JPH0494090A - Magnetic field controlling method in induction heating electric furnace - Google Patents

Magnetic field controlling method in induction heating electric furnace

Info

Publication number
JPH0494090A
JPH0494090A JP21278590A JP21278590A JPH0494090A JP H0494090 A JPH0494090 A JP H0494090A JP 21278590 A JP21278590 A JP 21278590A JP 21278590 A JP21278590 A JP 21278590A JP H0494090 A JPH0494090 A JP H0494090A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
electric furnace
induction
field control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21278590A
Other languages
Japanese (ja)
Inventor
Shoji Taniguchi
尚司 谷口
Atsushi Kikuchi
淳 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI DENPA ENG KK
Original Assignee
FUJI DENPA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI DENPA ENG KK filed Critical FUJI DENPA ENG KK
Priority to JP21278590A priority Critical patent/JPH0494090A/en
Publication of JPH0494090A publication Critical patent/JPH0494090A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To locally control the temperature and stirring of an object to be heated by inserting a magnetic field controlling coil locally between an induction coil of an induction heating electric furnace and the object to be heated and controlling the intensity of the induction current induced by the controlling coil. CONSTITUTION:A magnetic field controlling coil 6 is put between an induction coil 3 and a molten iron 5 and its height is short as compared with the induction coil 3 and it has a sufficient length to cover the molten iron locally and is put at a proper position, for example near the surface of the molten iron 5, and both ends of it are taken outside and connected with an inductance variable outside coil 7. Consequently, the inductance of the outside coil 7 is changed and the induction current running in the magnetic field controlling coil 6 is changed, so that the distribution of the magnetic field in a furnace becomes possible to be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鋼及び非鉄金属製造分野で広く利用されてい
る誘導電気炉に、局所的に加熱及び撹拌を連続制御する
磁界制御方法に関するものである 〔従来の技術〕 現在普及している誘導電気炉は、大電力を被加熱物に投
入することによる迅速な加熱溶解と、溶融金属内部に発
生する激しい誘導撹拌が特徴であり、金属スクラップの
溶X 合金成分の均−混合及びスラグ投入による溶融金
属の精錬を目的として広く利用されてい。る 〔発明が解決しようとする課題〕 誘導電気炉は優れた加熱及び攪拌機能を有するカt そ
の反面こ局所的な過熱及び流れによる炉材の溶損やスラ
ブの巻き込みによる溶融金属の汚濁化及び非金属介在物
の浮上分離性の劣化などの重大な問題を内包している。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic field control method for locally controlling continuous heating and stirring in an induction electric furnace widely used in the steel and non-ferrous metal manufacturing fields. [Conventional technology] The induction electric furnace that is currently in widespread use is characterized by rapid heating and melting by inputting large amounts of electric power into the heated object, and intense induction stirring that occurs inside the molten metal. Molten X It is widely used for the purpose of uniformly mixing alloy components and refining molten metal by adding slag. [Problem to be solved by the invention] Induction electric furnaces have excellent heating and stirring functions, but on the other hand, they are prone to melting of furnace materials due to localized overheating and flow, contamination of molten metal due to entrainment of slabs, etc. This includes serious problems such as deterioration in the flotation and separation properties of non-metallic inclusions.

近年の鉄鋼及び非鉄金属材料に課せられた高清浄化への
激しい要求を満たすために上記の問題の早急な解決が急
動となっている。この問題を解決するためには 炉内の
局所的な湿度制御または撹拌制御を行う必要がある。し
かし誘導電気炉における加熱と撹拌は、いずれも炉内に
発生する交流磁界によって行われるが、磁界の分布は誘
導電気炉の設計条件によって固定されている。このため
炉内の局所的な温度制御及び撹拌制御は従来の技術では
不可能である。
In order to meet the severe demands for high cleanliness imposed on steel and non-ferrous metal materials in recent years, there is an urgent need to solve the above-mentioned problems as soon as possible. To solve this problem, it is necessary to perform local humidity control or stirring control within the furnace. However, heating and stirring in an induction electric furnace are both performed by an alternating magnetic field generated within the furnace, but the distribution of the magnetic field is fixed depending on the design conditions of the induction electric furnace. Therefore, local temperature control and stirring control within the furnace is not possible with conventional techniques.

本発明はかかる点に鑑み、既存の誘導電気炉に大きな変
更を行うことなく局所的温度制御及び撹拌制御を行うこ
とを目的とする。
In view of this point, the present invention aims to perform local temperature control and stirring control without making major changes to existing induction electric furnaces.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明の誘導電気炉内の磁界
制御方法は、誘導電気炉における誘導コイルと被加熱物
との間隙に局所的に磁界制御コイルを挿入し、この磁界
制御コイルに発生する誘導電流の強さを調整、し これ
により前記誘導電気炉内の磁界を局所的に制御し、被加
熱物の温度と撹拌を局所的に制御するようにしたもので
ある。
A magnetic field control method in an induction electric furnace according to the present invention to achieve the above object includes inserting a magnetic field control coil locally into the gap between the induction coil and the object to be heated in the induction electric furnace, and generating a magnetic field in the magnetic field control coil. The strength of the induced current is adjusted, thereby locally controlling the magnetic field within the induction electric furnace, thereby locally controlling the temperature and stirring of the object to be heated.

なお上記磁界制御コイルに発生する誘導電流の強さを調
整する手段として、は このコイルに連なりインダクタ
ンスを可変とした外部コイルにより規制すればJい。
Note that as a means for adjusting the strength of the induced current generated in the above-mentioned magnetic field control coil, it is possible to regulate it by an external coil connected to this coil and having a variable inductance.

あるいはこの外部コイルに代えて可変抵抗器により規制
するようにしてもよい。
Alternatively, regulation may be performed using a variable resistor instead of this external coil.

また他の発明は、誘導電気炉における誘導コイルと被加
熱物との間隙に局所的に導電性円筒を挿入し、この円筒
内に発生する誘導電流の強さを調整し、これにより前記
誘導電気炉内の磁界を局所的に制御し、被加熱物の温度
と撹拌を局所的に制御するようにしたものである。
In another invention, an electrically conductive cylinder is locally inserted into the gap between an induction coil and an object to be heated in an induction electric furnace, and the strength of the induced current generated in this cylinder is adjusted. The magnetic field inside the furnace is locally controlled, and the temperature and stirring of the heated object are locally controlled.

なお上記円筒に発生する誘導電流の強さを調整する手段
としては、この円筒の一部を切欠し、その両端を可変抵
抗器に接続、し この可変抵抗器により規制すればよい
In order to adjust the strength of the induced current generated in the cylinder, a part of the cylinder may be cut out, both ends of which may be connected to a variable resistor, and the current may be regulated by the variable resistor.

あるいはこの可変抵抗器に代えてインダクタンスを可変
とした外部コイルにより行うようにしてもよい。
Alternatively, instead of this variable resistor, an external coil with variable inductance may be used.

〔作 用〕[For production]

磁界制御コイルまたは導電性円筒に生じる誘導電流は被
加熱物に印加される交流磁界を減少させも 従って上記
磁界制御コイルまたは導電性円筒に対向する被加熱物は
局所的に温度及び撹拌は制御される。
The induced current generated in the magnetic field control coil or conductive cylinder reduces the alternating magnetic field applied to the object to be heated. Therefore, the temperature and stirring of the object to be heated facing the magnetic field control coil or conductive cylinder are locally controlled. Ru.

〔実施例〕〔Example〕

第1図乃至第4図は本発明の第1実施例を示す。誘導電
気炉lは雰囲気を調整するための反応容器2の外周に誘
導コイル3を、また中心部にるつぼ4を備える。5はる
つぼ内に収納される溶鉄であり、通常の誘導電気炉は上
記要領にて構成されている。
1 to 4 show a first embodiment of the present invention. The induction electric furnace 1 is equipped with an induction coil 3 around the outer periphery of a reaction vessel 2 for adjusting the atmosphere, and a crucible 4 in the center. 5 is molten iron stored in a crucible, and a normal induction electric furnace is constructed as described above.

6は磁界制御コイルを示し誘導コイル3と溶鉄5との間
に配備され、かつその高さは誘導コイル3に比して短く
、溶鉄5を局所的に覆う長さを有し、かつ溶鉄5に対し
適所例えば表面近傍に設置し、その両端は外部に取出し
、インダクタンスを可変とした外部コイル7に接続する
Reference numeral 6 denotes a magnetic field control coil, which is disposed between the induction coil 3 and the molten iron 5, has a shorter height than the induction coil 3, has a length that locally covers the molten iron 5, and has a length that covers the molten iron 5 locally. It is installed at a suitable location, for example, near the surface, and its both ends are taken out to the outside and connected to an external coil 7 with variable inductance.

これにより外部コイル7のインダクタンスを変化させ、
磁界制御コイル6に流れる誘導電流を変化させ、これに
よって炉内の磁界分布を制御することが可能となる。
This changes the inductance of the external coil 7,
By changing the induced current flowing through the magnetic field control coil 6, it is possible to control the magnetic field distribution within the furnace.

第2図は上記装置を用いて制御した磁界の様子の1例を
、但し誘導コイル中心軸上の軸方向磁束密度分布を外部
コイルのインダクタンスをパラメータとして示したもの
である。図の条件は炉の周波数が30KHz、誘導コイ
ルの巻数は129−ン、内径11cm、磁界制御コイル
の巻数4ターン、外形8C−で磁界制御コイル6を誘導
コイル3の中央に置き、被加熱物がない状態で測定した
。図より磁束密度は磁界制御コイル6の回路を開いたと
氏 即ち磁界制御コイルを設置しない状態では(図の白
丸印)中央部は最大であるが、磁界制御コイルの回路を
閉じることにより中央部で減少しており、減少の度合は
外部コイル7のインダクタンスI:よって変化している
FIG. 2 shows an example of the state of the magnetic field controlled using the above-mentioned device, in which the axial magnetic flux density distribution on the central axis of the induction coil is shown using the inductance of the external coil as a parameter. The conditions in the figure are that the furnace frequency is 30 KHz, the number of turns of the induction coil is 129 turns, the inner diameter is 11 cm, the number of turns of the magnetic field control coil is 4 turns, the outer diameter is 8C, the magnetic field control coil 6 is placed in the center of the induction coil 3, and the object to be heated is placed in the center of the induction coil 3. Measured without. According to the figure, the magnetic flux density is the highest when the circuit of the magnetic field control coil 6 is opened.In other words, when the magnetic field control coil is not installed (white circle in the figure), the magnetic flux density is maximum at the center, but by closing the circuit of the magnetic field control coil, it is The degree of decrease varies depending on the inductance I of the external coil 7.

このように磁界制御コイル6を用へ 外部コイル7をm
いインダクタンスを制御することにより、炉内の磁束密
度を制御することができ、これにより被加熱物の温度ま
たは攪拌を局所的に制御できる。
In this way, use the magnetic field control coil 6 and connect the external coil 7 to m.
By controlling the small inductance, the magnetic flux density within the furnace can be controlled, and thereby the temperature or agitation of the heated object can be locally controlled.

次にこの磁界制御を溶鉄の局所的撹拌制御に適用した例
を第3図に示す。なお溶鉄内部の撹拌強度を定量的に測
定することは難しい。そこで溶鉄中にグラファイトの丸
棒1−浸漬し、その直径変化から溶解量の分布を求め、
溶鉄内の高さ方向の流動状態を類推することにする。
Next, FIG. 3 shows an example in which this magnetic field control is applied to local stirring control of molten iron. Note that it is difficult to quantitatively measure the stirring intensity inside molten iron. Therefore, a graphite round rod was immersed in molten iron, and the distribution of the dissolved amount was determined from the change in diameter.
Let us make an analogy to the flow state in the height direction in molten iron.

第3図は縦軸にグラファイトの溶解量を表す指数である
局所物質移動係数をとり、横軸にるつぼ底からの高さを
とって磁界制御コイルの効果を溶鉄温度1400°C1
溶鉄* f 500gの場合について示したものである
。但し磁界制御コイルは溶鉄上部龜ご対向設置して実験
した。これによるとき番よ 溶鉄上部における撹拌は磁
界制御コイルの回路を開いたとき即ちインダクタンスを
無限大としたとき、換言すると磁界制御コイルを挿入し
ない場合は最大であっ、て インダクタンス2を減少す
るに従って撹拌強度は弱められ°る。
In Figure 3, the vertical axis shows the local mass transfer coefficient, which is an index representing the amount of dissolved graphite, and the horizontal axis shows the height from the bottom of the crucible, and the effect of the magnetic field control coil is calculated at a molten iron temperature of 1400°C1.
The figure shows the case of 500g of molten iron*f. However, the magnetic field control coil was installed opposite the top of the molten iron in the experiment. According to this, the stirring in the upper part of the molten iron is at its maximum when the circuit of the magnetic field control coil is opened, that is, when the inductance is set to infinite.In other words, when the magnetic field control coil is not inserted, the stirring at the top of the molten iron is at its maximum. Strength is weakened.

これは前述の如く磁界*J ijコイルにより炉内の磁
界を制御したことにより撹拌強度を減少したものである
This is because the stirring intensity was reduced by controlling the magnetic field in the furnace using the magnetic field *J ij coil as described above.

次に第4図は第2実施例を示す。本実施例は前例の外部
コイル7に代えて可変抵抗I18を取付けたものである
。その他の構造は前例と同一であり、同一部品には同一
符号を付して説明を省略する。
Next, FIG. 4 shows a second embodiment. In this embodiment, a variable resistor I18 is attached in place of the external coil 7 of the previous example. The rest of the structure is the same as that of the previous example, and the same parts are given the same reference numerals and explanations will be omitted.

前記実施例は磁界制御コイル6のインダクタンスを外部
コイル7のインダクタンスにより規制したものであり、
本実施例は可変抵抗器8によるIi流規制により行うよ
うにしたもので、実験の結果は上記第2図及び第3図と
同等の制御が可能であった。従ってその実験結果は上記
第1実施例と重複するので説明を省略する。
In the embodiment described above, the inductance of the magnetic field control coil 6 is regulated by the inductance of the external coil 7,
In this embodiment, the Ii flow is regulated by the variable resistor 8, and the experimental results showed that control equivalent to that shown in FIGS. 2 and 3 above was possible. Therefore, the experimental results are the same as those of the first embodiment, so the explanation will be omitted.

次に第5図及び第6図は第3実施例を示す。Next, FIGS. 5 and 6 show a third embodiment.

本実施例は前記各実施例の磁界制御コイル6に代えて導
電性円筒ioを誘導コイル3と被加熱物5との間に挿入
し、この円筒1oに銹起される誘導電流を規制するよう
にしたもので、誘導電気炉1の構成は前記各実施例と同
一であり、同一部品に対しては同一符号を付して説明を
省略する。
In this embodiment, a conductive cylinder io is inserted between the induction coil 3 and the object to be heated 5 instead of the magnetic field control coil 6 of each of the above embodiments, and the induced current generated in the cylinder 1o is regulated. The configuration of the induction electric furnace 1 is the same as in each of the embodiments described above, and the same parts are denoted by the same reference numerals and the explanation thereof will be omitted.

実験に際しては円筒10はモリブデン製とし、誘導電流
を制御するため、この円筒10の一箇所tご切欠IIを
形成し、円筒1oの両端を外部の可変抵抗器12に接続
した。
In the experiment, the cylinder 10 was made of molybdenum, and in order to control the induced current, a notch II was formed at one location t in the cylinder 10, and both ends of the cylinder 1o were connected to an external variable resistor 12.

本実施例の場合も、円筒10による磁界分布の制御は 
上記各実施例と同様であり、円筒1oによる局所的攪拌
制御終了の実験結果を第6図に示す。
In the case of this embodiment as well, the control of the magnetic field distribution by the cylinder 10 is
This is the same as in each of the above embodiments, and FIG. 6 shows the experimental results of termination of local stirring control using the cylinder 1o.

本実施NJごおいても導電性円筒18を設置した溶鉄上
部において、抵抗変化tこ伴う溶解量の顕著な変化が認
められる。
Also in this NJ example, in the upper part of the molten iron where the conductive cylinder 18 was installed, a remarkable change in the amount of melting due to the change in resistance t was observed.

次に第7図は第4実施例を示す。本実施例は上記第3実
施例の可変抵抗器12に代えてインダクタンス可変の外
部コイルを取付けたものである。この外部コイル13に
よる円筒10に銹起される銹導II流及びこれに伴う磁
界分布のf#lJ御は上記第1実施例と同様であり説明
を省略する。
Next, FIG. 7 shows a fourth embodiment. In this embodiment, an external coil with variable inductance is attached in place of the variable resistor 12 of the third embodiment. The rust induction II flow generated in the cylinder 10 by the external coil 13 and the accompanying f#lJ control of the magnetic field distribution are the same as those in the first embodiment, and the explanation thereof will be omitted.

なお上記各実施例はグラファイトの溶解量の変化につい
ては説明したが、この溶解量の変化は溶鉄の局所的撹拌
強度の変化と対応するものであり、本発明による局所的
攪拌制御を示すものである。
In each of the above examples, the change in the amount of dissolved graphite has been explained, but this change in the amount of dissolved graphite corresponds to a change in the local stirring intensity of molten iron, and does not indicate the local stirring control according to the present invention. be.

なお局所的温度制御も撹拌制御と同様に第2図に示す炉
内磁界制御により行い得ることは明かである。
It is clear that local temperature control can also be performed by in-furnace magnetic field control as shown in FIG. 2, similar to stirring control.

また上記実施例は周波数30KHzの小型誘導電気炉を
用い実験した結果を示したが、必ずしもこれに限らず本
発明による磁界制御の原理は炉の周波数及び炉の大きさ
の如何によらず適用可能である 〔発明の効果〕 本発明による時は、誘導電気炉の誘導コイルと被加熱物
との間に磁界制御コイルまたはこれに代えて導電性円筒
を局所的に挿入し、それぞれに誘起される誘導電流の強
さを調節することにより、電気炉内の磁界のこれら磁界
制御コイルまたは円筒に対向する部分を制御するように
したから、被加熱物の温度及び撹拌を局所的に制御する
ことができる。
Furthermore, although the above embodiments show the results of experiments using a small induction electric furnace with a frequency of 30 KHz, the principle of magnetic field control according to the present invention is not necessarily limited to this, and can be applied regardless of the frequency of the furnace and the size of the furnace. [Effects of the Invention] According to the present invention, a magnetic field control coil or a conductive cylinder is locally inserted between the induction coil of the induction electric furnace and the object to be heated, and By adjusting the strength of the induced current, the part of the magnetic field in the electric furnace that faces these magnetic field control coils or cylinders is controlled, so the temperature and stirring of the heated object can be locally controlled. can.

また上記誘導電流の強さの調節はこれら制御コイルまた
は円筒を切欠してそれぞれ外部コイルまたは可変抵抗器
に接続して!II節することにより、炉の運転を止めず
に必要な時期に必要な程度の加熱、撹拌制御を行うこと
ができる。
In addition, the strength of the induced current can be adjusted by cutting out these control coils or cylinders and connecting them to external coils or variable resistors, respectively! By using Section II, it is possible to control heating and stirring to the required degree at the required time without stopping the operation of the furnace.

しかも上記磁界制御コイルまたは導電性円筒の取付けは
、既存の誘導電気炉に大きな変更を行うことなく、容易
に改造することができる。
Moreover, the attachment of the magnetic field control coil or the conductive cylinder can be easily modified without making any major changes to the existing induction electric furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は第1実施例に関し、第1図は誘導電
気炉の縦断説明、図 第2図は磁界制御コイルによる磁
界制御要領を示すグラフ、第3図は磁界制御コイルにょ
る溶鉄の撹拌制御要領を示すグラフ、第4図は第2実施
例に関し、誘導電気炉の縦断説明図、第5図及び第6図
は第3実施例に関し、第5図は誘導電気炉の縦断説明は
 第6図は導電性円筒による撹拌制御要領を示すグラフ
、第7図は第4実施例に関し、誘導電気炉の縦断説明図
であ。る 1は誘導電気炉、3は誘導コイル、5は溶鉄、6は磁界
制御コイル、7,13は外部コイル、8゜12は可変抵
抗器、10は導電性円筒である。 第3図 第2図 ろ913:島jかう^高さ(Cm) フイルヤ・じからの距裏値(cm) 第6図 るっ1γ愈争うめたさ(cm)
Figures 1 to 3 relate to the first embodiment, Figure 1 is a longitudinal section of the induction furnace, Figure 2 is a graph showing how to control the magnetic field by the magnetic field control coil, and Figure 3 is the graph showing the magnetic field control coil. A graph showing the control procedure for stirring molten iron. Fig. 4 relates to the second embodiment, a longitudinal cross-sectional view of the induction electric furnace, Figs. 5 and 6 relate to the third embodiment, and Fig. 5 shows a longitudinal cross-section of the induction electric furnace. Explanation: FIG. 6 is a graph showing a stirring control procedure using a conductive cylinder, and FIG. 7 is a longitudinal cross-sectional view of an induction electric furnace according to the fourth embodiment. 1 is an induction electric furnace, 3 is an induction coil, 5 is molten iron, 6 is a magnetic field control coil, 7 and 13 are external coils, 8° 12 is a variable resistor, and 10 is a conductive cylinder. Figure 3 Figure 2 RO 913: Height of the island (Cm) Distance from Furuya and Jikara (cm) Figure 6 Ru 1γ Yuri Struggle (cm)

Claims (6)

【特許請求の範囲】[Claims] (1)誘導電気炉における誘導コイルと被加熱物との間
隙に局所的に磁界制御コイルを挿入し、この磁界制御コ
イルに発生する誘導電流の強さを調整し、これにより前
記誘導電気炉内の磁界を局所的に制御し、被加熱物の温
度と撹拌を局所的に制御することを特徴とする誘導電気
炉内の磁界制御方法。
(1) A magnetic field control coil is inserted locally into the gap between the induction coil and the object to be heated in the induction electric furnace, and the strength of the induced current generated in this magnetic field control coil is adjusted, thereby controlling the inside of the induction electric furnace. A method for controlling a magnetic field in an induction electric furnace, the method comprising locally controlling the magnetic field in the induction furnace, and locally controlling the temperature and stirring of a heated object.
(2)磁界制御コイルにはインダクタンス可変の外部コ
イルを接続し、この外部コイルにより磁界制御コイルに
発生する誘導電流を連続的に規制することを特徴とする
請求項1に記載の誘導電気炉内の磁界制御方法。
(2) The induction electric furnace according to claim 1, wherein an external coil with variable inductance is connected to the magnetic field control coil, and the induced current generated in the magnetic field control coil is continuously regulated by the external coil. magnetic field control method.
(3)磁界制御コイルには可変抵抗器を接続し、この可
変抵抗器により磁界制御コイルに発生する誘導電流を連
続的に規制することを特徴とする請求項1に記載の誘導
電気炉内の磁界制御方法。
(3) A variable resistor is connected to the magnetic field control coil, and the induced current generated in the magnetic field control coil is continuously regulated by the variable resistor. Magnetic field control method.
(4)誘導電気炉における誘導コイルと被加熱物との間
隙に局所的に導電性円筒を挿入し、この円筒内に発生す
る誘導電流の強さを調整し、これにより前記誘導電気炉
内の磁界を局所的に制御し、被加熱物の温度と撹拌を局
所的に制御することを特徴とする誘導電気炉内の磁界制
御方法。
(4) A conductive cylinder is locally inserted into the gap between the induction coil and the object to be heated in the induction electric furnace, and the strength of the induced current generated in the cylinder is adjusted, thereby controlling the temperature inside the induction electric furnace. A method for controlling a magnetic field in an induction electric furnace, characterized by locally controlling a magnetic field, and locally controlling the temperature and stirring of an object to be heated.
(5)導電性円筒の一部を切欠し、その両端を可変抵抗
器に接続し、この可変抵抗器により上記円筒内に発生す
る誘導電流を連続的に規制することを特徴とする請求項
4に記載の誘導電気炉内の磁界制御方法。
(5) A part of the conductive cylinder is cut out and both ends thereof are connected to a variable resistor, and the induced current generated in the cylinder is continuously regulated by the variable resistor. A magnetic field control method in an induction electric furnace described in .
(6)導電性円筒の一部を切欠し、その両端をインダク
タンスを可変とした外部コイルに接続し、この外部コイ
ルにより導電性円筒内に発生する誘導電流を連続的に規
制することを特徴とする請求項4に記載の誘導電気炉内
の磁界制御方法。
(6) A part of the conductive cylinder is cut out, both ends of which are connected to an external coil with variable inductance, and the induced current generated within the conductive cylinder is continuously regulated by this external coil. The magnetic field control method in an induction electric furnace according to claim 4.
JP21278590A 1990-08-10 1990-08-10 Magnetic field controlling method in induction heating electric furnace Pending JPH0494090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21278590A JPH0494090A (en) 1990-08-10 1990-08-10 Magnetic field controlling method in induction heating electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21278590A JPH0494090A (en) 1990-08-10 1990-08-10 Magnetic field controlling method in induction heating electric furnace

Publications (1)

Publication Number Publication Date
JPH0494090A true JPH0494090A (en) 1992-03-26

Family

ID=16628345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21278590A Pending JPH0494090A (en) 1990-08-10 1990-08-10 Magnetic field controlling method in induction heating electric furnace

Country Status (1)

Country Link
JP (1) JPH0494090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119658A (en) * 2009-10-27 2011-06-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
US9313872B2 (en) 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9899191B2 (en) 2009-10-27 2018-02-20 Tokyo Electron Limited Plasma processing apparatus
US9997332B2 (en) 2009-10-27 2018-06-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119658A (en) * 2009-10-27 2011-06-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
US9313872B2 (en) 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9899191B2 (en) 2009-10-27 2018-02-20 Tokyo Electron Limited Plasma processing apparatus
US9941097B2 (en) 2009-10-27 2018-04-10 Tokyo Electron Limited Plasma processing apparatus
US9997332B2 (en) 2009-10-27 2018-06-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US10804076B2 (en) 2009-10-27 2020-10-13 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
CA2023285C (en) Induction heating apparatus and method
EP1233244B1 (en) Induction heating furnace and bottom tapping mechanism thereof
US5074532A (en) Electro-magnetic nozzle device for controlling a stream of liquid metal tapped from a crucible
EP1767062B1 (en) Induction furnace for melting semi-conductor materials
EP0801516A1 (en) Induction heating and melting apparatus with superconductive coil and removable crucible
US5003551A (en) Induction melting of metals without a crucible
US20090107991A1 (en) Electric induction heating and melting of an electrically conductive material in a containement vessel
US5257281A (en) Induction heating apparatus and method
JPH03216264A (en) Prevention of metal from contamination
JPH0494090A (en) Magnetic field controlling method in induction heating electric furnace
US3595979A (en) Induction furnaces
US5275229A (en) Magnetic suspension melting apparatus
US4276082A (en) Process for the heating and/or melting of metals and an induction furnace to carry out the process
KR930004477B1 (en) Induction melting of metals without a crucible
US6391247B1 (en) Flat inductors
EP0770697A1 (en) Galvanizing apparatus with coreless induction furnace
JP2898645B2 (en) High frequency heating coil for horizontal continuous casting
SU1534278A1 (en) Metal-melting hot-air oven
JPS55161554A (en) Continuous casting equipment
Kambarovich et al. Features of the use of induction crucible furnaces for melting metals
SU1085023A1 (en) Immersion induction heater for metal melt
EP0641146B1 (en) Magnetic suspension melting apparatus
JPH08155591A (en) Continuous casting apparatus by induction heating having magnetic flux shielding device and melting furnace
JP3062535B2 (en) Floating melting equipment
JP2578211Y2 (en) Levitation heating device for metal lump