割片35の頂部35dに接続されて2つの分割片35と導線28で閉回路30を形成する一方、ICPアンテナ13が一の分割片35のみに対向していてもよい(第8の変形例)。このとき、閉回路30を構成する他の分割片35には誘導電流33が流れるため、ICPアンテナ13が対向しない他の分割片35に対向する処理空間PSの部分にも磁界を生じさせることができる。   Further, when the closed circuit 30 is configured by a plurality of divided pieces 35, the ICP antenna 13 does not have to face all the divided pieces 35 as long as the magnetic lines of force 32 can pass through the annular portion 30 a of the closed circuit 30. For example, as shown in FIG. 12, one end of the conducting wire 28 is connected to the top portion 35 c of one divided piece 35, and the other end of the conducting wire 28 is connected to the top portion 35 d of the other divided piece 35. While the closed circuit 30 is formed by the conducting wire 28, the ICP antenna 13 may face only one divided piece 35 (eighth modification). At this time, since the induced current 33 flows through the other divided pieces 35 constituting the closed circuit 30, a magnetic field may be generated also in the portion of the processing space PS facing the other divided pieces 35 where the ICP antenna 13 does not face. it can.

また、複数の分割片35で閉回路30を構成する場合、図13に示すように、隣接する2つの分割片35の間の誘電体38の一部38aを薄く形成してもよく、このとき、薄く形成された誘電体38の一部38aの静電容量が大きくなり、コンデンサとして機能する。したがって、導線28にコンデンサ29を設けることなく閉回路30を形成でき、もって、閉回路30の構成を簡素化して部品点数を削減することができる(第9の変形例)。   Further, when the closed circuit 30 is configured by a plurality of divided pieces 35, as shown in FIG. 13, a part 38a of the dielectric 38 between two adjacent divided pieces 35 may be formed thinly. The capacitance of the part 38a of the thinly formed dielectric 38 is increased and functions as a capacitor. Therefore, the closed circuit 30 can be formed without providing the capacitor 29 on the conducting wire 28, so that the configuration of the closed circuit 30 can be simplified and the number of parts can be reduced (the ninth modification).

さらに、窓部材14が複数の分割片35に分割される場合、図14に示すように、分割片35の各々に対応して導線28を設け、分割片35の各々に導線28の各々の両端を接続することにより、分割片35の各々において閉回路30を形成してもよい(第10の変形例)。この場合、各分割片35に対向する処理空間PSの部分における副磁界を個別に調整することができ、もって、処理空間PSにおけるプラズマの分布をより細かく調整することができる。   Further, when the window member 14 is divided into a plurality of divided pieces 35, as shown in FIG. 14, a conductive wire 28 is provided corresponding to each of the divided pieces 35, and both ends of each of the conductive wires 28 are provided in each of the divided pieces 35. May be connected to form a closed circuit 30 in each of the divided pieces 35 (a tenth modification). In this case, the sub-magnetic field in the part of the processing space PS facing each divided piece 35 can be individually adjusted, so that the plasma distribution in the processing space PS can be adjusted more finely.

なお、窓部材14の全面において均一なプラズマを形成するためには全ての分割片35に対応して導線28を設けることが望ましいが、処理空間PSの形状(例えば、非対称形状)等、プラズマの密度分布が不均一になる要因がある場合や、意図的にプラズマの密度分布に偏りを持たせたい場合には、全ての分割片35ではなく、一部の分割片35に対応して導線28を設けてもよい。すなわち、処理空間PSの形状やプラズマ処理の内容等に応じ、本実施の形態では、少なくとも1つの分割片35に対応して導線28が設けられていればよい。   In order to form a uniform plasma on the entire surface of the window member 14, it is desirable to provide the conductive wires 28 corresponding to all the divided pieces 35. However, the shape of the processing space PS (for example, an asymmetric shape) or the like When there is a factor causing the density distribution to be non-uniform, or when it is desired to make the density distribution of the plasma intentionally biased, the lead wires 28 correspond to some of the divided pieces 35 instead of all of the divided pieces 35. May be provided. That is, according to the shape of the processing space PS, the content of the plasma processing, and the like, in the present embodiment, it is only necessary that the conductive wire 28 is provided corresponding to at least one divided piece 35.

また、窓部材14の形状は矩形に限られず、例えば、円形であってもよい。この場合も、図15に示すように、窓部材14を複数の分割片39に分割し、隣接する分割片39を導線28や導線36で接続して閉回路が形成される(第11の変形例)。   Further, the shape of the window member 14 is not limited to a rectangle, and may be a circle, for example. Also in this case, as shown in FIG. 15, the window member 14 is divided into a plurality of divided pieces 39, and the adjacent divided pieces 39 are connected by the conductive wires 28 and 36 to form a closed circuit (the eleventh modification). Example).

上述したプラズマ処理装置10では、導線28が有するコンデンサ29は容量固定のコンデンサであるが、当該コンデンサ29を容量可変コンデンサで構成してもよい。この場合、処理空間PS内のプラズマの密度に応じてコンデンサ29の静電容量を調整することによって誘導電流33の値を変更し、処理空間PSに生じる副磁界の強さを変更する。これにより、処理空間PSにおけるプラズマの密度分布を調整することができる。   In the plasma processing apparatus 10 described above, the capacitor 29 included in the conducting wire 28 is a capacitor with a fixed capacity, but the capacitor 29 may be configured with a variable capacity capacitor. In this case, the value of the induced current 33 is changed by adjusting the capacitance of the capacitor 29 according to the density of the plasma in the processing space PS, and the strength of the sub magnetic field generated in the processing space PS is changed. Thereby, the density distribution of the plasma in the processing space PS can be adjusted.

また、本発明はプラズマの生成効率を向上することから、内部において基板Sへプラズマ処理を施すプラズマ処理装置10だけでなく 各種用途に用いられるプラズマのプラズマ源としてのプラズマ生成装置にも適用することができる。例えば、本発明が適用されたプラズマ生成装置40としては、図16に示すように、図1のプラズマ処理装置10から載置台12及び該載置台12に関連する構成要素を除去したものとなり、例えば、チャンバ11からプラズマを取り出して他の箇所へ供給するリモートプラズマ装置として用いることができる。   In addition, since the present invention improves the plasma generation efficiency, the present invention can be applied not only to the plasma processing apparatus 10 that performs plasma processing on the substrate S but also to a plasma generation apparatus as a plasma source of plasma used in various applications. Can do. For example, as shown in FIG. 16, the plasma generation apparatus 40 to which the present invention is applied is obtained by removing the mounting table 12 and the components related to the mounting table 12 from the plasma processing apparatus 10 of FIG. It can be used as a remote plasma apparatus that takes out plasma from the chamber 11 and supplies it to other locations.

PS 処理空間
S 基板
10 プラズマ処理装置
11 チャンバ
12 載置台
13 ICPアンテナ
14 窓部材
28,36 導線
29 コンデンサ
30 閉回路
35,39 分割片
38 誘電体
40 プラズマ生成装置
PS processing space S substrate 10 plasma processing apparatus 11 chamber 12 mounting table 13 ICP antenna 14 window member 28, 36 conducting wire 29 capacitor 30 closed circuit 35, 39 split piece 38 dielectric 40 plasma generating apparatus

Claims (16)

基板を収容する処理室と、該処理室の内部に配置されて前記基板を載置する載置台と、前記処理室の外部において前記載置台と対向するように配置されて高周波電源に接続される誘導結合アンテナとを備えるプラズマ処理装置において、
前記誘導結合アンテナと対向する前記処理室の一の壁部であって、前記処理室の他の壁部と電気的に直接導通しない前記一の壁部を構成し、且つ前記載置台及び前記誘導結合アンテナの間に介在する、導電体からなる窓部材と、
前記窓部材に両端が接続される導線とを備え、
前記窓部材及び前記導線は閉回路を形成し、
前記導線は少なくとも1つのコンデンサを有し、
前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差することを特徴とするプラズマ処理装置。
A processing chamber that accommodates the substrate, a mounting table that is disposed inside the processing chamber and mounts the substrate, and is disposed outside the processing chamber so as to face the mounting table and is connected to a high-frequency power source. In a plasma processing apparatus comprising an inductively coupled antenna,
One wall portion of the processing chamber facing the inductively coupled antenna, the first wall portion not electrically connecting directly to the other wall portion of the processing chamber, and the mounting table and the induction A window member made of a conductor interposed between the coupled antennas;
A conductive wire having both ends connected to the window member;
The window member and the conductor form a closed circuit;
The conductor has at least one capacitor;
The plasma processing apparatus, wherein the closed circuit does not exist in a plane parallel to the window member, and the plane on which the closed circuit exists intersects the window member.
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量及び前記高周波電源のプラズマを生じさせるための所定の周波数が調整されることを特徴とする請求項1記載のプラズマ処理装置。   2. The plasma processing apparatus according to claim 1, wherein the capacitance of the capacitor and a predetermined frequency for generating plasma of the high-frequency power source are adjusted so that reactance of the closed circuit becomes negative. 前記処理室内のプラズマの密度を高めたい部分に対向する位置で前記導線を前記窓部材へ接続することを特徴とする請求項1又は2記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the conductive wire is connected to the window member at a position facing a portion where the plasma density in the processing chamber is desired to be increased. 前記窓部材は複数の分割片に分割され、前記分割片の少なくとも一つに対応して前記導線が設けられ、前記導線が対応して設けられた前記分割片に前記導線の両端が接続されることを特徴とする請求項1乃至3のいずれか1項に記載のプラズマ処理装置。   The window member is divided into a plurality of divided pieces, the conductive wires are provided corresponding to at least one of the divided pieces, and both ends of the conductive wires are connected to the divided pieces provided corresponding to the conductive wires. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is a plasma processing apparatus. 前記窓部材は複数の分割片に分割され、
前記導線の一端は一の前記分割片に接続され、前記導線の他端は他の前記分割片に接続され、前記一の分割片及び前記他の分割片は、前記導線とは別の導線によって接続されることを特徴とする請求項1乃至3のいずれか1項に記載のプラズマ処理装置。
The window member is divided into a plurality of divided pieces,
One end of the conducting wire is connected to one of the divided pieces, the other end of the conducting wire is connected to the other divided piece, and the one divided piece and the other divided piece are separated by a conducting wire different from the conducting wire. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is connected.
前記誘導結合アンテナは前記一の分割片にのみ対向することを特徴とする請求項5記載のプラズマ処理装置。   6. The plasma processing apparatus according to claim 5, wherein the inductively coupled antenna faces only the one divided piece. 基板を収容する処理室と、該処理室の内部に配置されて前記基板を載置する載置台と、前記処理室の外部において前記載置台と対向するように配置されて高周波電源に接続される誘導結合アンテナとを備えるプラズマ処理装置において、
前記誘導結合アンテナと対向する前記処理室の一の壁部であって、前記処理室の他の壁部と電気的に直接導通しない前記一の壁部を構成し、且つ前記載置台及び前記誘導結合アンテナの間に介在する、導電体からなる窓部材と、
前記窓部材に両端が接続される導線とを備え、
前記窓部材及び前記導線は閉回路を形成し、
前記導線は少なくとも1つのコンデンサを有し、
前記窓部材は複数の分割片に分割され、
前記導線の一端は一の前記分割片に接続され、前記導線の他端は他の前記分割片に接続され、
前記一の分割片及び前記他の分割片は隣接するとともに間に配置された誘電体によって分離されて互いに電気的に導通しないように直接接触せず、
前記一の分割片及び前記他の分割片の間の前記誘電体の一部が薄く形成されることを特徴とするプラズマ処理装置。
A processing chamber that accommodates the substrate, a mounting table that is disposed inside the processing chamber and mounts the substrate, and is disposed outside the processing chamber so as to face the mounting table and is connected to a high-frequency power source. In a plasma processing apparatus comprising an inductively coupled antenna,
One wall portion of the processing chamber facing the inductively coupled antenna, the first wall portion not electrically connecting directly to the other wall portion of the processing chamber, and the mounting table and the induction A window member made of a conductor interposed between the coupled antennas;
A conductive wire having both ends connected to the window member;
The window member and the conductor form a closed circuit;
The conductor has at least one capacitor;
The window member is divided into a plurality of divided pieces,
One end of the conducting wire is connected to one of the divided pieces, and the other end of the conducting wire is connected to the other divided piece,
The one divided piece and the other divided piece are adjacent to each other and separated by a dielectric disposed therebetween, and are not in direct contact with each other so as not to be electrically connected to each other;
A part of the dielectric between the one divided piece and the other divided piece is formed thin.
前記導線は、前記誘導結合アンテナから生じる磁力線が通過する通過面を形成するように巻回されることを特徴とする請求項1乃至7のいずれか1項に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the conducting wire is wound so as to form a passing surface through which a magnetic line of force generated from the inductively coupled antenna passes. 前記コンデンサは容量可変コンデンサであり、前記処理室内のプラズマの密度に応じて前記コンデンサの静電容量を調整することによって前記閉回路を流れる誘導電流の値を変更することを特徴とする請求項1乃至8のいずれか1項に記載のプラズマ処理装置。   2. The capacitor is a variable capacitance capacitor, and a value of an induced current flowing through the closed circuit is changed by adjusting a capacitance of the capacitor in accordance with a plasma density in the processing chamber. The plasma processing apparatus of any one of thru | or 8. 減圧室内にプラズマを生成させるプラズマ生成装置であって、
前記減圧室の外部に配置されて高周波電源に接続される誘導結合アンテナと、
該誘導結合アンテナ及び前記減圧室内のプラズマの間に介在する、導電体からなる窓部材と、
前記窓部材に両端が接続される導線とを備え、
前記窓部材及び前記導線は閉回路を形成し、
前記導線は少なくとも1つのコンデンサを有し、
前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差することを特徴とするプラズマ生成装置。
A plasma generator for generating plasma in a decompression chamber,
An inductively coupled antenna disposed outside the decompression chamber and connected to a high frequency power source;
A window member made of a conductor interposed between the inductively coupled antenna and the plasma in the decompression chamber;
A conductive wire having both ends connected to the window member;
The window member and the conductor form a closed circuit;
The conductor has at least one capacitor;
The closed circuit does not exist in a plane parallel to the window member, and the surface on which the closed circuit exists intersects the window member.
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量及び前記高周波電源のプラズマを生じさせるための所定の周波数が調整されることを特徴とする請求項10記載のプラズマ生成装置。   11. The plasma generation apparatus according to claim 10, wherein the capacitance of the capacitor and a predetermined frequency for generating plasma of the high-frequency power source are adjusted so that reactance of the closed circuit becomes negative. 前記窓部材は複数の分割片に分割され、
前記導線の一端は一の前記分割片に接続され、前記導線の他端は他の前記分割片に接続され、前記一の分割片及び前記他の分割片は、前記導線とは別の導線によって接続されることを特徴とする請求項10又は11記載のプラズマ生成装置。
The window member is divided into a plurality of divided pieces,
One end of the conducting wire is connected to one of the divided pieces, the other end of the conducting wire is connected to the other divided piece, and the one divided piece and the other divided piece are separated by a conducting wire different from the conducting wire. The plasma generation apparatus according to claim 10, wherein the plasma generation apparatus is connected.
高周波電源に接続される誘導結合アンテナを備えるアンテナ構造体において、
前記誘導結合アンテナ及び前記誘導結合アンテナにより生成されるプラズマの間に介在する、導電体からなる窓部材と、
前記窓部材に両端が接続される導線とを備え、
前記窓部材及び前記導線は閉回路を形成し、
前記導線は少なくとも1つのコンデンサを有し、
前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差することを特徴とするアンテナ構造体。
In an antenna structure including an inductively coupled antenna connected to a high frequency power source,
A window member made of a conductor interposed between the inductively coupled antenna and the plasma generated by the inductively coupled antenna;
A conductive wire having both ends connected to the window member;
The window member and the conductor form a closed circuit;
The conductor has at least one capacitor;
The antenna structure according to claim 1, wherein the closed circuit does not exist in a plane parallel to the window member, and the plane in which the closed circuit exists intersects the window member.
前記窓部材は複数の分割片に分割され、
前記導線の一端は一の前記分割片に接続され、前記導線の他端は他の前記分割片に接続され、前記一の分割片及び前記他の分割片は、前記導線とは別の導線によって接続されることを特徴とする請求項13記載のアンテナ構造体。
The window member is divided into a plurality of divided pieces,
One end of the conducting wire is connected to one of the divided pieces, the other end of the conducting wire is connected to the other divided piece, and the one divided piece and the other divided piece are separated by a conducting wire different from the conducting wire. claim 1 3 Symbol mounting of the antenna structure, characterized in that it is connected.
高周波電源に接続される誘導結合アンテナと、前記誘導結合アンテナ及びプラズマの間に介在する導電体からなる窓部材と、導線とを備え、前記導線は少なくとも1つのコンデンサを有するアンテナ構造体を用いたプラズマ生成方法であって、
前記導線の両端を前記窓部材に接続して閉回路を形成し、
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量を調整し、
前記閉回路が前記窓部材と平行な面内に存在せず、前記閉回路が存在する面と前記窓部材とが交差するように、前記導線が両端で窓部材と接続されることを特徴とするプラズマ生成方法。
An inductively coupled antenna connected to a high frequency power source, a window member made of a conductor interposed between the inductively coupled antenna and the plasma, and a conductor are used, and the conductor uses an antenna structure having at least one capacitor. A plasma generation method comprising:
Connecting both ends of the conducting wire to the window member to form a closed circuit;
Adjust the capacitance of the capacitor so that the reactance of the closed circuit becomes negative,
The conducting wire is connected to the window member at both ends so that the closed circuit does not exist in a plane parallel to the window member, and the plane where the closed circuit exists and the window member intersect. Plasma generation method.
前記コンデンサは容量可変コンデンサであり、前記プラズマの密度に応じて前記コンデンサの静電容量を調整することによって前記閉回路を流れる誘導電流の値を変更することを特徴とする請求項1記載のプラズマ生成方法。 The capacitor is the capacitance variable capacitor of claim 1 5, wherein changing the value of the induced current flowing through the closed circuit by adjusting the capacitance of the capacitor depending on the density of the plasma Plasma generation method.
JP2012134593A 2012-06-14 2012-06-14 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method Active JP6084784B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012134593A JP6084784B2 (en) 2012-06-14 2012-06-14 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
TW102120159A TWI569693B (en) 2012-06-14 2013-06-06 A plasma processing apparatus, a plasma generating apparatus, an antenna structure, and a plasma generating method
KR1020130067634A KR101718182B1 (en) 2012-06-14 2013-06-13 Plasma processing apparatus, plasma producing apparatus, antenna structure, and plasma producing method
CN201310236940.6A CN103517536B (en) 2012-06-14 2013-06-14 Plasma processing apparatus, generating means and generation method, antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134593A JP6084784B2 (en) 2012-06-14 2012-06-14 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method

Publications (2)

Publication Number Publication Date
JP2013258098A JP2013258098A (en) 2013-12-26
JP6084784B2 true JP6084784B2 (en) 2017-02-22

Family

ID=49899299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134593A Active JP6084784B2 (en) 2012-06-14 2012-06-14 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method

Country Status (4)

Country Link
JP (1) JP6084784B2 (en)
KR (1) KR101718182B1 (en)
CN (1) CN103517536B (en)
TW (1) TWI569693B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184103A1 (en) * 2015-12-25 2017-06-29 Showa Corporation Vane pump device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11551909B2 (en) * 2017-10-02 2023-01-10 Tokyo Electron Limited Ultra-localized and plasma uniformity control in a plasma processing system
WO2021181531A1 (en) * 2020-03-10 2021-09-16 日新電機株式会社 Antenna mechanism and plasma processing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447637B1 (en) * 1999-07-12 2002-09-10 Applied Materials Inc. Process chamber having a voltage distribution electrode
JP3903730B2 (en) * 2001-04-04 2007-04-11 松下電器産業株式会社 Etching method
JP3714924B2 (en) * 2002-07-11 2005-11-09 東京エレクトロン株式会社 Plasma processing equipment
JP2004079557A (en) * 2002-08-09 2004-03-11 Hitachi High-Technologies Corp Device and method for plasma treatment
JP2005285564A (en) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd Plasma treatment device
KR20060073737A (en) * 2004-12-24 2006-06-29 삼성전자주식회사 Plasma apparatus
CN2907173Y (en) * 2006-02-24 2007-05-30 苏州大学 Large-area parallel connected high density inductively coupled plasma source
JP5479867B2 (en) * 2009-01-14 2014-04-23 東京エレクトロン株式会社 Inductively coupled plasma processing equipment
JP5592098B2 (en) * 2009-10-27 2014-09-17 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5694721B2 (en) * 2009-10-27 2015-04-01 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
CN102056395B (en) * 2009-10-27 2014-05-07 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
JP5916044B2 (en) * 2010-09-28 2016-05-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2012133680A (en) * 2010-12-22 2012-07-12 Fujitsu Frontech Ltd Mark sensing card reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184103A1 (en) * 2015-12-25 2017-06-29 Showa Corporation Vane pump device

Also Published As

Publication number Publication date
JP2013258098A (en) 2013-12-26
TW201414363A (en) 2014-04-01
CN103517536A (en) 2014-01-15
KR101718182B1 (en) 2017-03-20
TWI569693B (en) 2017-02-01
KR20130140571A (en) 2013-12-24
CN103517536B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5934030B2 (en) Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
KR102508029B1 (en) Antenna unit for inductively coupled plasma, inductively coupled plasma processing apparatus and method therefor
JP3905502B2 (en) Inductively coupled plasma generator
KR101615492B1 (en) Compound plasma reactor
JP2004537839A (en) Antenna structure of inductively coupled plasma generator
JP2012018921A (en) Plasma generating apparatus
JP6084784B2 (en) Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
KR20120025430A (en) Antenna unit and inductively coupled plasma processing apparatus
US9167680B2 (en) Plasma processing apparatus, plasma generating apparatus, antenna structure and plasma generating method
KR101432907B1 (en) Antenna unit for inductively coupled plasma and inductively coupled plasma processing apparatus
KR100719804B1 (en) Multi Magnetized Inductively Coupled Plasmas Structure
KR100734773B1 (en) Plasma Processing apparatus of Equipped Multi MICP
WO2018173892A1 (en) Plasma processing apparatus
KR101585893B1 (en) Compound plasma reactor
KR101167952B1 (en) Plasma reactor for generating large size plasma
WO2019229784A1 (en) Plasma treatment apparatus
KR100290158B1 (en) Plasma processing apparatus using large-scaled flat antenna
JP2013020871A (en) Plasma processing apparatus
KR101585891B1 (en) Compound plasma reactor
KR101609319B1 (en) Compound plasma reactor
US8264153B2 (en) Plasma source for large size substrate
KR20210120261A (en) Large area high efficiency plasma generator
JP2021136064A (en) Inductively coupled antenna and plasma processing device
JP2021136065A (en) Antenna segment and inductively coupled plasma processing device
JP2012226888A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6084784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250