TW201134597A - Laser processing machine, laser processing method and laser processing apparatus - Google Patents

Laser processing machine, laser processing method and laser processing apparatus Download PDF

Info

Publication number
TW201134597A
TW201134597A TW099120056A TW99120056A TW201134597A TW 201134597 A TW201134597 A TW 201134597A TW 099120056 A TW099120056 A TW 099120056A TW 99120056 A TW99120056 A TW 99120056A TW 201134597 A TW201134597 A TW 201134597A
Authority
TW
Taiwan
Prior art keywords
processing
workpiece
laser
back surface
laser light
Prior art date
Application number
TW099120056A
Other languages
Chinese (zh)
Inventor
Kenji Ito
Yutaka Motoki
Takamitsu Kimura
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201134597A publication Critical patent/TW201134597A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0619Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

A laser processing machine includes a processing table allowing an object to be processed mounted thereon to move in an in-plane direction, a galvano scanner allowing a laser light to be scanned two-dimensionally within each processing area of the object to be processed, an f θ lens for concentrating the leaser light from the galvano scanner onto each processing position on the object to be processed, and a controller for indicating positions of the processing areas respectively on a surface 20A which is one main surface of the object to be processed and on a back surface 20B which is the other main surface of the object to be processed to the processing table, such that the processing areas 21a to 24a on the surface 20A and the processing areas 21b to 24b on the surface 20B become the same regions on the object to be processed, in a case in which the laser light is irradiated on the surface 20A and then the object to be processed is reversed and the laser light is irradiated on the back surface 20B thereby forming a through hole in the object to be processed.

Description

201134597 六、發明說明: 【發明所屬之技術領域】 以於被力Π 及雷射加 本發明係有關一種於被加工物照射雷射光 工物進行開孔加工的雷射加工機、雷射加工方法 工控制裝置。 【先前技術】 雷射加工機係例如於被加工物照射雷射光j、 於被加工物進行開孔加工的裝置。就藉由雷射加 & 機:所開 孔加工的被加工物的一例而言’係有具有銅箱C導艘層·) 樹脂(絕緣層)、銅箔(導體層)的三層構造的印刷(' 配線板。在對此種配線板進行貫穿孔加工之際,當 刷配線板的表面側(單面)照射雷射光時,無法俊 4印 龟射光到 達印刷配線板的背面側的銅箔。因此,難以訝印刷自 進行穩定的貫穿孔加工。 &、綠板 以對印刷配線板進行穩定的雷射加工之方法而士 從表背面(兩面)進行雷射光的照射的方法。此稀 有201134597 VI. Description of the invention: [Technical field to which the invention pertains] The laser processing machine and the laser processing method relating to the laser beaming of the workpiece to be processed by the laser beam Work control device. [Prior Art] A laser processing machine is, for example, a device that irradiates laser light to a workpiece and performs drilling on the workpiece. A three-layer structure of a resin (insulating layer) and a copper foil (conductor layer) is described as an example of a workpiece to be processed by the laser addition and processing machine. Printing ('Wiring board. When the through-hole processing is performed on the wiring board, when the surface side (single side) of the wiring board is irradiated with laser light, it is impossible to reach the back side of the printed wiring board. Copper foil. Therefore, it is difficult to surprise the printing from the stable through hole processing. The green plate is a method of irradiating laser light from the front and back sides (both sides) by performing stable laser processing on the printed wiring board. This rare

由射力〇 I 方法,係對印刷配線板從表面照射雷射光形成達至中途的 孔後,再從印刷配線板的背面照射雷射光以形成貫穿孔。 而且’在分別從表面及背面照射雷射光時,將於事前加工 的貫穿孔作為基準來設定座標系,藉此避免所形成的加工 孔的位置偏離(例如參照專利文獻丨)。 專利文獻1 :日本特開2004-335655號公報 【發明内容】 (發明所欲解決之課題) 4 322135 201134597 然而’於上述的習知技術,係有以下問題:由於沒有 考慮電流掃插器(galvano Scanner)及f 0透鏡(lens)的特 性就進行定位並進行雷射加工,故無法正確地避免從表面 的孔形成及從背面的孔形成之間所產生的位置偏離。因 此’無法形成直線(straight)形狀的貫穿孔。 本發明為有鑑於前述之問題點所研創者,目的係得到 一種正確地形成直線形狀的貫穿孔的雷射加工機、雷射加 工方法及雷射加工控制裝置。 (解決課題的手段) 一種雷射加工機’具備有:加工工作台(Table),係 載置被加工物並使前述被加工物朝面内方向移動;電流掃 描器,係使從雷射振盪器射出的雷射光於設定於前述被加 工物的各加工區塊(area)W進行二維掃瞄;透鏡,係 將來自前述電流掃描器的雷射光聚光至前述被加工物上的 各加工位置;以及控制部,係於雷射加工屬於前述被加工 物的一方主面的表面之際,將設定於前述表面的各加工區 ^的位置指示至前述加工卫作台,並將設定在前述表面的 :述加工區塊内的前述各加工位置指示至前述電流掃描 崙’而於雷射加工屬於前述被加工物的另一方主面的背面 之際’將設定於前述背面的各加卫區塊的位置指示至前述 加工工作台,並將設定在前述f面的前述加卫區塊内的前 ,各加工位置指示至前述電流掃描器;其中,前述控制部 將雷射光照射至前述表面後再翻轉前述被加讀並將雷 射光照射至前述背面’藉此從前述被加卫物的兩面照射雷 322135 5 201134597 射光而於前述被加工物形成貫穿孔的情形中,係以前述表 面的加工區塊與前述背面的加工區塊成為前述被加工物的 同樣區域的方式,將前述表面及前述背面的各加工區塊的 位置指示至前述加工X作台。 (發明的效果) 根據本發明,可達到正確地形成直線形狀的貫穿孔的 效果。 ' 【實施方式】 以下’依據圖面詳細地說明本發明之實施形態的雷射 加工機、雷射加工方法及雷射加工控制裝置。此外,本發 明並非被本實施形態所限定。 (實施形態) 第1圖係顯示具有本發明的實施形態的加工控制裝置 的雷射加工機的構成的圖。雷射加工機100係藉由照射雷 射光L(脈衝雷射(Pulse Laser)光)以在被加工物4進行開 孔加工的裴置,具備有:振盪產生雷射光L的雷射振盪器 1、進行被加工物(工件,W〇rk)4的雷射加工的雷射加工部 3、以及加工控制裝置(控制部)2。 雷射振盪器1係振盪產生雷射光L,並送出至雷射加 工4 3 °雷射加工部3係具備有:電流鏡(galvano mirror) 35X、35Y、電流掃描器(galvano scanner)36X、36Y、f 0 透鏡34、XY工作台(加工工作台)30、以及位置檢測部39。 電流掃插器36X、36Y係具有變化雷射光L的軌道使 其移動至被加工物4的照射位置的功能,將雷射光l在設 322135 201134597 定於被加工物4的各加工區塊内以二維方式進行掃瞄。電 流掃描器36X、36Y為了使雷射光L於X-Y方向進行掃瞄, 係使電流鏡35X、35Y以預定的角度轉動。 電流鏡35X、35Y係反射雷射光(雷射光線,Laser Beam) 使其偏向至預定的角度。電流鏡35X係使雷射光L朝X方 向偏向,而電流鏡35Y係使雷射光L朝Y方向偏向。 f0透鏡34係具有遠心(telecentric)性的聚光透 鏡。透鏡34係使雷射光L朝垂直於被加工物4的主面 的方向偏向,並且使雷射光L聚光至被加工物4的加工位 置(孔位置Hx)。此外,於以下的說明,有統合電流鏡35X、 35Y、電流掃描器36X、36Y、以及f 0透鏡34而稱之為電 性(galvano)機構的情形。 被加工物4係印刷配線板等,從屬於一邊主面的表面 及屬於另一邊主面的背面的兩面進行複數個的開孔加工以 形成貫穿孔。被加工物4係例如形成銅箔(導體層)、樹脂 (絕緣層)、銅箔(導體層)的三層構造。XY工作台30係載 置被加工物4,並且藉由未圖示的X軸馬達及Y軸馬達的 驅動在XY平面内移動。以此,XY工作台30係使被加工物 4在面内方向移動。 在不使XY工作台30移動之情形下藉由電性機構的運 作(電流掃描器36X、36Y的移動)可進行雷射加工的範圍 (可掃目苗區域)即為加工區塊(掃描區塊)。在雷射加工機 100中,係在使ΧΥ工作台30在ΧΥ平面内移動後,藉由電 流掃描器36Χ、36Υ二維掃瞄雷射光L。ΧΥ工作台30係以 7 322135 201134597 使各加工區塊的中心在f 0透鏡34的中心的正下方(電性 (ga 1 vano )原點)的方式順序地移動。電性機構係以使設定 於加工區塊内的各孔位置Hx順序地成為雷射光L的照射位 置的方式運作。藉由XY工作台30所進行之加工區塊間的 移動、以及藉由電性機構在加工區塊内進行的雷射光L的 二維掃瞄,係在被加工物4内順序地進行。藉此,被加工 物4内的全部的孔位置Hx全部被雷射加工。 位置檢測部39係檢測預先設於被加工物4的定位用 的貫穿孔(後述的定位用貫穿孔hi)的位置,並將檢測結果 傳送至加工控制裝置2。加工控制裝置2係依據加工程式 (program)及由位置檢測部3 9所得的位置的檢測結果,控 制被加工物4的雷射加工位置。於加工控制裝置2,係輸 入有用以雷射加工被加工物4表面的加工程式,以及用以 雷射加工被加工物4的背面的加工程式。 加工控制裝置2係連接雷射振盪器1及加工控制裝置 2(未圖示),以控制雷射振盪器1及加工控制裝置2。加工 控制裝置2係根據設定於被加工物4的各加工區塊的座 標、進行雷射加工的加工區塊的順序、由電性機構在各加 工區塊内進行的雷射光L的照射位置(各孔位置Hx的座 標)、以及在各加工區塊内被雷射加工的孔位置Hx的順序 等,控制朝被加工物4的雷射加工。 從而,於加工程式登錄有用以使雷射光L的照射位置 移動於各加工區塊上之對於XY工作台30的移動指令、以 及用以使雷射光L照射至各加工區塊内的雷射光L的照射 8 322135 201134597 位置之對於電性機構的動作指令等。 加工控制裝置2係於雷射加工被加工物4的表面之 際,將設定於表面的各加工區塊的位置指示到χγ工作台 30,並且將設定於表面的在加工區塊内的各加工位置指示 ,到電流掃插器36Χ、36Υ。又,加工控制裝置2係在雷射加 工被加工物4的背面之際將設定於背面的各加工區塊的位 置指不到ΧΥ工作台30,並且將設定於背面的加工區塊内 的各加工位置指示到電流掃描器36Χ、36Υ。 加工控制裝置2係由電腦(Computer)等所構成,藉由 NC(Numerical Control ’數值控制)控制等控制雷射振盪器 1及雷射加工部3。加工控制裝置2係具備cpu(Central Processing Unit,中央處理單元)、R〇M(Read 〇nly Memory,唯讀記憶體)、RAM(Rand〇mAccessMem〇ry,隨機 存取記憶體)等所構成。於加工控制裝置2控制雷射加工之 際,CPU係透過使用者從輸人部(未圖示)的輸人,讀取儲 存於_内的加工程式,部署於議内的程式儲存區域而 執行各種處理。於此處理之際所產生的各種資料,係暫時 地記憶於在RAM内所形成的資料儲存區域。藉此,加 制裝置2係控制雷射振盪器丨及加工控制裴置2。 工 雷射加工機1〇〇係藉由此構成將從雷射振盈器1 的雷射光L透過電流鏡35Χ、35Υ偏向至任意的角度,經由 透鏡34成像並照射至被加工物4上的預定位置。如 此’被加工物4受雷射加工而於被加工物4形成有貫穿孔 本實施形態的雷射加工機,係藉由將雷射光至被加工 322135 9 201134597 物4的表面後再翻轉被加工物4,並將雷射光照射至被加 工物4的背面,而從被加工物4的兩面照射雷射光以於被 加工物4形成貫穿孔。此外,於從被加工物4的兩面照射 雷射光而於被加工物4形成貫穿孔的情形,係以使表面的 加工區塊及背面的加工區塊成為被加.工物4的同樣區域的 方式,將表面及背面的各加工區塊的位置指示到XY工作台 30。 接著,說明關於本實施形態的開孔加工方法。第2圖 係用以說明實施形態的雷射加工方法的圖。於第2圖中, 係將設定於被加工物4的表面20A的加工區塊、設定於被 加工物4的背面20B的加工區塊、以及以往設定於被加工 物4的背面20C的加工區塊以俯視圖顯示。 被加工物4係以表面20A朝向上面側的方式載置於XY 工作台30上進行朝各孔位置Hx的雷射加工。雷射加工機 100係對各孔位置Hx從被加工物4的表面20A侧照射雷射 光L,.以達至被加工物4的厚度方向的中途位置之方式進 行雷射加工。 朝表面20A的雷射加工結束後,被加工物4係以背面 20B朝上面側的方式載置於XY工作台30上進行朝各孔位 置Hx的雷射加工。在此係說明關於將表面20A的右邊作為 軸而翻轉被加工物4的情形。雷射加工機100係對開孔形 成到中途的各孔位置Hx,從被加工物4的背面20B側照射 雷射光L而於孔位置Hx形成貫穿孔。 於雷射加工被加工物4的情形中,係例如將被加工物 10 322135 201134597 4上的預定點作為基準點而設定加工區塊。基準位置係指 例如將被加工物4載置於XY工作台30的狀態下,從上側 觀視被加工物4的情形的右上端、右下端、左上端及左下 端等。 在表面20A係將最接近於右上端的基準位置Sa的區 塊(右上區域)設定為最初的加工區塊,且與所設定的加工 區塊鄰接的區塊係依序被設定成加工區塊。於第2圖,係 示意表面20A的右上區域為最初的加工區塊21 a、左上區 域為第二個加工區塊22a、左下區域為第三個加工區塊 23a、而右下區域為第四個加工區塊24a的情形。 在被加工物4的背面受雷射加工之際,被加工物4被 翻轉並載置於XY工作台30上。在根據習知方法雷射加工 被加工物4的背面20C的情形,屬於與表面20A為相同位 置的背面20C的右上端成為基準位置Sc。接著,與表面20A 相同,背面20C最接近於基準位置Sc的區塊(右上區域) 被設定為最初的加工區塊,此外,鄰接於被設定的加工區 塊的區塊係依序被設定為加工區塊。藉此,背面20C的右 上區域成為最初的加工區塊21c、左上區域成為第二個加 工區塊22c、左下區域成為第三個加工區塊23c、而右下區 域成為第四個加工區塊24c。 另一方面,於本實施形態,係以在表面20A及背面20B 使加工區塊為一致的方式,設定背面20B内的各加工區 域。例如,表面2 0 A的右上端係因為被加工物4的翻轉而 移動至背面20B的左上端。因此,在背面20B中,左上端 11 322135 201134597 係被設定為基準位置Sb。接著,最接近於基準位置Sb的 區塊(左上區域)被設定為最初的加工區塊,且鄰接於被設 定的加工區塊的區塊係依序被設定為加工區塊。例如,背 面20B的左上區域設定為最初的加工區塊21b、右上區域 設定為第二個加工區塊22b、右下區域設定為第三個加工 區塊23b、而左下區域設定為第四個加工區塊24b。 加工區塊21b至24b係各別對應於加工區塊21a至 24a。具體而言,加工區塊21a的背側設定為加工區塊21b, 而加工區塊22a的背側被設定為加工區塊22b。此外,加 工區塊23a的背側係設定為加工區塊23b,加工區塊24a 的背側係設定為加工區塊24b。從而,配置於加工區塊21b 内的孔位置Hx係為將配置於加工區塊21a内的孔位置Hx 予以翻轉者,而配置於加工區塊22b内的孔位置Hx係為將 配置於加工區塊22a内的孔位置Hx予以翻轉者。同樣地, 配置於加工區塊23b内的孔位置Hx係為將配置於加工區塊 23a内的孔位置Hx予以翻轉者,而配置於加工區塊24b内 的孔位置Hx係為將配置於加工區塊24a内的孔位置Hx予 以翻轉者。 第3圖係用以說明透過f 0透鏡所照射的雷射光的位 置偏離的圖。於第3圖,係顯示被加工物4的剖面圖。被 加工物4係例如於配置有加工區塊的區域以外形成有定位 用貫穿孔hi,並以此定位用貫穿孔hi為基準而決定雷射 光的照射位置。 在雷射加工機100中,係因為雷射加工機100的周邊 12 322135 201134597 環境的溫度變化及雷射加工機100自身的溫變化而亦於 ίθ透鏡34產生溫度變化。此時,藉由透鏡34掃瞄 的雷射光L係相對於透鏡34的中心朝縮小方向或放大 ' 方向產生位置偏離。 . 如第3圖所示,照射於三個位置的雷射光[之中通過 ίθ透鏡34的中心照射於被加工物4的雷射光[,係不會 發生起因於f<9透鏡34的溫度變化的位置偏離。另一方 面,通過從透鏡34的中心離開預定距離的位置照射於 被加工物4的雷射光L係從f 0透鏡34的中心朝外徑方向 或内徑方向位置偏離而照射於被加工物4。接著由於照 射於被加工物4的雷射光L從目標位置G位置偏離,故形 成於被加工物4的加工孔29A亦從目標位置g位置偏離。 於第3圖中,係顯示雷射光L並非照射於目標位置G而是 往透鏡34的中心方向位置偏離而照射於被加工物4, 而在往f0透鏡34的中心方向位置偏離的位置形成加工孔 29A的情形。 因此,當如習知在表面20A及背面20C設定不同的加 工區塊時,表面20A及背面20C在孔位置Hx的加工區塊内 的位置亦不相同。第4圖係用以說明在表面及背面未使加 工區塊一致的情形的貫穿孔的形狀的圖。如習知的方法, 在表面20A及背面20C設定不同的加工區域的情形,照射 在表面20A的孔位置Ηχ的雷射光丄通過f 0透鏡34内的 位置(離開中心的距離),與照射在背面2〇c的孔位置Ηχ 的雷射光L通過透鏡34内的位置(離開中心的距離) 13 322135 201134597 不同。因此,在表面20A的孔位置Hx與背面20C的孔位置 Hx之間,離開f Θ透鏡34的中心方向的位置偏離的量亦 變得不同。 於第4圖係顯示在對表面20A進行雷射加工之際對目 標位置G形成加工孔29A,並且在對背面20C進行雷射加 工之際對目標位置G形成加工孔29C的情形。例如,顯示 於第4圖的貫穿孔29P係在從表面20A進行雷射加工之際 位置偏離至右側,並在從背面20C進行雷射加工之際位置 偏離至左側。從而,貫穿孔29P係不會形成直線的形狀。 如此,於習知的方法,由於在表面20A及背面20C未使加 工區塊一致,故無法於被加工物4形成直線形狀的貫穿孔。 另一方面,於本實施形態,如於第2圖所說明,係在 表面20A及背面20B使加工區塊一致。第5圖係用以說明 在表面及背面使加工區塊一致的情形的貫穿孔的形狀之 圖。 在表面20A及背面20B使加工區塊一致的情形,孔位 置Hx於加工區塊内的位置,雖然在表面20A及背面20B 之間係經翻轉但位置為一致。於是,照射在表面20A的孔 位置Hx的雷射光L通過f0透鏡34内的位置(離開中心的 距離),係與照射在背面20B的孔位置Hx的雷射光L通過 f0透鏡34内的位置(離開中心的距離)相同。因此,在表 面20A的孔位置Hx及背面20B的孔位置Hx,從f 0透鏡 34的中心方向的位置偏離量係相同。 於第5圖係顯示在表面20A進行雷射加工之際對目標 14 322135 201134597 位置G形成加工孔29A,並且在背面2〇B進行雷射加工之 際對目標位置G形成加工孔29B的情形。例如,顯示於第 5圖的貫穿孔29q係在從表面2〇A進行雷射加工之際位置 偏離至右側,並在從背面20B進行雷射加工之際亦位置偏 離至右侧。從而,貫穿孔29Q係為直線的形狀。 如此,於本實施形態,由於在表面2〇A及背面2〇β使 加工區塊—致’故即使因為ίθ透鏡34的溫度變化使雷射 光L的照射位置對f 0透鏡34的中心伸縮在表面2〇Α 及背面20Β中雷射光的照射位置亦幾乎相同。從而,可於 被加工物4正確地形成直線形狀的貫穿孔。 接考,說明關於在各加工區塊内的加工順序(於各孔 位置Ηχ照射雷射光L的順序)。第6圖係用以說明在加工 區塊内的加工順序的圖。於本實施形態,在表面⑽及背 面20B使加工區塊—致,並使從表面m照射雷射光之際 的電流掃描器36X、36Y的婦猫順序(在加工區塊内的加工 順序),及從背面鼠照射雷射光之際的電流_器_、 3 6 Υ的抑瞒順序致。 例如,對於設定在表面20Α的加工區塊^之加工 孔’設定為以孔位置HlaS H7a #順序進行雷射加工的情 形’在背面挪的加工區塊抓係、設定為以對應於 Hla至H7a的背面侧的孔位置順序進行雷射 加工。在此的孔位置Hlb係於孔位置Hla的背側的位置, 而孔位置H2b係於孔位置H2a的背側的位置。同樣地孔 位置H3b至H7b係分別為孔位置H3a至心的背側的位置。 322135 15 201134597 第7圖係用以說明起因於電流掃描器的運作特性的 射光的位置偏離的圖^在雷射加工機1〇〇中,由於有作雷 於電流掃描器36X、36Y的反衝(backlash),故藉由電 '宁^ 描器36X、36Y所掃瞄的雷射光L係相對於目標照射位置(: 位置Ηχ)產生位置偏離。例如,從雷射光照射結束的孔位 置Ηχ將雷射光L的照射位置移動到下一個孔位置Ηχ的产 形中,雷射光L的照射位置的移動係有無法到達下—個^ 位置Ηχ,或移動超過下一個孔位置Ηχ的情形。 在這樣的情形中’在表面20Α及背面2〇β,若電流掃 描器36Χ、36Υ的掃瞄順序未一致,則在表面2〇Α及背面 20Β之間,在各孔位置Ηχ的雷射光照射位置(位置偏離量) 係不相同。 例如,說明關於在一個加工區塊内,雷射光L以雷射 光Lla、雷射光L2a及雷射光L3a的順序照射於被加工物4 的情形。在這種情形中,雷射光L的照射位置係從透 鏡34的中心(電性(gaivano)原點)移動至藉由雷射光Ua 進行雷射加工的第一點的孔位置Ηχ(以下稱為孔位置 Hxl)。其後,從第一點的孔位置Ηχ移動至藉由雷射光 進行雷射加工的第二點的孔位置Ηχ(以下稱為孔位置 Ηχ2),並再移動至藉由雷射光L3a進行雷射加工的第三點 的孔位置Ηχ(以下稱為孔位置Ηχ3)。 此時,照射至各孔位置Hxl至Ηχ3的雷射光的照射位 置’會因為雷射光照射位置的移動,而於照射位置的移動 路線上的某-位置產生位置偏離。例如,從電性原點到孔 322135 16 201134597 位置Hxl使雷射光照射位置移動而於孔位置Hxl照射雷射 光Lla的情形,朝孔位置Hxl的雷射光照射位置,係位於 連結電性原點與孔位置Hxl的線上的某一位置。 因此’若在表面20A及背面20C未使電流掃描器36X、 36Y的掃瞄順序一致,則形成於被加工物4的貫穿孔係不 會成為直線形狀。第8圖係用以說明未使電流掃描器在表 面及背面的掃瞄順序一致的情形的貫穿孔的形狀的圖。若 未使電流掃描器36X、36Y在表面2〇A及背面2〇c的掃瞄順 序一致’則在各孔位置Hx的位置偏離方向會是不同的。 例如’說明關於將表面20Α以孔位置Ηχ卜孔位置Ηχ2 及孔位置Ηχ3的順序進行雷射加工,並將背面2〇c以孔位 置Hx3、孔位置Ηχ2及孔位置Ηχ1的順序進行雷射加工的 情形。這種情形,在表面20A中,雷射光[ia、雷射光[2a 及雷射光L3a係分別照射於孔位置Ηχ1、孔位置Ηχ2及孔 位置Hx3。此外,在背面2〇c中,雷射光Llc、雷射光l2c 及雷射光L3c係分別照射於孔位置Ηχ3、孔位置Ηχ2及孔 位置Hxl。這種加工順序係在表面2〇A及背面2〇c之間將 孔位翼的加工順序顛倒的加工;嗅序,例如,對應於下述情 形·將第6圖所示之表面20A的加工區塊21&以孔位置心 至H7a的順序進行雷射加工,並將在背面2〇β的加工區塊 21b以孔位置H7b至Hlb的順序進行雷射加工。 於雷射加工表面20A之際,雷射光L的照射位置係從 電性原點移動至藉由t射光Ua進行雷射加工的孔位置 Hx卜之後,雷射光L的照射位置係從孔位置Ηχ1移動至孔 17 322135 201134597 位置Hx2 ’再移動至孔位置Hx3。 /此外,於雷射加工背面20C之際,雷射光^的照射货 置係從電性原點移動至藉由雷射光Uc進行雷射加工的孔 位置11x3。之後,雷射光L的照射位置係從孔位置Ηχ3移 動至孔位置Ηχ2,再移動至孔位置Ηχ1。 雷射加工表面20A之際,雷射光照射位置從電性原點 移動至孔位置Hxl。因此,照射於孔位置Ηχ1的雷射光 的照射位置係位於連結電性原點與孔位置Ηχ1的線上的某 一位置。換言之,孔位置Hxl係於連結電性原點與孔位置 Hxl的線上產生位置偏離^ 同樣地,雷射加工表面2〇A之際,雷射光照射位置從 孔位置Hxl移動至孔位置Ηχ2。因此,照射於孔位置Ηχ2 的雷射光L2a的照射位置係位於連結孔位置Ηχ1與孔位置 Hx2的線上的某一位置。換言之,孔位置Ηχ2係於連結孔 位置Hxl與孔位置Ηχ2的線上產生位置偏離。 此外,雷射加工表面20Α之際,雷射光照射位置從孔 位置Ηχ2移動至孔位置Ηχ3。因此,照射於孔位置Ηχ3的 雷射光L3a的照射位置係位於連結孔位置Ηχ2與孔位置 Ηχ3的線上的某一位置ό換言之,孔位置Ηχ3係於連結孔 位置Ηχ2與孔位置ηχ3的線上產生位置偏離。 另一方面,雷射加工背面2〇c之際,雷射光照射位置 從電性原點移動至孔位置Ηχ3。因此,照射於孔位置Ηχ3 的雷射光Lie的照射位置係位於連結電性原點與孔位置 Hx3的線上的某一位置。換言之,孔位置Ηχ3係於連結電 322135 201134597 性原點與孔位置Hx3的線上產生位置偏離。 同樣地,雷射加工背面20C之際,雷射光照射位置從 孔位置Hx3移動至孔位置Hx2。因此,照射於孔位置Hx2 的雷射光L2c的照射位置係位於連結孔位置Hx3與孔位置 Hx2的線上的某一位置。換言之,孔位置Hx2係於連結孔 位置Hx3與孔位置Hx2的線上產生位置偏離。 此外,雷射加工背面20C之際,雷射光照射位置從孔 位置Hx2移動至孔位置Hxl。因此,照射於孔位置Hxl的 雷射光L3c的照射位置係位於連結孔位置Hx2與孔位置 Hxl的線上的某一位置。換言之,孔位置Hxl係於連結孔 位置Hxl與孔位置Hx2的線上產生位置偏離。 如此,雷射光Lla係從表面20A照射至孔位置Hxl, 而雷射光L3c係從背面20C照射至孔位置Hxl。同樣地, 雷射光L2a係從表面20A照射至孔位置Hx2,雷射光L2c 係從背面20C照射至孔位置Hx2,雷射光L3a係從表面20A 照射至孔位置Hx3,而雷射光Lie係從背面20C照射至孔 位置Hx3。 於是,於孔位置Hxl的雷射光照射位置在雷射光Lla 及雷射光L3c之間係位置偏離至不同的位置。同樣地,於 孔位置Hx2的雷射光照射位置在雷射光L2a及雷射光L2c 之間係位置偏離至不同的位置,而於孔位置Hx3的雷射光 照射位置在與雷射光L3a及雷射光Lie之間係位置偏離至 不同的位置。 因此,孔位置Hxl至Hx3的貫穿孔存、不會形成直線形 19 322135 201134597 狀。如此,由於在表面20A及背面20C,電流掃描器36X、 36Y的掃瞄順序不一致,故無法於被加工物4形成直線形 狀的貫穿孔。 另方面,於本貫施形態,係使在表面20A及背面20B .的電流掃描器36X、36Y的掃瞒順序-致。第9圖係用以說 明使電流掃描器在表面及背面的掃猫順序一致的情形的貫 穿孔的形狀的圖。 例如,說明關於將表面20A以孔位置Hxb孔位置Ηχ2 及孔位置Ηχ3的順序進行雷射加工,並將背面2〇β以孔位 置Hxl、孔位置Ηχ2及孔位置Ηχ3的順序進行雷射加工的 情形。這種情形,在表面20Α中,雷射光^13、雷射光L2a 及雷射光L3a係分別照射於孔位置Ηχ1、孔位置Ηχ2及孔 位置Ηχ3。 此外,在背面20Β中,雷射光Lib、雷射光L2b及雷 射光L3b係分別照射於孔位置Ηχ1、孔位置Ηχ2及孔位置 Hx3。這種加工順序係在表面2〇A及背面2〇B之間,使孔位 置的加工順序相同的加工順序,例如,對應於下述情形: 將第6圖所示之在表面2〇a的加工區塊21a以孔位置HI a 至H7a的順序進行雷射加工,並將在背面2〇β的加工區塊 21b以孔位置Hlb至H7b的順序進行雷射加工。 於雷射加工表面20A之際,係以在第8圖所說明的順 序移動雷射光L的照射位置。因此,照射於孔位置Ηχ1的 雷射光Lla的照射位置、照射於孔位置Ηχ2的雷射光 的照射位置、以及照射於孔位置Ηχ3的雷射光L3a的照射 322135 20 201134597 位置’係分別於第8圖所說明過的位置產生位置偏離。 雷射加工背面20B的孔位置Hxl之際,係與雷射加工 表面20A之際相同,雷射光照射位置從電性原點移動至孔 位置Hxl。因此,照射於孔位置Hxl的雷射光Lib的照射 位置係與雷射加工表面20A之際相同地,位於連結電性原 點及孔位置Hxl的線上的某一位置。 同樣地’雷射加工背面20B的孔位置Hx2之際,係與 雷射加工表面20A之際相同’雷射光照射位置從孔位置jjxi 移動至孔位置Hx2。因此,照射於孔位置hx2的雷射光L2b 的照射位置係與雷射加工表面2〇a之際相同地,位於連結 孔位置Hxl及孔位置Hx2的線上的某一位置。 此外,雷射加工背面20B的孔位置Hx3之際,係與雷 射加工表面20A之際相同,雷射光照射位置從孔位置Ηχ2 移動至孔位置Ηχ3。因此,照射於孔位置Ηχ3的雷射光L3b 的照射位置係與雷射加工表面2〇A之際相同地,位於連結 孔位置Hx2及孔位置Hx3的線上的某一位置。 換言之’孔位置Hxl至Hx3,係分別於連結電性原點 與孔位置Hxl的線上、連結孔位置㈣與孔位置Ηχ2的線 上、以及連結孔位置Ηχ2與孔位置Ηχ3的線上產生位置偏 離。 如此在表面20Α及者面2〇β之間使電流掃描器36χ、 36Υ的掃猫順序-致的情形,針對表自2〇α的孔位置㈣ 至Ηχ3的雷射光照射位置,盥飪 ,、計對背面20Β的孔位置Hxl 至Hx3的雷射光照射位置是相同的。 322135 21 201134597 例如,於第9圖所示的孔位置Hxl至fjx3,係於從表 面20A進行雷射加工之際位置偏離至左側,而從背面20B 進行雷射加工之際亦位置偏離至左侧。從而,形成於孔位 置Hxl至Hx3的貫穿孔係成為直線的形狀。 如此,於本實施形態,由於在表面20A及背面20B之 間使電流掃描器36X、36Y的掃瞄順序一致,故即使於電流 掃描器36X、36Y的驅動系統有反衝,在表面20A及背面 2〇B的雷射光的照射位置亦大約相同。從而,可於被加工 物4正確地形成直線形狀的貫穿孔。 接著’說明關於各加工區塊的加工順序(朝加工區塊 的移動順序)。於本實施形態,例如’亦可如於第2圖所說 明’將與設定在表面20Α的加工區塊的加工順序相同的加 工顺序適用在背面20Β,亦可將設定在表面20Α的加工區 塊的加工順序不同的加工順序適用在背面20Β。 例如,亦可為將表面2〇Α以加工區塊21 a、加工區塊 22a、加工區塊23a、加工區塊24a的順序進行雷射加工, 將背面20B以加工區塊24b、加工區塊23b、加工區塊22b、 加工區塊21b的順序進行雷射加工。 於XY工作台30的驅動系統係有反衝。因此使設定 在表面20A的加工區域的加工順序與設定在背面20B的加In the method of the radiation force 〇 I, the printed wiring board is irradiated with laser light from the surface to form a hole in the middle, and then the laser beam is irradiated from the back surface of the printed wiring board to form a through hole. Further, when the laser beam is irradiated from the front surface and the back surface, the coordinate system is set as a reference through the through hole processed in advance, thereby avoiding the positional deviation of the formed hole (for example, see Patent Document). [Patent Document 1: JP-A-2004-335655] SUMMARY OF INVENTION (Problem to be solved by the invention) 4 322135 201134597 However, the above-mentioned conventional technique has the following problems: since the current sweeper is not considered (galvano) The characteristics of the Scanner and the f 0 lens are positioned and subjected to laser processing, so that the positional deviation between the formation of the hole from the surface and the formation of the hole on the back side cannot be properly avoided. Therefore, a through hole having a straight shape cannot be formed. The present invention has been made in view of the above problems, and aims to obtain a laser processing machine, a laser processing method, and a laser processing control device which form a through hole having a straight shape correctly. (Means for Solving the Problem) A laser processing machine includes: a processing table (Table) for placing a workpiece and moving the workpiece in an in-plane direction; and a current scanner for oscillating from a laser The laser light emitted from the device is subjected to two-dimensional scanning in each processing area set to the workpiece; the lens is a processing for collecting the laser light from the current scanner to the workpiece. And a control unit that instructs a position of each of the processing regions set on the surface to the processing station when laser processing is performed on a surface of one of the main surfaces of the workpiece, and is set in the foregoing The above-mentioned respective processing positions in the processing block are indicated to the current scanning erection ' while the laser processing belongs to the back surface of the other main surface of the workpiece, 'will be set in the respective rear side of the rear side The position of the block is indicated to the processing station, and each processing position is indicated to the current scanner before being set in the aforementioned reinforcing block of the f-plane; wherein the control unit emits laser light After the surface is irradiated onto the surface, the above-mentioned surface is read and the laser light is irradiated onto the front surface, thereby illuminating the light from the two sides of the object to be illuminated 322135 5 201134597 to form a through hole in the workpiece. The position of each of the processing blocks on the front surface and the back surface is indicated to the processing X so that the processing block on the surface and the processing block on the back surface become the same region of the workpiece. (Effect of the Invention) According to the present invention, the effect of accurately forming a through hole having a linear shape can be achieved. [Embodiment] Hereinafter, a laser processing machine, a laser processing method, and a laser processing control device according to embodiments of the present invention will be described in detail based on the drawings. Further, the present invention is not limited to the embodiment. (Embodiment) FIG. 1 is a view showing a configuration of a laser processing machine including a machining control device according to an embodiment of the present invention. The laser processing machine 100 is provided with a laser oscillator 1 that oscillates laser light L by irradiating laser light L (pulse laser light) to perform drilling processing on the workpiece 4. The laser processing unit 3 that performs laser processing of the workpiece (workpiece W〇rk) 4 and the machining control device (control unit) 2 are provided. The laser oscillator 1 oscillates to generate laser light L, and is sent to the laser processing. The 3 3 ° laser processing unit 3 includes a current mirror (galvano mirror) 35X, 35Y, and a galvano scanner 36X, 36Y. The f 0 lens 34, the XY table (machining table) 30, and the position detecting unit 39. The current sweepers 36X and 36Y have a function of changing the orbit of the laser light L to the irradiation position of the workpiece 4, and the laser light 1 is set in each processing block of the workpiece 4 at 322135 201134597. Scan in two dimensions. In order to scan the laser light L in the X-Y direction, the current scanners 36X and 36Y rotate the current mirrors 35X and 35Y at a predetermined angle. The current mirrors 35X and 35Y reflect the laser light (Laser Beam) to a predetermined angle. The current mirror 35X deflects the laser light L in the X direction, and the current mirror 35Y biases the laser light L in the Y direction. The f0 lens 34 is a telecentric lens having a telecentricity. The lens 34 deflects the laser light L in a direction perpendicular to the main surface of the workpiece 4, and condenses the laser light L to the processing position (hole position Hx) of the workpiece 4. Further, in the following description, there are cases where the current mirrors 35X and 35Y, the current scanners 36X and 36Y, and the f 0 lens 34 are collectively referred to as a galvano mechanism. The workpiece 4 is a printed wiring board or the like, and a plurality of holes are formed from the surface belonging to one main surface and the back surface belonging to the other main surface to form a through hole. The workpiece 4 is, for example, a three-layer structure in which a copper foil (conductor layer), a resin (insulating layer), and a copper foil (conductor layer) are formed. The XY table 30 mounts the workpiece 4, and is moved in the XY plane by driving of an X-axis motor and a Y-axis motor (not shown). Thereby, the XY table 30 moves the workpiece 4 in the in-plane direction. The range in which laser processing can be performed by the operation of the electrical mechanism (movement of the current scanners 36X, 36Y) without moving the XY table 30 (the area that can be scanned) is the processing block (scanning area) Piece). In the laser processing machine 100, after the crucible table 30 is moved in the pupil plane, the laser light L is scanned two-dimensionally by the current scanners 36, 36. The boring table 30 sequentially moves the center of each processing block directly below the center of the f 0 lens 34 (electricity (ga 1 vano origin) by 7 322135 201134597. The electric mechanism operates such that the hole positions Hx set in the processing block sequentially become the irradiation positions of the laser light L. The movement between the processing blocks by the XY table 30 and the two-dimensional scanning of the laser light L in the processing block by the electrical mechanism are sequentially performed in the workpiece 4. Thereby, all the hole positions Hx in the workpiece 4 are all laser processed. The position detecting unit 39 detects the position of the through hole (the positioning through hole hi to be described later) provided in advance in the workpiece 4, and transmits the detection result to the machining control device 2. The machining control device 2 controls the laser machining position of the workpiece 4 in accordance with the machining program and the detection result of the position obtained by the position detecting unit 39. The machining control device 2 is provided with a machining program for processing the surface of the workpiece 4 by laser, and a machining program for laser processing the back surface of the workpiece 4. The machining control device 2 is connected to the laser oscillator 1 and the machining control device 2 (not shown) to control the laser oscillator 1 and the machining control device 2. The processing control device 2 is based on the coordinates of the processing blocks set in the workpiece 4, the processing blocks in which the laser processing is performed, and the irradiation position of the laser light L in each processing block by the electrical mechanism ( The laser processing to the workpiece 4 is controlled by the order of the hole position Hx of each hole and the order of the hole position Hx processed by the laser in each processing block. Therefore, the movement command for the XY table 30, which is used to move the irradiation position of the laser light L to each of the processing blocks, and the laser light L for irradiating the laser light into each of the processing blocks are registered in the processing program. Irradiation 8 322135 201134597 Positional action instructions for electrical mechanisms, etc. When the processing control device 2 is laser-processed on the surface of the workpiece 4, the position of each processing block set on the surface is indicated to the χγ table 30, and each processing in the processing block set on the surface is performed. Position indication to current sweepers 36Χ, 36Υ. Further, when the processing control device 2 is laser-processed on the back surface of the workpiece 4, the position of each of the processing blocks set on the back surface is not referred to the ΧΥ table 30, and each of the processing blocks set in the back surface is set. The machining position is indicated to the current scanners 36Χ, 36Υ. The processing control device 2 is constituted by a computer or the like, and controls the laser oscillator 1 and the laser processing unit 3 by NC (Numerical Control) control or the like. The processing control device 2 includes a CPU (Central Processing Unit), R〇M (Read 〇nly Memory), RAM (Rand〇MAccess 〇 ,, random access memory), and the like. When the processing control device 2 controls the laser processing, the CPU reads the processing program stored in the _ from the input unit of the input unit (not shown), and deploys it in the program storage area of the conference. Various treatments. The various materials generated at the time of this processing are temporarily memorized in the data storage area formed in the RAM. Thereby, the adding device 2 controls the laser oscillator and the machining control device 2. The laser processing machine 1 is configured to deflect the laser light L from the laser vibrator 1 through the current mirrors 35A, 35Υ to an arbitrary angle, and image and irradiate the workpiece 4 through the lens 34. Pre-determined location. Thus, the workpiece 4 is subjected to laser processing and the through-hole is formed in the workpiece 4, and the laser is processed by rotating the laser to the surface of the object 4 to be processed 322135 9 201134597. The object 4 irradiates the laser beam to the back surface of the workpiece 4, and irradiates the laser light from both surfaces of the workpiece 4 to form a through hole in the workpiece 4. Further, in the case where the laser beam is irradiated from both surfaces of the workpiece 4 and the through hole is formed in the workpiece 4, the processing block on the surface and the processing block on the back surface are formed in the same region of the workpiece 4. In a manner, the positions of the processing blocks on the front and back surfaces are indicated to the XY table 30. Next, a method of drilling a hole in the present embodiment will be described. Fig. 2 is a view for explaining a laser processing method of the embodiment. In the second drawing, the processing block set on the front surface 20A of the workpiece 4, the processing block set on the back surface 20B of the workpiece 4, and the processing area previously set on the back surface 20C of the workpiece 4 are formed. The block is shown in a top view. The workpiece 4 is placed on the XY table 30 so that the surface 20A faces the upper surface side, and laser processing is performed toward each hole position Hx. The laser processing machine 100 irradiates the laser light L from the surface 20A side of the workpiece 4 to each hole position Hx, and performs laser processing so as to reach a midway position in the thickness direction of the workpiece 4. After the laser processing on the surface 20A is completed, the workpiece 4 is placed on the XY table 30 so that the back surface 20B faces the upper surface side, and laser processing is performed at each hole position Hx. Here, the case where the workpiece 4 is turned over with the right side of the surface 20A as an axis will be described. The laser processing machine 100 forms the through hole at the hole position Hx from the side of the back surface 20B of the workpiece 4 by forming the hole Hx at the hole position Hx in the middle of the workpiece. In the case of laser processing of the workpiece 4, the processing block is set, for example, by using a predetermined point on the workpiece 10322135 201134597 4 as a reference point. The reference position is, for example, the upper right end, the lower right end, the upper left end, and the lower left end of the case where the workpiece 4 is placed on the XY table 30, and the workpiece 4 is viewed from the upper side. On the surface 20A, the block (upper right area) closest to the reference position Sa at the upper right end is set as the first processing block, and the blocks adjacent to the set processing block are sequentially set as the processing blocks. In Fig. 2, the upper right area of the surface 20A is the first processing block 21a, the upper left area is the second processing block 22a, the lower left area is the third processing block 23a, and the lower right area is the fourth. The case of processing block 24a. When the back surface of the workpiece 4 is subjected to laser processing, the workpiece 4 is inverted and placed on the XY table 30. In the case where the back surface 20C of the workpiece 4 is laser-processed according to a conventional method, the upper right end of the back surface 20C belonging to the same position as the surface 20A serves as the reference position Sc. Next, similarly to the surface 20A, the block (the upper right area) whose back surface 20C is closest to the reference position Sc is set as the first processing block, and the blocks adjacent to the set processing block are sequentially set to Processing block. Thereby, the upper right area of the back surface 20C becomes the first processing block 21c, the upper left area becomes the second processing block 22c, the lower left area becomes the third processing block 23c, and the lower right area becomes the fourth processing block 24c. . On the other hand, in the present embodiment, each of the processing regions in the back surface 20B is set so that the processing blocks are aligned on the front surface 20A and the back surface 20B. For example, the upper right end of the surface 20 A moves to the upper left end of the back surface 20B due to the inversion of the workpiece 4. Therefore, in the back surface 20B, the upper left end 11 322135 201134597 is set as the reference position Sb. Next, the block closest to the reference position Sb (upper left area) is set as the first processing block, and the block adjacent to the set processing block is sequentially set as the processing block. For example, the upper left area of the back surface 20B is set to the first processing block 21b, the upper right area is set to the second processing block 22b, the lower right area is set to the third processing block 23b, and the lower left area is set to the fourth processing block. Block 24b. The processing blocks 21b to 24b correspond to the processing blocks 21a to 24a, respectively. Specifically, the back side of the processing block 21a is set as the processing block 21b, and the back side of the processing block 22a is set as the processing block 22b. Further, the back side of the processing block 23a is set as the processing block 23b, and the back side of the processing block 24a is set as the processing block 24b. Therefore, the hole position Hx disposed in the processing block 21b is such that the hole position Hx disposed in the processing block 21a is reversed, and the hole position Hx disposed in the processing block 22b is disposed in the processing area. The hole position Hx in the block 22a is flipped. Similarly, the hole position Hx disposed in the machining block 23b is such that the hole position Hx disposed in the machining block 23a is reversed, and the hole position Hx disposed in the machining block 24b is disposed in the machining. The hole position Hx in the block 24a is flipped. Fig. 3 is a view for explaining the positional deviation of the laser light irradiated through the f 0 lens. In Fig. 3, a cross-sectional view of the workpiece 4 is shown. The workpiece 4 is formed with a positioning through hole hi, for example, in a region in which the processing block is disposed, and the irradiation position of the laser beam is determined based on the positioning through hole hi. In the laser processing machine 100, temperature changes are also generated in the ίθ lens 34 due to temperature changes in the surroundings of the laser processing machine 100 and temperature changes in the laser processing machine 100 itself. At this time, the laser light L scanned by the lens 34 is displaced from the center of the lens 34 in the direction of reduction or the direction of magnification. As shown in Fig. 3, the laser light irradiated at three positions [the laser light irradiated to the workpiece 4 through the center of the ίθ lens 34 is not caused by the temperature change of the f<9 lens 34 The position is deviated. On the other hand, the laser light L irradiated to the workpiece 4 at a position separated from the center of the lens 34 by a predetermined distance is irradiated from the center of the f 0 lens 34 toward the outer diameter direction or the inner diameter direction to be irradiated onto the workpiece 4 . Then, since the laser light L irradiated to the workpiece 4 is displaced from the target position G, the machining hole 29A formed in the workpiece 4 is also displaced from the target position g. In the third drawing, the laser beam L is irradiated onto the workpiece 4 without being irradiated to the target position G, but is displaced in the center direction of the lens 34, and is formed at a position deviated from the center direction of the f0 lens 34. The case of the hole 29A. Therefore, when different processing blocks are set on the surface 20A and the back surface 20C as in the prior art, the positions of the surface 20A and the back surface 20C in the processing block of the hole position Hx are also different. Fig. 4 is a view for explaining the shape of a through hole in a case where the processing block is not aligned on the front and back surfaces. As in the conventional method, when the different processing regions are set on the front surface 20A and the back surface 20C, the laser beam irradiated at the hole position 表面 of the surface 20A passes through the position (the distance from the center) in the f 0 lens 34, and is irradiated. The laser light L at the hole position Ηχ on the back side 2〇c passes through the position inside the lens 34 (the distance from the center) 13 322135 201134597 is different. Therefore, the amount of positional deviation from the center direction of the f Θ lens 34 differs between the hole position Hx of the surface 20A and the hole position Hx of the back surface 20C. Fig. 4 shows a case where the machining hole 29A is formed at the target position G when the surface 20A is subjected to laser processing, and the machining hole 29C is formed at the target position G when laser processing is performed on the back surface 20C. For example, the through hole 29P shown in Fig. 4 is displaced to the right side when laser processing is performed from the surface 20A, and is shifted to the left side at the time of laser processing from the back surface 20C. Therefore, the through hole 29P does not form a straight shape. As described above, in the conventional method, since the processing block is not aligned on the front surface 20A and the back surface 20C, the through hole of the linear shape cannot be formed in the workpiece 4. On the other hand, in the present embodiment, as described in Fig. 2, the processing blocks are aligned on the front surface 20A and the back surface 20B. Fig. 5 is a view for explaining the shape of a through hole in the case where the processing blocks are aligned on the front and back surfaces. In the case where the surface 20A and the back surface 20B match the processing blocks, the position of the hole position Hx in the processing block is reversed but the position is uniform between the surface 20A and the back surface 20B. Then, the laser light L irradiated to the hole position Hx of the surface 20A passes through the position (distance from the center) in the f0 lens 34, and the position of the laser light L irradiated to the hole position Hx of the back surface 20B passes through the f0 lens 34 ( The distance from the center is the same. Therefore, the positional deviations from the hole position Hx of the surface 20A and the hole position Hx of the back surface 20B are the same from the center direction of the f 0 lens 34. Fig. 5 shows a case where the processing hole 29A is formed at the position G of the target 14 322135 201134597 at the time of the laser processing on the surface 20A, and the machining hole 29B is formed at the target position G at the time of the laser processing of the back surface 2B. For example, the through hole 29q shown in Fig. 5 is shifted to the right side at the time of laser processing from the surface 2A, and is also displaced to the right side when laser processing is performed from the back surface 20B. Therefore, the through hole 29Q has a linear shape. As described above, in the present embodiment, since the processing block is caused by the surface 2〇A and the back surface 2〇β, even if the temperature of the ίθ lens 34 changes, the irradiation position of the laser light L is expanded and contracted toward the center of the f 0 lens 34. The irradiation positions of the laser light on the surface 2〇Α and the back surface 20Β are also almost the same. Therefore, a through hole having a linear shape can be accurately formed in the workpiece 4. Taking the test, the order of processing in each processing block (the order in which the laser light L is irradiated at each hole position) is explained. Figure 6 is a diagram for explaining the processing sequence in the processing block. In the present embodiment, in the case of the surface (10) and the back surface 20B, the processing blocks are aligned, and the order of the female cats 36X and 36Y (the processing order in the processing block) when the laser light is irradiated from the surface m is irradiated. And the sequence of the current _ _ _, 3 6 Υ from the back of the mouse when the laser light is irradiated. For example, in the case where the processing hole of the processing block set to the surface 20 is set to the laser processing in the order of the hole position HlaS H7a #, the processing block on the back side is gripped, and is set to correspond to Hla to H7a. The hole positions on the back side are sequentially subjected to laser processing. Here, the hole position H1b is at the position on the back side of the hole position H1a, and the hole position H2b is at the position on the back side of the hole position H2a. Similarly, the hole positions H3b to H7b are the positions of the hole position H3a to the back side of the heart, respectively. 322135 15 201134597 Figure 7 is a diagram for explaining the positional deviation of the illuminating light due to the operational characteristics of the current scanner. In the laser processing machine, there is a backlash due to the current scanners 36X, 36Y. (backlash), the laser light L scanned by the electric current detectors 36X and 36Y is displaced from the target irradiation position (: position Ηχ). For example, from the position of the hole at the end of the irradiation of the laser light, the irradiation position of the laser light L is moved to the production position of the next hole position ,, and the movement of the irradiation position of the laser light L cannot reach the next position, or Move beyond the position of the next hole Ηχ. In such a case, 'on the surface 20Α and the back surface 2〇β, if the scanning order of the current scanners 36Χ, 36Υ does not match, the laser light is irradiated between the surface 2〇Α and the back surface 20Β at each hole position. The position (position deviation amount) is different. For example, a case will be described in which the laser light L is irradiated to the workpiece 4 in the order of the laser light L1a, the laser light L2a, and the laser light L3a in one processing block. In this case, the irradiation position of the laser light L is moved from the center of the lens 34 (the gaivano origin) to the hole position of the first point of the laser processing by the laser light Ua (hereinafter referred to as Hole position Hxl). Thereafter, the hole position Ηχ from the first point is moved to the hole position Ηχ (hereinafter referred to as the hole position Ηχ 2) of the second point of the laser processing by the laser light, and is further moved to the laser beam by the laser light L3a The hole position Ηχ of the third point of processing (hereinafter referred to as hole position Ηχ 3). At this time, the irradiation position of the laser light irradiated to each of the hole positions Hx1 to Ηχ3 causes a positional deviation at a certain position on the movement route of the irradiation position due to the movement of the laser light irradiation position. For example, from the electrical origin to the hole 322135 16 201134597, the position Hxl moves the laser light irradiation position and the hole position Hx1 illuminates the laser light Lla, and the laser light irradiation position toward the hole position Hxl is located at the connection electrical origin. A position on the line of the hole position Hxl. Therefore, if the scanning order of the current scanners 36X and 36Y is not matched on the front surface 20A and the back surface 20C, the through hole formed in the workpiece 4 does not have a linear shape. Fig. 8 is a view for explaining the shape of a through hole in a case where the scanning order of the current scanner on the front and back sides is not matched. If the scanning order of the surface scanners 2X and 36Y on the front surface 2A and the back surface 2〇c is not made the same, the positional deviation direction at each hole position Hx will be different. For example, 'the laser processing is performed in the order of the surface 20Α in the hole position Ηχ hole position Ηχ2 and the hole position Ηχ3, and the back surface 2〇c is laser-processed in the order of the hole position Hx3, the hole position Ηχ2, and the hole position Ηχ1. The situation. In this case, in the surface 20A, laser light [ia, laser light [2a and laser light L3a] is irradiated to the hole position Ηχ1, the hole position Ηχ2, and the hole position Hx3, respectively. Further, in the back surface 2〇c, the laser light Llc, the laser light l2c, and the laser light L3c are respectively irradiated to the hole position Ηχ3, the hole position Ηχ2, and the hole position Hx1. This processing sequence is a process of inverting the processing order of the hole wing between the surface 2A and the back surface 2〇c; the olfactory sequence, for example, corresponds to the case where the surface 20A shown in Fig. 6 is processed. The block 21 & performs laser processing in the order of the hole position center to H7a, and performs laser processing in the order of the hole positions H7b to Hlb on the processing block 21b of the back surface 2?. On the laser processing surface 20A, after the irradiation position of the laser light L is moved from the electrical origin to the hole position Hx for laser processing by the t-light Ua, the irradiation position of the laser light L is from the hole position Ηχ1 Move to hole 17 322135 201134597 Position Hx2 ' Move to hole position Hx3 again. Further, at the time of laser processing of the back surface 20C, the irradiation of the laser light is moved from the electrical origin to the hole position 11x3 for laser processing by the laser light Uc. Thereafter, the irradiation position of the laser light L is moved from the hole position Ηχ3 to the hole position Ηχ2, and then moved to the hole position Ηχ1. At the time of laser processing of the surface 20A, the laser light irradiation position is moved from the electrical origin to the hole position Hx1. Therefore, the irradiation position of the laser light irradiated to the hole position Ηχ1 is located at a position on the line connecting the electrical origin and the hole position Ηχ1. In other words, the hole position Hx1 is caused by a positional deviation on the line connecting the electrical origin to the hole position Hx1. Similarly, when the laser processing surface 2A, the laser light irradiation position is moved from the hole position Hx1 to the hole position Ηχ2. Therefore, the irradiation position of the laser light L2a irradiated to the hole position Ηχ2 is located at a position on the line connecting the hole position Ηχ1 and the hole position Hx2. In other words, the hole position Ηχ 2 is displaced from the line between the joint hole position Hx1 and the hole position Ηχ2. Further, at the time of the laser processing surface 20, the laser light irradiation position is moved from the hole position Ηχ2 to the hole position Ηχ3. Therefore, the irradiation position of the laser light L3a irradiated to the hole position Ηχ3 is located at a position on the line connecting the hole position Ηχ2 and the hole position Ηχ3, in other words, the hole position Ηχ3 is generated at a position on the line connecting the hole position Ηχ2 and the hole position ηχ3. Deviation. On the other hand, at the time of laser processing of the back surface 2〇c, the laser light irradiation position is moved from the electrical origin to the hole position Ηχ3. Therefore, the irradiation position of the laser light Lie irradiated to the hole position Ηχ3 is located at a position on the line connecting the electrical origin and the hole position Hx3. In other words, the hole position Ηχ3 is caused to be displaced from the line connecting the electric origin 322135 201134597 to the hole position Hx3. Similarly, at the time of laser processing of the back surface 20C, the laser light irradiation position is moved from the hole position Hx3 to the hole position Hx2. Therefore, the irradiation position of the laser light L2c irradiated to the hole position Hx2 is located at a position on the line connecting the hole position Hx3 and the hole position Hx2. In other words, the hole position Hx2 is shifted in position on the line connecting the hole position Hx3 and the hole position Hx2. Further, at the time of laser processing of the back surface 20C, the laser light irradiation position is moved from the hole position Hx2 to the hole position Hx1. Therefore, the irradiation position of the laser light L3c irradiated to the hole position Hx1 is located at a position on the line connecting the hole position Hx2 and the hole position Hx1. In other words, the hole position Hx1 is shifted in position on the line connecting the hole position Hx1 and the hole position Hx2. In this manner, the laser light Lla is irradiated from the surface 20A to the hole position Hx1, and the laser light L3c is irradiated from the back surface 20C to the hole position Hx1. Similarly, the laser light L2a is irradiated from the surface 20A to the hole position Hx2, the laser light L2c is irradiated from the back surface 20C to the hole position Hx2, the laser light L3a is irradiated from the surface 20A to the hole position Hx3, and the laser light Lie is from the back surface 20C Irradiation to the hole position Hx3. Then, the laser light irradiation position at the hole position Hx1 is shifted to a different position between the laser light L1a and the laser light L3c. Similarly, the laser light irradiation position at the hole position Hx2 is shifted to a different position between the laser light L2a and the laser light L2c, and the laser light irradiation position at the hole position Hx3 is in contact with the laser light L3a and the laser light Lie. The position of the inter-system is deviated to a different position. Therefore, the through holes of the hole positions Hx1 to Hx3 do not form a straight shape 19 322135 201134597. As described above, since the scanning order of the current scanners 36X and 36Y does not match on the front surface 20A and the back surface 20C, a linear through hole cannot be formed in the workpiece 4. On the other hand, in the present embodiment, the brooms of the current scanners 36X and 36Y on the front surface 20A and the back surface 20B are sequentially sequenced. Fig. 9 is a view for explaining the shape of a through hole of a case where the scanning current of the current scanner is uniform on the front and back sides. For example, it is explained that the surface 20A is subjected to laser processing in the order of the hole position Hxb hole position Ηχ2 and the hole position Ηχ3, and the back surface 2〇β is laser-processed in the order of the hole position Hx1, the hole position Ηχ2, and the hole position Ηχ3. situation. In this case, in the surface 20A, the laser light 13, the laser light L2a, and the laser light L3a are respectively irradiated to the hole position Ηχ1, the hole position Ηχ2, and the hole position Ηχ3. Further, in the back surface 20, the laser light Lib, the laser light L2b, and the laser light L3b are respectively irradiated to the hole position Ηχ1, the hole position Ηχ2, and the hole position Hx3. This processing sequence is between the surface 2〇A and the back surface 2〇B, and the processing order in which the processing positions of the hole positions are the same, for example, corresponds to the following case: The surface 2〇a shown in Fig. 6 The processing block 21a performs laser processing in the order of the hole positions HIa to H7a, and performs laser processing in the order of the hole positions H1b to H7b on the processing block 21b of the back surface 2?. At the time of laser processing of the surface 20A, the irradiation position of the laser light L is shifted in the order described in Fig. 8. Therefore, the irradiation position of the laser light L1a irradiated to the hole position 、1, the irradiation position of the laser light irradiated to the hole position Ηχ2, and the irradiation of the laser light L3a irradiated to the hole position Ηχ3 are 322135 20 201134597, and the position is respectively shown in FIG. The illustrated position produces a positional deviation. When the hole position Hx1 of the back surface 20B of the laser processing is the same as that of the laser processing surface 20A, the laser light irradiation position is moved from the electrical origin to the hole position Hx1. Therefore, the irradiation position of the laser light Lib irradiated to the hole position Hx1 is located at a position on the line connecting the electrical origin and the hole position Hx1 as in the case of the laser-processed surface 20A. Similarly, when the hole position Hx2 of the laser-processed back surface 20B is the same as that of the laser-processed surface 20A, the laser light irradiation position is moved from the hole position jjxi to the hole position Hx2. Therefore, the irradiation position of the laser light L2b irradiated to the hole position hx2 is located at a position on the line connecting the hole position Hx1 and the hole position Hx2 as in the case of the laser-processed surface 2〇a. Further, when the hole position Hx3 of the laser-processed back surface 20B is the same as that of the laser-processed surface 20A, the laser light irradiation position is moved from the hole position Ηχ2 to the hole position Ηχ3. Therefore, the irradiation position of the laser light L3b irradiated at the hole position Ηχ3 is located at a certain position on the line connecting the hole position Hx2 and the hole position Hx3 as in the case of the laser-processed surface 2A. In other words, the hole positions Hx1 to Hx3 are displaced from the line connecting the electrical origin to the hole position Hx1, the line connecting the hole position (4) to the hole position Ηχ2, and the line connecting the hole position Ηχ2 and the hole position Ηχ3, respectively. Thus, in the case where the scanning of the current scanners 36χ, 36Υ between the surface 20Α and the surface 2〇β is performed, the position of the laser light from the hole position (4) to the Ηχ3 of the table 2盥α, 盥,, The laser light irradiation positions of the hole positions Hx1 to Hx3 of the back surface 20 are the same. 322135 21 201134597 For example, the hole positions Hx1 to fjx3 shown in Fig. 9 are shifted to the left side when laser processing is performed from the surface 20A, and the position is shifted to the left side when laser processing is performed from the back surface 20B. . Therefore, the through holes formed at the hole positions Hx1 to Hx3 are in a straight line shape. As described above, in the present embodiment, since the scanning order of the current scanners 36X and 36Y is matched between the front surface 20A and the back surface 20B, even if the driving systems of the current scanners 36X and 36Y have a backlash, the surface 20A and the back surface are provided. The irradiation position of the 2 〇 B laser light is also about the same. Therefore, a through hole having a linear shape can be accurately formed on the workpiece 4. Next, the processing sequence for each processing block (the order of movement toward the processing block) will be described. In the present embodiment, for example, 'the same processing sequence as that of the processing block set on the surface 20A can be applied to the back surface 20Β, or the processing block set at the surface 20Α can be applied as described in FIG. 2] The processing sequence with different processing order is applied to the back side 20Β. For example, the surface 2〇Α may be subjected to laser processing in the order of the processing block 21 a, the processing block 22 a , the processing block 23 a , and the processing block 24 a , and the back surface 20B may be the processing block 24 b and the processing block. The processing of the block 23b, the processing block 22b, and the processing block 21b is performed in a laser process. The drive system of the XY table 30 is backflushed. Therefore, the processing order set in the processing area of the surface 20A is set to be set on the back surface 20B.

工區域的加工順序為相同的情形,在表面20A及背面20B 起因於XY工作台30X的驅動系統的位置偏離的量變得相 同。 此外,設定在表面20A的加工區塊的加工順序與設定 22 322135 201134597 在背面20B的加工區塊的加工順序相同的情形,在表面20A 及背面20B的雷射加工中的f0透鏡34的溫度變化變得相 同。從而’在雷射加工表面2〇a之際於各加工區塊21a至 24a之起因於ίθ透鏡34的溫度變化的位置偏離的量’與 在雷射加工背面20Β之際於各加工區塊21b至24b之起因 於f (9透鏡34的溫度變化的位置偏離的量變得相同。 在雷射加工複數枚(例如二十枚)被加工物4的情形’ 連續地(例如二十枚份)雷射加工表面20A,之後,連續地 (例如二十枚份)雷射加工背面20B。於這種情形中,使進 行透鏡34的溫度修正的時機點(timing)在表面20A 的雷射加工及背面20B的雷射加工之間相同。例如,於雷 射加工20枚的表面20A之際,在雷射加工第1枚的表面 20A前、及雷射加工第丨丨牧的表面2〇A前,使其進行 透鏡34的溫度修正。在這種情形,於雷射加工二十牧的背 面20B之際’在雷射加工第i牧的背面2〇B前、及雷射加 工第11枚背面20B前進行f0透鏡34的溫度修正。藉此, 雷射加工表面2〇a之際起因於f 0透鏡34的溫度變化的位 置偏離、以及雷射加工背面20B之際起因於f0透鏡34 的溫度變化的位置偏離係變得相同。 其中,於本實施形態,雖係說明關於在將被加工物4 從表面20A翻轉至背面20B之際,以表面20A的右邊為軸 翻轉被加工物4的情形,然亦可將表面2〇a的其他邊的點 作為中心翻轉被加工物4。 第1〇圖係用以說明從被加工物的表面翻至背面的翻 322135 23 201134597 轉方法的圖。如第10圖所示,於將被加工物4從表面20A 翻轉至背面20B之際,亦可將表面20A的右邊(左邊)、表 面20A的下邊(上邊)、表面20A的右下點(左上點)、表面 20A的左下點(右上點)的任一個作為中心翻轉被加工物4。 於第10圖中,係以背面20B表示將以表面20A的右 邊作為中心翻轉被加工物4後的情形的背面,以背面20D 表示將以表面20A的下邊作為中心翻轉被加工物4後的情 形的背面。此外,以背面20E表示將以表面20A的右下點 作為中心翻轉被加工物4後的情形的背面,以背面20F表 示將以表面20A的左下點作為中心翻轉被加工物4後的情 形的背面。 在以成為背面20D之方式將被加工物4載置於XY工 作台30的情形,亦將加工區塊21a至24a的背面分別設定 為加工區塊21d至24d。此外,以成為背面20E之方式將 被加工物4載置於XY工作台30的情形,亦將加工區塊21a 至24a的背面分別設定為加工區塊21e至24e。此外,以 成為背面20F之方式將被加工物4載置於XY工作台30的 情形,亦將加工區塊21a至24a的背面分別設定為加工區 塊 21f 至 24f。 其中,被加工物4係不限於印刷配線板,亦可為陶瓷 (ceramic)板或金屬板等其他的構件。此外,於本實施例, 雖說明關於雷射加工被加工物4的表面20A後再雷射加工 背面20B的情形,然亦可於雷射加工被加工物4的背面20B 後再雷射加工表面2 0 A。 24 322135 201134597 根據此種實施形態,由於在表面20A及背面20B之間 使加工區域一致,故可縮小在表面20A及背面20B之間的 雷射光照射位置的位置偏離。此外,由於在表面20A及背 面20B之間使電流掃描器36X、36Y的掃瞄順序一致,故可 縮小在表面20A及背面20B之間的雷射光照射位置的位置 偏離。此外,由於使設定於表面20A的加工區塊的加工順 序及設定於背面20B的加工區塊的加工順序一致,故可縮 小在表面20A及背面20B之間的雷射光照射位置的位置偏 離。此外,由於使在表面20A的雷射加工及背面20B的雷 射加工進行f0透鏡34的溫度修正的時機相同,故可縮小 在表面20A及背面20B之間的雷射光照射位置的位置偏 離。從而,可於被加工物4正確地形成直線形狀的貫穿孔。 (產業利用性) 如以上所述,本發明的雷射加工機、雷射加工方法及 雷射加工控制裝置,係適用於藉由雷射光對被加工物進行 開孔加工。 【圖式簡單說明】 第1圖係顯示具有本發明的實施形態的加工控制裝置 的雷射加工機的構成的圖。 第2圖係用以說明實施形態的雷射加工方法的圖。 第3圖係用以說明透過f Θ透鏡所照射的雷射光的位 置偏離的圖。 第4圖係用以說明在表面及背面未使加工區塊一致的 情形的貫穿孔的形狀的圖。 25 322135 201134597 區塊一致的情 第5圖係W朗在表面及背面使加工 形的貫穿孔的形狀的圖。 第6圖係用 第7圖係用 射光的位置偏離 工順序的圖。 的運作特性的雷 以說明在加工區塊内的加 以說明起因於電流掃描器 的圖。 第8圖係^朗未使電流掃描^ 瞎順序一致的情形的貫穿孔的形狀的圖。、的詞 第9圖係用以說明使電流掃描器北 順序-致的情形的貫穿孔的形狀的圖。^的掃® 翻轉係用以說明從被加工物的表㈣轉至背面的 【主要元件符號說明】 1 雷射振盪器 3 雷射加工部 20Α 表面 21a 至 24a、21b 至 24b 24e、21f 至 24f 29A至29C加工孔 30 加工工作台 35X > 35Y 電流鏡 39 位置檢測部 G 目標位置 L 加工控制裝置 4 被加工物 20B至20F背面 21c 至 24c、21d 至 24d、21e 至 加工區塊 29P、29Q 貫穿孔 34 ίθ透鏡 36Χ、36Υ 電流掃描器 100 雷射加工機The processing order of the work area is the same, and the amount of positional deviation of the drive system caused by the XY table 30X on the front surface 20A and the back surface 20B becomes the same. Further, the processing order of the processing block set on the surface 20A is the same as the processing order of the processing block of the back surface 20B set by 22 322135 201134597, and the temperature change of the f0 lens 34 in the laser processing of the surface 20A and the back surface 20B. Become the same. Therefore, 'the amount of positional deviation caused by the temperature change of the ίθ lens 34 in each of the processing blocks 21a to 24a at the time of the laser processing surface 2〇a' is at the processing block 21b at the back surface of the laser processing 20Β The amount of positional deviation from the temperature change of f (9 lens 34) is the same as that of 24b. In the case of laser processing a plurality of (for example, twenty) workpieces 4, continuously (for example, twenty copies) The surface 20A is shot, and thereafter, the back surface 20B is laser-processed continuously (for example, twenty parts). In this case, the timing at which the temperature correction of the lens 34 is performed is laser-processed and backed on the surface 20A. The laser processing of 20B is the same. For example, in the case of laser processing 20 surfaces 20A, before the first surface 20A of the laser processing and before the surface 2〇A of the laser processing The temperature correction of the lens 34 is performed. In this case, on the back surface 20B of the laser processing 1920, 'before the back of the laser processing i 牧 2 〇 B, and the eleventh back of the laser processing 20B The temperature correction of the f0 lens 34 is performed before. Thereby, the laser processing surface 2〇a The positional deviation due to the temperature change of the f 0 lens 34 and the positional deviation due to the temperature change of the f0 lens 34 at the time of the laser-processed back surface 20B become the same. When the workpiece 4 is turned over from the front surface 20A to the back surface 20B, the workpiece 4 is inverted about the right side of the surface 20A, and the workpiece 4 may be inverted as a center of the other side of the surface 2A. Fig. 1 is a view for explaining a method of turning 322135 23 201134597 from the surface of the workpiece to the back. As shown in Fig. 10, when the workpiece 4 is turned from the surface 20A to the back surface 20B Alternatively, the right side (left side) of the surface 20A, the lower side (upper side) of the surface 20A, the lower right point (upper left point) of the surface 20A, and the lower left point (upper right point) of the surface 20A may be used as the center to invert the workpiece 4 In Fig. 10, the back surface 20B indicates the back surface of the workpiece 4 after the right side of the front surface 20A is turned over, and the back surface 20D indicates that the workpiece 4 is reversed with the lower side of the surface 20A as the center. The back of the situation In addition, the back surface 20E indicates the back surface of the case where the workpiece 4 is reversed with the lower right point of the surface 20A as the center, and the back surface 20F indicates the state where the workpiece 4 is reversed with the lower left point of the surface 20A as the center. In the case where the workpiece 4 is placed on the XY table 30 so as to become the back surface 20D, the back surfaces of the processing blocks 21a to 24a are also set as the processing blocks 21d to 24d, respectively. In the case where the workpiece 4 is placed on the XY table 30, the back surfaces of the processing blocks 21a to 24a are also set as the processing blocks 21e to 24e, respectively. Further, in the case where the workpiece 4 is placed on the XY table 30 so as to become the back surface 20F, the back surfaces of the processing blocks 21a to 24a are also set as the processing blocks 21f to 24f, respectively. The workpiece 4 is not limited to a printed wiring board, and may be other members such as a ceramic board or a metal board. Further, in the present embodiment, the case where the surface 20A of the workpiece 4 is laser-processed and then the back surface 20B is laser-processed is described. However, the laser-processed surface may be laser-processed after the back surface 20B of the workpiece 4 is laser-processed. 2 0 A. According to this embodiment, since the processing regions are aligned between the front surface 20A and the back surface 20B, the positional deviation of the laser light irradiation position between the front surface 20A and the back surface 20B can be reduced. Further, since the scanning order of the current scanners 36X and 36Y is made uniform between the front surface 20A and the back surface 20B, the positional deviation of the laser light irradiation position between the front surface 20A and the back surface 20B can be reduced. Further, since the processing order of the processing blocks set on the surface 20A and the processing order of the processing blocks set on the back surface 20B are made uniform, the position of the laser light irradiation position between the front surface 20A and the back surface 20B can be made small. Further, since the timing of the temperature correction of the f0 lens 34 by the laser processing on the surface 20A and the laser processing on the back surface 20B is the same, the positional deviation of the laser light irradiation position between the surface 20A and the back surface 20B can be reduced. Therefore, a through hole having a linear shape can be accurately formed on the workpiece 4. (Industrial Applicability) As described above, the laser processing machine, the laser processing method, and the laser processing control device of the present invention are applied to the processing of the workpiece by laser light. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of a laser processing machine having a machining control device according to an embodiment of the present invention. Fig. 2 is a view for explaining a laser processing method of the embodiment. Fig. 3 is a view for explaining the positional deviation of the laser light irradiated through the f Θ lens. Fig. 4 is a view for explaining the shape of the through hole in the case where the processing block is not aligned on the front and back surfaces. 25 322135 201134597 Consistency of Blocks Figure 5 is a diagram showing the shape of the through-holes in the shape of the W-lang on the front and back sides. Fig. 6 is a diagram in which the position of the projecting light is shifted from the order of the drawing. The operational characteristics of the mine are illustrated to illustrate the figure resulting from the current scanner in the processing block. Fig. 8 is a view showing the shape of the through hole in the case where the current scanning is not in the same order. Words Fig. 9 is a view for explaining the shape of a through hole which causes the current scanner to be sequentially sequenced. The sweeping of the ^ is used to explain the main component symbol description from the table (4) to the back of the workpiece. 1 Laser oscillator 3 Laser processing section 20 Α Surfaces 21a to 24a, 21b to 24b 24e, 21f to 24f 29A to 29C machining hole 30 machining table 35X > 35Y current mirror 39 position detecting portion G target position L machining control device 4 workpieces 20B to 20F back faces 21c to 24c, 21d to 24d, 21e to processing blocks 29P, 29Q Through hole 34 ίθ lens 36Χ, 36Υ current scanner 100 laser processing machine

Hla 至 H7a、Hlb 至 H7b、Hx、Hxl 至 Ηχ3 孔位置 hi 定位用貫穿孔 26 322135 201134597 雷射光 L、Lla 至 Lie、L2a 至 L2c、L3a 至 L3cHla to H7a, Hlb to H7b, Hx, Hxl to Ηχ3 hole position hi Positioning through hole 26 322135 201134597 Laser light L, Lla to Lie, L2a to L2c, L3a to L3c

Sa、Sc 基準位置 27 322135Sa, Sc base position 27 322135

Claims (1)

201134597 七、申請專利範圍: 1. 一種雷射加工機,係具備有: 加工工作台,係載置被加工物並使前述被加工物朝 • 面内方向移動; 電流掃描器,係使從雷射振盪器射出的雷射光於設 定於前述被加工物的各加工區塊内進行二維掃瞄; f0透鏡,係將來自前述電流掃描器的雷射光聚光 至前述被加工物上的各加工位置;以及 控制部,係於雷射加工屬於前述被加工物的一方主 面的表面之際,將設定於前述表面的各加工區塊的位置 指示至前述加工工作台,並將設定在前述表面的前述加 工區塊内的前述各加工位置指示至前述電流掃描器,而 於雷射加工屬於前述被加工物的另一方主面的表面之 際,將設定於前述背面的各加工區塊的位置指示至前述 加工工作台,並將設定在前述背面的前述加工區塊内的 前述各加工位置指示至前述電流掃描器;其中, 前述控制部在將雷射光照射至前述表面後再翻轉 前述被加工物,並將雷射光照射至前述背面,藉此從前 述被加工物的兩面照射雷射光而於前述被加工物形成 貫穿孔的情形,係以前述表面的加工區塊與前述背面的 加工區塊成為前述被加工物的同樣區域的方式,將前述 表面及前述背面的各加工區塊的位置指示至前述加工 工作台。 2. 如申請專利範圍第1項所述之雷射加工機,其中,於從 28 322135 201134597 前述被加工物的兩面照射雷射光而於前述被加工物形 成貫穿孔的情形,前述控制部係對在前述表面及前述背 面被設定為同樣區域的加工區塊,以在前述表面及前述 背面以相同的加工位置的順序進行雷射加工的方.式,將 在前述表面及前述背面的加工區塊内的各加工位置指 示至前述電流掃描器。 3. 如申請專利範圍第1項或第2項所述之雷射加工機,其 中,於從前述被加工物的兩面照射雷射光而於前述被加 工物形成貫穿孔的情形,前述控制部係以在前述表面及 前述背面以相同的加工區塊之順序進行雷射加工的方 式,將在前述表面及前述背面的各加工區塊的位置指示 至前述加工工作台。 4. 一種雷射加工方法,包括: 第一載置步驟,於用以載置被加工物並使前述被加 工物朝面内方向移動之加工工作台上,以令屬於前述被 加工物的一方主面的表面側朝上面的方式載置前述被 加工物; 第一加工步驟,籍由控制用以使從雷射振盪器射出 的雷射光於設定於前述被加工物的各加工區塊内進行 二維掃瞄的電流掃描器、以及前述加工工作台,將來自 前述電流掃描器的雷射光透過f0透鏡聚光至前述被 加工物上的各加工位置,藉此從前述表面側雷射加工前 述被加工物而達至前述被加工物的厚度方向的中途; 第二載置步驟,於前述加工工作台上以令屬於前述 29 322135 201134597 被加工物的另一方主面的背面側朝上面的方式載置前 述被加工物;以及 第二加工步驟,藉由控制前述電流掃描器、及前述 加工工作台’將來自前述電流掃描器的雷射光透過前述 透鏡聚光至前述被加工物上的各加工位置,藉此從 已被雷射加工達至前述被加工物的厚度方向的中途的 位置之前述背面側雷射加工前述被加工物;其中,、、 前述第一及第二加工步驟係以前述表面的加工區 塊及前述背面的加工區塊成為前述被加工物的相同區 域的方式,使前述加工工作台移動至前述表面及前述背 面的各加工區塊的位置並雷射加工前述被加工物。 5. 如申請專利範圍第4項所述之雷射加工方法,其中,在 雷射加工複數牧前述被加工物的表面後再雷射加工複 數牧前述被加工物的背面的情形, 以在雷射加工預定片數的前述表面後所進行的前 述ίθ透鏡的溫度修正係與在雷射加工預定片數的矿 述背面後所進行的前述ίθ ϋ鏡的溫度修正在同樣: 時機進行的方式’將用於前述表面及前述背面之前 定片數設定為相同數量。 6. —種雷射加工控制裝置,係具備有: 控制部,藉由控制用以載置被加工物並使前述被加 工物朝面内方向移動的加工工作台、以及用以使從雷射 振盪器射出的雷射光於設定於前述被加工物的各加工 區塊内進行二__電流掃描器,將來自前述電流掃 322135 30 201134597 描器的雷射光透過透鏡聚光至前述被加工物上的 各加工位置;其中, 前述控制部,係於雷射加工屬於前述被加工物的一 方主面的表面之際,將設定於前述表面的各加工區塊的 位置指示至前述加工工作台,並且將設定於前述表面的 前述加工區塊内的前述各加工位置指示至前述電流掃 描器,並於雷射加工屬於前述被加工物的另一方主面的 背面之際,將設定於前述背面的各加工區塊的位置指示 至前述力σ工工作台,並且將設定於前述背面的前述加工 區塊内的前述各加工位置指示至前述電流掃描器; 於將雷射光照射至前述表面後再翻轉前述被加工 物並將雷射光照射至前述背面,藉此從前述被加工物的 兩面照射雷射光而於前述被加工物形成貫穿孔的情形, 以令前述表面的加工區塊與前述背面的加工區塊成為 前述被加工物的同樣區域的方式,將前述表面及前述背 面的各加工區塊的位置指示至前述加工工作台。 31 322135201134597 VII. Scope of application for patents: 1. A laser processing machine, which is provided with: a processing table for placing a workpiece and moving the workpiece to the in-plane direction; a current scanner that is made from a mine The laser light emitted from the radiation oscillator is subjected to two-dimensional scanning in each processing block set in the workpiece; the f0 lens is a processing for collecting the laser light from the current scanner to the workpiece. And a control unit that instructs a position of each of the processing blocks set on the surface to the processing table when laser processing is performed on a surface of one of the main surfaces of the workpiece, and sets the surface on the surface Each of the processing positions in the processing block is directed to the current scanner, and when the laser processing belongs to the surface of the other main surface of the workpiece, the position of each processing block set on the back surface is set. Instructing to the processing station, and indicating the foregoing processing positions in the aforementioned processing block set on the back surface to the current scanner; wherein, the front The control unit irradiates the laser beam onto the surface, and then inverts the workpiece, and irradiates the laser beam to the back surface, thereby irradiating the both surfaces of the workpiece with laser light to form a through hole in the workpiece. In this case, the position of each of the processing blocks on the front surface and the back surface is indicated to the processing table such that the processing block on the front surface and the processing block on the back surface are in the same region of the workpiece. 2. The laser processing machine according to claim 1, wherein the control unit is paired with the laser beam irradiated on both sides of the workpiece from 28 322135 201134597 to form a through hole in the workpiece. In the processing block in which the surface and the back surface are set to the same area, the laser processing is performed in the order of the same processing position on the front surface and the back surface, and the processing block on the surface and the back surface is formed. Each of the machining positions within is indicated to the aforementioned current scanner. 3. The laser processing machine according to the first or second aspect of the invention, wherein the control unit is configured to irradiate the laser beam on both sides of the workpiece and form a through hole in the workpiece. The laser processing is performed in the order of the same processing block on the front surface and the back surface, and the positions of the processing blocks on the front surface and the back surface are indicated to the processing table. A laser processing method comprising: a first placing step of placing a workpiece and moving the workpiece in an in-plane direction on a processing table to cause the workpiece to be processed The workpiece is placed on the surface side of the main surface toward the upper surface; the first processing step is controlled by the laser light emitted from the laser oscillator in each processing block set in the workpiece a two-dimensional scanning current scanner, and the processing table, condensing laser light from the current scanner through a f0 lens to each processing position on the workpiece, thereby laser processing the aforementioned surface side The workpiece is placed in the middle of the thickness direction of the workpiece; and the second mounting step is performed on the processing table such that the back side of the other main surface belonging to the workpiece of 29 322135 201134597 faces upward. Mounting the workpiece; and a second processing step of controlling the laser light from the current scanner by controlling the current scanner and the processing station The workpiece is condensed to each of the processing positions on the workpiece, whereby the workpiece is laser-processed from the back side of the position in the middle of the thickness direction of the workpiece by laser processing; And the first and second processing steps of moving the processing table to the surface and the back surface such that the processing block on the surface and the processing block on the back surface are the same region of the workpiece The position of each processing block is laser processed to the aforementioned workpiece. 5. The laser processing method according to the fourth aspect of the invention, wherein, in the laser processing, the surface of the workpiece is subjected to laser processing, and then the back surface of the workpiece is laser-processed to The temperature correction of the ίθ lens performed after the predetermined number of shots of the surface is processed is the same as the temperature correction of the ίθ ϋ mirror performed after the predetermined number of laser processing of the back surface: the timing of the operation The number of sheets before the surface and the aforementioned back surface is set to the same number. 6. A laser processing control device comprising: a control unit that controls a processing table for placing a workpiece to move the workpiece in an in-plane direction, and for causing a laser beam The laser light emitted from the oscillator is subjected to a second current scanner in each processing block set in the workpiece, and the laser light from the current sweep 322135 30 201134597 is condensed through the lens to the workpiece. Each of the processing positions is configured to instruct the position of each of the processing blocks set on the surface to the processing table when the laser processing is on the surface of one of the main surfaces of the workpiece, and The respective processing positions in the processing block set on the surface are instructed to the current scanner, and when laser processing is performed on the back surface of the other main surface of the workpiece, each of the back surfaces is set The position of the processing block is indicated to the force σ working table, and the aforementioned processing positions in the aforementioned processing block set on the back surface are indicated to the aforementioned electric a scanner that irradiates the laser beam onto the surface, and then inverts the workpiece and irradiates the laser beam to the back surface, thereby irradiating the laser beam from both surfaces of the workpiece to form a through hole in the workpiece. The position of each of the processing blocks on the front surface and the back surface is indicated to the processing table so that the processing block on the surface and the processing block on the back surface are in the same region of the workpiece. 31 322135
TW099120056A 2010-04-12 2010-06-21 Laser processing machine, laser processing method and laser processing apparatus TW201134597A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056544 WO2011128966A1 (en) 2010-04-12 2010-04-12 Laser-machining device, laser-machining method, and laser-machining control device

Publications (1)

Publication Number Publication Date
TW201134597A true TW201134597A (en) 2011-10-16

Family

ID=44798360

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099120056A TW201134597A (en) 2010-04-12 2010-06-21 Laser processing machine, laser processing method and laser processing apparatus

Country Status (5)

Country Link
JP (1) JP5279949B2 (en)
KR (1) KR101352731B1 (en)
CN (1) CN102844142B (en)
TW (1) TW201134597A (en)
WO (1) WO2011128966A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510810B (en) * 2011-11-24 2015-12-01 Mitsubishi Electric Corp Lens unit and laser processing apparatus
TWI754521B (en) * 2020-02-10 2022-02-01 日商三菱電機股份有限公司 Laser processing method and laser processing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808267B2 (en) * 2012-02-20 2015-11-10 住友重機械工業株式会社 Laser processing apparatus and laser processing method
JP6236905B2 (en) * 2013-06-20 2017-11-29 凸版印刷株式会社 Method for manufacturing hollow needle body device
CN103917052B (en) * 2013-12-30 2017-06-13 天津市德中技术发展有限公司 A kind of method of use laser direct structuring technique processing circuit board
JP2017217682A (en) * 2016-06-10 2017-12-14 パナソニックIpマネジメント株式会社 Laser beam machining device and laser beam machining method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294567A (en) * 1993-01-08 1994-03-15 E. I. Du Pont De Nemours And Company Method for forming via holes in multilayer circuits
JP3353134B2 (en) * 1998-03-02 2002-12-03 住友重機械工業株式会社 Laser processing equipment
JP2003218539A (en) * 2002-01-18 2003-07-31 Mitsubishi Gas Chem Co Inc Method of forming through hole through multilayered double-sided copper-clad board with laser beam
JP2004335655A (en) * 2003-05-06 2004-11-25 Internatl Business Mach Corp <Ibm> Hole forming method, printed wiring board, and hole forming device
JP4559260B2 (en) * 2005-03-04 2010-10-06 日立ビアメカニクス株式会社 How to drill printed circuit boards
JP4711774B2 (en) 2005-08-09 2011-06-29 日立ビアメカニクス株式会社 Processing method for flat work
JP5162977B2 (en) * 2006-07-28 2013-03-13 日立化成株式会社 Laser drilling method
JP2008055438A (en) 2006-08-29 2008-03-13 Yamazaki Mazak Corp System for preventing machining defect in laser beam machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510810B (en) * 2011-11-24 2015-12-01 Mitsubishi Electric Corp Lens unit and laser processing apparatus
TWI754521B (en) * 2020-02-10 2022-02-01 日商三菱電機股份有限公司 Laser processing method and laser processing device

Also Published As

Publication number Publication date
WO2011128966A1 (en) 2011-10-20
JPWO2011128966A1 (en) 2013-07-11
CN102844142A (en) 2012-12-26
CN102844142B (en) 2015-03-04
JP5279949B2 (en) 2013-09-04
KR101352731B1 (en) 2014-01-17
KR20120130017A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
TW201134597A (en) Laser processing machine, laser processing method and laser processing apparatus
JP4800939B2 (en) Laser processing apparatus, program creation apparatus, and laser processing method
JP6278451B2 (en) Marking device and pattern generation device
JPH10323785A (en) Laser processing device
JP2021066922A (en) Three-dimensional shaping method and three-dimensional shaping device
JP5183826B2 (en) Laser processing method and laser processing machine
TWI645928B (en) Laser processing apparatus and laser processing method using the laser processing apparatus
JP2011054841A (en) Processing method
JP2018202420A (en) Laser processing method and laser processing device, and method for manufacturing electronic equipment
TWI517923B (en) Laser processing method
JP2002346775A (en) Device and method for laser beam machining
JP2002239772A (en) Method and device for laser beam machining
JP2009252892A (en) Laser machining method, method for manufacturing printed board, and laser machining apparatus
JP4039306B2 (en) 3D circuit pattern forming method, apparatus, and 3D circuit board manufactured using the same
WO2013094025A1 (en) Laser processing method
JP7451049B2 (en) Laser processing equipment and laser processing method
JP7386073B2 (en) Laser processing equipment and laser processing method
JP2004181463A (en) Laser beam machining device and its machining method
JP5731868B2 (en) Laser processing method and processing apparatus
JP6510829B2 (en) Laser processing equipment
JP2005345526A (en) Method and apparatus of controlling galvanoscanner, and method of laser beam machining
JP2012223805A (en) Laser beam machining apparatus, laser beam machining method, and laser beam machined product
JP2000301374A (en) Laser beam machining device, and laser beam machining method
JP2023180325A (en) Laser processing device and laser processing method
JP3440093B1 (en) Laser processing method for forming wiring and alignment holes in a thin plate-like workpiece