JP5934030B2 - Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method - Google Patents

Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method Download PDF

Info

Publication number
JP5934030B2
JP5934030B2 JP2012133680A JP2012133680A JP5934030B2 JP 5934030 B2 JP5934030 B2 JP 5934030B2 JP 2012133680 A JP2012133680 A JP 2012133680A JP 2012133680 A JP2012133680 A JP 2012133680A JP 5934030 B2 JP5934030 B2 JP 5934030B2
Authority
JP
Japan
Prior art keywords
plasma
capacitor
closed circuit
window member
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012133680A
Other languages
Japanese (ja)
Other versions
JP2013258307A (en
Inventor
山澤 陽平
陽平 山澤
一樹 傳寳
一樹 傳寳
木村 隆文
隆文 木村
輿水 地塩
地塩 輿水
和男 佐々木
和男 佐々木
内藤 啓
啓 内藤
敦城 古屋
敦城 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49831557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5934030(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012133680A priority Critical patent/JP5934030B2/en
Priority to TW102120155A priority patent/TWI573168B/en
Priority to KR1020130066588A priority patent/KR101720373B1/en
Priority to CN201310233964.6A priority patent/CN103491700B/en
Publication of JP2013258307A publication Critical patent/JP2013258307A/en
Application granted granted Critical
Publication of JP5934030B2 publication Critical patent/JP5934030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、ICP(Inductive Coupling Plasma)アンテナを用いてプラズマを生成するプラズマ処理装置、プラズマ生成装置、アンテナ構造体、及びプラズマ生成方法に関する。   The present invention relates to a plasma processing apparatus, a plasma generation apparatus, an antenna structure, and a plasma generation method for generating plasma using an ICP (Inductive Coupling Plasma) antenna.

チャンバと、チャンバの外に配置されたICP(Inductive Coupling Plasma)アンテナとを備えるプラズマ処理装置では、ICPアンテナと対向するチャンバの天井部が誘電体、例えば、石英からなる誘電体窓によって構成される。このプラズマ処理装置では、高周波電源に接続されたICPアンテナを高周波電流が流れ、該高周波電流はICPアンテナに磁力線を発生させる。発生した磁力線は誘電体窓を透過してチャンバ内においてICPアンテナに沿って磁界を生じさせる。該磁界が時間的に変化すると誘導電界を生じ、該誘導電界によって加速された電子がチャンバ内に導入された処理ガスの分子や原子と衝突してプラズマが生じる。誘導電界はICPアンテナに沿うように発生するため、チャンバ内においてプラズマもICPアンテナに沿うように発生する。   In a plasma processing apparatus including a chamber and an ICP (Inductive Coupling Plasma) antenna disposed outside the chamber, the ceiling portion of the chamber facing the ICP antenna is configured by a dielectric material, for example, a dielectric window made of quartz. . In this plasma processing apparatus, a high-frequency current flows through an ICP antenna connected to a high-frequency power source, and the high-frequency current generates lines of magnetic force in the ICP antenna. The generated magnetic field lines pass through the dielectric window and generate a magnetic field along the ICP antenna in the chamber. When the magnetic field changes with time, an induced electric field is generated, and electrons accelerated by the induced electric field collide with molecules or atoms of the processing gas introduced into the chamber to generate plasma. Since the induction electric field is generated along the ICP antenna, plasma is also generated along the ICP antenna in the chamber.

誘電体窓は減圧環境であるチャンバの内部と大気圧環境であるチャンバの外部とを仕切るため、圧力差に耐えうる剛性が確保できる厚みが必要である。また、チャンバに収容されてプラズマ処理が施される基板、例えば、FPD(Flat Panel Display)の大型化は今後も進展することが予想されるため、基板と対向する誘電体窓を大口径化する必要があり、大口径化された際の剛性を確保する必要があることから、誘電体窓をさらに厚くする必要がある。   Since the dielectric window partitions the inside of the chamber, which is a reduced pressure environment, from the outside of the chamber, which is an atmospheric pressure environment, the dielectric window needs to have a thickness that can secure rigidity capable of withstanding the pressure difference. Further, since it is expected that the size of a substrate housed in a chamber and subjected to plasma processing, for example, an FPD (Flat Panel Display) will continue to increase in the future, the diameter of the dielectric window facing the substrate is increased. Since it is necessary to ensure rigidity when the diameter is increased, it is necessary to further increase the thickness of the dielectric window.

ところが、誘電体窓が厚くなればなるほど、誘電体窓の重量は増加し、またコストも上昇するので、チャンバの天井部を剛性が高く安価な導電体、例えば、金属からなる導電体窓によって構成することが提案されている。導電体窓では金属が磁力線を遮蔽するため、該導電体窓を貫通するスリットを設け、該スリットを介して磁力線を透過させる。但し、設けられるスリットの数や大きさには制限があるため、導電体窓では磁力線の透過効率が低下し、その結果、チャンバ内においてプラズマの生成効率が低下する。   However, as the dielectric window becomes thicker, the weight of the dielectric window increases and the cost also rises. Therefore, the ceiling of the chamber is made of a highly rigid and inexpensive conductor such as a conductor window made of metal. It has been proposed to do. Since the metal shields the magnetic field lines in the conductor window, a slit penetrating the conductor window is provided, and the magnetic field lines are transmitted through the slit. However, since the number and size of slits to be provided are limited, the transmission efficiency of magnetic lines of force is reduced in the conductor window, and as a result, plasma generation efficiency is reduced in the chamber.

一方、コンデンサ付きのフローティングコイルをチャンバの外であって、ICPアンテナの近傍に設けることが提案されている(例えば、特許文献1参照。)。このフローティングコイルにはICPアンテナが発生する磁力線による電磁誘導によって誘導電流が流れ、該誘導電流はフローティングコイルに磁力線を発生させ、発生した磁力線は誘電体窓を透過してチャンバ内においてフローティングコイルに沿って磁界を生じさせる。すなわち、チャンバ内にはICPアンテナに沿う磁界だけでなくフローティングコイルに沿う磁界も発生するため、フローティングコイルが補助アンテナの役割を果たし、チャンバ内において生じる誘導電界が強くなり、その結果、プラズマの生成効率の低下を防止することができる。   On the other hand, it has been proposed to provide a floating coil with a capacitor outside the chamber and in the vicinity of the ICP antenna (see, for example, Patent Document 1). In this floating coil, an induced current flows due to electromagnetic induction by magnetic lines generated by the ICP antenna. The induced current generates magnetic lines in the floating coil, and the generated magnetic lines pass through the dielectric window and follow the floating coil in the chamber. To generate a magnetic field. That is, in the chamber, not only the magnetic field along the ICP antenna but also the magnetic field along the floating coil is generated, so that the floating coil serves as an auxiliary antenna, and the induced electric field generated in the chamber becomes strong, resulting in the generation of plasma. A decrease in efficiency can be prevented.

特開2011−119659号JP2011-119659A

導電体窓と対向するICPアンテナにおいても、上述の特許文献1の技術を適用して誘導電界を補強することが考えられるが、ICPアンテナの他にフローティングコイルを設ける必要があるため、装置の構成が複雑になるという問題がある。   Even in the ICP antenna facing the conductor window, it is conceivable to reinforce the induction electric field by applying the technique of the above-mentioned Patent Document 1, but it is necessary to provide a floating coil in addition to the ICP antenna. There is a problem that becomes complicated.

本発明の目的は、装置の構成を簡素化できるとともに、プラズマの生成効率の低下を防止することができるプラズマ処理装置、プラズマ生成装置、アンテナ構造体、及びプラズマ生成方法を提供することにある。   An object of the present invention is to provide a plasma processing apparatus, a plasma generation apparatus, an antenna structure, and a plasma generation method capable of simplifying the configuration of the apparatus and preventing a decrease in plasma generation efficiency.

上記目的を達成するために、本発明のプラズマ処理装置は、基板を収容する処理室と、該処理室の内部に配置されて前記基板を載置する載置台と、前記処理室の外部において前記載置台と対向するように配置されて高周波電源に接続される誘導結合アンテナとを備えるプラズマ処理装置において、前記誘導結合アンテナと対向する前記処理室の壁部を構成し、前記載置台及び前記誘導結合アンテナの間に介在する、導電体からなる窓部材をさらに備え、前記窓部材は複数の分割片に分割され、前記複数の分割片は互いに電気的に導通しないように直接接触せず、少なくとも幾つかの前記分割片は導線で接続されて閉回路を形成し、前記閉回路は、各前記分割片を接続する前記導線において少なくとも1つのコンデンサを有し、前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量が調整されることを特徴とする。 In order to achieve the above object, a plasma processing apparatus of the present invention includes a processing chamber that accommodates a substrate, a mounting table that is disposed inside the processing chamber and mounts the substrate, and a front surface outside the processing chamber. In a plasma processing apparatus comprising an inductively coupled antenna disposed to face a mounting table and connected to a high-frequency power source, a wall portion of the processing chamber facing the inductively coupled antenna is formed, and the mounting table and the induction Further comprising a window member made of a conductor interposed between the coupling antennas, the window member is divided into a plurality of divided pieces, the plurality of divided pieces are not in direct contact with each other so as not to be electrically connected to each other, at least some of the divided pieces are connected by a wire to form a closed circuit, said closed circuit, have at least one capacitor in said wire to connect each of the divided pieces, Li said closed circuit Inductance capacitance of the capacitor so that the negative and said Rukoto adjusted.

上記目的を達成するために、本発明のプラズマ生成装置は、減圧室内にプラズマを生成させるプラズマ生成装置であって、前記減圧室の外部に配置されて高周波電源に接続される誘導結合アンテナと、該誘導結合アンテナ及び前記減圧室内のプラズマの間に介在する、導電体からなる窓部材とを備え、前記窓部材は複数の分割片に分割され、前記複数の分割片は互いに電気的に導通しないように直接接触せず、少なくとも幾つかの前記分割片は導線で接続されて閉回路を形成し、前記閉回路は、各前記分割片を接続する前記導線において少なくとも1つのコンデンサを有し、前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量が調整されることを特徴とする。 In order to achieve the above object, a plasma generation apparatus of the present invention is a plasma generation apparatus for generating plasma in a decompression chamber, the inductively coupled antenna being disposed outside the decompression chamber and connected to a high frequency power source, A window member made of a conductor interposed between the inductively coupled antenna and the plasma in the decompression chamber, the window member being divided into a plurality of divided pieces, and the plurality of divided pieces are not electrically connected to each other. in not in direct contact manner, at least some of the divided piece is connected by wires to form a closed circuit, said closed circuit, have at least one capacitor in said wire to connect each of the divided pieces, the the capacitance of the capacitor as the reactance of the closed circuit is negative and said Rukoto adjusted.

上記目的を達成するために、本発明のアンテナ構造体は、高周波電源に接続される誘導結合アンテナを備えるアンテナ構造体において、前記誘導結合アンテナ及び前記誘導結合アンテナによって生成されるプラズマの間に介在する、導電体からなる窓部材を備え、前記窓部材は複数の分割片に分割され、前記複数の分割片は互いに電気的に導通しないように直接接触せず、少なくとも幾つかの前記分割片は導線で接続されて閉回路を形成し、前記閉回路は、各前記分割片を接続する前記導線において少なくとも1つのコンデンサを有し、前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量が調整されることを特徴とする。 In order to achieve the above object, an antenna structure of the present invention includes an inductively coupled antenna connected to a high frequency power source, and is interposed between the inductively coupled antenna and the plasma generated by the inductively coupled antenna. A window member made of a conductor, wherein the window member is divided into a plurality of divided pieces, the plurality of divided pieces are not in direct contact with each other so that they are not electrically connected to each other, and at least some of the divided pieces are are connected by a wire to form a closed circuit, said closed circuit, have at least one capacitor in said wire to connect each of the divided pieces, electrostatic of the capacitor as a reactance of the closed circuit is negative capacity is characterized Rukoto adjusted.

上記目的を達成するために、本発明のプラズマ生成方法は、高周波電源に接続される誘導結合アンテナと、前記誘導結合アンテナ及びプラズマの間に介在する、導電体からなる窓部材とを備え、前記窓部材は複数の分割片に分割され、前記複数の分割片は互いに絶縁されるアンテナ構造体を用いたプラズマ生成方法であって、少なくとも幾つかの前記分割片を、少なくとも1つにコンデンサを有する導線で接続して閉回路を形成し、前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量を調整することを特徴とする。 In order to achieve the above object, a plasma generation method of the present invention includes an inductively coupled antenna connected to a high frequency power source, and a window member made of a conductor interposed between the inductively coupled antenna and the plasma, The window member is divided into a plurality of divided pieces, and the plurality of divided pieces is a plasma generation method using an antenna structure that is insulated from each other, and has at least some of the divided pieces and at least one capacitor. A closed circuit is formed by connecting with conducting wires, and the capacitance of the capacitor is adjusted so that the reactance of the closed circuit becomes negative.

本発明によれば、高周波電源に接続される誘導結合アンテナと対向する、導電体からなる窓部材は複数の分割片に分割され、少なくとも幾つかの分割片は導線で接続されて閉回路を形成し、該閉回路は各分割片を接続する導線において少なくとも1つのコンデンサを有するので、閉回路はコンデンサを有するとともに、誘導結合アンテナと対向する。これにより、誘導結合アンテナから発生する磁界が電磁誘導によって閉回路に誘導電流を生成し、該誘導電流は閉回路内に磁界を生じさせ、当該閉回路内に発生した磁界が誘導電界を生じさせ、結果としてプラズマを生成するので、コンデンサの容量を変化させて閉回路のリアクタンスを調整して閉回路に生成された誘導電流を制御することにより、新たな補助アンテナを追加することなくプラズマの生成効率の低下を防止することができる。すなわち、装置の構成を簡素化できるとともに、プラズマの生成効率の低下を防止することができる。   According to the present invention, the window member made of a conductor facing the inductively coupled antenna connected to the high frequency power source is divided into a plurality of divided pieces, and at least some of the divided pieces are connected by the conductive wires to form a closed circuit. Since the closed circuit has at least one capacitor in the conductor connecting each segment, the closed circuit has a capacitor and faces the inductively coupled antenna. As a result, the magnetic field generated from the inductively coupled antenna generates an induced current in the closed circuit by electromagnetic induction, the induced current generates a magnetic field in the closed circuit, and the magnetic field generated in the closed circuit generates an induced electric field. As a result, plasma is generated, so that by changing the capacitance of the capacitor and adjusting the reactance of the closed circuit to control the induced current generated in the closed circuit, the plasma can be generated without adding a new auxiliary antenna. A decrease in efficiency can be prevented. That is, the configuration of the apparatus can be simplified, and a decrease in plasma generation efficiency can be prevented.

本発明の実施の形態に係るプラズマ処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the plasma processing apparatus which concerns on embodiment of this invention. 図1における窓部材及びICPアンテナを図1中の白抜き矢印に沿って眺めたときの平面図である。FIG. 2 is a plan view when the window member and the ICP antenna in FIG. 1 are viewed along a hollow arrow in FIG. 1. 図2における閉回路に生成される誘導電流を説明するための図である。It is a figure for demonstrating the induced current produced | generated by the closed circuit in FIG. 導線コンデンサの静電容量と誘導電流の関係を示すグラフである。It is a graph which shows the relationship between the electrostatic capacitance of a conducting wire capacitor, and an induction current. 図1における窓部材の第1の変形例を示す平面図である。It is a top view which shows the 1st modification of the window member in FIG. 図1における窓部材の第2の変形例を示す平面図である。It is a top view which shows the 2nd modification of the window member in FIG. 図1における窓部材の第3の変形例を示す平面図である。It is a top view which shows the 3rd modification of the window member in FIG. 図1における窓部材の第4の変形例を示す平面図である。It is a top view which shows the 4th modification of the window member in FIG. 図1における窓部材の第5の変形例を示す平面図である。It is a top view which shows the 5th modification of the window member in FIG. 図1における窓部材の第6の変形例を示す平面図である。It is a top view which shows the 6th modification of the window member in FIG. 図1における窓部材の第7の変形例を示す平面図である。It is a top view which shows the 7th modification of the window member in FIG. 図1における窓部材の第8の変形例を示す平面図である。It is a top view which shows the 8th modification of the window member in FIG. 図1における窓部材の第9の変形例を示す平面図である。It is a top view which shows the 9th modification of the window member in FIG. 図1における窓部材の第10の変形例を示す平面図である。It is a top view which shows the 10th modification of the window member in FIG. 図1における窓部材の第11の変形例を示す平面図である。It is a top view which shows the 1st modification of the window member in FIG. 図1における窓部材の第12の変形例を示す平面図である。It is a top view which shows the 1st modification of the window member in FIG. 図1における窓部材の第13の変形例を示す平面図である。It is a top view which shows the 13th modification of the window member in FIG. 図1における窓部材の第14の変形例を示す平面図である。It is a top view which shows the 14th modification of the window member in FIG. 図1における窓部材の第15の変形例を示す平面図である。It is a top view which shows the 15th modification of the window member in FIG. 図1における窓部材の第16の変形例を示す平面図である。It is a top view which shows the 16th modification of the window member in FIG. 図1における窓部材の第17の変形例を示す平面図である。It is a top view which shows the 17th modification of the window member in FIG. 本発明の実施の形態に係るプラズマ生成装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the plasma production apparatus which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の実施の形態に係るプラズマ処理装置について説明する。   First, a plasma processing apparatus according to an embodiment of the present invention will be described.

図1は、本発明の実施の形態に係るプラズマ処理装置の構成を概略的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a configuration of a plasma processing apparatus according to an embodiment of the present invention.

図1において、プラズマ処理装置10は、例えば、FPD用のガラス基板(以下、単に「基板」という。)Sを収容するチャンバ11(処理室、減圧室)と、該チャンバ11の底部に配置されて基板Sを上面に載置する載置台12と、チャンバ11の外部においてチャンバ11の内部の載置台12と対向するように配置されるICPアンテナ13(誘導結合アンテナ)と、チャンバ11の天井部を構成し、載置台12及びICPアンテナ13の間に介在する窓部材14とを備える。   In FIG. 1, a plasma processing apparatus 10 is disposed, for example, at a chamber 11 (processing chamber, decompression chamber) that houses a glass substrate (hereinafter simply referred to as “substrate”) S for FPD, and at the bottom of the chamber 11. A mounting table 12 for mounting the substrate S on the upper surface, an ICP antenna 13 (inductive coupling antenna) disposed outside the chamber 11 so as to face the mounting table 12 inside the chamber 11, and a ceiling portion of the chamber 11 And a window member 14 interposed between the mounting table 12 and the ICP antenna 13.

チャンバ11は略筐体状であり、例えば、2880mm×3130mmのサイズを有する第10世代の基板Sを収容可能に大きさが設定されている 。チャンバ11は排気装置15を有し、該排気装置15はチャンバ11を真空引きしてチャンバ11の内部を減圧環境にする。一方、チャンバ11の外部は大気圧環境であり、窓部材14はチャンバ11の内部と外部とを仕切る。窓部材14は導電体、例えば、アルミ等の金属又は半導体、例えば、シリコンによって構成される。窓部材14は複数の分割片から成り、全体として少なくとも載置台12に載置された基板Sの全面を覆うことが可能な大きさを有する。   The chamber 11 has a substantially casing shape, and is sized to accommodate a 10th generation substrate S having a size of 2880 mm × 3130 mm, for example. The chamber 11 has an exhaust device 15, and the exhaust device 15 evacuates the chamber 11 to make the inside of the chamber 11 a reduced pressure environment. On the other hand, the outside of the chamber 11 is an atmospheric pressure environment, and the window member 14 partitions the inside of the chamber 11 from the outside. The window member 14 is made of a conductor, for example, a metal such as aluminum, or a semiconductor, for example, silicon. The window member 14 is composed of a plurality of divided pieces, and has a size capable of covering at least the entire surface of the substrate S placed on the mounting table 12 as a whole.

載置台12は、導電性部材からなり、基台として機能する直方体状のサセプタ16と、該サセプタ16の上面に形成された静電チャック17とを有する。サセプタ16は給電棒18及び整合器19を介して高周波電源20に接続される。高周波電源20は、比較的低い高周波電力、例えば、13.56MHz以下の高周波電力をサセプタ16へ供給し、該サセプタ16においてバイアス電位を発生させる。これにより、載置台12及び窓部材14の間の処理空間PSで生成されるプラズマ中のイオンを載置台12に載置される基板Sへ引き込む。   The mounting table 12 is made of a conductive member, and includes a rectangular parallelepiped susceptor 16 that functions as a base, and an electrostatic chuck 17 formed on the upper surface of the susceptor 16. The susceptor 16 is connected to a high frequency power source 20 through a power supply rod 18 and a matching unit 19. The high frequency power supply 20 supplies relatively low high frequency power, for example, high frequency power of 13.56 MHz or less to the susceptor 16, and generates a bias potential in the susceptor 16. As a result, ions in the plasma generated in the processing space PS between the mounting table 12 and the window member 14 are drawn into the substrate S mounted on the mounting table 12.

静電チャック17は電極板21を内蔵する誘電性部材からなり、該電極板21には直流電源22が接続される。静電チャック17は直流電源22から印加される直流電圧に起因する静電気力によって基板Sを載置台12へ静電吸着する。   The electrostatic chuck 17 is made of a dielectric member containing an electrode plate 21, and a DC power source 22 is connected to the electrode plate 21. The electrostatic chuck 17 electrostatically attracts the substrate S to the mounting table 12 by electrostatic force caused by a DC voltage applied from the DC power supply 22.

窓部材14を支える梁部12には処理ガス導入口23が設けられ、処理ガス供給装置24から供給される処理ガスをチャンバ11内へ導入する。   A processing gas introduction port 23 is provided in the beam portion 12 that supports the window member 14, and the processing gas supplied from the processing gas supply device 24 is introduced into the chamber 11.

ICPアンテナ13は窓部材14の上面に沿って配置される環状の導線、若しくは導体板からなり、整合器25を介して高周波電源26に接続される。なお、本明細書及び特許請求の範囲において、導線と導体板を総称して導線と称する。   The ICP antenna 13 is formed of an annular conductor or a conductor plate disposed along the upper surface of the window member 14, and is connected to a high frequency power supply 26 through a matching unit 25. In addition, in this specification and a claim, a conducting wire and a conductor board are named generically and are called a conducting wire.

プラズマ処理装置10では、高周波電流がICPアンテナ13を流れ、該高周波電流はICPアンテナ13に磁力線を発生させる。発生した磁力線は、従来のように窓部材が誘電体で形成されている場合には当該窓部材を透過するが、本実施の形態のように、窓部材14が導電体で形成される場合には窓部材14に形成されたスリット、若しくは分割片間の間隙を通過し、チャンバ11内において磁界を構成する。該磁界が時間的に変化すると誘導電界を生じ、該誘導電界によって加速された電子がチャンバ11内に導入された処理ガスの分子や原子と衝突してプラズマが生じる。   In the plasma processing apparatus 10, a high-frequency current flows through the ICP antenna 13, and the high-frequency current generates lines of magnetic force in the ICP antenna 13. The generated magnetic field lines are transmitted through the window member when the window member is formed of a dielectric as in the prior art, but when the window member 14 is formed of a conductor as in the present embodiment. Passes through a slit formed in the window member 14 or a gap between the divided pieces, and forms a magnetic field in the chamber 11. When the magnetic field changes with time, an induced electric field is generated, and electrons accelerated by the induced electric field collide with molecules or atoms of the processing gas introduced into the chamber 11 to generate plasma.

生成されるプラズマ中のイオンはサセプタ16のバイアス電位によって基板Sへ引き込まれ、同プラズマ中のラジカルは移動して基板Sへ到達し、それぞれ基板Sへプラズマ処理、例えば、物理的エッチング処理や化学的エッチング処理を施す。   Ions in the generated plasma are attracted to the substrate S by the bias potential of the susceptor 16, and radicals in the plasma move to reach the substrate S, and each of the substrates S is subjected to plasma processing, for example, physical etching processing or chemicals. Etching process is performed.

図2は、図1における窓部材及びICPアンテナを図1中の白抜き矢印に沿って眺めたときの平面図である。   FIG. 2 is a plan view of the window member and the ICP antenna in FIG. 1 when viewed along the white arrow in FIG.

図2において、窓部材14は複数の分割片、例えば、4つの三角形状の分割片27に分割され、各分割片27の間には誘電性部材からなる絶縁材28が介在する。したがって、4つの分割片27は互いに電気的に導通しないように直接接触しない。   In FIG. 2, the window member 14 is divided into a plurality of divided pieces, for example, four triangular divided pieces 27, and an insulating material 28 made of a dielectric member is interposed between the divided pieces 27. Therefore, the four divided pieces 27 are not in direct contact so as not to be electrically connected to each other.

一方、隣接する分割片27同士はそれぞれ1つの導線29、又は1つのコンデンサ付き導線30によって接続され、窓部材14では3つの導線29、1つのコンデンサ付き導線30及び4つの分割片27からなる閉回路31が形成される。ICPアンテナ13は窓部材14の上面に沿って配置されるため、ICPアンテナ13と閉回路31は近接し、本実施の形態では平面視において閉回路31がICPアンテナ13によって囲まれる。コンデンサ付き導線30におけるコンデンサ(以下、「導線コンデンサ」という。)としては、容量可変コンデンサ、又は容量固定コンデンサが用いられる。なお、本実施の形態では、ICPアンテナ13、絶縁材28、3つの導線29、1つのコンデンサ付き導線30及び窓部材14がアンテナ構造体を構成する。   On the other hand, the adjacent divided pieces 27 are connected to each other by one conductive wire 29 or one conductive wire 30 with a capacitor, and the window member 14 is closed by three conductive wires 29, one conductive wire 30 with a capacitor, and four divided pieces 27. A circuit 31 is formed. Since the ICP antenna 13 is disposed along the upper surface of the window member 14, the ICP antenna 13 and the closed circuit 31 are close to each other. In the present embodiment, the closed circuit 31 is surrounded by the ICP antenna 13 in plan view. As a capacitor (hereinafter referred to as “conductive capacitor”) in the conductive wire 30 with a capacitor, a variable capacitance capacitor or a fixed capacitance capacitor is used. In the present embodiment, the ICP antenna 13, the insulating material 28, the three conductors 29, the one capacitor-equipped conductor 30, and the window member 14 constitute an antenna structure.

図3は、図2における閉回路に生成される誘導電流を説明するための図である。   FIG. 3 is a diagram for explaining the induced current generated in the closed circuit in FIG.

図3において、ICPアンテナ13に高周波電流32が流れると、該高周波電流32はICPアンテナ13が形成する環状部13aを通過する磁力線33を発生させる。閉回路31はICPアンテナ13に近接するので、ICPアンテナ13の環状部13aを通過する磁力線33は、閉回路31が形成する環状部31aも通過する。このとき、磁力線33の電磁誘導によって閉回路31に誘導電流34が流れる。該誘導電流34は環状部31aを通過する磁力線(以下、「副磁力線」という。)(図示しない)を発生させる。   In FIG. 3, when a high-frequency current 32 flows through the ICP antenna 13, the high-frequency current 32 generates a magnetic force line 33 that passes through the annular portion 13 a formed by the ICP antenna 13. Since the closed circuit 31 is close to the ICP antenna 13, the magnetic force lines 33 passing through the annular portion 13 a of the ICP antenna 13 also pass through the annular portion 31 a formed by the closed circuit 31. At this time, an induced current 34 flows in the closed circuit 31 by electromagnetic induction of the magnetic lines of force 33. The induced current 34 generates a magnetic field line (hereinafter referred to as “sub-magnetic field line”) (not shown) that passes through the annular portion 31a.

本実施の形態では、磁力線33が、窓部材14を構成する複数の分割片27のうち隣接する分割片27の隙間を通過して処理空間PSにおいて磁界(以下、「主磁界」という。)を構成するが、磁力線33はICPアンテナ13における電流の流路に沿って閉ループを描くように分布するため、主磁界はICPアンテナ13の環状部13a内に発生する。また、窓部材14の閉回路31によって発生させられる副磁力線も処理空間PSにおいて磁界(以下、「副磁界」という。)を構成するが、副磁力線は閉回路31における電流の流路に沿って閉ループを描くように分布するため、副磁界は閉回路31の環状部31a内に発生する。   In the present embodiment, the magnetic field lines 33 pass through the gaps between the adjacent divided pieces 27 among the plurality of divided pieces 27 constituting the window member 14 and generate a magnetic field (hereinafter referred to as “main magnetic field”) in the processing space PS. Although the magnetic field lines 33 are distributed so as to draw a closed loop along the current flow path in the ICP antenna 13, the main magnetic field is generated in the annular portion 13 a of the ICP antenna 13. The secondary magnetic field lines generated by the closed circuit 31 of the window member 14 also form a magnetic field (hereinafter referred to as “sub-magnetic field”) in the processing space PS. The secondary magnetic field lines follow the current flow path in the closed circuit 31. The secondary magnetic field is generated in the annular portion 31 a of the closed circuit 31 because it is distributed so as to draw a closed loop.

ここで、処理空間PSにおいて主磁界と副磁界が逆向きであれば、互いに打ち消し合うため、磁界によって処理空間PSにおいて発生する誘導電界が弱くなり、プラズマの生成効率が低下する。   Here, if the main magnetic field and the sub magnetic field are opposite to each other in the processing space PS, they cancel each other, so that the induced electric field generated in the processing space PS by the magnetic field becomes weak, and the plasma generation efficiency decreases.

そこで、本実施の形態では、主磁界と副磁界の向きを同じ向きにするために、誘導電流34が流れる方向を高周波電流32が流れる方向と同じにする。上述した特許文献1において開示されているように、閉回路31を流れる誘導電流34は下記近似式(1)で示される。
IND ≒ −MωIRF/(L−1/Cω) … (1)
ここで、IINDは誘導電流34、MはICPアンテナ13及び閉回路31の間の相互インダクタンス、ωは角周波数、IRFは高周波電流32、Lは閉回路31の自己インダクタンス、Cは導線コンデンサの静電容量、L−1/Cωは閉回路31のリアクタンスである。
Therefore, in the present embodiment, the direction in which the induced current 34 flows is the same as the direction in which the high-frequency current 32 flows in order to make the directions of the main magnetic field and the sub-magnetic field the same. As disclosed in Patent Document 1 described above, the induced current 34 flowing through the closed circuit 31 is expressed by the following approximate expression (1).
I IND ≈ −MωI RF / (L S −1 / C S ω) (1)
Here, I IND is the induced current 34, M is the mutual inductance between the ICP antenna 13 and the closed circuit 31, ω is the angular frequency, I RF is the high frequency current 32, L S is the self-inductance of the closed circuit 31, and C S is The capacitance of the lead capacitor, L S −1 / C S ω, is the reactance of the closed circuit 31.

上記近似式(1)より、閉回路31のリアクタンスを負にすると、IIND(誘導電流34)の符号(正又は負)がIRF(高周波電流32)の符号と同じになり、誘導電流34の流れる方向は高周波電流32が流れる方向と同じとなるため、本実施の形態では閉回路31のリアクタンスが負になるように導線コンデンサの静電容量(C)が調整される。なお、導線コンデンサが容量固定コンデンサの場合は、当該導線コンデンサを取り替えることによって静電容量が調整される。 From the approximate expression (1), when the reactance of the closed circuit 31 is made negative, the sign (positive or negative) of I IND (inductive current 34) becomes the same as the sign of I RF (high frequency current 32), and the induced current 34 The direction in which the high frequency current 32 flows is the same as the direction in which the high frequency current 32 flows. In this embodiment, the capacitance (C S ) of the lead wire capacitor is adjusted so that the reactance of the closed circuit 31 becomes negative. When the lead wire capacitor is a fixed capacitance capacitor, the capacitance is adjusted by replacing the lead wire capacitor.

上述したように、閉回路31のリアクタンスを負にすることにより、誘導電流34が流れる方向を高周波電流32が流れる方向と同じにして処理空間PSにおいて主磁界と副磁界を同じ向きにすることができ、処理空間PSにおいて発生する誘導電界を強くすることができる。その結果、例え、磁力線33が窓部材14を構成する複数の分割片27のうち隣接する分割片27の隙間しか通ることができなかったとしても、プラズマの生成効率が低下するのを防止することができる。   As described above, by making the reactance of the closed circuit 31 negative, the direction in which the induced current 34 flows is the same as the direction in which the high-frequency current 32 flows, so that the main magnetic field and the sub-magnetic field are in the same direction in the processing space PS. The induced electric field generated in the processing space PS can be strengthened. As a result, even if the magnetic lines of force 33 can only pass through the gaps between the adjacent divided pieces 27 among the plurality of divided pieces 27 constituting the window member 14, it is possible to prevent the plasma generation efficiency from being lowered. Can do.

すなわち、本実施の形態に係るプラズマ処理装置10によれば、上述した特許文献1のようにフローティングコイル等のアンテナを追加することなく、装置の構成を簡素化することができるとともに、プラズマの生成効率の低下を防止することができる。   That is, according to the plasma processing apparatus 10 according to the present embodiment, the configuration of the apparatus can be simplified and plasma generation can be performed without adding an antenna such as a floating coil as in Patent Document 1 described above. A decrease in efficiency can be prevented.

また、誘導電流34を効率よく生成するには、上記近似式(1)より、閉回路31のリアクタンスの絶対値を小さくするのが好ましく、導線コンデンサの静電容量を大きくするのが好ましい。   Further, in order to efficiently generate the induced current 34, it is preferable to reduce the absolute value of the reactance of the closed circuit 31 and to increase the capacitance of the conducting capacitor from the above approximate expression (1).

図4は、導線コンデンサの静電容量と誘導電流の関係を示すグラフである。   FIG. 4 is a graph showing the relationship between the capacitance of the lead wire capacitor and the induced current.

本発明者等が、プラズマ処理装置10のチャンバ11内の圧力を排気装置15によって10mTorrに設定し、処理ガスとしてArガスとOガスの混合ガスをそれぞれ流量が300sccm、30sccmとなるように処理ガス導入口23からチャンバ11内へ導入し、高周波電源26から周波数が13.56MHzの高周波電力を1000WでICPアンテナ13へ供給し、閉回路31における導線コンデンサの静電容量を大きくしていったところ、図4のグラフに示すように、誘導電流34が加速度的に増大するのを確認した。また、誘導電流34が増大するにつれて高周波電流32が減少するのを確認した。 The inventors set the pressure in the chamber 11 of the plasma processing apparatus 10 to 10 mTorr by the exhaust apparatus 15 and processed the mixed gas of Ar gas and O 2 gas as the processing gas so that the flow rates become 300 sccm and 30 sccm, respectively. The gas was introduced into the chamber 11 through the gas inlet 23, high frequency power having a frequency of 13.56 MHz was supplied from the high frequency power supply 26 to the ICP antenna 13 at 1000 W, and the capacitance of the lead capacitor in the closed circuit 31 was increased. However, as shown in the graph of FIG. 4, it was confirmed that the induced current 34 increased at an accelerated rate. It was also confirmed that the high frequency current 32 decreased as the induced current 34 increased.

高周波電流32が減少するのは、供給された高周波電力のうち、誘導電流34の生成で消費される割合が増えて高周波電流32の生成のために消費される割合が減ったためと考えられた。   The reason why the high-frequency current 32 is decreased is considered to be that the proportion of the supplied high-frequency power consumed for generating the induction current 34 is increased and the proportion consumed for generating the high-frequency current 32 is decreased.

また、高周波電流32の減少度合よりも誘導電流34の増加度合が大きいことが確認された。換言すると、同じ大きさの高周波電力をICPアンテナ13に供給した場合、閉回路31に誘導電流34を流すことなくICPアンテナ13のみに高周波電流32を流したときの高周波電流32の値に比べて、ICPアンテナ13に高周波電流32を流すだけでなく閉回路31にも誘導電流34を流したときの高周波電流32及び誘導電流34の合計値が大きくなることが確認された。これは、導線コンデンサの静電容量を変化させる際、閉回路31のリアクタンスをICPアンテナ13のリアクタンスよりも大幅に低下させた結果、誘導電流34の生成効率が高くなるためと考えられた。   Further, it was confirmed that the increase degree of the induced current 34 was larger than the decrease degree of the high-frequency current 32. In other words, when high frequency power of the same magnitude is supplied to the ICP antenna 13, compared to the value of the high frequency current 32 when the high frequency current 32 is supplied only to the ICP antenna 13 without supplying the induction current 34 to the closed circuit 31. It was confirmed that the total value of the high-frequency current 32 and the induced current 34 when the induced current 34 was passed not only through the ICP antenna 13 but also through the closed circuit 31 was increased. This is considered to be because the reactance of the closed circuit 31 is greatly reduced from the reactance of the ICP antenna 13 when changing the capacitance of the lead wire capacitor, and as a result, the generation efficiency of the induced current 34 is increased.

本発明者等は、高周波電源26からICPアンテナ13へ供給される13.56MHzの高周波電力を1000Wに保ったまま、上述した条件において、閉回路31に誘導電流34を流さない場合と、導線コンデンサの静電容量を増加させて閉回路31に30Aの誘導電流34を流した場合とを比較したところ、処理空間PSにおけるプラズマの電子密度が約40%上昇したのを確認した。これは、閉回路31に誘導電流34を流すことによって高周波電流32及び誘導電流34の合計値を、閉回路31に誘導電流34を流さないときの高周波電流32の値よりも大きくでき、その結果、チャンバ11内においてより強い磁界を発生させることができたためと考えられた。   The inventors of the present invention have found that the induction current 34 does not flow through the closed circuit 31 under the above-described conditions while the high frequency power of 13.56 MHz supplied from the high frequency power supply 26 to the ICP antenna 13 is maintained at 1000 W, and As a result, it was confirmed that the plasma electron density in the processing space PS increased by about 40%. This is because the total value of the high frequency current 32 and the induced current 34 can be made larger than the value of the high frequency current 32 when the induced current 34 is not passed through the closed circuit 31 by passing the induced current 34 through the closed circuit 31, and as a result It was considered that a stronger magnetic field could be generated in the chamber 11.

すなわち、本実施の形態に係るプラズマ処理装置10によれば、同じ大きさの高周波電力をICPアンテナ13へ供給した場合であっても、ICPアンテナ13に加えて閉回路31を併用して誘導電流34を生成することにより、プラズマの生成効率を向上することができる。   That is, according to the plasma processing apparatus 10 according to the present embodiment, even when high frequency power of the same magnitude is supplied to the ICP antenna 13, the induced current is generated using the closed circuit 31 in addition to the ICP antenna 13. By generating 34, the plasma generation efficiency can be improved.

また、誘導電流34の生成効率が高いことから、同じ大きさの高周波電力をICPアンテナ13へ供給する場合にプラズマの生成効率をより向上するには、閉回路31のリアクタンスが負の値を保つ範囲内で導線コンデンサの静電容量を増加させて閉回路31のリアクタンスの絶対値を低下させ、誘導電流34を大きくするのが好ましい。さらに、プラズマ密度を制御する際、チャンバ11内のプラズマの密度を高くしたい場合には、導線コンデンサの静電容量を増加させて閉回路31のリアクタンスの絶対値を低下させることにより、誘導電流34を大きくしてプラズマの生成効率を向上し、これにより、プラズマの密度を高めることができ、チャンバ11内のプラズマの密度を低くしたい場合には、導線コンデンサの静電容量を減少させて閉回路31のリアクタンスの絶対値を向上させることにより、誘導電流34を小さくしてプラズマの生成効率を低下させ、これにより、プラズマの密度を低めることができる。   In addition, since the generation efficiency of the induction current 34 is high, in order to further improve the plasma generation efficiency when high frequency power of the same magnitude is supplied to the ICP antenna 13, the reactance of the closed circuit 31 maintains a negative value. It is preferable to increase the induced current 34 by decreasing the absolute value of the reactance of the closed circuit 31 by increasing the capacitance of the lead capacitor within the range. Furthermore, when controlling the plasma density, if it is desired to increase the plasma density in the chamber 11, the induced current 34 is reduced by increasing the capacitance of the lead capacitor and decreasing the absolute value of the reactance of the closed circuit 31. To increase the plasma generation efficiency, thereby increasing the plasma density. If the plasma density in the chamber 11 is desired to be reduced, the capacitance of the lead capacitor is reduced to achieve a closed circuit. By improving the absolute value of the reactance of 31, the induction current 34 can be reduced to reduce the plasma generation efficiency, thereby reducing the plasma density.

副磁界は閉回路31の環状部31a内に発生し、副磁界も誘導電界を生じさせることから、閉回路31の位置を調整することにより、チャンバ11内におけるプラズマの分布を制御することができる。例えば、図2に示すように、各導線29及びコンデンサ付き導線30をICPアンテナ13の中心に関して対称に配置して閉回路31をICPアンテナ13の中心に関して対称に形成することにより、副磁界によるプラズマをICPアンテナ13の中心に関して対称に生成することができる。なお、図2では、コンデンサ付き導線30は1つのみであるため、ICPアンテナ13の中心に関して非対称な配置となっているが、後述するように、例えば、ICPアンテナ13の中心を挟んで対向する位置の導線29もコンデンサ付き導線に置き換えて対称な配置とすることにより、さらに対称性のよいプラズマを生成することができる。   Since the secondary magnetic field is generated in the annular portion 31a of the closed circuit 31 and the secondary magnetic field also generates an induced electric field, the distribution of plasma in the chamber 11 can be controlled by adjusting the position of the closed circuit 31. . For example, as shown in FIG. 2, each conductor 29 and capacitor-equipped conductor 30 are arranged symmetrically with respect to the center of the ICP antenna 13, and the closed circuit 31 is formed symmetrically with respect to the center of the ICP antenna 13. Can be generated symmetrically with respect to the center of the ICP antenna 13. In FIG. 2, since there is only one lead wire 30 with a capacitor, the arrangement is asymmetric with respect to the center of the ICP antenna 13. However, as will be described later, for example, they face each other across the center of the ICP antenna 13. By replacing the conducting wire 29 at the position with a conducting wire with a capacitor and arranging it symmetrically, it is possible to generate plasma with better symmetry.

また、主磁界はICPアンテナ13の環状部13a内に発生し、主磁界は誘導電界を生じさせるので、基板Sへ施されるプラズマ処理の均一化の観点からは、図2に示すように、ICPアンテナ13の中心をチャンバ11の中心に一致させるのが好ましく、これにより、副磁界によるプラズマだけでなく主磁界によるプラズマもチャンバ11の中心に関して対称に生成することができる。   Further, since the main magnetic field is generated in the annular portion 13a of the ICP antenna 13, and the main magnetic field generates an induction electric field, from the viewpoint of uniformizing plasma processing applied to the substrate S, as shown in FIG. The center of the ICP antenna 13 is preferably coincident with the center of the chamber 11, so that not only the plasma by the sub-magnetic field but also the plasma by the main magnetic field can be generated symmetrically with respect to the center of the chamber 11.

さらに、チャンバ11内のプラズマの分布に応じて閉回路31の位置を調整してもよく、例えば、チャンバ11内において中心部のプラズマの密度が低い場合、図5に示すように、導線29やコンデンサ付き導線30をICPアンテナ13の中心に寄せて配置し、閉回路31をICPアンテナ13の中心よりに形成する(第1の変形例)。これにより、副磁界によるプラズマをICPアンテナ13の中心、すなわち、チャンバ11の中心において集中的に生成することができ、もって、チャンバ11内のプラズマの分布を改善することができる。   Furthermore, the position of the closed circuit 31 may be adjusted in accordance with the plasma distribution in the chamber 11. For example, when the plasma density in the center is low in the chamber 11, as shown in FIG. The lead wire 30 with a capacitor is arranged close to the center of the ICP antenna 13, and the closed circuit 31 is formed from the center of the ICP antenna 13 (first modification). As a result, plasma generated by the sub magnetic field can be generated intensively at the center of the ICP antenna 13, that is, the center of the chamber 11, thereby improving the plasma distribution in the chamber 11.

以上、本発明について、実施の形態を用いて説明したが、本発明は上述した実施の形態に限定されるものではない。   Although the present invention has been described above by using the embodiment, the present invention is not limited to the above-described embodiment.

例えば、チャンバ11において広範囲にプラズマを発生させる観点からは、図2や図5に示すように、各導線29やコンデンサ付き導線30をICPアンテナ13からオフセットして配置し、閉回路31をICPアンテナ13からオフセットさせるのが好ましい。これにより、主磁界によるプラズマから離れた位置で副磁界によるプラズマを発生させることができる。ここでオフセットとは、閉回路31やICPアンテナ13に平行な面に垂直な方向に関して重なることの無い位置関係をいうものとする。   For example, from the viewpoint of generating plasma in a wide range in the chamber 11, as shown in FIGS. 2 and 5, each lead wire 29 and the lead wire 30 with a capacitor are offset from the ICP antenna 13 and the closed circuit 31 is placed in the ICP antenna. It is preferably offset from 13. Thereby, the plasma by a submagnetic field can be generated in the position away from the plasma by a main magnetic field. Here, the offset refers to a positional relationship that does not overlap in a direction perpendicular to a plane parallel to the closed circuit 31 and the ICP antenna 13.

窓部材14も4つの分割片27に分割される場合に限られず、窓部材14は少なくとも2つの分割片27に分割されて互いに絶縁され、且つ導線29やコンデンサ付き導線30によって閉回路31が形成されればよい。例えば、図6や図7に示すように、窓部材14を12個の分割片27に分割してもよく、図8や図9に示すように、窓部材14を16個の分割片27に分割してもよい。   The window member 14 is not limited to the case where the window member 14 is divided into four divided pieces 27. The window member 14 is divided into at least two divided pieces 27 and insulated from each other, and a closed circuit 31 is formed by the conductive wire 29 and the conductive wire 30 with a capacitor. It only has to be done. For example, the window member 14 may be divided into 12 divided pieces 27 as shown in FIGS. 6 and 7, and the window member 14 may be divided into 16 divided pieces 27 as shown in FIGS. It may be divided.

また、各閉回路31は、例えば、図6に示すように、複数のコンデンサ付き導線30を有してもよく(第2の変形例)、例えば、図7に示すように、閉回路31において各分割片27を全てコンデンサ付き導線30で接続してもよい(第3の変形例)。これにより、閉回路31の対称性が高まり、もって、チャンバ11内において副磁界によって生成されるプラズマの分布の対称性をより向上することができる。   Further, each closed circuit 31 may have a plurality of conductors 30 with capacitors as shown in FIG. 6 (second modified example). For example, as shown in FIG. You may connect all the division | segmentation pieces 27 with the conducting wire 30 with a capacitor | condenser (3rd modification). Thereby, the symmetry of the closed circuit 31 is enhanced, and therefore the symmetry of the distribution of plasma generated by the sub-magnetic field in the chamber 11 can be further improved.

また、例えば、窓部材14が同じ16個の分割片27に分割される場合であっても、各分割片27が、図8に示すような三角形の分割片で構成されてもよく(第4の変形例)、図9に示すような矩形の分割片で構成されてもよい(第5の変形例)。   For example, even when the window member 14 is divided into the same 16 divided pieces 27, each divided piece 27 may be formed of triangular divided pieces as shown in FIG. 9), it may be composed of rectangular divided pieces as shown in FIG. 9 (fifth modification).

さらに、窓部材14において、複数の閉回路31が形成されてもよい。特に、複数のICPアンテナ13が配置される場合、各閉回路31は、各ICPアンテナ13に対応して1つずつ且つ近接して配置されるのが好ましい。これにより、各ICPアンテナ13を流れる高周波電流32によって対応する各閉回路31において効率よく誘導電流34を生成することができる。また、各ICPアンテナ13は、図6に示すように、同心状に配置されてもよく、若しくは、図10に示すように、個別に並列配置されてもよい(第6の変形例)。このとき、各閉回路31のリアクタンスを個別に調整することにより、各閉回路31に沿って発生する副磁界の強さを個別に調整し、これにより、チャンバ11において局所的にプラズマの密度を制御することができ、その結果、プラズマの密度分布をより細かく制御することができる 。   Further, a plurality of closed circuits 31 may be formed in the window member 14. In particular, when a plurality of ICP antennas 13 are arranged, it is preferable that each closed circuit 31 is arranged close to each other corresponding to each ICP antenna 13. Thereby, the induction current 34 can be efficiently generated in each corresponding closed circuit 31 by the high-frequency current 32 flowing through each ICP antenna 13. Further, the ICP antennas 13 may be arranged concentrically as shown in FIG. 6, or may be individually arranged in parallel as shown in FIG. 10 (sixth modification). At this time, by adjusting the reactance of each closed circuit 31 individually, the strength of the sub-magnetic field generated along each closed circuit 31 is individually adjusted, thereby locally increasing the plasma density in the chamber 11. As a result, the density distribution of the plasma can be controlled more finely.

また、窓部材14において複数の閉回路31が形成される場合、各閉回路31はそれぞれ別のICPアンテナ13に対応する必要はなく、例えば、図11や図12に示すように、1つのICPアンテナ13に対して4つの閉回路31が配置されてもよく(第7の変形例)、4つのICPアンテナ13の各々に対して4つの閉回路31が配置されてもよい(第8の変形例)。さらに、図13に示すように、1つのICPアンテナ13に対して8つの閉回路31が配置されてもよく(第9の変形例)、図14に示すように、1つのICPアンテナ13に対して16個の閉回路31が配置されてもよい(第10の変形例)。   Further, when a plurality of closed circuits 31 are formed in the window member 14, each closed circuit 31 does not have to correspond to a different ICP antenna 13, and for example, as shown in FIGS. Four closed circuits 31 may be arranged for the antenna 13 (seventh modification), and four closed circuits 31 may be arranged for each of the four ICP antennas 13 (eighth modification). Example). Further, as shown in FIG. 13, eight closed circuits 31 may be arranged for one ICP antenna 13 (the ninth modification), and as shown in FIG. 16 closed circuits 31 may be arranged (tenth modification).

さらに、本発明は、円板状の半導体ウエハにプラズマ処理を施すプラズマ処理装置に適用してもよく、この場合、窓部材14は円板状を呈するが、図15や図16に示すように、複数の分割片27に分割され、各ICPアンテナ13に対応して閉回路31が設けられる。この場合も、各閉回路31において各分割片27を導線29やコンデンサ付き導線30で接続してもよく(図15、第11の変形例)、若しくは、各分割片27をコンデンサ付き導線30のみで接続してもよい(図16、第12の変形例)。   Furthermore, the present invention may be applied to a plasma processing apparatus that performs plasma processing on a disk-shaped semiconductor wafer. In this case, the window member 14 has a disk shape, but as shown in FIGS. 15 and 16. These are divided into a plurality of divided pieces 27 and a closed circuit 31 is provided corresponding to each ICP antenna 13. Also in this case, in each closed circuit 31, each divided piece 27 may be connected by a lead wire 29 or a lead wire 30 with a capacitor (FIG. 15, eleventh modification), or each split piece 27 may be connected only to the lead wire 30 with a capacitor. May be connected (FIG. 16, 12th modification).

また、本発明は、窓部材14の一部にのみ適用してもよく、この場合、図17に示すように、窓部材14の一部が複数の分割片27に分割され、各ICPアンテナ13に対応して閉回路31が設けられる(第13の変形例)。   Further, the present invention may be applied only to a part of the window member 14, and in this case, as shown in FIG. 17, a part of the window member 14 is divided into a plurality of divided pieces 27, and each ICP antenna 13. A closed circuit 31 is provided corresponding to (13th modification).

さらに、隣接する2つの分割片27は1つの導線29又はコンデンサ付き導線30だけでなく、図18に示すように、複数の導線29やコンデンサ付き導線30で接続されてもよい(第14の変形例)。これにより、容易に複数の閉回路31を形成することができる。   Further, two adjacent segment pieces 27 may be connected not only by one conductor 29 or capacitor-equipped conductor 30 but also by a plurality of conductors 29 or a capacitor-provided conductor 30 as shown in FIG. 18 (fourteenth modification). Example). Thereby, the several closed circuit 31 can be formed easily.

また、図19に示すように、隣接する2つの分割片27の間の絶縁材28を誘電体として活用し、絶縁材28の一部28aの静電容量を調整して2つの分割片27及び絶縁材28の一部28aでコンデンサを構成してもよく(第15の変形例)、図20に示すように、隣接する2つの分割片27の間の絶縁材28の一部28bの厚みを薄くして2つの分割片27及び絶縁材28の一部28bでコンデンサを構成してもよい(第16の変形例)。これにより、コンデンサ付き導線30を用いることなく閉回路31を形成でき、もって、部品点数を削減することができる。   In addition, as shown in FIG. 19, the insulating material 28 between two adjacent divided pieces 27 is utilized as a dielectric, and the capacitance of a part 28 a of the insulating material 28 is adjusted to adjust the two divided pieces 27 and A capacitor may be constituted by a part 28a of the insulating material 28 (a fifteenth modification). As shown in FIG. 20, the thickness of a part 28b of the insulating material 28 between two adjacent divided pieces 27 is set. The capacitor may be constituted by two thin pieces 27 and a part 28b of the insulating material 28 (a sixteenth modification). Thereby, the closed circuit 31 can be formed without using the conducting wire 30 with a capacitor, and the number of parts can be reduced.

さらに、各導線29やコンデンサ付き導線30はICPアンテナ13の中心に関して対称に配置されていなくてもよい。例えば、図21に示すように、コンデンサ付き導線30や一部の導線29をICPアンテナ13の中心よりに配置するとともに、残りの導線29をICPアンテナ13の中心から離して配置してもよい(第17の変形例)。これにより、閉回路31をICPアンテナ13、引いてはチャンバ11の中心に関して偏在させることができる。その結果、例えば、チャンバ11内部の構造等の理由により、主磁界によるプラズマがチャンバ11内において偏在する場合、主磁界によるプラズマの密度が低い部分に対向するように閉回路31を偏在させ、チャンバ11内においてプラズマを均一に分布させることができる。   Furthermore, each conducting wire 29 and the conducting wire 30 with the capacitor may not be arranged symmetrically with respect to the center of the ICP antenna 13. For example, as shown in FIG. 21, the conducting wire 30 with a capacitor and a part of the conducting wire 29 may be arranged away from the center of the ICP antenna 13 and the remaining conducting wires 29 may be arranged apart from the center of the ICP antenna 13 ( Seventeenth modification). Thereby, the closed circuit 31 can be unevenly distributed with respect to the ICP antenna 13, that is, the center of the chamber 11. As a result, for example, when the plasma due to the main magnetic field is unevenly distributed in the chamber 11 due to the internal structure of the chamber 11, the closed circuit 31 is unevenly distributed so as to face the portion where the plasma density due to the main magnetic field is low. The plasma can be evenly distributed in 11.

また、本発明はプラズマの生成効率を向上することから、内部において基板Sへプラズマ処理を施すプラズマ処理装置10だけでなく、各種用途に用いられるプラズマのプラズマ源としてのプラズマ生成装置にも適用することができる。例えば、本発明が適用されたプラズマ生成装置35としては、図22に示すように、図1のプラズマ処理装置10から載置台12及び該載置台12に関連する構成要素を除去したものとなり、チャンバ11からプラズマを取り出して他の箇所へ供給するリモートプラズマ装置として用いることができる。   In addition, since the present invention improves the plasma generation efficiency, the present invention is applied not only to the plasma processing apparatus 10 that performs plasma processing on the substrate S inside, but also to a plasma generation apparatus as a plasma source for plasma used in various applications. be able to. For example, as shown in FIG. 22, the plasma generating apparatus 35 to which the present invention is applied is obtained by removing the mounting table 12 and the components related to the mounting table 12 from the plasma processing apparatus 10 of FIG. 11 can be used as a remote plasma apparatus that takes out plasma from 11 and supplies it to other locations.

10 プラズマ処理装置
11 チャンバ
12 載置台
13 ICPアンテナ
14 窓部材
26 高周波電源
27 分割片
28 絶縁材
29 導線
30 コンデンサ付き導線
31 閉回路
34 誘導電流
DESCRIPTION OF SYMBOLS 10 Plasma processing apparatus 11 Chamber 12 Mounting stand 13 ICP antenna 14 Window member 26 High frequency power supply 27 Split piece 28 Insulation material 29 Conductor 30 Conductor 31 with a capacitor Closed circuit 34 Inductive current

Claims (13)

基板を収容する処理室と、該処理室の内部に配置されて前記基板を載置する載置台と、前記処理室の外部において前記載置台と対向するように配置されて高周波電源に接続される誘導結合アンテナとを備えるプラズマ処理装置において、
前記誘導結合アンテナと対向する前記処理室の壁部を構成し、前記載置台及び前記誘導結合アンテナの間に介在する、導電体からなる窓部材をさらに備え、
前記窓部材は複数の分割片に分割され、
前記複数の分割片は互いに電気的に導通しないように直接接触せず、
少なくとも幾つかの前記分割片は導線で接続されて閉回路を形成し、
前記閉回路は、各前記分割片を接続する前記導線において少なくとも1つのコンデンサを有し、
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量が調整されることを特徴とするプラズマ処理装置。
A processing chamber that accommodates the substrate, a mounting table that is disposed inside the processing chamber and mounts the substrate, and is disposed outside the processing chamber so as to face the mounting table and is connected to a high-frequency power source. In a plasma processing apparatus comprising an inductively coupled antenna,
A wall portion of the processing chamber facing the inductively coupled antenna is configured, and further includes a window member made of a conductor interposed between the mounting table and the inductively coupled antenna,
The window member is divided into a plurality of divided pieces,
The plurality of divided pieces are not in direct contact with each other so as not to be electrically connected to each other,
At least some of the segments are connected by a conductive wire to form a closed circuit;
The closed circuit may have at least one capacitor in said wire to connect each of the divided pieces,
The plasma processing apparatus in which the electrostatic capacitance of the capacitor as the reactance of the closed circuit is negative and said Rukoto adjusted.
前記導線は前記誘導結合アンテナの中心に関して対称に配置されることを特徴とする請求項記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein said conductor, characterized in that are arranged symmetrically with respect to the center of the inductively coupled antenna. 前記導線の各々が前記コンデンサを有することを特徴とする請求項1又は2記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1 or 2, wherein each of said conductors and having the capacitor. 前記導線は前記誘導結合アンテナとオフセットして配置されることを特徴とする請求項1乃至のいずれか1項に記載のプラズマ処理装置。 The conductor plasma processing apparatus according to any one of claims 1 to 3, characterized in that it is arranged to the inductive coupling antenna and offset. 前記コンデンサは容量可変コンデンサであり、前記処理室内のプラズマの密度及び密度分布の少なくとも一方に応じて前記コンデンサの静電容量が調整されることを特徴とする請求項1乃至のいずれか1項に記載のプラズマ処理装置。 The capacitor is the capacitance variable capacitor, any one of claims 1 to 4 the capacitance of the capacitor in accordance with at least one of the density and density distribution of the processing chamber of the plasma is characterized in that it is adjusted The plasma processing apparatus according to 1. 前記処理室内のプラズマの分布に応じて前記導線の位置が調整されることを特徴とする請求項1乃至のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 5, characterized in that the position of the wires in accordance with the plasma distribution in the processing chamber is adjusted. 前記窓部材において複数の前記閉回路が形成されることを特徴とする請求項1乃至のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 6, wherein a plurality of said closed circuit is formed in the window member. 減圧室内にプラズマを生成させるプラズマ生成装置であって、
前記減圧室の外部に配置されて高周波電源に接続される誘導結合アンテナと、該誘導結合アンテナ及び前記減圧室内のプラズマの間に介在する、導電体からなる窓部材とを備え、
前記窓部材は複数の分割片に分割され、
前記複数の分割片は互いに電気的に導通しないように直接接触せず、
少なくとも幾つかの前記分割片は導線で接続されて閉回路を形成し、
前記閉回路は、各前記分割片を接続する前記導線において少なくとも1つのコンデンサを有し、
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量が調整されることを特徴とするプラズマ生成装置。
A plasma generator for generating plasma in a decompression chamber,
An inductively coupled antenna disposed outside the decompression chamber and connected to a high frequency power source; and a window member made of a conductor interposed between the inductively coupled antenna and the plasma in the decompression chamber,
The window member is divided into a plurality of divided pieces,
The plurality of divided pieces are not in direct contact with each other so as not to be electrically connected to each other,
At least some of the segments are connected by a conductive wire to form a closed circuit;
The closed circuit may have at least one capacitor in said wire to connect each of the divided pieces,
The electrostatic capacitance of the capacitor as the reactance of the closed circuit is negative is adjusted plasma generating apparatus according to claim Rukoto.
前記導線は前記誘導結合アンテナの中心に関して対称に配置されることを特徴とする請求項記載のプラズマ生成装置。 9. The plasma generating apparatus according to claim 8, wherein the conducting wires are arranged symmetrically with respect to the center of the inductively coupled antenna. 高周波電源に接続される誘導結合アンテナを備えるアンテナ構造体において、
前記誘導結合アンテナ及び前記誘導結合アンテナによって生成されるプラズマの間に介在する、導電体からなる窓部材を備え、
前記窓部材は複数の分割片に分割され、
前記複数の分割片は互いに電気的に導通しないように直接接触せず、
少なくとも幾つかの前記分割片は導線で接続されて閉回路を形成し、
前記閉回路は、各前記分割片を接続する前記導線において少なくとも1つのコンデンサを有し、
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量が調整されることを特徴とするアンテナ構造体。
In an antenna structure including an inductively coupled antenna connected to a high frequency power source,
A window member made of a conductor interposed between the inductively coupled antenna and the plasma generated by the inductively coupled antenna;
The window member is divided into a plurality of divided pieces,
The plurality of divided pieces are not in direct contact with each other so as not to be electrically connected to each other,
At least some of the segments are connected by a conductive wire to form a closed circuit;
The closed circuit may have at least one capacitor in said wire to connect each of the divided pieces,
Antenna structures capacitance of the capacitor as a reactance of the closed circuit is negative and said Rukoto adjusted.
前記導線は前記誘導結合アンテナの中心に関して対称に配置されることを特徴とする請求項10記載のアンテナ構造体。 The antenna structure according to claim 10, wherein the conducting wire is disposed symmetrically with respect to a center of the inductively coupled antenna. 高周波電源に接続される誘導結合アンテナと、前記誘導結合アンテナ及びプラズマの間に介在する、導電体からなる窓部材とを備え、前記窓部材は複数の分割片に分割され、前記複数の分割片は互いに絶縁されるアンテナ構造体を用いたプラズマ生成方法であって、
少なくとも幾つかの前記分割片を、少なくとも1つにコンデンサを有する導線で接続して閉回路を形成し、
前記閉回路のリアクタンスが負になるように前記コンデンサの静電容量を調整することを特徴とするプラズマ生成方法。
An inductively coupled antenna connected to a high frequency power supply; and a window member made of a conductor interposed between the inductively coupled antenna and the plasma, the window member being divided into a plurality of divided pieces, and the plurality of divided pieces Is a plasma generation method using antenna structures that are insulated from each other,
Connecting at least some of the divided pieces with a conductor having at least one capacitor to form a closed circuit;
A plasma generation method comprising adjusting a capacitance of the capacitor so that a reactance of the closed circuit becomes negative.
前記コンデンサは容量可変コンデンサであり、前記処理室内のプラズマの密度及び密度分布の少なくとも一方に応じて前記コンデンサの静電容量が調整されることを特徴とする請求項12のプラズマ生成方法。 13. The plasma generation method according to claim 12 , wherein the capacitor is a variable capacitance capacitor, and the capacitance of the capacitor is adjusted according to at least one of plasma density and density distribution in the processing chamber.
JP2012133680A 2012-06-13 2012-06-13 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method Active JP5934030B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012133680A JP5934030B2 (en) 2012-06-13 2012-06-13 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
TW102120155A TWI573168B (en) 2012-06-13 2013-06-06 A plasma processing apparatus, a plasma generating apparatus, an antenna structure, and a plasma generating method
KR1020130066588A KR101720373B1 (en) 2012-06-13 2013-06-11 Plasma treatment apparatus, plasma generation apparatus, antenna structure and plasma generation method
CN201310233964.6A CN103491700B (en) 2012-06-13 2013-06-13 Plasma processing apparatus, generating means and generation method, antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133680A JP5934030B2 (en) 2012-06-13 2012-06-13 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method

Publications (2)

Publication Number Publication Date
JP2013258307A JP2013258307A (en) 2013-12-26
JP5934030B2 true JP5934030B2 (en) 2016-06-15

Family

ID=49831557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133680A Active JP5934030B2 (en) 2012-06-13 2012-06-13 Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method

Country Status (4)

Country Link
JP (1) JP5934030B2 (en)
KR (1) KR101720373B1 (en)
CN (1) CN103491700B (en)
TW (1) TWI573168B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920732B (en) * 2015-12-25 2018-10-16 中微半导体设备(上海)有限公司 A kind of electrode structure and ICP etching machines
KR101826883B1 (en) 2016-11-03 2018-02-08 인투코어테크놀로지 주식회사 Inductive Coil Structure And Inductively Coupled Plasma Apparatus
KR102071517B1 (en) * 2018-05-30 2020-01-30 인베니아 주식회사 Apparatus for processing inductively coupled plasma
KR102511989B1 (en) * 2018-10-05 2023-03-20 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus
KR102543128B1 (en) * 2018-10-05 2023-06-13 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus
KR102543129B1 (en) * 2018-10-05 2023-06-14 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus
KR102543130B1 (en) * 2018-10-05 2023-06-14 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus
KR102543131B1 (en) * 2018-10-05 2023-06-14 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110777A (en) 1999-10-05 2001-04-20 Matsushita Electric Ind Co Ltd Method and device for processing plasma
JP2003234338A (en) 2002-02-08 2003-08-22 Tokyo Electron Ltd Inductively coupled plasma treatment apparatus
JP2003264172A (en) * 2002-03-07 2003-09-19 New Japan Radio Co Ltd Plasma processor
JP2004134495A (en) * 2002-10-09 2004-04-30 Fasl Japan Ltd Plasma processing apparatus
JP2005285564A (en) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd Plasma treatment device
JP5479867B2 (en) * 2009-01-14 2014-04-23 東京エレクトロン株式会社 Inductively coupled plasma processing equipment
KR101757921B1 (en) * 2009-10-27 2017-07-14 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus and plasma processing method
JP5851681B2 (en) * 2009-10-27 2016-02-03 東京エレクトロン株式会社 Plasma processing equipment
JP5592098B2 (en) 2009-10-27 2014-09-17 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5916044B2 (en) * 2010-09-28 2016-05-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
TW201234452A (en) * 2010-11-17 2012-08-16 Tokyo Electron Ltd Apparatus for plasma treatment and method for plasma treatment

Also Published As

Publication number Publication date
CN103491700B (en) 2017-03-01
KR101720373B1 (en) 2017-03-27
TW201403655A (en) 2014-01-16
KR20130139779A (en) 2013-12-23
JP2013258307A (en) 2013-12-26
TWI573168B (en) 2017-03-01
CN103491700A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5934030B2 (en) Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
CN104217914B (en) Plasma processing apparatus
KR101615492B1 (en) Compound plasma reactor
JP2004537839A (en) Antenna structure of inductively coupled plasma generator
CN101080133B (en) Inductively coupled plasma reactor
KR20120004040A (en) Plasma generating apparatus
CN110880443A (en) Plasma processing apparatus
JP2013008539A (en) Plasma processing apparatus
JP6001963B2 (en) Plasma processing apparatus, plasma generation apparatus, antenna structure, and plasma generation method
KR101718182B1 (en) Plasma processing apparatus, plasma producing apparatus, antenna structure, and plasma producing method
TWI439186B (en) Compound plasma source and method for dissociating gases using the same
JP2012133899A (en) Plasma processing device
KR20070017616A (en) Multi Magnetized Inductively Coupled Plasmas Structure
KR101585893B1 (en) Compound plasma reactor
KR20080028848A (en) Inductively coupled plasma reactor for wide area plasma processing
JP2013020871A (en) Plasma processing apparatus
WO2019229784A1 (en) Plasma treatment apparatus
KR101585891B1 (en) Compound plasma reactor
KR101200743B1 (en) Multi inductively coupled plasma reactor and method thereof
KR101139829B1 (en) Apparatus for multi supplying gas and plasma reactor with apparatus for multi supplying gas
KR100753869B1 (en) Compound plasma reactor
KR101129675B1 (en) Plasma generation apparatus and transformer
KR20210120261A (en) Large area high efficiency plasma generator
KR20040069746A (en) Antenna having multiple central axix and inductively coupled plasma generating apparatus applying the same
JP2013131295A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250