TWI517923B - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
TWI517923B
TWI517923B TW102122347A TW102122347A TWI517923B TW I517923 B TWI517923 B TW I517923B TW 102122347 A TW102122347 A TW 102122347A TW 102122347 A TW102122347 A TW 102122347A TW I517923 B TWI517923 B TW I517923B
Authority
TW
Taiwan
Prior art keywords
laser
windings
hole
winding
conductor layer
Prior art date
Application number
TW102122347A
Other languages
Chinese (zh)
Other versions
TW201404509A (en
Inventor
本木裕
Original Assignee
三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機股份有限公司 filed Critical 三菱電機股份有限公司
Publication of TW201404509A publication Critical patent/TW201404509A/en
Application granted granted Critical
Publication of TWI517923B publication Critical patent/TWI517923B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1572Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)

Description

雷射加工方法 Laser processing method

本發明係有關雷射(laser)加工方法。 The present invention relates to a laser processing method.

下述專利文獻1中記載了對在絕緣基板的兩面積層有金屬箔的印刷(print)配線基板,使用雷射形成貫通印刷配線基板的孔。具體而言,係使用雷射開孔貫通印刷配線基板的定位孔(alignment hole),以CCD攝像機拍攝定位孔,根據拍攝得的定位孔的位置決定雷射的照射位置,對其照射位置照射雷射,形成深度到印刷配線基板中段的孔。接著,翻轉印刷配線基板,以定位孔為基準決定雷射的照射位置,對該照射位置照射雷射,將上述深度形成到印刷配線基板中段的孔貫通。藉此,依據專利文獻1,因為從印刷配線基板的兩側照射雷射來形成孔,所以應能夠形成剖面觀看時大致筆直(straight)的孔。 In the following Patent Document 1, a printed wiring board having a metal foil on two layers of an insulating substrate is used, and a hole penetrating the printed wiring board is formed using a laser. Specifically, a laser hole is used to penetrate an alignment hole of the printed wiring substrate, a positioning hole is photographed by the CCD camera, and a laser irradiation position is determined according to the position of the photographed positioning hole, and the irradiation position is irradiated with a lightning. Shot, forming a hole to the middle of the printed wiring substrate. Next, the printed wiring board is turned over, the irradiation position of the laser is determined based on the positioning hole, the laser beam is irradiated to the irradiation position, and the depth is formed to penetrate the hole in the middle of the printed wiring board. According to Patent Document 1, since the holes are formed by irradiating laser light from both sides of the printed wiring board, it is possible to form a substantially straight hole when viewed in cross section.

下述專利文獻2中記載了對在絕緣層的兩面存在有金屬箔的雙面基板,使用雷射光進行貫通孔加工。具體而言,係藉由雷射光的繞孔(trepanning)加工,在雙面基板製作貫通基準孔,對雙面基板的表面照射雷射光,製作貫通表面的金屬箔而加工停止於絕緣層中段的中段加工孔。接著,翻轉表面基板,以攝像機識別貫通基準孔,以比對出的座標進行雷射光的照射,製作 背面側的加工孔。藉此,依據專利文獻2,應能夠令從表面開孔的加工孔與從背面側開孔的加工孔無偏差地接通起來。 Patent Document 2 listed below discloses that a double-sided substrate in which metal foil is present on both surfaces of an insulating layer is subjected to through-hole processing using laser light. Specifically, by the trepanning processing of the laser light, the reference hole is formed in the double-sided substrate, and the surface of the double-sided substrate is irradiated with the laser light to form a metal foil penetrating the surface, and the processing is stopped in the middle of the insulating layer. The middle section is machined. Next, the surface substrate is turned over, the camera is used to recognize the through-reference hole, and the laser light is irradiated with the aligned coordinates. Machined holes on the back side. Therefore, according to Patent Document 2, it is possible to connect the machined hole that is opened from the surface to the machined hole that is opened from the back side.

(先前技術文獻) (previous technical literature) (專利文獻) (Patent Literature)

專利文獻1:日本國特開2004-335655號公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 2004-335655

專利文獻2:日本國特開2009-252892號公報 Patent Document 2: Japanese Patent Laid-Open Publication No. 2009-252892

專利文獻1中完全未記載使用雷射開孔定位孔所需的具體方法,也完全未記載既縮短定位孔(基準貫通孔)的加工時間,同時抑制定位孔(基準貫通孔)的中心軸的傾斜的方法。 Patent Document 1 does not describe at all the specific method required to use the laser hole positioning hole, and does not describe the machining time for shortening the positioning hole (reference through hole), and suppresses the central axis of the positioning hole (reference through hole). The method of tilting.

專利文獻2中雖然記載了藉由雷射光的繞孔加工製作貫通基準孔,但完全未記載其加工時間,也完全未記載既縮短貫通基準孔(基準貫通孔)的加工時間,同時抑制貫通基準孔(基準貫通孔)的中心軸的傾斜的方法。 In Patent Document 2, it is described that the through-hole is formed by the hole-to-hole processing of the laser light. However, the processing time is not described at all, and the processing time for shortening the through-reference hole (reference through-hole) is not described at all, and the penetration reference is suppressed. A method of tilting the central axis of a hole (reference through hole).

本發明係鑒於上述題課而研創,其目的在於獲得一種能夠既縮短基準貫通孔的加工時間,同時抑制基準貫通孔的中心軸的傾斜的雷射加工方法。 The present invention has been made in view of the above-described problems, and an object of the invention is to provide a laser processing method capable of reducing the processing time of a reference through-hole while suppressing the inclination of the central axis of the reference through-hole.

為了解決上述課題並達成上述目的,本發明一形態的雷射加工方法係對在第1導體層與第2導體層之間夾著絕緣層的被加工物,以雷射進行貫通孔之加工者,其特徵在於包含以下步驟:基準貫通孔形成步驟,係從前述第1導體層側對前述被加 工物令雷射一邊旋繞複數次一邊照射,形成依序貫通前述第1導體層、前述絕緣層、前述第2導體層的基準貫通孔;第1加工孔形成步驟,係從前述第1導體層側對前述被加工物照射雷射,形成貫通前述第1導體層達前述絕緣層的第1加工孔;及第2加工孔形成步驟,係利用從前述第2導體層側拍攝前述基準貫通孔所得之圖像進行定位,從前述第2導體層側對前述被加工物照射雷射,形成貫通前述第2導體層達前述絕緣層並且連通前述第1加工孔的第2加工孔。在前述基準貫通孔形成步驟中,係以相關於從前述基準貫通孔的中心軸放射的放射方向,使提供給前述基準貫通孔側面的入熱量均等之方式,令雷射的複數次旋繞中之各次的旋繞互有變化。 In order to solve the above problems and achieve the above object, a laser processing method according to an aspect of the present invention is a processor that performs a through hole by a laser to a workpiece having an insulating layer interposed between a first conductor layer and a second conductor layer. The method includes the following steps: a reference through-hole forming step of adding the aforementioned from the side of the first conductor layer The workpiece causes the laser to be irradiated while being rotated for a plurality of times, and forms a reference through hole that sequentially penetrates the first conductor layer, the insulating layer, and the second conductor layer; and the first processed hole forming step is performed from the first conductor layer The side of the workpiece is irradiated with a laser to form a first processing hole that penetrates the first conductor layer to the insulating layer, and the second processing hole forming step is obtained by imaging the reference through hole from the second conductor layer side. The image is positioned, and the workpiece is irradiated with a laser beam from the side of the second conductor layer to form a second processing hole that penetrates the second conductor layer and reaches the insulating layer and communicates with the first processing hole. In the reference through-hole forming step, the amount of heat supplied to the side surface of the reference through-hole is equalized in a radial direction radiated from the central axis of the reference through-hole, and the laser is rotated in a plurality of times. Each of the turns has a mutual change.

依據本發明,以能量密度比一般加工條件高的加工條件進行旋繞加工時,能夠抑制基準貫通孔的中心軸的傾斜。亦即,能夠既縮短基準貫通孔的加工時間,同時抑制基準貫通孔的中心軸的傾斜。 According to the present invention, when the winding process is performed under the processing conditions in which the energy density is higher than the general processing conditions, the inclination of the central axis of the reference through hole can be suppressed. In other words, it is possible to reduce the processing time of the reference through hole and suppress the inclination of the central axis of the reference through hole.

1‧‧‧雷射加工裝置 1‧‧‧ Laser processing equipment

2‧‧‧雷射振盪器 2‧‧‧Laser oscillator

10‧‧‧被加工物 10‧‧‧Processed objects

11‧‧‧第1導體層 11‧‧‧1st conductor layer

11a‧‧‧第1導體層的表面 11a‧‧‧ Surface of the first conductor layer

12‧‧‧第2導體層 12‧‧‧2nd conductor layer

12a‧‧‧第2導體層的表面 12a‧‧‧ Surface of the second conductor layer

13‧‧‧絕緣層 13‧‧‧Insulation

14-1、14-2、14-1’、14-2’‧‧‧基準貫通孔 14-1, 14-2, 14-1', 14-2'‧‧‧ benchmark through holes

15-1至15-3、15-1’至15-3’‧‧‧第1加工孔 15-1 to 15-3, 15-1' to 15-3'‧‧‧1st machined hole

16-1至16-3、16-1’至16-3’‧‧‧第2加工孔 16-1 to 16-3, 16-1' to 16-3'‧‧‧2nd machined hole

21、22‧‧‧搬送機構 21, 22‧‧‧Transportation agencies

30‧‧‧翻轉機構 30‧‧‧ flip mechanism

40‧‧‧加工控制部 40‧‧‧Processing Control Department

50‧‧‧雷射加工部 50‧‧ ‧ Laser Processing Department

51‧‧‧攝像機 51‧‧‧Camera

52X、52Y‧‧‧掃描電鏡 52X, 52Y‧‧‧ scanning electron microscope

53X、53Y‧‧‧電鏡掃描器 53X, 53Y‧‧‧ electron microscope scanner

54‧‧‧fθ透鏡 54‧‧‧fθ lens

55‧‧‧加工台 55‧‧‧Processing table

58‧‧‧治具板 58‧‧‧ fixture board

AM‧‧‧定位記號 AM‧‧‧ positioning mark

CA、CA’‧‧‧基準貫通孔的中心軸 Central axis of CA, CA'‧‧‧ benchmark through-hole

CP1、CP1’‧‧‧基準貫通孔的第1導體層側的中心位置(加工位置) Center position (machining position) on the first conductor layer side of the reference through-hole of CP1, CP1'‧‧

CP2、CP2’‧‧‧基準貫通孔的第2導體層側的中心位置(定位記號的 中心位置) Center position of the second conductor layer side of the CP2, CP2'‧‧ ‧ reference through-hole (positioning mark Central location)

CP3、CP3’‧‧‧第1加工孔的第1導體層側的中心位置 Center position of the first conductor layer side of the first processed hole of CP3, CP3'‧‧

CP4’‧‧‧加工位置 CP4’‧‧‧ machining location

D14、D14a‧‧‧基準貫通孔的直徑 D14, D14a‧‧‧ diameter of the reference through hole

ER‧‧‧中心位置的誤差 Error in the center position of ER‧‧‧

LB‧‧‧脈波雷射光 LB‧‧‧ pulsed laser light

P15、P15’、P16、P16’‧‧‧相對座標(相對位置) P15, P15', P16, P16'‧‧‧ relative coordinates (relative position)

PL‧‧‧法線 PL‧‧‧ normal

WP1至WP4‧‧‧加工位置 WP1 to WP4‧‧‧ processing location

θ‧‧‧傾斜角 θ‧‧‧Tilt angle

第1圖(a)至(d)係顯示實施形態1的雷射加工方法之圖。 Fig. 1 (a) to (d) are views showing a laser processing method according to the first embodiment.

第2圖(a)至(d)係顯示實施形態1的雷射加工方法之圖。 Fig. 2 (a) to (d) are views showing a laser processing method according to the first embodiment.

第3圖係顯示以實施形態1的雷射加工方法加工得到的試料的剖面之顯微照片。 Fig. 3 is a photomicrograph showing a cross section of a sample processed by the laser processing method of the first embodiment.

第4圖(a)至(d)係顯示實施形態2的雷射加工方法之圖。 Fig. 4 (a) to (d) are views showing a laser processing method according to the second embodiment.

第5圖(a)至(d)係顯示實施形態3的雷射加工方法之圖。 Fig. 5 (a) to (d) are views showing a laser processing method according to the third embodiment.

第6圖(a)至(d)係顯示實施形態4的雷射加工方法之圖。 Fig. 6 (a) to (d) are views showing a laser processing method according to a fourth embodiment.

第7圖(a)至(d)係顯示實施形態5的雷射加工方法之圖。 Fig. 7 (a) to (d) are views showing a laser processing method according to the fifth embodiment.

第8圖(a)至(d)係顯示實施形態6的雷射加工方法之圖。 Fig. 8 (a) to (d) are views showing a laser processing method according to a sixth embodiment.

第9圖(a)至(d)係顯示實施形態7的雷射加工方法之圖。 Fig. 9 (a) to (d) are views showing a laser processing method according to a seventh embodiment.

第10圖(a)至(d)係顯示實施形態8的雷射加工方法之圖。 Fig. 10 (a) to (d) are views showing a laser processing method according to the eighth embodiment.

第11圖(a)至(d)係顯示實施形態9的雷射加工方法之圖。 Fig. 11 (a) to (d) are views showing a laser processing method according to a ninth embodiment.

第12圖(a)至(d)係顯示實施形態10的雷射加工方法之圖。 Fig. 12 (a) to (d) are views showing a laser processing method of the tenth embodiment.

第13圖(a)至(d)係顯示實施形態11的雷射加工方法之圖。 Fig. 13 (a) to (d) are views showing a laser processing method of the eleventh embodiment.

第14圖(a)至(d)係顯示實施形態12的雷射加工方法之圖。 Fig. 14 (a) to (d) are views showing a laser processing method of the twelfth embodiment.

第15圖(a)至(d)係顯示實施形態13的雷射加工方法之圖。 Fig. 15 (a) to (d) are views showing a laser processing method according to a thirteenth embodiment.

第16圖(a)至(d)係顯示實施形態14的雷射加工方法之圖。 Fig. 16 (a) to (d) are views showing a laser processing method according to a fourteenth embodiment.

第17圖(a)至(d)係顯示基本形態的雷射加工方法之圖。 Fig. 17 (a) to (d) are diagrams showing a laser processing method of a basic form.

第18圖係顯示基本形態的雷射加工裝置的構成之圖。 Fig. 18 is a view showing the configuration of a laser processing apparatus of a basic form.

第19圖(a)至(d)係顯示基本形態的雷射加工方法之圖。 Fig. 19 (a) to (d) are diagrams showing a laser processing method of a basic form.

第20圖係顯示以基本形態的雷射加工方法加工得到的試料的剖面之顯微照片。 Fig. 20 is a photomicrograph showing a cross section of a sample processed by a laser processing method in a basic form.

以下,根據圖式詳細說明本發明的雷射加工方法的實施形態。另外,本發明並不受下述實施形態所限定。 Hereinafter, embodiments of the laser processing method of the present invention will be described in detail based on the drawings. Further, the present invention is not limited by the following embodiments.

實施形態1. Embodiment 1.

在說明實施形態1的雷射加工方法之前,利用第17圖針對基本形態的雷射加工方法進行說明。第17圖(a)至(d)係顯示基本形態的雷射加工方法之步驟剖面圖。 Before describing the laser processing method according to the first embodiment, a laser processing method of a basic form will be described using FIG. Fig. 17 (a) to (d) are cross-sectional views showing the steps of the laser processing method of the basic form.

在第17圖(a)所示的步驟中,係準備被加工物10。 被加工物10係例如第17圖(a)所示,為具有於第1導體層11與第2導體層12之間夾著絕緣層13之三層構造的印刷配線基板。第1導體層11係例如為銅箔。第2導體層12係例如為銅箔。絕緣層13係例如為樹脂層,例如由以環氧(epoxy)樹脂或聚醯亞胺(polyimide)系樹脂為主成分的材料所形成。 In the step shown in Fig. 17 (a), the workpiece 10 is prepared. The workpiece 10 is a printed wiring board having a three-layer structure in which the insulating layer 13 is interposed between the first conductor layer 11 and the second conductor layer 12, as shown in Fig. 17 (a). The first conductor layer 11 is, for example, a copper foil. The second conductor layer 12 is, for example, a copper foil. The insulating layer 13 is, for example, a resin layer, and is formed of, for example, a material mainly composed of an epoxy resin or a polyimide resin.

此時,例如,如第18圖所示的雷射加工裝置1的加工控制部40係控制治具板58,藉由治具板58使被加工物10真空吸附固定在加工台(table)55上。 At this time, for example, the processing control unit 40 of the laser processing apparatus 1 shown in Fig. 18 controls the jig plate 58, and the workpiece 10 is vacuum-adsorbed and fixed to the table 55 by the jig 58. on.

在第17圖(b)所示的步驟中,係從第1導體層11側對被加工物10照射脈波雷射(pulse laser),形成基準貫通孔14-1、14-2。基準貫通孔14-1、14-2係於從第2導體層12側對被加工物10進行加工時(參照第17圖(d))成為基準。 In the step shown in Fig. 17 (b), the workpiece 10 is irradiated with a pulse laser from the side of the first conductor layer 11 to form reference through holes 14-1 and 14-2. The reference through holes 14-1 and 14-2 are based on the processing of the workpiece 10 from the side of the second conductor layer 12 (see FIG. 17(d)).

此時,例如,第18圖所示的雷射加工裝置1的雷射振盪器2係令脈波雷射光LB產生,往雷射加工部50輸出。加工控制部40係控制雷射加工部50,控制由雷射加工部50向被加工物10之脈波雷射光LB的照射位置。例如,加工控制部40係經由電鏡掃描器(galvanometer scanner)53Y控制掃描電鏡(scan mirror)52Y的角度,並且控制加工台55的Y方向的驅動位置,藉以控制掃描電鏡52Y所反射的脈波雷射光LB落於被加工物10上的Y座標。加工控制部40係經由電鏡掃描器53X控制掃描電鏡52X的角度,並且控制加工台55的X方向的驅動位置,藉以控制掃描電鏡52X所反射的脈波雷射光LB落於被加工物10上的X座標。藉此,掃描電鏡52Y、掃描電鏡52X所反射的脈波雷射光LB藉由f θ透鏡(lens)54而聚光於被加工物10上的經控制的座標位置, 形成基準貫通孔14-1、14-2。此外,加工控制部40係記憶其經控制的座標位置。被記憶起來的座標位置係例如做為第17圖(b)所示的基準貫通孔14-1的第1導體層11側的開口端的中心位置CP1。 At this time, for example, the laser oscillator 2 of the laser processing apparatus 1 shown in Fig. 18 causes the pulsed laser light LB to be generated and output to the laser processing unit 50. The machining control unit 40 controls the laser processing unit 50 to control the irradiation position of the pulsed laser light LB from the laser processing unit 50 to the workpiece 10. For example, the processing control unit 40 controls the angle of the scan mirror 52Y via a galvanometer scanner 53Y, and controls the driving position of the processing table 55 in the Y direction, thereby controlling the pulse wave Ray reflected by the scanning electron microscope 52Y. The light LB falls on the Y coordinate on the workpiece 10. The machining control unit 40 controls the angle of the scanning electron microscope 52X via the electron microscope scanner 53X, and controls the driving position of the processing table 55 in the X direction, thereby controlling the pulsed laser light LB reflected by the scanning electron microscope 52X to fall on the workpiece 10. X coordinates. Thereby, the pulsed laser light LB reflected by the scanning electron microscope 52Y and the scanning electron microscope 52X is condensed on the controlled coordinate position on the workpiece 10 by the f θ lens 54. The reference through holes 14-1 and 14-2 are formed. Further, the machining control unit 40 memorizes its controlled coordinate position. The coordinate position to be memorized is, for example, the center position CP1 of the opening end on the first conductor layer 11 side of the reference through hole 14-1 shown in Fig. 17(b).

在第17圖(c)所示的步驟中,係將被加工物10的位置維持在第17圖(b)所示步驟的位置的狀態下,從第1導體層11側對被加工物10照射雷射,形成第1加工孔15-1至15-3。第1加工孔15-1至15-3係貫通第1導體層11達絕緣層13之孔。 In the step shown in Fig. 17 (c), the workpiece 10 is held from the first conductor layer 11 side while maintaining the position of the workpiece 10 at the position shown in Fig. 17(b). The laser is irradiated to form the first processing holes 15-1 to 15-3. The first processing holes 15-1 to 15-3 are holes that penetrate the first conductor layer 11 to the insulating layer 13.

此時,例如,第18圖所示的雷射加工裝置1的雷射振盪器2係令脈波雷射光LB產生,往雷射加工部50輸出。加工控制部40係控制雷射加工部50,控制由雷射加工部50向被加工物10之脈波雷射光LB的照射位置。藉此,掃描電鏡52Y、掃描電鏡52X所反射的脈波雷射光LB藉由fθ透鏡54而聚光於被加工物10上的經控制的座標位置,形成第1加工孔15-1至15-3。 此外,加工控制部40係記憶其經控制的座標位置,並且演算相對於基準貫通孔14-1、14-2的相對座標。被記憶起來的座標位置係例如做為第17圖(c)所示的第1加工孔15-1的第1導體層11側的開口端的中心位置CP3。此外,所演算出的相對座標係例如做為以第17圖(c)所示的基準貫通孔14-1的開口端的中心位置CP1為基準下,第1加工孔15-1的開口端的中心位置CP3的相對座標P15。 At this time, for example, the laser oscillator 2 of the laser processing apparatus 1 shown in Fig. 18 causes the pulsed laser light LB to be generated and output to the laser processing unit 50. The machining control unit 40 controls the laser processing unit 50 to control the irradiation position of the pulsed laser light LB from the laser processing unit 50 to the workpiece 10. Thereby, the pulsed laser light LB reflected by the scanning electron microscope 52Y and the scanning electron microscope 52X is condensed on the controlled coordinate position on the workpiece 10 by the fθ lens 54 to form the first processing holes 15-1 to 15- 3. Further, the machining control unit 40 memorizes the controlled coordinate position and calculates the relative coordinates with respect to the reference through holes 14-1 and 14-2. The coordinate position to be memorized is, for example, the center position CP3 of the opening end on the first conductor layer 11 side of the first machined hole 15-1 shown in Fig. 17(c). Further, the calculated relative coordinate is, for example, the center position of the open end of the first processing hole 15-1 based on the center position CP1 of the opening end of the reference through hole 14-1 shown in Fig. 17(c). The relative coordinate of the CP3 is P15.

在第17圖(d)所示的步驟中,係從第2導體層12側拍攝基準貫通孔14-1、14-2,利用所拍攝得的圖像進行加工位置的定位。接著,從第2導體層12側對被加工物10照射雷射,形成第2加工孔16-1至16-3。第2加工孔16-1至16-3係貫通第2 導體層12達絕緣層13。 In the step shown in Fig. 17 (d), the reference through holes 14-1 and 14-2 are imaged from the side of the second conductor layer 12, and the position of the processing position is obtained by the captured image. Next, the workpiece 10 is irradiated with a laser beam from the second conductor layer 12 side to form second processed holes 16-1 to 16-3. The second processing holes 16-1 to 16-3 are through the second The conductor layer 12 reaches the insulating layer 13.

此時,例如,第18圖所示的雷射加工裝置1的加工控制部40係控制搬送機構21,將被加工物10搬送至翻轉機構30,控制翻轉機構30令被加工物10翻轉,再控制搬送機構22將翻轉過的被加工物10送回到加工台55上。加工控制部40係控制治具板58,藉由治具板58令被加工物10真空吸附固定在加工台55上。接著,加工控制部40係控制攝像機51(例如CCD影像感測器(image sensor)、CMOS影像感測器),從第2導體層12側拍攝基準貫通孔14-1、14-2,自攝像機51取得所拍攝的圖像。加工控制部40係對所拍攝得的圖像進行邊緣(edge)偵測等圖像處理,例如,進行圖像識別,將第17圖(b)所示的基準貫通孔14-1的第1導體層11側的開口端的圖案(pattern)識別為定位記號(alignment mark)AM,求取定位記號AM的中心位置CP2。加工控制部40係以定位記號AM的中心位置CP2為基準,例如根據與上述相對座標P15對應的相對位置P16求取加工位置CP1。接著,加工控制部40係控制雷射加工部50,將由雷射加工部50向被加工物10脈波雷射光LB的照射位置控制在例如加工位置CP1。藉此,掃描電鏡52Y、掃描電鏡52X所反射的脈波雷射光LB藉由f θ透鏡54而聚光於被加工物10上的經控制的座標位置,形成第2加工孔16-1至16-3。 At this time, for example, the processing control unit 40 of the laser processing apparatus 1 shown in Fig. 18 controls the transport mechanism 21, transports the workpiece 10 to the reversing mechanism 30, and controls the reversing mechanism 30 to invert the workpiece 10, and then The conveyance mechanism 22 returns the inverted workpiece 10 to the processing table 55. The processing control unit 40 controls the jig plate 58 and the workpiece 10 is vacuum-adsorbed and fixed to the processing table 55 by the jig plate 58. Next, the processing control unit 40 controls the camera 51 (for example, a CCD image sensor or a CMOS image sensor), and photographs the reference through holes 14-1 and 14-2 from the second conductor layer 12 side. 51 Acquire the captured image. The processing control unit 40 performs image processing such as edge detection on the captured image, for example, performs image recognition, and the first reference through hole 14-1 shown in FIG. 17(b) is used. The pattern of the open end on the side of the conductor layer 11 is identified as an alignment mark AM, and the center position CP2 of the positioning mark AM is obtained. The machining control unit 40 determines the machining position CP1 based on the center position CP2 of the positioning mark AM, for example, based on the relative position P16 corresponding to the relative coordinate P15. Next, the machining control unit 40 controls the laser processing unit 50 to control the irradiation position of the pulsed laser light LB by the laser processing unit 50 to the workpiece 10 at, for example, the machining position CP1. Thereby, the pulsed laser light LB reflected by the scanning electron microscope 52Y and the scanning electron microscope 52X is condensed on the controlled coordinate position on the workpiece 10 by the f θ lens 54 to form the second processing holes 16-1 to 16 -3.

在此,設想第17圖(b)所示步驟中的基準貫通孔14-1、14-2之形成,是以在第1導體層11的同一處照射複數次脈波雷射光LB的穿透(punching)加工進行的情形。此時,隨著離第1導體層11的表面11a愈深,脈波雷射光LB會因在孔的側面的發散等而變得難以到達,因此呈現基準貫通孔14-1、14-2的直徑 愈來愈小的傾向,而有無法令基準貫通孔14-1、14-2貫通至第2導體層12側的可能。若無法令基準貫通孔14-1、14-2貫通至第2導體層12側,便無法在第17圖(d)所示的步驟中進行定位記號AM的圖像識別。 Here, it is assumed that the reference through holes 14-1 and 14-2 in the step shown in Fig. 17(b) are formed so that the penetration of the plurality of pulsed laser light LB is irradiated at the same portion of the first conductor layer 11. (punching) the case of processing. At this time, as the depth from the surface 11a of the first conductor layer 11 is deeper, the pulsed laser light LB becomes difficult to reach due to the divergence or the like on the side surface of the hole, and thus the reference through holes 14-1 and 14-2 are present. diameter There is a tendency to become smaller and smaller, and there is a possibility that the reference through holes 14-1 and 14-2 cannot penetrate to the second conductor layer 12 side. If the reference through holes 14-1 and 14-2 cannot be penetrated to the second conductor layer 12 side, the image recognition of the positioning mark AM cannot be performed in the step shown in Fig. 17 (d).

此外,就算成功令基準貫通孔14-1、14-2貫通至第2導體層12側,基準貫通孔14-1、14-2的第2導體層12側的直徑D14仍有很高的縮小為脈波雷射光LB的光束(beam)直徑(例如20μm至30μm)的數分之一程度的可能性。若基準貫通孔14-1、14-2的直徑D14縮小為脈波雷射光LB的光束直徑的數分之一程度,在第17圖(d)所示的步驟中,進行定位記號AM的圖像識別時的誤差便容易超出容許範圍而變大,呈現被識別為定位記號AM的中心位置CP2之位置,距離實際位置的誤差會超出容許範圍而變大的傾向。 Further, even if the reference through holes 14-1 and 14-2 are successfully penetrated to the second conductor layer 12 side, the diameter D14 of the reference through holes 14-1 and 14-2 on the second conductor layer 12 side is still highly reduced. It is a possibility that the pulse laser beam LB has a beam diameter (for example, 20 μm to 30 μm). When the diameter D14 of the reference through holes 14-1 and 14-2 is reduced to a fraction of the beam diameter of the pulsed laser light LB, the positioning mark AM is performed in the step shown in Fig. 17(d). The error at the time of recognition is likely to be larger than the allowable range, and the position recognized as the center position CP2 of the positioning mark AM is present, and the error from the actual position tends to be larger than the allowable range.

對此,為了擴大基準貫通孔14-1、14-2的直徑D14(例如擴大為500μm至1000μm),本發明的發明人係對以一般加工條件的繞孔加工進行第17圖(b)所示步驟中的基準貫通孔14-1、14-2之形成進行了研究。 On the other hand, in order to enlarge the diameter D14 of the reference through-holes 14-1 and 14-2 (for example, to expand to 500 μm to 1000 μm), the inventors of the present invention performed the hole-punching process under normal processing conditions in Fig. 17(b). The formation of the reference through holes 14-1 and 14-2 in the showing step was examined.

具體而言,在第17圖(b)所示的步驟中進行如第19圖(a)所示一邊以圓周狀挪移脈波雷射光LB的照射位置,一邊製作出大直徑的基準貫通孔14-1、14-2之圓周狀加工。接著,如第19圖(b)至第19圖(d)所示,反覆進行複數次和第19圖(a)所示的圓周狀加工相同的加工。此時,在一般加工條件下,直至貫通第1導體層11為止係進行下述的加工:先以第1導體層11(例如銅)用的高能量密度產生的脈波雷射光LB進行加工,於絕緣層13露 出的時點,控制雷射振盪器2將能量密度降為絕緣層13(例如樹脂)用的低能量密度,以其低能量密度產生的脈波雷射光LB進行加工,於第2導體層12露出的時點,再次控制雷射振盪器2將能量密度提高為第2導體層12(例如銅)用的高能量密度,以其高能量密度產生的脈波雷射光LB進行加工。藉此,如第17圖(b)所示,便能夠將基準貫通孔14-1、14-2的第2導體層12側的直徑D14擴大為和基準貫通孔14-1、14-2的第1導體層11側的直徑D14a相同程度(例如500μm至1000μm)。 Specifically, in the step shown in FIG. 17(b), the irradiation position of the pulsed laser light LB is moved in the circumferential direction as shown in FIG. 19(a), and the reference through-hole 14 having a large diameter is produced. -1, 14-2 circumferential processing. Next, as shown in Figs. 19(b) to 19(d), the same processing as the circumferential processing shown in Fig. 19(a) is repeated a plurality of times. At this time, under normal processing conditions, until the first conductor layer 11 is penetrated, the following processing is performed: first, the pulsed laser light LB generated by the high energy density of the first conductor layer 11 (for example, copper) is processed. Dew on the insulating layer 13 At the time of the exit, the laser oscillator 2 is controlled to reduce the energy density to a low energy density for the insulating layer 13 (for example, a resin), and the pulsed laser light LB generated by the low energy density is processed to be exposed on the second conductor layer 12. At the time, the laser oscillator 2 is again controlled to increase the energy density to a high energy density for the second conductor layer 12 (for example, copper), and the pulsed laser light LB generated by the high energy density is processed. As a result, as shown in FIG. 17(b), the diameter D14 of the reference through-holes 14-1 and 14-2 on the second conductor layer 12 side can be enlarged to the reference through-holes 14-1 and 14-2. The diameter D14a on the side of the first conductor layer 11 is the same (for example, 500 μm to 1000 μm).

然而,在一般加工條件的繞孔加工中,因必須加工相對大於脈波雷射光LB的光束直徑(例如20μm至30μm)非常大的區域(例如直徑500μm至1000μm的圓形區域),所以呈現加工時間超出容許範圍變得非常長而難以實用化的傾向。 However, in the perforation processing of general processing conditions, since it is necessary to process a very large region (for example, a circular region having a diameter of 500 μm to 1000 μm) having a beam diameter (for example, 20 μm to 30 μm) which is relatively larger than the pulse laser light LB, the processing is performed. The time beyond the allowable range becomes very long and it is difficult to put it into practical use.

對此,本發明的發明人係對以能量密度比一般加工條件高的加工條件進行第17圖(b)所示步驟中的繞孔加工進行了研究。 On the other hand, the inventors of the present invention conducted a study on the hole-punching process in the step shown in Fig. 17(b) under the processing conditions in which the energy density is higher than the general processing conditions.

具體而言,控制雷射振盪器2將能量密度維持在第1導體層11(例如銅)用之較高的一定的能量密度,使用以其一定的能量密度產生的脈波雷射光LB反覆進行複數次如第19圖(a)至第19圖(b)所示的圓周狀加工。藉此,便能夠將加工時間限縮在容許範圍內。 Specifically, the laser oscillator 2 is controlled to maintain the energy density at a relatively high energy density for the first conductor layer 11 (for example, copper), and the pulse laser light LB generated at a certain energy density is repeatedly used. The circumferential processing shown in Fig. 19 (a) to Fig. 19 (b) is repeated a plurality of times. Thereby, the processing time can be limited to the allowable range.

然而,本發明的發明人卻也發現了一個新課題,即由於是以能量密度比一般加工條件高的加工條件進行繞孔加工,所以呈現基準貫通孔的中心軸相對於第1導體層11的表面11a的法線明顯產生傾斜,而其影響大到無法忽略之程度(level)的傾向。 此外,本發明的發明人還發現被加工物10愈厚該傾向愈明顯。 However, the inventors of the present invention have also discovered a new subject in which the center axis of the reference through-hole is opposite to the first conductor layer 11 because the hole processing is performed under the processing conditions in which the energy density is higher than the general processing conditions. The normal to the surface 11a is clearly inclined, and its influence is so large that it cannot be ignored. Further, the inventors of the present invention have found that the thicker the workpiece 10, the more pronounced the tendency.

例如,如第17圖(b)所示,若基準貫通孔14-1的中心軸相對於第1導體層11的表面11a的法線PL之傾斜角θ變得比預定值大,則從通過基準貫通孔14-1的第1導體層11側的中心位置CP1之法線到基準貫通孔14-1的第2導體層12側的中心位置CP2為止的距離、亦即中心位置的誤差ER便會超出容許範圍而變大。此結果,第17圖(c)所示的相對位置P15與第17圖(d)所示的相對位置P16之對位誤差變得與中心位置的誤差ER相應而變大,如第17圖(d)所示,難以使第2加工孔16-1至16-3與相對應的第1加工孔15-1至15-3連通的可能性變高。亦即,難以以基準貫通孔14-1、14-2為基準而形成由第1加工孔15-1至15-3連通至第2加工孔16-1至16-3而成的加工貫通孔的可能變高。 For example, as shown in Fig. 17(b), when the inclination angle θ of the central axis of the reference through hole 14-1 with respect to the normal line PL of the surface 11a of the first conductor layer 11 becomes larger than a predetermined value, the passage is passed. The distance from the normal line center position CP1 on the first conductor layer 11 side of the reference through hole 14-1 to the center position CP2 on the second conductor layer 12 side of the reference through hole 14-1, that is, the error ER at the center position Will become larger than the allowable range. As a result, the registration error of the relative position P15 shown in FIG. 17(c) and the relative position P16 shown in FIG. 17(d) becomes larger in accordance with the error ER of the center position, as shown in FIG. As shown in d), it is difficult to make the possibility that the second processing holes 16-1 to 16-3 communicate with the corresponding first processing holes 15-1 to 15-3. In other words, it is difficult to form the through-holes formed by the first processing holes 15-1 to 15-3 communicating with the second processing holes 16-1 to 16-3 with respect to the reference through holes 14-1 and 14-2. It may become higher.

針對此點,本發明的發明人在實際製作試料進行實驗後,如第20圖的顯微照片中的虛線所示,確認了基準貫通孔的中心軸明顯產生傾斜。 In view of this, the inventors of the present invention confirmed that the central axis of the reference through-hole is significantly inclined as shown by the broken line in the photomicrograph of Fig. 20 after the actual preparation of the sample.

本發明的發明人針對基準貫通孔的中心軸明顯產生傾斜的原因進行了考察。其結果,認為可能是在基準貫通孔14-1、14-2的繞孔加工中,會因為雷射加工裝置1機械特性上的偏差等,使提供給基準貫通孔14-1、14-2側面的入熱量潛在地存在不均一性,而以能量密度比一般加工條件高的加工條件進行繞孔加工(第1主因),及反覆同樣進行複數次如第19圖(a)至第19圖(d)所示的圓周狀加工(第2主因),又放大了其不均一性。 The inventors of the present invention examined the cause of the apparent tilt of the central axis of the reference through-hole. As a result, it is considered that the hole through holes 14-1 and 14-2 may be supplied to the reference through holes 14-1 and 14-2 due to variations in mechanical characteristics of the laser processing apparatus 1 or the like. The heat input on the side is potentially heterogeneous, and the hole processing (first main cause) is performed under the processing conditions in which the energy density is higher than the general processing conditions, and the same is repeated in the same manner as in Fig. 19 (a) to Fig. 19 The circumferential processing (second main cause) shown in (d) magnifies the unevenness.

此時,假若為了改善第1主因而將能量密度降低至一般加工條件的程度,便會如上述呈現加工時間超出容許範圍變 得非常長而難以實用化的傾向。 At this time, if the energy density is lowered to the extent of general processing conditions in order to improve the first main body, the processing time is out of the allowable range as described above. It has a tendency to be very long and difficult to use.

有鑒於此,在實施形態1中係以相關於從基準貫通孔的中心軸放射的放射方向,使提供給基準貫通孔側面的入熱量均等之方式,進行在雷射的複數次旋繞中之各次的旋繞互有變化的特殊加工(以下稱之為旋繞變動加工,以與上述的繞孔加工區別),藉此,期能既維持能量密度比一般加工條件高的加工條件,同時改善第2主因。以下係以與基本形態的雷射加工方法不同的部分為中心進行說明。 In the first embodiment, in the radial direction of radiation from the central axis of the reference through-hole, the amount of heat supplied to the side surface of the reference through-hole is equalized, and each of the plurality of lasers is wound. The special processing in which the windings are changed from each other (hereinafter referred to as the winding variation processing to be distinguished from the above-mentioned winding processing), thereby maintaining the processing conditions of the energy density higher than the general processing conditions, and improving the second Main cause. Hereinafter, a description will be given focusing on a portion different from the laser processing method of the basic form.

具體而言,在第1圖(a)所示的步驟中,準備與第17圖(a)所示步驟相同的被加工物10,然後在第1圖(b)所示的步驟中,從第1導體層11側對被加工物10令雷射一邊旋繞複數次一邊照射,形成基準貫通孔14-1’、14-2’。亦即,從第1導體層11側對被加工物10以旋繞變動加工形成基準貫通孔14-1’、14-2’。 Specifically, in the step shown in Fig. 1(a), the workpiece 10 which is the same as the step shown in Fig. 17(a) is prepared, and then in the step shown in Fig. 1(b), On the side of the first conductor layer 11, the workpiece 10 is irradiated with a plurality of times while being laser-rolled, and the reference through holes 14-1' and 14-2' are formed. In other words, the reference through-holes 14-1' and 14-2' are formed by spirally changing the workpiece 10 from the side of the first conductor layer 11.

在旋繞變動加工中,係以相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等之方式,令雷射的複數次旋繞中之各次的旋繞互有變化。例如,在旋繞變動加工中係如第2圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向交替變化。 In the winding variation processing, the radiation is radiated from the central axis CA' of the reference through holes 14-1' and 14-2' so as to be supplied to the side faces of the reference through holes 14-1' and 14-2'. The way in which the heat is equalized causes the respective turns of the plurality of turns of the laser to change. For example, in the winding variation processing, as shown in Figs. 2(a) to (d), the winding directions of the plurality of times of the plurality of windings of the laser are alternately changed.

例如,在第2圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第2圖(b)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位 置WP3為開始位置,逆時針挪移脈波雷射光LB的照射位置。接著,在第2圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第2圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,逆時針挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 2(a), the irradiation position of the pulse laser light LB is shifted clockwise with the machining position WP3 relating to the radiation direction radiated from the central axis CA' as the starting position. Next, in the winding process shown in Fig. 2(b), the machining position is related to the radiation direction radiated from the central axis CA'. Set WP3 as the starting position and move the irradiation position of the pulsed laser light LB counterclockwise. Next, in the winding process shown in Fig. 2(c), the processing position WP3 relating to the radiation direction radiated from the central axis CA' is taken as the starting position, and the irradiation position of the pulse laser light LB is moved clockwise. Next, in the winding process shown in Fig. 2(d), the processing position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the irradiation position of the pulse laser light LB is shifted counterclockwise.

例如,在此考量針對因為雷射加工裝置1的機械特性上的偏差等,使得各旋繞加工中,於1/4旋繞位置的入熱量為LQ1、於3/4旋繞位置的入熱量為LQ2時的情形。此時,在第2圖(a)至(d)所示的旋繞變動加工中,提供給與從中心軸CA’放射的放射方向有關的加工位置WP]之入熱量WPQ1係以下述的數式1表示。 For example, in consideration of variations in mechanical characteristics of the laser processing apparatus 1 and the like, the heat input amount at the 1/4 winding position is LQ1 and the heat input amount at the 3/4 winding position is LQ2 in each winding process. The situation. At this time, in the winding variation processing shown in FIGS. 2(a) to 2(d), the heat input WPQ1 supplied to the machining position WP] related to the radiation direction radiated from the central axis CA' is expressed by the following equation 1 indicates.

WPQ1=LQ1+LQ2+LQ1+LQ2=2(LQ1+LQ2)…數式1 WPQ1=LQ1+LQ2+LQ1+LQ2=2(LQ1+LQ2)...Formula 1

此外,在第2圖(a)至(d)所示的旋繞變動加工中,提供給與從中心軸CA’放射的放射方向有關的加工位置WP2之入熱量WPQ2係以下述的數式2表示。 Further, in the winding variation processing shown in FIGS. 2(a) to 2(d), the heat input WPQ2 supplied to the machining position WP2 related to the radial direction radiated from the central axis CA' is expressed by the following formula 2 .

WPQ2=LQ2+LQ1+LQ2+LQ1=2(LQ1+LQ2)…數式2 WPQ2=LQ2+LQ1+LQ2+LQ1=2(LQ1+LQ2)...Literature 2

由數式1及數式2導出下述的數式3。 The following Formula 3 is derived from Equations 1 and 2.

WPQ1=WPQ2…數式3 WPQ1=WPQ2...Expression 3

由數式3可知,能夠使提供給與從中心軸CA’放射的放射方向有關的加工位置WP1之入熱量WPQ1,以及提供給與從中心軸CA’放射的放射方向有關的加工位置WP2之入熱量WPQ2均等。 As is understood from the equation 3, the heat input WPQ1 supplied to the machining position WP1 related to the radial direction radiated from the central axis CA' can be supplied to the machining position WP2 related to the radial direction radiated from the central axis CA'. The heat WPQ2 is equal.

在第1圖(b)所示的步驟中,係進行第2圖(a)至(d) 所示的旋繞變動加工,藉此,能夠將基準貫通孔14-1’的中心軸CA’相對於第1導體層11的表面11a的法線PL之傾斜角度θ形成為比預定值小,而能夠將從通過基準貫通孔14-1’的第1導體層11側的中心位置CP1’之法線PL,到基準貫通孔14-1’的第2導體層12側的中心位置CP2’為止的距離,亦即中心位置的誤差ER(參照第17圖(b))抑制在容許範圍內。此結果,第1圖(c)所示的相對位置P15’與第1圖(d)所示的相對位置P16’之對位誤差(即中心位置CP3’與加工位置CP4’的對位誤差)變得與中心位置的誤差ER相應而變小,如第1圖(d)所示,能夠將第2加工孔16-1’至16-3’的例如加工位置CP’4正確定位,而能夠容易使第2加工孔16-1’至16-3’與相對應的第1加工孔15-1’至15-3’連通。亦即,容易以基準貫通孔14-1’、14-2’為基準,形成由第1加工孔15-1’至15-3’連通至第2加工孔16-1’至16-3’而成的加工貫通孔。 In the step shown in Fig. 1(b), Fig. 2 (a) to (d) are performed. In the illustrated winding variation processing, the inclination angle θ of the central axis CA' of the reference through hole 14-1 ′ with respect to the normal line PL of the surface 11 a of the first conductor layer 11 can be made smaller than a predetermined value. The normal line PL from the center position CP1' on the first conductor layer 11 side passing through the reference through hole 14-1' can be reached from the center position CP2' of the reference through hole 14-1' on the second conductor layer 12 side. The distance, that is, the error ER at the center position (see Fig. 17(b)) is suppressed within the allowable range. As a result, the registration error between the relative position P15' shown in FIG. 1(c) and the relative position P16' shown in FIG. 1(d) (that is, the alignment error between the center position CP3' and the machining position CP4') It becomes smaller in accordance with the error ER of the center position, and as shown in FIG. 1(d), for example, the processing position CP'4 of the second machining holes 16-1' to 16-3' can be correctly positioned, and It is easy to connect the second processing holes 16-1' to 16-3' with the corresponding first processing holes 15-1' to 15-3'. In other words, it is easy to form the first processing holes 15-1' to 15-3' to the second processing holes 16-1' to 16-3' based on the reference through holes 14-1' and 14-2'. The formed through hole.

針對此點,本發明的發明人在實際製作試料進行實驗後,如第3圖的顯微照片中的虛線所示,確認了基準貫通孔的中心軸成功抑制在容許範圍內。 In view of this, the inventors of the present invention confirmed that the central axis of the reference through-hole was successfully suppressed within the allowable range as shown by the broken line in the photomicrograph of FIG. 3 after the actual preparation of the sample.

如上所述,於實施形態1,係在第1圖(b)所示的步驟中,以相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等之方式,令雷射的複數次旋繞中之各次的旋繞互有變化。藉此,以能量密度比一般加工條件高的加工條件進行旋繞加工時,能夠抑制基準貫通孔14-1’、14-2’的中心軸CA’的傾斜。亦即,能夠既縮短基準貫通孔14-1’、14-2’的加工時間,同時抑制基 準貫通孔14-1’、14-2’的中心軸CA’的傾斜。 As described above, in the first embodiment, in the step shown in Fig. 1(b), the radiation direction is emitted from the central axis CA' of the reference through holes 14-1' and 14-2'. The manner in which the heat input to the side faces of the reference through holes 14-1' and 14-2' is equal is such that the respective turns of the plurality of turns of the laser change. Thereby, when the winding process is performed under the processing conditions in which the energy density is higher than the general processing conditions, the inclination of the central axis CA' of the reference through holes 14-1' and 14-2' can be suppressed. That is, it is possible to shorten the processing time of the reference through holes 14-1' and 14-2' while suppressing the base. The inclination of the central axis CA' of the through-holes 14-1', 14-2'.

此外,於實施形態1,係在第1圖(b)所示的步驟中,令雷射的複數次旋繞中之各次的旋繞方向交替變化。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 Further, in the first embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are alternately changed. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

此外,於實施形態1,係在第1圖(b)所示的步驟中,對被加工物10令以一定的能量密度產生的雷射一邊旋繞複數次一邊照射。此一定的能量密度係適於第1導體層11之加工的能量密度。藉此,能夠將第1圖(b)所示步驟的加工時間限縮在容許範圍內。 Further, in the first embodiment, in the step shown in FIG. 1(b), the workpiece 10 is irradiated with a laser generated at a constant energy density while being rotated a plurality of times. This constant energy density is suitable for the energy density of the processing of the first conductor layer 11. Thereby, the processing time of the step shown in FIG. 1(b) can be limited to the allowable range.

實施形態2. Embodiment 2.

接著,針對實施形態2的雷射加工方法進行說明。以下係以與實施形態1不同的部分為中心進行說明。 Next, a laser processing method according to the second embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the first embodiment.

於實施形態1,係在第1圖(b)所示的步驟中,令雷射的複數次旋繞中之各次的旋繞方向變化(參照第2圖(a)至(d)),而於實施形態2則係令雷射的複數次旋繞中之各次的旋繞的開始位置變化。 In the first embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are changed (see Figs. 2(a) to (d)). In the second embodiment, the start position of each of the plurality of windings of the laser is changed.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,如第4圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞的開始位置,在其複數次旋繞中至少變化一輪。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 4(a) to 4(d), each of the plurality of windings of the laser is wound. The starting position changes at least one round in its multiple windings.

例如,在第4圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第4圖(b)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位 置WP1為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第4圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP4為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第4圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP2為開始位置,順時針挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 4(a), the irradiation position of the pulse laser light LB is shifted clockwise with the machining position WP3 relating to the radiation direction radiated from the central axis CA' as the starting position. Next, in the winding process shown in Fig. 4(b), the machining position is related to the radiation direction radiated from the central axis CA'. Set WP1 as the starting position and move the irradiation position of the pulsed laser light LB clockwise. Next, in the winding process shown in Fig. 4(c), the processing position WP4 relating to the radiation direction emitted from the central axis CA' is taken as the starting position, and the irradiation position of the pulse laser light LB is moved clockwise. Next, in the winding process shown in Fig. 4(d), the irradiation position of the pulse laser light LB is shifted clockwise with the machining position WP2 relating to the radiation direction radiated from the central axis CA' as the starting position.

如上述,於實施形態2,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞的開始位置,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the second embodiment, in the step shown in Fig. 1(b), the start position of each of the plurality of windings of the laser is rotated, and at least one of the plurality of windings is changed. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態3. Embodiment 3.

接著,針對實施形態3的雷射加工方法進行說明。以下係以與實施形態1不同的部分為中心進行說明。 Next, a laser processing method according to the third embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the first embodiment.

於實施形態1,係在第1圖(b)所示的步驟中,令雷射的複數次旋繞中之各次的旋繞方向變化(參照第2圖(a)至(d)),而於實施形態3則係令雷射的複數次旋繞中之各次的旋繞的間距(pitch)變化。 In the first embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are changed (see Figs. 2(a) to (d)). In the third embodiment, the pitch of each of the plurality of windings of the laser is changed.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第5圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞的間距,在其複數次旋繞中至少變化一輪。旋繞的間距係例如配合脈波雷射光LB的照射位置的挪移間距。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 5(a) to (d), each of the plurality of windings of the laser is wound. The spacing is changed by at least one round in its multiple windings. The pitch of the winding is, for example, adapted to the shifting pitch of the irradiation position of the pulsed laser light LB.

例如,在第5圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順 時針以第1間距挪移脈波雷射光LB的照射位置。接著,在第5圖(b)所示的旋繞加工中,係以比第1間距移動緩慢的第2間距挪移脈波雷射光LB的照射位置。接著,在第5圖(c)所示的旋繞加工中,係以第1間距挪移脈波雷射光LB的照射位置。接著,在第5圖(d)所示的旋繞加工中,係以第2間距挪移脈波雷射光LB的照射位置。另外,第5圖(a)至(d)中所示的放射狀的線段係例示例如脈波雷射光LB的3個脈波的量的間距。此外,在第5圖(a)至(d)中係例示以4次的旋繞加工變化兩輪間距的情況。 For example, in the winding process shown in Fig. 5(a), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position. The hour hand moves the irradiation position of the pulse laser light LB at the first pitch. Next, in the winding process shown in Fig. 5(b), the irradiation position of the pulse laser light LB is shifted by the second pitch which is slower than the first pitch. Next, in the winding process shown in Fig. 5(c), the irradiation position of the pulse laser light LB is shifted at the first pitch. Next, in the winding process shown in Fig. 5(d), the irradiation position of the pulse laser light LB is shifted at the second pitch. Further, the radial line segments shown in FIGS. 5(a) to (d) are examples of the pitch of the amounts of the three pulse waves of the pulse laser light LB. Further, in the fifth (a) to (d) of FIG. 5, the case where the two-wheel pitch is changed by four winding processes is exemplified.

如上述,於實施形態3,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞的間距,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the third embodiment, in the step shown in Fig. 1(b), the pitch of each of the plurality of windings of the laser is changed by at least one round in the plurality of windings. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態4. Embodiment 4.

接著,針對實施形態4的雷射加工方法進行說明。以下係以與實施形態2不同的部分為中心進行說明。 Next, a laser processing method according to the fourth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the second embodiment.

於實施形態2,係在第1圖(b)所示的步驟中,令雷射的複數次旋繞中之各次的旋繞的開始位置變化(參照第4圖(a)至(d)),而於實施形態4則係進一步令雷射的複數次旋繞中之各次的旋繞方向也變化。 In the second embodiment, in the step shown in FIG. 1(b), the start position of each of the plurality of windings of the laser is changed (see FIGS. 4(a) to (d)). On the other hand, in the fourth embodiment, the winding direction of each of the plurality of windings of the laser is also changed.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第6圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞的開始位置,在其複數次旋繞中至少變化一輪,並且令雷射的複數次旋繞中之各次的旋繞方向交替變化。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 6(a) to (d), each of the plurality of windings of the laser is wound. The starting position is changed by at least one round in its multiple windings, and the winding directions of the plurality of windings of the laser are alternately changed.

例如,在第6圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第6圖(b)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP1為開始位置,逆時針挪移脈波雷射光LB的照射位置。接著,在第6圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP4為開始位置,順時針挪移脈波雷射光LB的照射位置。接著,在第6圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP2為開始位置,逆時針挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 6(a), the irradiation position of the pulse laser light LB is shifted clockwise with the machining position WP3 relating to the radiation direction radiated from the central axis CA' as the starting position. Next, in the winding process shown in Fig. 6(b), the processing position WP1 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the irradiation position of the pulse laser light LB is shifted counterclockwise. Next, in the winding process shown in Fig. 6(c), the processing position WP4 relating to the radiation direction emitted from the central axis CA' is taken as the starting position, and the irradiation position of the pulse laser light LB is moved clockwise. Next, in the winding process shown in Fig. 6(d), the processing position WP2 relating to the radiation direction radiated from the central axis CA' is taken as the starting position, and the irradiation position of the pulse laser light LB is shifted counterclockwise.

如上述,於實施形態2,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞的開始位置,在其複數次旋繞中至少變化一輪,並且令雷射的複數次旋繞中之各次的旋繞方向交替變化。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the second embodiment, in the step shown in FIG. 1(b), the start position of each of the plurality of windings of the laser is rotated, and at least one round is changed in the plurality of windings, and The winding directions of the multiple turns of the laser alternate alternately. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態5. Embodiment 5.

接著,針對實施形態5的雷射加工方法進行說明。以下係以與實施形態1不同的部分為中心進行說明。 Next, a laser processing method according to the fifth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the first embodiment.

於實施形態1,係在第1圖(b)所示的步驟中,令雷射的複數次旋繞中之各次的旋繞方向變化(參照第2圖(a)至(d)),而於實施形態5則係進一步令雷射的複數次旋繞中之各次的旋繞的間距也變化。 In the first embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are changed (see Figs. 2(a) to (d)). In the fifth embodiment, the pitch of each of the plurality of windings of the laser is further changed.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加 工中,係如第7圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向交替變化,並且令雷射的複數次旋繞中之各次的旋繞的間距,在其複數次旋繞中至少變化一輪。旋繞的間距係例如配合脈波雷射光LB的照射位置的挪移間距。 Specifically, the winding change in the step shown in FIG. 1(b) is added. In the middle of the work, as shown in Fig. 7 (a) to (d), the winding directions of the plurality of windings of the laser are alternately changed, and the spiraling of the plurality of times of the laser is repeated. The spacing is changed by at least one round in its multiple windings. The pitch of the winding is, for example, adapted to the shifting pitch of the irradiation position of the pulsed laser light LB.

例如,在第7圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以第1間距挪移脈波雷射光LB的照射位置。接著,在第7圖(b)所示的旋繞加工中,係逆時針以比第1間距移動緩慢的第2間距挪移脈波雷射光LB的照射位置。接著,在第7圖(c)所示的旋繞加工中,係順時針以第2間距挪移脈波雷射光LB的照射位置。接著,在第7圖(d)所示的旋繞加工中,係逆時針以第1間距挪移脈波雷射光LB的照射位置。另外,在第7圖(b)中所示的旋繞加工與第7圖(c)所示的旋繞加工中,將間距設為相同係為了讓間距與旋轉方向之對應每次都不相同。 For example, in the winding process shown in Fig. 7(a), the machining position WP3 related to the radial direction emitted from the central axis CA' is taken as the starting position, and the pulse laser light LB is shifted clockwise at the first pitch. Irradiation position. Next, in the winding process shown in Fig. 7(b), the irradiation position of the pulse laser light LB is shifted counterclockwise at a second pitch which is slower than the first pitch. Next, in the winding process shown in Fig. 7(c), the irradiation position of the pulse laser light LB is shifted clockwise at the second pitch. Next, in the winding process shown in Fig. 7(d), the irradiation position of the pulse laser light LB is shifted counterclockwise at the first pitch. Further, in the winding processing shown in Fig. 7(b) and the winding processing shown in Fig. 7(c), the pitch is set to be the same so that the correspondence between the pitch and the rotation direction is different every time.

如上述,於實施形態5,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞方向交替變化,並且令雷射的複數次旋繞中之各次的旋繞的間距,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the fifth embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are alternately changed, and each of the plurality of times of the laser is wound. The pitch of the winding is changed by at least one round in its multiple windings. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

此外,於實施形態5,係以使間距與旋轉方向之對應每次都不相同的方式,變化雷射的複數次旋繞中之各次的旋繞方向及間距。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,有效率地使提供給基準貫通孔 14-1’、14-2’側面的入熱量均等。 Further, in the fifth embodiment, the winding direction and the pitch of each of the plurality of times of the plurality of windings of the laser are changed so that the correspondence between the pitch and the rotation direction is different. Thereby, it is possible to efficiently supply the reference through-holes in relation to the radiation directions radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. The heat input on the sides of 14-1' and 14-2' is equal.

實施形態6. Embodiment 6.

接著,針對實施形態6的雷射加工方法進行說明。以下係以與實施形態5不同的部分為中心進行說明。 Next, a laser processing method according to the sixth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the fifth embodiment.

於實施形態5,係在第1圖(b)所示的步驟中,令雷射的複數次旋繞中之各次的旋繞方向及間距變化(參照第7圖(a)至(d)),而於實施形態6則係進一步令雷射的複數次旋繞中之各次的旋繞的開始位置也變化。 In the fifth embodiment, in the step shown in Fig. 1(b), the winding direction and the pitch of each of the plurality of times of the laser are changed (see Figs. 7(a) to (d)). On the other hand, in the sixth embodiment, the start position of each of the plurality of windings of the laser is also changed.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第8圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向交替變化,並且令雷射的複數次旋繞中之各次的旋繞的間距及開始位置,在其複數次旋繞中至少變化一輪。旋繞的間距係例如配合脈波雷射光LB的照射位置的挪移間距。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 8(a) to (d), each of the plurality of windings of the laser is wound. The directions alternate, and the spacing and starting position of each of the plurality of windings of the laser are varied by at least one round in the plurality of windings. The pitch of the winding is, for example, adapted to the shifting pitch of the irradiation position of the pulsed laser light LB.

例如,在第8圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以第1間距挪移脈波雷射光LB的照射位置。接著,在第8圖(b)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP1為開始位置,逆時針以的第2間距挪移脈波雷射光LB的照射位置。接著,在第8圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP4為開始位置,順時針以第2間距挪移脈波雷射光LB的照射位置。接著,在第8圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP2為開始位置,逆時針以第1間距挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 8(a), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the pulse laser light LB is shifted clockwise at the first pitch. Irradiation position. Next, in the winding process shown in Fig. 8(b), the machining position WP1 relating to the radial direction emitted from the central axis CA' is taken as the starting position, and the pulsed laser light LB is shifted by the second pitch counterclockwise. Irradiation position. Next, in the winding process shown in FIG. 8(c), the machining position WP4 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the pulse laser light LB is moved clockwise at the second pitch. Irradiation position. Next, in the winding process shown in FIG. 8(d), the machining position WP2 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the pulse laser light LB is moved counterclockwise at the first pitch. Irradiation position.

如上述,於實施形態6,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞方向交替變化,並且令雷射的複數次旋繞中之各次的旋繞的間距及開始位置,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the sixth embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are alternately changed, and each of the plurality of times of the laser is wound. The pitch and starting position of the winding are changed by at least one round in its multiple windings. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態7. Embodiment 7.

接著,針對實施形態7的雷射加工方法進行說明。以下係以與實施形態1不同的部分為中心進行說明。 Next, a laser processing method according to the seventh embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the first embodiment.

於實施形態1,係在第1圖(b)所示的步驟中,雷射的複數次旋繞中之各次的旋繞為圓形(參照第2圖(a)至(d)),而於實施形態7,雷射的複數次旋繞中之各次的旋繞則為螺旋形。 In the first embodiment, in the step shown in FIG. 1(b), each of the plurality of windings of the laser is circular (see FIGS. 2(a) to (d)), and In the seventh embodiment, each of the plurality of windings of the laser is spiraled.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第9圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向以螺旋的繞圈方向會改變的方式變化。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 9(a) to (d), each of the plurality of windings of the laser is wound. The direction changes in such a way that the direction of the spiral turns.

例如,在第9圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第9圖(b)所示的旋繞加工中,係逆時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第9圖(c)所示的旋繞加工中,係順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第9圖(d)所示的旋繞加工中,係逆時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 9(a), the machining position WP3 related to the radial direction radiated from the central axis CA' is taken as the starting position, and the clockwise direction is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB. Next, in the winding process shown in Fig. 9(b), the irradiation position of the pulse laser light LB is moved counterclockwise from the outer side of the spiral toward the center. Next, in the winding process shown in Fig. 9(c), the irradiation position of the pulse laser light LB is shifted clockwise from the outer side of the spiral toward the center. Next, in the winding process shown in Fig. 9(d), the irradiation position of the pulse laser light LB is shifted counterclockwise so as to approach the center from the outer side of the spiral.

如上述,於實施形態7,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞方向以螺旋的繞圈方向會改變的方式變化。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the seventh embodiment, in the step shown in Fig. 1(b), the respective winding directions of the plurality of windings of the laser are changed so that the winding direction of the spiral changes. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態8. Embodiment 8.

接著,針對實施形態8的雷射加工方法進行說明。以下係以與實施形態2不同的部分為中心進行說明。 Next, a laser processing method according to the eighth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the second embodiment.

於實施形態2,係在第1圖(b)所示的步驟中,雷射的複數次旋繞中之各次的旋繞為圓形(參照第4圖(a)至(d)),而於實施形態8,雷射的複數次旋繞中之各次的旋繞則為螺旋形。 In the second embodiment, in the step shown in Fig. 1(b), each of the plurality of windings of the laser is circular (see Figs. 4(a) to (d)), and In the eighth embodiment, each of the plurality of windings of the laser is spiral.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第10圖(a)至(d)所示,令雷射的複數次旋繞中之各次的螺旋形的旋繞的開始位置,在其複數次旋繞中至少變化一輪。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 10(a) to (d), each of the plurality of spirals of the laser is spiraled. The starting position of the shape of the winding is changed by at least one round in its multiple windings.

例如,在第10圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第10圖(b)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP1為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第10圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP4為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第10圖(d)所示的旋繞加工中,係以與從中心軸CA’放射 的放射方向有關的加工位置WP2為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 10(a), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the clockwise direction is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB. Next, in the winding process shown in Fig. 10(b), the machining position WP1 relating to the radial direction radiated from the central axis CA' is taken as the starting position, and the clockwise direction is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB. Next, in the winding process shown in Fig. 10(c), the machining position WP4 relating to the radial direction radiated from the central axis CA' is taken as the starting position, and the clockwise direction is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB. Next, in the winding process shown in Fig. 10(d), the radiation is emitted from the central axis CA'. The processing position WP2 related to the radial direction is the starting position, and the irradiation position of the pulse laser light LB is moved clockwise from the outer side of the spiral toward the center.

如上述,於實施形態8,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的螺旋形的旋繞的開始位置,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the eighth embodiment, in the step shown in Fig. 1(b), the start position of the spiral winding of each of the plurality of windings of the laser is changed, and at least one round is changed in the plurality of windings. . Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態9. Embodiment 9.

接著,針對實施形態9的雷射加工方法進行說明。以下係以與實施形態3不同的部分為中心進行說明。 Next, a laser processing method according to the ninth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the third embodiment.

於實施形態3,係在第1圖(b)所示的步驟中,雷射的複數次旋繞中之各次的旋繞為圓形(參照第5圖(a)至(d)),而於實施形態9,雷射的複數次旋繞中之各次的旋繞則為螺旋形。 In the third embodiment, in the step shown in FIG. 1(b), each of the plurality of windings of the laser is circular (see FIGS. 5(a) to (d)), and In the ninth embodiment, each of the plurality of windings of the laser is spiraled.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第11圖(a)至(d)所示,令雷射的複數次旋繞中之各次的螺旋形的旋繞的間距,在其複數次旋繞中至少變化一輪。亦即,令雷射的複數次旋繞中之各次的旋繞,以改變螺旋的繞圈數的方式變化。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 11(a) to (d), each of the plurality of spirals of the laser is spirally wound. The pitch of the shape of the winding is changed by at least one round in its multiple windings. That is, each of the plurality of windings of the laser is rotated to change the number of turns of the spiral.

例如,在第11圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以使螺旋的繞圈數成為例如3圈的第1間距挪移脈波雷射光LB的照射位置。接著,在第11圖(b)所示的旋繞加工中,係以使螺旋的繞圈數成為例如2圈的第2間距挪移脈波雷射光LB的照射位置。接著,在第11圖(c)所示的旋繞加工中,係以使螺旋的繞 圈數成為例如3圈的第1間距挪移脈波雷射光LB的照射位置。接著,在第11圖(d)所示的旋繞加工中,係以使螺旋的繞圈數成為例如2圈的第2間距挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 11(a), the machining position WP3 related to the radial direction radiated from the central axis CA' is taken as the starting position, and the number of turns of the spiral is made clockwise, for example, three times. The first pitch shifts the irradiation position of the pulsed laser light LB. Next, in the winding process shown in FIG. 11(b), the irradiation position of the pulse laser light LB is shifted by the second pitch in which the number of turns of the spiral is, for example, two turns. Next, in the winding process shown in Fig. 11 (c), the spiral is wound. The number of turns is, for example, the irradiation position of the first pitch shifting pulse laser light LB of three turns. Next, in the winding process shown in FIG. 11(d), the irradiation position of the pulse laser light LB is shifted by the second pitch in which the number of turns of the spiral is, for example, two turns.

如上述,於實施形態9,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞以改變螺旋的繞圈數的方式變化。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the ninth embodiment, in the step shown in Fig. 1(b), the respective windings of the plurality of windings of the laser are changed so as to change the number of turns of the spiral. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態10. Embodiment 10.

接著,針對實施形態10的雷射加工方法進行說明。以下係以與實施形態4不同的部分為中心進行說明。 Next, a laser processing method according to the tenth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the fourth embodiment.

於實施形態4,係在第1圖(b)所示的步驟中,雷射的複數次旋繞中之各次的旋繞為圓形(參照第6圖(a)至(d)),而於實施形態10,雷射的複數次旋繞中之各次的旋繞則為螺旋形。 In the fourth embodiment, in the step shown in Fig. 1(b), each of the plurality of spirals of the laser is circularly wound (see Figs. 6(a) to (d)), and In the tenth embodiment, each of the plurality of windings of the laser is spiraled.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第12圖(a)至(d)所示,令雷射的複數次旋繞中之各次的螺旋形的旋繞的開始位置,在其複數次旋繞中至少變化一輪,並且令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 12(a) to (d), each of the plurality of spirals of the laser is spiraled. The starting position of the shape of the winding is changed by at least one round in its multiple windings, and the winding direction of each of the plurality of windings of the laser is changed in such a manner as to change the winding direction of the spiral.

例如,在第12圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第12圖(b)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP1為開始位置,逆時針以 從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第12圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP4為開始位置,順時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。接著,在第12圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP2為開始位置,逆時針以從螺旋的外側往中心接近的方式挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 12(a), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the clockwise direction is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB. Next, in the winding process shown in Fig. 12(b), the machining position WP1 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and counterclockwise The irradiation position of the pulse laser light LB is shifted from the outer side of the spiral toward the center. Next, in the winding process shown in Fig. 12(c), the machining position WP4 relating to the radial direction radiated from the central axis CA' is taken as the starting position, and the clockwise direction is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB. Next, in the winding process shown in Fig. 12(d), the machining position WP2 related to the radial direction radiated from the central axis CA' is taken as the starting position, and the counterclockwise movement is moved from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB.

如上述,於實施形態10,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的螺旋形的旋繞的開始位置,在其複數次旋繞中至少變化一輪,並且令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the tenth embodiment, in the step shown in Fig. 1(b), the start position of the spiral winding of each of the plurality of windings of the laser is changed, and at least one round is changed in the plurality of windings. And the direction of the winding of each of the plurality of times of the rotation of the laser is changed in such a manner as to change the direction of the winding of the spiral. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態11. Embodiment 11.

接著,針對實施形態11的雷射加工方法進行說明。以下係以與實施形態5不同的部分為中心進行說明。 Next, a laser processing method according to the eleventh embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the fifth embodiment.

於實施形態5,係在第1圖(b)所示的步驟中,雷射的複數次旋繞中之各次的旋繞為圓形(參照第7圖(a)至(d)),而於實施形態11,雷射的複數次旋繞中之各次的旋繞則為螺旋形。 In the fifth embodiment, in the step shown in Fig. 1(b), each of the plurality of windings of the laser is circular (see Figs. 7(a) to (d)), and In the eleventh embodiment, each of the plurality of windings of the laser is spiraled.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第13圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化,並且令雷射的複數次旋繞中之各次的螺旋形的旋繞的間距,在其複數次旋繞中至少變化一輪。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 13(a) to (d), each of the plurality of windings of the laser is wound. The direction changes in such a manner as to change the direction in which the spiral is wound, and the pitch of the spirals of the spirals of the plurality of times of the plurality of turns of the laser is changed by at least one round in the plurality of windings.

例如,在第13圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如3的第1間距挪移脈波雷射光LB的照射位置。接著,在第13圖(b)所示的旋繞加工中,係逆時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如2的第2間距挪移脈波雷射光LB的照射位置。接著,在第13圖(c)所示的旋繞加工中,係順時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如2的第2間距挪移脈波雷射光LB的照射位置。接著,在第13圖(d)所示的旋繞加工中,係逆時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如3的第1間距挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 13(a), the machining position WP3 related to the radial direction emitted from the central axis CA' is taken as the starting position, and clockwise is approached from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB is shifted by the first pitch of the number of turns of the spiral of, for example, three. Next, in the winding process shown in Fig. 13(b), the pulse laser light LB is shifted counterclockwise from the outer side of the spiral toward the center and at a second pitch in which the number of turns of the spiral is, for example, two. Irradiation position. Next, in the winding process shown in FIG. 13(c), the pulsed laser light LB is shifted clockwise from the outer side of the spiral toward the center and at a second pitch in which the number of turns of the spiral is, for example, two. Irradiation position. Next, in the winding process shown in FIG. 13(d), the pulse laser light LB is shifted counterclockwise from the outer side of the spiral toward the center and at the first pitch in which the number of turns of the spiral is, for example, three. Irradiation position.

如上述,於實施形態11,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞,以改變螺旋的繞圈方向的方式變化,並且令雷射的複數次旋繞中之各次的螺旋形的旋繞的間距,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the eleventh embodiment, in the step shown in Fig. 1(b), the respective windings of the plurality of windings of the laser are changed in such a manner as to change the winding direction of the spiral, and the laser is made. The pitch of the spirals of each of the plurality of turns is changed by at least one round in the plurality of turns. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

此外,於實施形態11係以使間距與螺旋的繞圈方向之對應每次都不相同的方式,變化雷射的複數次旋繞中之各次的旋繞方向及間距。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,有效率地使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 Further, in the eleventh embodiment, the winding direction and the pitch of each of the plurality of times of the plurality of windings of the laser are changed such that the pitch and the direction of the spiral winding are different each time. Thereby, the radiation directions radiated from the central axes CA' of the reference through holes 14-1' and 14-2' can be efficiently supplied to the side faces of the reference through holes 14-1' and 14-2'. The heat input is equal.

實施形態12. Embodiment 12.

接著,針對實施形態12的雷射加工方法進行說明。以下係以與實施形態6不同的部分為中心進行說明。 Next, a laser processing method according to the twelfth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the sixth embodiment.

於實施形態6,係在第1圖(b)所示的步驟中,雷射的複數次旋繞中之各次的旋繞為圓形(參照第8圖(a)至(d)),而於實施形態12,雷射的複數次旋繞中之各次的旋繞則為螺旋形。 In the sixth embodiment, in the step shown in Fig. 1(b), each of the plurality of windings of the laser is circular (see Figs. 8(a) to (d)), and In the twelfth embodiment, each of the plurality of windings of the laser is spiral.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第14圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化,並且令雷射的複數次旋繞中之各次的螺旋形的旋繞的間距及開始位置,在其複數次旋繞中至少變化一輪。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 14(a) to (d), each of the plurality of windings of the laser is wound. The direction is changed in such a manner as to change the direction of the winding of the spiral, and the pitch and starting position of the spiral of each of the plurality of windings of the laser are changed by at least one round in the plurality of windings.

例如,在第14圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如3的第1間距挪移脈波雷射光LB的照射位置。接著,在第14圖(b)所示的旋繞加工中,係與從中心軸CA’放射的放射方向有關的加工位置WP1為開始位置,逆時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如2的第2間距挪移脈波雷射光LB的照射位置。接著,在第14圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP4為開始位置,順時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如2的第2間距挪移脈波雷射光LB的照射位置。接著,在第14圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP2為開始位置,逆時針以從螺旋的外側往中心接近的方式且以使螺旋的繞圈數成為例如3的第1 間距挪移脈波雷射光LB的照射位置。 For example, in the winding process shown in Fig. 14(a), the machining position WP3 related to the radial direction radiated from the central axis CA' is taken as the starting position, and clockwise is approached from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB is shifted by the first pitch of the number of turns of the spiral of, for example, three. Next, in the winding process shown in FIG. 14(b), the machining position WP1 related to the radiation direction radiated from the central axis CA' is the start position, and the counterclockwise direction is approached from the outer side of the spiral toward the center and The number of turns of the spiral is, for example, a second pitch of 2, which shifts the irradiation position of the pulsed laser light LB. Next, in the winding process shown in FIG. 14(c), the machining position WP4 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and clockwise is approached from the outer side of the spiral toward the center. The irradiation position of the pulse laser light LB is shifted by the second pitch of the number of turns of the spiral of, for example, two. Next, in the winding process shown in FIG. 14(d), the machining position WP2 related to the radial direction radiated from the central axis CA' is taken as the starting position, and the counterclockwise direction is approached from the outer side of the spiral toward the center. So that the number of turns of the spiral becomes the first of 3, for example The pitch shifts the irradiation position of the pulse laser light LB.

如上述,於實施形態12,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化,並且令雷射的複數次旋繞中之各次的螺旋形的旋繞的間距及開始位置,在其複數次旋繞中至少變化一輪。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the twelfth embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are changed in such a manner as to change the winding direction of the spiral, and the The pitch and starting position of each of the spiral windings of the plurality of windings of the shot are changed by at least one round in the plurality of windings. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

實施形態13. Embodiment 13.

接著,針對實施形態13的雷射加工方法進行說明。以下係以與實施形態7不同的部分為中心進行說明。 Next, a laser processing method according to the thirteenth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the seventh embodiment.

於實施形態7,係在第1圖(b)所示的步驟中,令各次的旋繞的旋繞方向,以改變螺旋的繞圈方向的方式變化(參照第9圖(a)至(d)),而於實施形態13係將螺旋劃分成複數個區間,而變化進行旋繞的區間。 In the seventh embodiment, in the step shown in Fig. 1(b), the winding direction of each winding is changed in such a manner as to change the winding direction of the spiral (refer to Fig. 9 (a) to (d)). In the thirteenth embodiment, the spiral is divided into a plurality of sections, and the spiraling section is changed.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第15圖(a)至(d)所示,令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化,並且將螺旋劃分成複數個區間,而變化進行旋繞的區間。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 15(a) to (d), each of the plurality of windings of the laser is wound. The direction changes in such a manner as to change the direction of the spiral of the spiral, and divides the spiral into a plurality of intervals, and changes the interval in which the spiral is wound.

例如,在第15圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近且旋繞將螺旋劃分成2個區間時的外側區間之方式來挪移脈波雷射光LB的照射位置。接著,在第15圖(b)所示的旋繞加工中,係逆時針以從螺旋的外側往中心接 近且旋繞將螺旋劃分成2個區間時的內側區間之方式來挪移脈波雷射光LB的照射位置。接著,在第15圖(c)所示的旋繞加工中,係順時針以從螺旋的外側往中心接近且旋繞將螺旋劃分成2個區間時的內側區間之方式來挪移脈波雷射光LB的照射位置。接著,在第15圖(d)所示的旋繞加工中,係逆時針以從螺旋的外側往中心接近且旋繞將螺旋劃分成2個區間時的外側區間之方式來挪移脈波雷射光LB的照射位置。另外,在第15圖(b)中所示的旋繞加工與第15圖(c)所示的旋繞加工中,將所旋繞的區間設為相同係為了讓旋繞區間與螺旋的繞圈方向之對應每次都不相同。 For example, in the winding process shown in Fig. 15(a), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and clockwise is approached from the outer side of the spiral toward the center and is wound. The irradiation position of the pulse laser light LB is shifted by dividing the spiral into the outer sections in the two sections. Next, in the winding process shown in Fig. 15(b), the counterclockwise is connected from the outer side of the spiral to the center. The irradiation position of the pulse laser light LB is shifted by winding the inner section of the spiral into two sections. Next, in the winding process shown in FIG. 15(c), the pulse laser light LB is moved clockwise so as to approach the center from the outer side of the spiral and to circumscribe the inner section when the spiral is divided into two sections. Irradiation position. Next, in the winding process shown in FIG. 15(d), the pulse laser light LB is moved counterclockwise so as to approach the center from the outer side of the spiral and to circumscribe the outer section when the spiral is divided into two sections. Irradiation position. Further, in the winding processing shown in Fig. 15 (b) and the winding processing shown in Fig. 15 (c), the spirally wound sections are set to be the same in order to make the winding section correspond to the winding direction of the spiral. Every time is different.

如上述,於實施形態13,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞方向,以改變螺旋的繞圈方向的方式變化,並且將螺旋劃分成複數個區間,而變化進行旋繞的區間。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the first embodiment, in the step shown in Fig. 1(b), the winding directions of the plurality of times of the plurality of windings of the laser are changed in such a manner as to change the winding direction of the spiral, and the spiral is changed. Divided into a plurality of intervals, and the changes are rotated. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

此外,於實施形態13係以使旋繞區間與螺旋的繞圈方向之對應每次都不相同的方式,變化雷射的複數次旋繞中之各次的旋繞區間及螺旋的繞圈方向。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,有效率地使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 Further, in the thirteenth embodiment, each of the plurality of windings of the plurality of windings and the winding direction of the spiral are changed such that the correspondence between the winding section and the winding direction of the spiral is different each time. Thereby, the radiation directions radiated from the central axes CA' of the reference through holes 14-1' and 14-2' can be efficiently supplied to the side faces of the reference through holes 14-1' and 14-2'. The heat input is equal.

實施形態14. Embodiment 14.

接著,針對實施形態14的雷射加工方法進行說明。以下係以與實施形態7不同的部分為中心進行說明。 Next, a laser processing method according to the fourteenth embodiment will be described. Hereinafter, a description will be given focusing on a portion different from the seventh embodiment.

於實施形態7,係在第1圖(b)所示的步驟中,係令 各次的旋繞的旋繞方向,以改變螺旋的繞圈方向的方式變化(參照第9圖(a)至(d)),而於實施形態14係將螺旋劃分成複數個區間,而變化進行旋繞的區間,並且在不改變螺旋的繞圈方向下,變化旋繞區間內的前進方向。 In the seventh embodiment, in the step shown in FIG. 1(b), the order is The winding direction of each winding is changed in such a manner as to change the winding direction of the spiral (refer to Fig. 9 (a) to (d)), and in the embodiment 14, the spiral is divided into a plurality of sections, and the change is performed by winding The interval, and the direction of advancement in the winding interval is changed without changing the winding direction of the spiral.

具體而言,在第1圖(b)所示的步驟中的旋繞變動加工中,係如第16圖(a)至(d)所示,將螺旋劃分成複數個區間,而變化進行旋繞的區間,並且變化旋繞區間內的前進方向。亦即,令各次的旋繞的旋繞方向,以在不改變螺旋的繞圈方向下,改變旋繞區間內的前進方向之方式變化。 Specifically, in the winding variation processing in the step shown in FIG. 1(b), as shown in FIGS. 16(a) to (d), the spiral is divided into a plurality of sections, and the rotation is changed. The interval, and changes the direction of advancement within the winding interval. That is, the winding direction of each winding is changed in such a manner that the direction of advancement in the winding section is changed without changing the winding direction of the spiral.

例如,在第16圖(a)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近且旋繞將螺旋劃分成2個區間時的外側區間之方式來挪移脈波雷射光LB的照射位置。接著,在第16圖(b)所示的旋繞加工中,係以中心軸CA’附近為開始位置,逆時針以從螺旋的中心往外側且旋繞將螺旋劃分成2個區間時的內側區間之方式來挪移脈波雷射光LB的照射位置。接著,在第16圖(c)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,順時針以從螺旋的外側往中心接近且旋繞將螺旋劃分成2個區間時的內側區間之方式來挪移脈波雷射光LB的照射位置。接著,在第16圖(d)所示的旋繞加工中,係以與從中心軸CA’放射的放射方向有關的加工位置WP3為開始位置,逆時針以從螺旋的中心往外側且旋繞將螺旋劃分成2個區間時的外側區間之方式來挪移脈波雷射光LB的照射位置。另外,在第16圖(b)中所示的旋繞加工與第16圖(c)所示的 旋繞加工中,將所旋繞的區間設為相同係為了讓旋繞區間與旋繞區間內的前進方向之對應每次都不相同。 For example, in the winding process shown in Fig. 16(a), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and clockwise is approached from the outer side of the spiral toward the center and is wound. The irradiation position of the pulse laser light LB is shifted by dividing the spiral into the outer sections in the two sections. Next, in the winding process shown in Fig. 16(b), the vicinity of the central axis CA' is used as the starting position, and the inner portion of the spiral is divided into two sections counterclockwise from the center of the spiral. The way to move the irradiation position of the pulse laser light LB. Next, in the winding process shown in FIG. 16(c), the machining position WP3 related to the radial direction radiated from the central axis CA' is taken as the starting position, and clockwise is approached from the outer side of the spiral toward the center and is wound. The irradiation position of the pulse laser light LB is shifted so that the spiral is divided into the inner sections in the two sections. Next, in the winding process shown in Fig. 16(d), the machining position WP3 related to the radiation direction radiated from the central axis CA' is taken as the starting position, and the spiral is rotated counterclockwise from the center of the spiral to the outer side. The irradiation position of the pulse laser light LB is shifted so as to be divided into the outer sections in the two sections. In addition, the winding process shown in Fig. 16(b) and the figure shown in Fig. 16(c) In the winding process, the sections to be wound are set to be the same in order to make the correspondence between the winding section and the forward direction in the winding section different each time.

如上述,於實施形態14,在第1圖(b)所示的步驟中係令雷射的複數次旋繞中之各次的旋繞的旋繞區間變化,並且變化旋繞區間內的前進方向。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 As described above, in the fourteenth embodiment, in the step shown in Fig. 1(b), the winding section of each of the plurality of windings of the laser is changed, and the traveling direction in the winding section is changed. Thereby, the amount of heat input to the side faces of the reference through holes 14-1' and 14-2' can be equalized with respect to the radial direction radiated from the central axes CA' of the reference through holes 14-1' and 14-2'. .

此外,於實施形態14,係以使旋繞區間與旋繞區間內的前進方向之對應每次都不相同的方式變化雷射的複數次旋繞中之各次的旋繞區間及旋繞區間內的前進方向。藉此,便能夠相關於從基準貫通孔14-1’、14-2’的中心軸CA’放射的放射方向,有效率地使提供給基準貫通孔14-1’、14-2’側面的入熱量均等。 Further, in the fourteenth embodiment, the respective winding directions in the plurality of windings of the laser and the traveling direction in the winding section are changed such that the correspondence between the winding section and the traveling direction in the winding section is different each time. Thereby, the radiation directions radiated from the central axes CA' of the reference through holes 14-1' and 14-2' can be efficiently supplied to the side faces of the reference through holes 14-1' and 14-2'. The heat input is equal.

(產業上的利用可能性) (industrial use possibility)

如上所述,本發明的雷射加工方法係在貫通孔之加工方面非常有用。 As described above, the laser processing method of the present invention is very useful in the processing of through holes.

WP1至WP4‧‧‧加工位置 WP1 to WP4‧‧‧ processing location

CA’‧‧‧基準貫通孔的中心軸 Central axis of the CA’‧‧‧ benchmark through hole

Claims (9)

一種雷射加工方法,係對在第1導體層與第2導體層之間夾著絕緣層的被加工物,以雷射進行貫通孔之加工者,其特徵在於包含以下步驟:基準貫通孔形成步驟,係從前述第1導體層側對前述被加工物令雷射一邊旋繞複數次一邊照射,形成依序貫通前述第1導體層、前述絕緣層、前述第2導體層的基準貫通孔;第1加工孔形成步驟,係從前述第1導體層側對前述被加工物照射雷射,形成貫通前述第1導體層達前述絕緣層的第1加工孔;及第2加工孔形成步驟,係利用從前述第2導體層側拍攝前述基準貫通孔所得之圖像進行定位,從前述第2導體層側對前述被加工物照射雷射,形成貫通前述第2導體層達前述絕緣層並且連通前述第1加工孔的第2加工孔,在前述基準貫通孔形成步驟中,係以相關於從前述基準貫通孔的中心軸放射的放射方向,使提供給前述基準貫通孔側面的入熱量均等之方式,令雷射的複數次旋繞中之各次的旋繞互有變化。 A laser processing method is a method in which a workpiece having an insulating layer interposed between a first conductor layer and a second conductor layer is processed by a laser through a through hole, and the method includes the following steps: forming a through hole a step of irradiating the workpiece with the laser while rotating the plurality of times from the side of the first conductor layer, and forming a through hole penetrating through the first conductor layer, the insulating layer, and the second conductor layer in sequence; a processing hole forming step of irradiating a laser beam onto the workpiece from the first conductor layer side to form a first processing hole that penetrates the first conductor layer to form the insulating layer; and a second processing hole forming step An image obtained by capturing the reference through-hole from the second conductor layer side is positioned, and the workpiece is irradiated with a laser beam from the second conductor layer side to form a through-the second conductor layer that reaches the insulating layer and communicates with the first The second processing hole of the processing hole is supplied to the side surface of the reference through hole in a radial direction of radiation from a central axis of the reference through hole in the reference through hole forming step. Equalization of the way into the heat, so that the laser multiple times in the convoluted convoluted interaction each time there is a change. 如申請專利範圍第1項之雷射加工方法,其中在前述基準貫通孔形成步驟中係令雷射的複數次旋繞中之各次的旋繞方向交替變化。 The laser processing method according to claim 1, wherein in the reference through-hole forming step, the winding directions of the plurality of times of the plurality of windings of the laser are alternately changed. 如申請專利範圍第2項之雷射加工方法,其中在前述基準貫通孔形成步驟中係令雷射的複數次旋繞中之各次的旋繞的開始位置,在前述複數次旋繞中至少變化一輪。 The laser processing method of claim 2, wherein in the reference through-hole forming step, a start position of each of the plurality of windings of the laser is performed, and at least one of the plurality of windings is changed. 如申請專利範圍第2項之雷射加工方法,其中在前述基準貫通孔形成步驟中係令雷射的複數次旋繞中之各次的旋繞的間距,在前述複數次旋繞中至少變化一輪。 The laser processing method according to claim 2, wherein in the reference through-hole forming step, the pitch of each of the plurality of windings of the laser is changed by at least one round in the plurality of windings. 如申請專利範圍第3項之雷射加工方法,其中在前述基準貫通孔形成步驟中係令雷射的複數次旋繞中之各次的旋繞的間距,在前述複數次旋繞中至少變化一輪。 The laser processing method of claim 3, wherein in the reference through-hole forming step, the pitch of each of the plurality of windings of the laser is changed by at least one round in the plurality of windings. 如申請專利範圍第1項之雷射加工方法,其中在前述基準貫通孔形成步驟中係令雷射的複數次旋繞中之各次的旋繞的開始位置,在前述複數次旋繞中至少變化一輪。 The laser processing method according to claim 1, wherein in the reference through-hole forming step, a start position of each of the plurality of windings of the laser is performed, and at least one of the plurality of windings is changed. 如申請專利範圍第1項之雷射加工方法,其中在前述基準貫通孔形成步驟中係令雷射的複數次旋繞中之各次的旋繞的間距,在前述複數次旋繞中至少變化一輪。 The laser processing method according to claim 1, wherein in the reference through-hole forming step, the pitch of each of the plurality of windings of the laser is changed by at least one round in the plurality of windings. 如申請專利範圍第1項之雷射加工方法,其中在前述基準貫通孔形成步驟中係對前述被加工物令以一定的能量密度產生的雷射一邊旋繞複數次一邊照射。 The laser processing method according to claim 1, wherein in the reference through-hole forming step, the laser beam generated by the workpiece is irradiated at a constant energy density while being irradiated a plurality of times. 如申請專利範圍第8項之雷射加工方法,其中前述一定的能量密度係適於前述第1導體層之加工的能量密度。 The laser processing method of claim 8, wherein the predetermined energy density is suitable for the energy density of the processing of the first conductor layer.
TW102122347A 2012-06-27 2013-06-24 Laser processing method TWI517923B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012144523 2012-06-27
PCT/JP2013/063165 WO2014002620A1 (en) 2012-06-27 2013-05-10 Laser machining method

Publications (2)

Publication Number Publication Date
TW201404509A TW201404509A (en) 2014-02-01
TWI517923B true TWI517923B (en) 2016-01-21

Family

ID=49782794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122347A TWI517923B (en) 2012-06-27 2013-06-24 Laser processing method

Country Status (5)

Country Link
JP (1) JP5465367B1 (en)
KR (1) KR101682837B1 (en)
CN (1) CN104411447B (en)
TW (1) TWI517923B (en)
WO (1) WO2014002620A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108188585B (en) * 2017-12-25 2020-04-17 大族激光科技产业集团股份有限公司 Method for processing CD (compact disc) grains on ceramic
KR102204176B1 (en) * 2019-11-19 2021-01-15 이재욱 Apparatus and method for cutiing fabric
CN113543477B (en) * 2020-04-17 2022-11-01 珠海方正科技高密电子有限公司 Method for processing laser hole of circuit board and circuit board with laser hole

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145289A (en) * 2001-11-14 2003-05-20 Mitsubishi Heavy Ind Ltd Laser beam machining device
JP2004335655A (en) 2003-05-06 2004-11-25 Internatl Business Mach Corp <Ibm> Hole forming method, printed wiring board, and hole forming device
JP4645892B2 (en) * 2005-03-29 2011-03-09 アイシン精機株式会社 Laser processing apparatus and method
CN1939644B (en) * 2005-09-30 2012-10-17 日立比亚机械股份有限公司 Laser machining method and laser machining apparatus
JP2007268576A (en) * 2006-03-31 2007-10-18 Hitachi Via Mechanics Ltd Laser beam machining method
JP2009252892A (en) * 2008-04-03 2009-10-29 Mitsubishi Electric Corp Laser machining method, method for manufacturing printed board, and laser machining apparatus
JP2011110589A (en) * 2009-11-27 2011-06-09 Hitachi Via Mechanics Ltd Laser beam machining method

Also Published As

Publication number Publication date
JP5465367B1 (en) 2014-04-09
CN104411447B (en) 2016-03-30
TW201404509A (en) 2014-02-01
KR20150021582A (en) 2015-03-02
WO2014002620A1 (en) 2014-01-03
JPWO2014002620A1 (en) 2016-05-30
CN104411447A (en) 2015-03-11
KR101682837B1 (en) 2016-12-05

Similar Documents

Publication Publication Date Title
US8729426B2 (en) Method and apparatus for laser machining relatively narrow and relatively wide structures
TWI399256B (en) Laser cutting method and laser cutting device
US9843155B2 (en) Method and apparatus for forming fine scale structures in dielectric substrate
TWI517923B (en) Laser processing method
JP2010162559A (en) Laser processing method, processing device and workpiece
JP2007268576A (en) Laser beam machining method
JP2013169559A (en) Laser beam machining apparatus and laser beam machining method
JP2015534903A (en) Method and apparatus for forming a fine scale structure in a dielectric substrate
JP5279949B2 (en) LASER MACHINE, LASER PROCESSING METHOD, AND LASER PROCESSING CONTROL DEVICE
JP6769146B2 (en) Laser processing method and laser processing equipment
KR101519314B1 (en) Jig for processing table, manufacturing method of jig for processing table, and laser processing method
JP2020062658A (en) Laser processing device and laser processing method
JP2009252892A (en) Laser machining method, method for manufacturing printed board, and laser machining apparatus
JP2014183152A (en) Via hole formation method and desmear device
JP4522322B2 (en) Laser processing method
JP2010227984A (en) Laser beam machining device
JP2006202876A (en) Laser beam machining method
JP2020062657A (en) Laser processing device and laser processing method
JP7451049B2 (en) Laser processing equipment and laser processing method
JP2004188483A (en) Laser beam working method and laser beam working apparatus
JPWO2013094025A1 (en) Laser processing method
JP3440093B1 (en) Laser processing method for forming wiring and alignment holes in a thin plate-like workpiece
JP2010240743A (en) Laser machining method
JP2019098357A (en) Laser processing device and laser processing method
JP2023180325A (en) Laser processing device and laser processing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees