JP2003218539A - Method of forming through hole through multilayered double-sided copper-clad board with laser beam - Google Patents

Method of forming through hole through multilayered double-sided copper-clad board with laser beam

Info

Publication number
JP2003218539A
JP2003218539A JP2002010114A JP2002010114A JP2003218539A JP 2003218539 A JP2003218539 A JP 2003218539A JP 2002010114 A JP2002010114 A JP 2002010114A JP 2002010114 A JP2002010114 A JP 2002010114A JP 2003218539 A JP2003218539 A JP 2003218539A
Authority
JP
Japan
Prior art keywords
copper foil
hole
copper
holes
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002010114A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Taro Yoshida
太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002010114A priority Critical patent/JP2003218539A/en
Publication of JP2003218539A publication Critical patent/JP2003218539A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To form through holes having good small shapes through a multi-layered double-sided copper-clad board in a high-density pattern by directly projecting a laser beam upon the board. <P>SOLUTION: In a method of forming through holes through multilayered double-sided copper-clad board, through holes having diameters of 30-80 μm are formed through the multilayered double-sided copper-clad board from both sides of the board by using a UV laser. In the method, holes are formed halfway through an outer copper foil, an insulating layer, and inner copper foil in the thickness direction by directly projecting a laser beam upon the copper foil from one side of the board, and then, holes are made from the opposite side again by directly projecting the laser beam upon the board from the same position on the opposite side. In addition, through holes having diameters of 80-180 μm are formed through the board by means of a carbon dioxide laser and, when the copper foil is thick, the copper foil is made thinner by etching off a part of the foil in the thickness direction and, at the same time, the burrs of the inner and outer copper foil of the board formed in the hole sections are removed by melting. A multilayered printed board is obtained by using the multilayered double-sided copper-clad board having the through holes thus formed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層両面銅張板の銅箔
表面及び裏面からUV(エキシマ、YAG)レーザー及び/又
は炭酸ガスレーザーを直接照射して貫通孔を形成する方
法であり、得られた貫通孔を有する両面銅張板は、小径
の孔を有する、高密度の小型プリント配線板として、新
規な半導体プラスチックパッケージ、マザーボード用等
に使用される。
The present invention relates to a method of directly irradiating a UV (excimer, YAG) laser and / or a carbon dioxide gas laser from the front and back surfaces of a copper foil of a multilayer double-sided copper clad plate to form a through hole. The double-sided copper clad board having the through holes thus obtained is used as a new semiconductor plastic package, a mother board, etc. as a high-density small printed wiring board having holes of small diameter.

【0002】[0002]

【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度の多層プリント配線板は、スルーホ
ール用の貫通孔を金属ドリルであけていた。近年、ます
ますドリルの径は小径となり、孔径が0.15mmφ以下とな
ってきており、このような小径の孔をあける場合、ドリ
ル径が細いため、孔あけ時に金属ドリルが曲がる、折れ
る、加工速度が遅い等の欠点があり、生産性、信頼性等
に問題のあるものであった。
2. Description of the Related Art Conventionally, in a high-density multilayer printed wiring board used for a semiconductor plastic package or the like, a through hole for a through hole is formed by a metal drill. In recent years, the diameter of drills has become smaller and smaller, and the hole diameter has become 0.15 mmφ or less.When drilling holes with such small diameters, the drill diameter is small, so the metal drill bends, breaks, and processing speed. However, there are drawbacks in productivity, reliability, etc.

【0003】また、スルーホール用貫通孔をあける場
合、上下の銅箔にあらかじめネガフィルムを使用して所
定の方法で同じ大きさの孔をあけておき、炭酸ガスレー
ザーで上下を貫通する貫通孔を形成しようとすると、上
下の孔の位置にズレを生じ、ランドが形成しにくい等の
欠点があった。
Further, when forming through holes for through holes, holes of the same size are previously formed in the upper and lower copper foils by using a negative film in a predetermined method, and the through holes are vertically penetrated by a carbon dioxide laser. However, there is a defect that the upper and lower holes are misaligned and it is difficult to form the land.

【0004】一方、銅箔の表面に処理を施し、この上か
ら銅箔に直接炭酸ガスレーザーで孔あけを行い、貫通孔
をあける方法があるが、銅張積層板の厚さが1.0mmを越
える場合、レーザーショット数が増加し、孔形状が照射
側が大きくなる等の欠点があった。
On the other hand, there is a method in which the surface of the copper foil is treated, and then the copper foil is directly perforated with a carbon dioxide gas laser to form a through hole, but the thickness of the copper clad laminate is 1.0 mm. If it exceeds the above range, the number of laser shots increases and the hole shape becomes larger on the irradiation side.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決した、多層両面銅張板の孔形状が均一で良好な
小径のスルーホール用貫通孔を形成する方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention provides a method for solving the above problems and forming a through hole for a through hole having a uniform hole shape of a multilayer double-sided copper clad board and having a good diameter. is there.

【0006】[0006]

【発明が解決するための手段】多層両面銅張板に30〜18
0μmの貫通孔をあける方法において、多層両面銅張板の
片側からレーザーを銅箔の上に直接照射し、外層銅箔及
び絶縁層を貫通孔加工し、さらに内層銅箔の一部まで孔
を形成した後、反対側の同位置より再度レーザーを照射
して外層銅箔、絶縁層及び内層銅箔を貫通して貫通孔を
形成することにより、特に厚い多層銅張板の孔形状が良
好なものが得られる。
A multi-layer double-sided copper clad board with 30-18
In the method of making a through hole of 0 μm, laser is directly irradiated onto the copper foil from one side of the multi-layer double-sided copper clad board, the outer copper foil and the insulating layer are through-hole processed, and a hole is further formed in a part of the inner copper foil. After forming, by forming a through hole through the outer layer copper foil, the insulating layer and the inner layer copper foil by irradiating the laser again from the same position on the opposite side, the hole shape of a particularly thick multilayer copper clad plate is good. Things are obtained.

【0007】貫通孔の孔径が30μm以上で80μm未満の貫
通孔をUVレーザーであけ、80μm以上で180μm以下の貫
通孔を炭酸ガスレーザーであける。又、銅箔加工をUVレ
ーザーで行い、その後に炭酸ガスレーザーで孔あけする
方法でも加工できる。
A through hole having a diameter of 30 μm or more and less than 80 μm can be opened by a UV laser, and a through hole of 80 μm or more and 180 μm or less can be formed by a carbon dioxide laser. Alternatively, the copper foil can be processed with a UV laser, and then a carbon dioxide laser can be used to make holes.

【0008】炭酸ガスレーザーを厚い外層銅箔上に直接
照射して貫通孔を形成した場合、孔周辺に銅箔のバリが
発生する。この外層銅箔バリは機械的研磨で取ることも
可能であるが、完全にバリを取るためには銅箔の両表面
を厚さ方向に平面的に元の銅箔の一部の厚さをエッチン
グ除去すると同時に、孔部に張り出した内外層銅箔バリ
もエッチング除去することが好ましく、孔周囲の銅箔が
残存した貫通孔を形成することによって、接続信頼性に
も優れ、スルーホールは上下曲がることもなく形成で
き、且つ、外層銅箔が薄くなるために、その後の金属メ
ッキでメッキアップして得られた表裏銅箔の細線の回路
形成において、ショートやパターン切れ等の不良の発生
もなく、高密度のプリント配線板を作成することができ
る。また、加工速度はドリルであける場合に比べて格段
に速く、生産性も良好で、経済性にも優れているものが
得られた。
When a carbon dioxide laser is directly irradiated onto a thick outer layer copper foil to form a through hole, a burr of the copper foil occurs around the hole. This outer layer copper foil burr can be removed by mechanical polishing, but in order to completely remove the burr, both surfaces of the copper foil should be planarized in the thickness direction so that a part of the original copper foil has a flat thickness. At the same time as the etching removal, it is preferable to remove the inner and outer layer copper foil burrs overhanging the holes as well.By forming a through hole in which the copper foil around the hole remains, the connection reliability is excellent and the through hole is Since it can be formed without bending and the outer layer copper foil becomes thin, defects such as shorts and pattern breaks may occur in the circuit formation of the fine wire of the front and back copper foil obtained by plating up with the subsequent metal plating. Without, it is possible to create a high-density printed wiring board. In addition, the processing speed was remarkably faster than that obtained with a drill, the productivity was good, and the economy was excellent.

【0009】[0009]

【発明の実施の形態】本発明は、レーザーを用いて、3
層以上の銅の層を有する多層両面銅張板に小径で形状の
良好な貫通孔をあける方法に関し、UVレーザーを使用し
て銅箔の上から直接孔あけを行うか、炭酸ガスレーザー
を用いて、外層の銅箔の表面に孔あけ用補助材料を配置
するか、ニッケル及び/又はコバルトの合金処理を施し
た銅箔を使うか、銅箔表面を黒色酸化銅処理、薬液処理
等を施すか、銅箔の厚さの薄いものを使用して、この銅
箔の上に直接レーザービームを照射して外層の銅箔及び
絶縁層を貫通して内層銅箔の一部を加工してから、多層
両面銅張板をひっくり返して反対面から同様にレーザー
ビームを照射し、外層の銅箔、絶縁層及び内層銅箔を貫
通して貫通孔をあける。炭酸ガスレーザーで孔あけした
場合、銅箔が厚いと形成した孔部に銅箔のバリが発生す
るが、この内外層バリを薬液でエッチング除去すると同
時に表裏の銅箔の厚さ方向の一部をエッチング除去す
る。この薄銅化、バリ取りにより、その後の銅メッキに
おいて、孔部のメッキによる張り出しもなく、表裏の銅
箔のメッキ後の総厚さも薄く保持でき、細密パターン形
成に適したものが得られ、高密度のプリント配線板が作
製できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a laser to
Regarding the method of making a small diameter and good shape through hole in a multilayer double-sided copper clad board with more than one copper layer, use UV laser to make holes directly from the copper foil, or use carbon dioxide laser. Place an auxiliary material for drilling on the surface of the outer copper foil, use a copper foil treated with nickel and / or cobalt alloy, or treat the copper foil surface with black copper oxide treatment, chemical treatment, etc. Or, use a thin copper foil, irradiate a laser beam directly on this copper foil to penetrate the outer copper foil and the insulating layer, and process a part of the inner copper foil. The multilayered double-sided copper clad plate is turned upside down and a laser beam is similarly irradiated from the opposite side to penetrate the outer layer copper foil, the insulating layer and the inner layer copper foil to form a through hole. When drilling with a carbon dioxide laser, if the copper foil is thick, burr of the copper foil will occur in the formed hole, but this inner and outer layer burr is etched away with a chemical solution and at the same time a part of the front and back copper foil in the thickness direction Are removed by etching. Due to this thinning of copper and deburring, in the subsequent copper plating, there is no overhang due to the plating of the holes, the total thickness of the front and back copper foil after plating can be kept thin, and a suitable one for fine pattern formation can be obtained. A high-density printed wiring board can be manufactured.

【0010】銅張積層板の炭酸ガスレーザーによる孔あ
けにおいて、レーザーを照射する表面に、融点900℃以
上で、且つ原子の結合エネルギー300kJ/mol 以上の酸化
金属粉、カーボン、又は金属粉の1種或いは2種以上と
水溶性樹脂等の樹脂とを混合した塗料を、銅箔表面に塗
布、乾燥して塗膜とするか、熱可塑性フィルムの片面
に、付着させて得られる孔あけ用補助材料を配置し、好
適には銅箔面に接着させて、その上から炭酸ガスレーザ
ーを直接表面に照射し、銅箔を加工除去する。また、銅
箔のシャイニー面に、ニッケル金属層、コバルト金属
層、それらの合金層を形成した銅箔を用いて銅張板を作
製し、この上から直接炭酸ガスレーザーを照射すること
により小径の孔を外層に形成できる。更には、一般の銅
箔を張った銅張板の銅箔表面を、黒色酸化銅処理で処理
するか、薬液によって銅箔表面を処理して微細な凹凸を
形成する等を行い、その後直接炭酸ガスレーザーを照射
することにより外層銅箔に貫通孔を形成できる。その
後、絶縁層を加工し、更に内層銅箔の厚さ方向の一部を
加工して孔あけしてから、多層両面銅張板をひっくり返
して同様に孔あけし、貫通孔を形成する。
In the drilling of a copper clad laminate with a carbon dioxide gas laser, one of a metal oxide powder, carbon or metal powder having a melting point of 900 ° C. or more and an atomic binding energy of 300 kJ / mol or more is formed on the surface to be irradiated with laser. Or a mixture of two or more kinds and a resin such as a water-soluble resin is applied to the surface of the copper foil and dried to form a coating film, or it is adhered to one surface of the thermoplastic film to assist drilling. The material is placed and preferably adhered to the copper foil surface, and the carbon dioxide gas laser is directly radiated onto the surface of the material to process and remove the copper foil. In addition, on the shiny surface of the copper foil, a copper clad plate is prepared using a copper foil having a nickel metal layer, a cobalt metal layer, and an alloy layer thereof, and a carbon dioxide laser is directly irradiated onto the copper clad plate to reduce the diameter of the copper foil. The holes can be formed in the outer layer. Furthermore, the copper foil surface of a copper clad plate overlaid with a general copper foil is treated with black copper oxide treatment, or the copper foil surface is treated with a chemical solution to form fine irregularities, and then carbon dioxide is directly applied. Through holes can be formed in the outer layer copper foil by irradiating with a gas laser. After that, the insulating layer is processed, and further, a part of the inner layer copper foil in the thickness direction is processed to make a hole, and then the multilayer double-sided copper clad plate is turned over and similarly made to form a through hole.

【0011】本発明で使用する補助材料の中の、融点90
0℃以上で、且つ、結合エネルギー300kJ/mol 以上の金
属化合物としては、一般に公知のものが使用できる。具
体的には、酸化物としては、酸化チタン等のチタニア
類、酸化マグネシウム等のマグネシア類、酸化鉄等の鉄
酸化物、酸化ニッケル等のニッケル酸化物、二酸化マン
ガン、酸化亜鉛等の亜鉛酸化物、二酸化珪素、酸化アル
ミニウム、希土類酸化物、酸化コバルト等のコバルト酸
化物、酸化錫等のスズ酸化物、酸化タングステン等のタ
ングステン酸化物、等が挙げられる。非酸化物として
は、炭化珪素、炭化タングステン、窒化硼素、窒化珪
素、窒化チタン、窒化アルミニウム、硫酸バリウム、希
土類酸硫化物等、一般に公知のものが挙げられる。その
他、カーボンも使用できる。更に、その酸化金属粉の混
合物である各種ガラス類が挙げられる。又、カーボン粉
が挙げられ、更に銀、アルミニウム、ビスマス、コバル
ト、銅、鉄、マグネシウム、マンガン、モリブデン、ニ
ッケル、パラジウム、アンチモン、ケイ素、錫、チタ
ン、バナジウム、タングステン、亜鉛等の単体、或いは
それらの合金の金属粉が使用される。これらは一種或い
は二種以上が組み合わせて使用される。平均粒子径は、
特に限定しないが、1μm以下が好ましい。
Among the auxiliary materials used in the present invention, the melting point of 90
As the metal compound having a binding energy of 300 kJ / mol or more at 0 ° C. or higher, generally known compounds can be used. Specifically, as the oxide, titania such as titanium oxide, magnesia such as magnesium oxide, iron oxide such as iron oxide, nickel oxide such as nickel oxide, zinc oxide such as manganese dioxide and zinc oxide. , Silicon dioxide, aluminum oxide, rare earth oxides, cobalt oxides such as cobalt oxide, tin oxides such as tin oxide, and tungsten oxides such as tungsten oxide. Examples of the non-oxide include generally known ones such as silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, barium sulfate, and rare earth oxysulfide. In addition, carbon can also be used. Further, various kinds of glass which are a mixture of the metal oxide powder can be mentioned. Further, carbon powder may be mentioned, and further, simple substances such as silver, aluminum, bismuth, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, antimony, silicon, tin, titanium, vanadium, tungsten, zinc, or the like. The metal powder of the alloy is used. These are used alone or in combination of two or more. The average particle size is
Although not particularly limited, it is preferably 1 μm or less.

【0012】炭酸ガスレーザーの照射で分子が原子に解
離するために、金属が孔壁等に付着して、半導体チッ
プ、孔壁密着性等に悪影響を及ぼさないようなものが好
ましい。Na,K,Clイオン等は、特に半導体の信頼
性に悪影響を及ぼすため、これらの成分を含むものは好
適でない。配合量は、3〜97容積%、好適には5〜95容積%
が使用され、水溶性樹脂に配合され、均一に分散され
る。
It is preferable that the metal is attached to the hole wall or the like and does not adversely affect the semiconductor chip, the adhesion to the hole wall, etc., because the molecule dissociates into atoms upon irradiation with the carbon dioxide laser. Since Na, K, Cl ions, etc., particularly adversely affect the reliability of the semiconductor, those containing these components are not suitable. The compounding amount is 3 to 97% by volume, preferably 5 to 95% by volume.
Is mixed with the water-soluble resin and uniformly dispersed.

【0013】補助材料中の樹脂は特に限定はしないが、
加工後に付着した場合に除去する必要があり、水溶性樹
脂が好ましい。この水溶性樹脂としては、特に制限はな
いが、混練して銅箔表面に塗布、乾燥した場合、或いは
シート状とした場合、剥離欠落しないものを選択する。
例えばポリビニルアルコール、ポリエステル、ポリエー
テルポリオール、ポリエチレンオキサイド、澱粉等、一
般に公知のものが使用される。
The resin in the auxiliary material is not particularly limited,
A water-soluble resin is preferable because it needs to be removed when attached after processing. The water-soluble resin is not particularly limited, but is selected so that it does not peel off when kneaded, applied to the surface of the copper foil, dried, or formed into a sheet.
For example, generally known substances such as polyvinyl alcohol, polyester, polyether polyol, polyethylene oxide, starch and the like are used.

【0014】金属化合物粉、カーボン粉、又は金属粉の
1種或いは2種以上と樹脂からなる組成物を作成する方
法は、特に限定しないが、ニーダー等で無溶剤にて高温
で練り、熱可塑性フィルム上にシート状に押し出して付
着する方法、水又は水溶性有機溶剤に水溶性樹脂を溶解
させ、これに上記粉体を加え、均一に攪拌混合して、こ
れを用い、塗料として熱可塑性フィルム上に塗布、乾燥
して膜を形成する方法等、一般に公知の方法が使用でき
る。厚みは、特に限定はしないが、塗布する場合、20〜
200μm、熱可塑性フィルムに塗布する場合、フイルムを
含む総厚み30〜200μmとして使用する。
The method of preparing a composition comprising a resin and one or more of metal compound powder, carbon powder, or metal powder is not particularly limited, but the composition is kneaded in a solvent-free manner at a high temperature to obtain thermoplasticity. A method of extruding and adhering in a sheet form on a film, dissolving a water-soluble resin in water or a water-soluble organic solvent, adding the above powder to this, uniformly stirring and mixing, and using this, a thermoplastic film as a paint A generally known method can be used, such as a method of forming a film by coating on the surface and drying. The thickness is not particularly limited, but when applied, it is 20 to
200 μm, when applied to a thermoplastic film, the total thickness including film is 30 to 200 μm.

【0015】炭酸ガスレーザーは、赤外線波長域にある
9.3〜10.6μmの波長が一般に使用される。エネルギーは
5〜60mJ、好適には7〜50mJ にてパルス発振で銅箔を加
工し、孔をあける。エネルギーは表層の銅箔上の処理、
銅箔の厚さによって適宜選択する。又、UV・YAGレーザ
ーは波長200〜400nmの波長が一般に使用される。
The carbon dioxide laser is in the infrared wavelength range.
Wavelengths of 9.3 to 10.6 μm are commonly used. Energy is
The copper foil is processed by pulse oscillation at 5 to 60 mJ, preferably 7 to 50 mJ, and holes are drilled. Energy is processed on the surface copper foil,
It is appropriately selected depending on the thickness of the copper foil. The UV / YAG laser generally has a wavelength of 200 to 400 nm.

【0016】本発明で使用する多層銅張板は、3層以上
の銅の層を有する多層両面銅張板であり、熱硬化性樹脂
多層両面銅張積層板としては、無機、有機基材の公知の
熱硬化性多層両面銅張積層板、表層又は内部に樹脂付き
銅箔シート、フィルムを使用した多層板等、一般に公知
の構成の多層銅張板、また、ポリイミドフィルム、ポリ
エステルフィルム、ポリパラバン酸フィルム等の基材の
銅張板が挙げられる。
The multilayer copper-clad board used in the present invention is a multilayer double-sided copper-clad board having three or more copper layers. The thermosetting resin multilayer double-sided copper-clad laminate is made of an inorganic or organic base material. Known thermosetting multilayer double-sided copper clad laminate, a copper foil sheet with a resin on the surface layer or inside, a multilayered plate using a film, etc., a multilayered copper clad plate of generally known constitution, a polyimide film, a polyester film, polyparabanic acid A copper clad plate as a base material such as a film may be used.

【0017】基材補強多層両面銅張積層板は、まず補強
基材に熱硬化性樹脂組成物を含浸、乾燥させてBステー
ジとし、プリプレグを作成する。次に、このプリプレグ
を所定枚数重ね、その外側に銅箔を配置して、加熱、加
圧、好ましくは真空下に積層成形し、銅張積層板とす
る。銅箔の種類は特に限定はないが、好適には電解銅箔
を使用する。内層銅箔の厚みは好適には12〜35μmであ
る。この銅張積層板に必要によりメカニカルドリル、レ
ーザー等で貫通孔をあけ、デスミア処理後に銅箔表面を
黒色酸化銅処理等の化学処理を施し、その両面にプリプ
レグ、Bステージ樹脂シート等を配置し、その外側に銅
箔を配置するか、内層板の両側に銅箔付きBステージ樹
脂シートを配置し、加熱、加圧、好適には真空下に積層
成形して多層両面銅張積層板とする。外層銅箔の厚み
は、好適には3〜12μmである。尚、一般の金属箔、例え
ばニッケル箔、合金箔でも使用できる。
In the base material reinforced multilayer double-sided copper clad laminate, a reinforcing base material is first impregnated with a thermosetting resin composition and dried to prepare a B stage to prepare a prepreg. Next, a predetermined number of the prepregs are stacked, a copper foil is arranged on the outer side of the prepregs, and laminated under heat, pressure, and preferably under vacuum to form a copper-clad laminate. The type of copper foil is not particularly limited, but electrolytic copper foil is preferably used. The thickness of the inner layer copper foil is preferably 12 to 35 μm. If necessary, a through hole is opened in this copper-clad laminate with a mechanical drill, laser, etc., and after the desmear treatment, the copper foil surface is subjected to a chemical treatment such as black copper oxide treatment, and prepreg, B stage resin sheet, etc. are placed on both sides. , A copper foil is placed on the outer side thereof, or a B-stage resin sheet with a copper foil is placed on both sides of the inner layer board, and laminated under heat, pressure and preferably under vacuum to form a multilayer double-sided copper clad laminate. . The thickness of the outer layer copper foil is preferably 3 to 12 μm. In addition, general metal foils such as nickel foil and alloy foil can also be used.

【0018】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。具体的には、無機の繊維
としては、具体的にはE、S、D、M、NEガラス等の繊
維等が挙げらる。又、有機繊維としては、全芳香族ポリ
アミド、液晶ポリエステル等一般に公知の繊維等が挙げ
られる。これらは、混抄でも良い。また、フィルム基材
も挙げられる。
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specific examples of the inorganic fiber include E, S, D, M and NE glass fibers. Examples of the organic fiber include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed papers. Moreover, a film base material can also be used.

【0019】本発明で使用される熱硬化性樹脂組成物の
樹脂としては、一般に公知の熱硬化性樹脂が使用され
る。具体的には、エポキシ樹脂、多官能性シアン酸エス
テル樹脂、 多官能性マレイミドーシアン酸エステル樹
脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニ
レンエーテル樹脂等が挙げられ、1種或いは2種類以上が
組み合わせて使用される。出力の高い炭酸ガスレーザー
照射による加工でのスルーホール形状の点からは、ガラ
ス転移温度が150℃以上の熱硬化性樹脂組成物が好まし
く、耐湿性、耐マイグレーション性、吸湿後の電気的特
性等の点から多官能性シアン酸エステル樹脂組成物が好
適である。
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specifically, epoxy resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanate ester resin, polyfunctional maleimide resin, unsaturated group-containing polyphenylene ether resin and the like, one kind or two or more kinds. Are used in combination. A thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable from the viewpoint of through-hole shape in processing by high-power carbon dioxide laser irradiation, and moisture resistance, migration resistance, electrical characteristics after moisture absorption, etc. From this point of view, a polyfunctional cyanate ester resin composition is preferable.

【0020】本発明の好適な熱硬化性樹脂分である多官
能性シアン酸エステル化合物とは、分子内に2個以上の
シアナト基を有する化合物である。具体的に例示する
と、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシア
ナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-
ジシアナトナフタレン、1,3,6-トリシアナトナフタレ
ン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフ
ェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパ
ン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロ
パン、ビス(4-シアナトフェニル)エーテル、ビス(4-シ
アナトフェニル)チオエーテル、ビス(4-シアナトフェニ
ル)スルホン、トリス(4-シアナトフェニル)ホスファイ
ト、トリス(4-シアナトフェニル)ホスフェート、および
ノボラックとハロゲン化シアンとの反応により得られる
シアネート類などである。これらの公知のBr付加化合物
も挙げられる。
The polyfunctional cyanate ester compound which is a suitable thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-
Dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2- Bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulphone, tris (4-cis) Anatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac with cyanogen halide. These known Br addition compounds are also included.

【0021】これらのほかに特公昭41-1928、同43-1846
8、同44-4791、同45-11712、同46-41112、同47-26853及
び特開昭51-63149等に記載の多官能性シアン酸エステル
化合物類も用いら得る。また、これら多官能性シアン酸
エステル化合物のシアナト基の三量化によって形成され
るトリアジン環を有する分子量400〜6,000 のプレポリ
マーが使用される。このプレポリマーは、上記の多官能
性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸
等の酸類;ナトリウムアルコラート等、第三級アミン類
等の塩基;炭酸ナトリウム等の塩類等を触媒として重合
させることにより得られる。このプレポリマー中には一
部未反応のモノマーも含まれており、モノマーとプレポ
リマーとの混合物の形態をしており、このような原料は
本発明の用途に好適に使用される。一般には可溶な有機
溶剤に溶解させて使用する。
In addition to these, Japanese Examined Patent Publications 41-1928 and 43-1846
8, polyfunctional cyanate ester compounds described in JP-A-51-63149 and JP-A-44-4791, JP-A-45-11712, JP-A-46-41112 and JP-A-47-26853 can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 and having a triazine ring formed by trimerizing the cyanato group of these polyfunctional cyanate ester compounds is used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate ester monomer using, for example, acids such as mineral acid and Lewis acid; bases such as sodium alcoholate and tertiary amines; salts such as sodium carbonate as a catalyst. It is obtained by The prepolymer also contains some unreacted monomer and is in the form of a mixture of the monomer and the prepolymer. Such a raw material is suitably used for the purpose of the present invention. Generally, it is used by dissolving it in a soluble organic solvent.

【0022】エポキシ樹脂としては、一般に公知のもの
が使用できる。具体的には、液状或いは固形のビスフェ
ノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタ
ジエン、ペンタジエン、ビニルシクロヘキセン、ジシク
ロペンチルエーテル等の二重結合をエポキシ化したポリ
エポキシ化合物類;ポリオール、水酸基含有シリコン樹
脂類とエポハロヒドリンとの反応によって得られるポリ
グリシジル化合物類等が挙げられる。また、これらの公
知のBr付加樹脂が挙げられる。これらは1種或いは2種類
以上が組み合わせて使用され得る。
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by reacting a hydroxyl group-containing silicone resin with epohalohydrin. Moreover, these well-known Br addition resin is mentioned. These may be used alone or in combination of two or more.

【0023】ポリイミド樹脂としては、一般に公知のも
のが使用され得る。具体的には、多官能性マレイミド類
とポリアミン類との反応物、特公昭57-005406 に記載の
末端三重結合のポリイミド類が挙げられる。これらの熱
硬化性樹脂は、単独でも使用されるが、特性のバランス
を考え、適宜組み合わせて使用するのが良い。
As the polyimide resin, a generally known one can be used. Specific examples thereof include reaction products of polyfunctional maleimides and polyamines, and polyimides having a terminal triple bond described in JP-B-57-005406. These thermosetting resins may be used alone, but it is preferable to use them in combination as appropriate in consideration of the balance of properties.

【0024】本発明の熱硬化性樹脂組成物には、組成物
本来の特性が損なわれない範囲で、所望に応じて種々の
添加物を配合することができる。これらの添加物として
は、不飽和ポリエステル等の重合性二重結合含有モノマ
ー類及びそのプレポリマー類;ポリブタジエン、エポキ
シ化ブタジエン、マレイン化ブタジエン、ブタジエン-
アクリロニトリル共重合体、ポリクロロプレン、ブタジ
エン-スチレン共重合体、ポリイソプレン、ブチルゴ
ム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量
のelasticなゴム類;ポリエチレン、ポリプロピレン、ポ
リブテン、ポリ-4-メチルペンテン、ポリスチレン、AS
樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、
アクリルゴム、これらのコアシェルゴム、ポリエチレン
-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチ
レン共重合体類;ポリカーボネート、ポリフェニレンエ
ーテル、ポリスルホン、ポリエステル、ポリフェニレン
サルファイド等の高分子量プレポリマー若しくはオリゴ
マー;ポリウレタン等が例示され、適宜使用される。ま
た、その他、公知の有機、無機の充填剤、染料、顔料、
増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感
剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の
各種添加剤が、所望に応じて適宜組み合わせて用いられ
る。特にレーザーでの孔形成には樹脂の加工速度が基材
より大きいので、孔形状を良好にするために一般に公知
の無機充填剤を10〜90重量%、好適には20〜80重量%添加
するのが好ましい。又、必要により、反応基を有する化
合物は硬化剤、触媒が適宜配合される。
Various additives may be added to the thermosetting resin composition of the present invention as desired, as long as the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyester and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-
Low molecular weight liquid to high molecular weight elastic rubbers such as acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, polyisoprene, butyl rubber, fluororubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methyl Penten, polystyrene, AS
Resin, ABS resin, MBS resin, styrene-isoprene rubber,
Acrylic rubber, these core shell rubber, polyethylene
-Propylene copolymers, 4-fluorinated ethylene-6-fluorinated ethylene copolymers; high molecular weight prepolymers or oligomers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide; polyurethane and the like are used as appropriate. To be done. In addition, other known organic and inorganic fillers, dyes, pigments,
Various additives such as a thickener, a lubricant, an antifoaming agent, a dispersant, a leveling agent, a photosensitizer, a flame retardant, a brightening agent, a polymerization inhibitor, and a thixotropic agent are appropriately combined and used as desired. To be In particular, since the resin processing speed is higher than that of the base material for forming holes with a laser, generally known inorganic fillers are added in an amount of 10 to 90% by weight, preferably 20 to 80% by weight, in order to improve the shape of the holes. Is preferred. Further, if necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.

【0025】本発明の熱硬化性樹脂組成物は、それ自体
は加熱により硬化するが硬化速度が遅く、作業性、経済
性等に劣るため使用した熱硬化性樹脂に対して公知の熱
硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量
部に対して0.005〜10重量部、好ましくは0.01〜5重量部
である。
The thermosetting resin composition of the present invention itself is cured by heating, but the curing rate is slow and the workability and economy are poor. Therefore, the known thermosetting catalyst for the thermosetting resin used. Can be used. The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.

【0026】銅張積層板の積層条件は、特に限定はない
が、一般には温度100〜280℃、好適には120〜250℃で、
圧力は一般には5〜50kgf/cm2 ,好適には10〜30kgf/cm2
で、好適には真空下で積層成形する。
The lamination conditions for the copper clad laminate are not particularly limited, but generally the temperature is 100 to 280 ° C, preferably 120 to 250 ° C.
The pressure is generally 5 to 50 kgf / cm 2 , preferably 10 to 30 kgf / cm 2.
Then, it is preferable to laminate-mold under a vacuum.

【0027】炭酸ガスレーザーを、出力5〜60mJでパル
ス発振にて照射して貫通孔を形成した場合、例えば7μm
以上の厚い銅箔では孔周辺にはバリが発生する。そのた
め、炭酸ガスレーザー照射後、銅箔の両表面を平面的に
厚さ方向を、好適には薬液でエッチングし、もとの金属
箔の一部の厚さを除去することにより、同時にバリも除
去し、且つ、得られた薄くなった銅箔は細密パターン形
成に適しており、高密度のプリント配線板に適した孔周
囲の銅箔が残存した貫通孔を形成する。この場合、機械
研磨よりはエッチングの方が、孔部のバリ除去、研磨に
よる寸法変化等の点から好適である。
When a through hole is formed by irradiating a carbon dioxide laser with pulse oscillation at an output of 5 to 60 mJ, for example, 7 μm
With the above thick copper foil, burrs are generated around the holes. Therefore, after the carbon dioxide laser irradiation, both surfaces of the copper foil are planarly etched in the thickness direction, preferably with a chemical solution, and a part of the original metal foil is removed to simultaneously remove burrs. The removed and thinned copper foil obtained is suitable for forming a fine pattern, and forms a through hole in which the copper foil around the hole suitable for a high-density printed wiring board remains. In this case, etching is more preferable than mechanical polishing from the viewpoints of removing burrs from the holes and changing the dimensions due to polishing.

【0028】また、UVレーザーでもバリは発生する場合
があり、このバリも同様な手法で取り除くことが可能で
ある。
Burrs may also be generated by the UV laser, and these burrs can be removed by the same method.

【0029】孔の形成においては、UVレーザーと炭酸ガ
スレーザーの組み合わせも使用できる。
A combination of a UV laser and a carbon dioxide laser can also be used in forming the holes.

【0030】本発明の孔部に発生した銅のバリをエッチ
ング除去する方法としては、特に限定しないが、例え
ば、特開平02-22887、同02-22896、同02-25089、同02-2
5090、同02-59337、同02-60189、同02-166789、同03-25
995、同03-60183、同03-94491、同04-199592、同04-263
488で開示された、薬品で金属表面を溶解除去する方法
(SUEP法と呼ぶ)による。エッチング速度は、0.02
〜1.0μm/秒 で行う。又、薬液を貫通孔内を吸引して通
し、内層銅箔バリをエッチング除去する方法等も好適に
使用される。
The method for etching away the copper burrs generated in the holes of the present invention is not particularly limited, but for example, JP-A-02-22887, 02-22896, 02-25089, 02-2.
5090, 02-59337, 02-60189, 02-166789, 03-25
995, same 03-60183, same 03-94491, same 04-199592, same 04-263
Method for dissolving and removing metal surfaces with chemicals disclosed in 488
(Called the SUEP method). Etching rate is 0.02
Perform at ~ 1.0 μm / sec. Further, a method in which a chemical solution is sucked through the through holes to remove the inner layer copper foil burr by etching is also suitably used.

【0031】[0031]

【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン100部を150℃に熔融させ、
撹拌しながら4時間反応させ、プレポリマーを得た。こ
れをメチルエチルケトンとジメチルホルムアミドの混合
溶剤に溶解した。これにビスフェノールA型エポキシ樹
脂(商品名:エピコート1001、油化シェルエポキシ<株>
製)400部、クレゾールノボラック型エポキシ樹脂(商品
名:ESCN-220F、住友化学工業<株>製)600部を加え、均
一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4
部を加え、溶解混合し、これに無機充填剤(商品名:焼成
タルク、日本タルク<株>製)2000部を加え、均一撹拌
混合してワニスAを得た。このワニスを厚さ100μmのガ
ラス織布に含浸し150℃で乾燥して、ゲル化時間(at170
℃)120秒、熱硬化性樹脂組成物の含有量が47重量%のプ
リプレグ(プリプレグB)及び熱硬化性樹脂組成物の含有
量が58重量%のプリプレグ(プリプレグC)を作製した。
厚さ25μmの電解銅箔を、上記プリプレグB6枚の上下
に配置し、200℃、20kgf/cm2、30mmHg以下の真空下で2
時間積層成形し、絶縁層厚み0.6mmの両面銅張積層板
Dを得た。この両面銅張積層板Dのワーキングサイズ内
の各プリント配線板の4隅のターゲットマークの位置
に、径0.5mmのメカニカルドリルで1つずつ丁寧に貫通
孔をあけた。この4隅のターゲットマーク用貫通孔に焼
き付け用フィルムを合わせて常法にてパターンを作製し
た。この内層板銅箔に黒色酸化銅処理を施した後、両面
にプリプレグCを各1枚配置し、その外側に厚さ12μm
の電解銅箔を配置して同様に積層成形し、4層両面銅張
積層板を作製した。このターゲットマークの箇所の上の
銅箔を3mm径でエッチング除去し、4層両面銅張積層板E
とした。
The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise specified, “part” means part by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane, bis (4-
Maleimide phenyl) 100 parts of methane is melted to 150 ℃,
The reaction was carried out for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. In addition to this, bisphenol A type epoxy resin (trade name: Epicoat 1001, Yuka Shell Epoxy Co., Ltd.)
400 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) were added and uniformly mixed. Furthermore, zinc octylate 0.4 as a catalyst
2000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added, and the mixture was stirred and mixed uniformly to obtain a varnish A. This varnish was impregnated into a glass woven cloth with a thickness of 100 μm and dried at 150 ° C, and the gelling time (at 170
(° C) for 120 seconds, a prepreg having a thermosetting resin composition content of 47% by weight (prepreg B) and a prepreg having a thermosetting resin composition content of 58% by weight (prepreg C) were prepared.
Electrolytic copper foil with a thickness of 25 μm is placed above and below the above six prepregs B and placed under a vacuum of 200 ° C, 20 kgf / cm 2 , 30 mmHg or less.
Time-wise lamination molding was performed to obtain a double-sided copper-clad laminate D having an insulating layer thickness of 0.6 mm. Through holes were carefully drilled one by one with a mechanical drill having a diameter of 0.5 mm at the positions of the target marks at the four corners of each printed wiring board within the working size of the double-sided copper-clad laminate D. A baking film was put in the through holes for target marks at the four corners to form a pattern by a conventional method. After this inner layer copper foil is subjected to black copper oxide treatment, one prepreg C is placed on each side and the thickness is 12 μm on the outside.
The electrolytic copper foil of was placed and laminated in the same manner to produce a 4-layer double-sided copper clad laminate. The copper foil above the target mark is removed by etching with a diameter of 3 mm, and the 4-layer double-sided copper-clad laminate E
And

【0032】一方、金属粉として黒色酸化銅粉(平均粒
子径:0.8μm)800部に、ポリビニルアルコール粉体を
水に溶解したワニスに加え、均一に攪拌混合した(ワニ
スF)。これを厚さ25μmのポリエチレンテレフタレー
トフィルム片面上に、厚さ60μmとなるように塗布し、
110℃で30分間乾燥して、金属化合物含有量65容積%の
補助材料Gを形成した。上記多層両面銅張積層板Eの表裏
に補助材料Gを、4隅のターゲットマークの上を被覆し
ないように樹脂面が銅箔側を向けて配置し、温度100℃
のロールにて、線圧5kgf/cmでラミネートし、接着させ
た。CCDカメラで内層板の4隅にあるターゲットマーク
を読み込み、この多層両面銅張積層板の表面から、間隔
1mmで、孔径120μmの孔を900個直接炭酸ガスレーザー
で、パルスエネルギー28mJで3ショット照射して、70ブ
ロックに、外層銅箔を貫通し、内層銅箔の40〜80%位を
加工した。次にこれを裏返し、裏面の同位置に120μmの
孔を同一エネルギーで4ショット照射して外層、及び内
層銅箔を貫通して孔をあけ、貫通孔とした。この孔位置
ズレは5μm未満であった。SUEP法にて、薬液を孔内
部に吸引して通して内外層孔周辺に発生した銅箔バリを
溶解除去すると同時に、表面の銅箔も4μmまで溶解し
た。この板に通常の方法にて銅メッキを15μm(総厚み:1
9μm)施した。この孔周辺のランド用の銅箔は全て残存
していた。
On the other hand, 800 parts of black copper oxide powder (average particle diameter: 0.8 μm) as a metal powder was added to a varnish prepared by dissolving polyvinyl alcohol powder in water, and uniformly mixed by stirring (varnish F). This is coated on one side of a 25 μm thick polyethylene terephthalate film so that the thickness is 60 μm,
After drying at 110 ° C. for 30 minutes, auxiliary material G having a metal compound content of 65% by volume was formed. Auxiliary material G is placed on the front and back of the above-mentioned multilayer double-sided copper clad laminate E so that the resin surface faces the copper foil side so as not to cover the target marks at the four corners, and the temperature is 100 ° C.
The rolls were laminated at a linear pressure of 5 kgf / cm and adhered. Read the target marks at the four corners of the inner layer board with a CCD camera and set the distance from the surface of this multilayer double-sided copper clad laminate.
900 holes with a diameter of 120 μm and a diameter of 1 mm were directly irradiated with 3 shots with a pulse energy of 28 mJ by using a carbon dioxide laser, and 70 blocks were penetrated through the outer copper foil and 40 to 80% of the inner copper foil was processed. Next, this was turned upside down, and a 120 μm hole was irradiated at the same position on the back surface for 4 shots with the same energy to penetrate through the outer layer and the inner layer copper foil to form a hole. This deviation in hole position was less than 5 μm. By the SUEP method, the chemical solution was sucked into the inside of the holes to dissolve and remove the copper foil burr generated around the inner and outer layer holes, and at the same time, the surface copper foil was also dissolved to 4 μm. Copper plating is 15μm on this plate by the usual method (total thickness: 1
9 μm). All the copper foil for land around this hole remained.

【0033】この表裏に、既存の方法にてパターン(ラ
イン/スペース=50/50μmを200個)、ハンダボール用ラ
ンド等を形成し、少なくとも半導体チップ部、ボンディ
ング用パッド部、ハンダボールパッド部を除いてメッキ
レジストで被覆し、ニッケル、金メッキを施し、多層プ
リント配線板を作成した。この多層プリント配線板の評
価結果を表1に示す。
Patterns (200 lines / space = 50/50 μm), solder ball lands, etc. are formed on the front and back by an existing method, and at least the semiconductor chip portion, the bonding pad portion, and the solder ball pad portion are formed. Except for this, it was covered with a plating resist and plated with nickel and gold to prepare a multilayer printed wiring board. Table 1 shows the evaluation results of this multilayer printed wiring board.

【0034】実施例2 エポキシ樹脂(商品名:エピコート5045)700部、及びエポ
キシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35
部、2-エチル-4-メチルイミダゾール1部をメチルエチル
ケトンとジメチルホルムアミドの混合溶剤に溶解し、さ
らに実施例1の焼成タルクを800部を加え、強制撹拌し
て均一分散し、ワニスを得た。これを厚さ100μmのガラ
ス織布に含浸、乾燥して、ゲル化時間150秒、熱硬化性
樹脂組成物含有量48重量%のプリプレグ(プリプレグH)及
び熱硬化性樹脂組成物含有量57重量%のプリプレグ(プリ
プレグI)を作製した。このプリプレグHを8枚使用し、両
面に厚さ18μmの電解銅箔を置き,190℃、20kgf/cm2、30
mmHg以下の真空下で2時間積層成形して両面銅張積層板J
を作製した。この銅箔表面にパターンを形成し、薬液処
理(メック処理:CZ8100+CL8300E処理、銅箔表面凹凸3
μm)を施してから、その両面にプリプレグIを各1枚配
置し、その両面に、銅箔シャイニー面をコバルト合金処
理を施した厚さ12μmの電解銅箔を置き、同様に積層成
形して4層両面銅張積層板Kを作製した。
Example 2 700 parts of epoxy resin (trade name: Epicoat 5045), 300 parts of epoxy resin (trade name: ESCN220F), dicyandiamide 35
And 1 part of 2-ethyl-4-methylimidazole were dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was forcibly stirred and uniformly dispersed to obtain a varnish. This was impregnated into a glass woven fabric having a thickness of 100 μm and dried, and a gelling time of 150 seconds, a thermosetting resin composition content of 48 wt% prepreg (prepreg H) and a thermosetting resin composition content of 57 wt% % Prepreg (prepreg I) was prepared. Eight pieces of this prepreg H are used, and electrolytic copper foil with a thickness of 18 μm is placed on both sides, 190 ° C, 20 kgf / cm 2 , 30
Double-sided copper-clad laminate J after laminated molding for 2 hours under vacuum below mmHg
Was produced. A pattern is formed on the surface of this copper foil, and chemical treatment (Mech treatment: CZ8100 + CL8300E treatment, copper foil surface unevenness 3
, and then place one prepreg I on each side, and place a 12 μm thick electrolytic copper foil with a cobalt alloy treatment on the copper foil shiny surface on both sides, and laminate and mold in the same manner. A four-layer double-sided copper clad laminate K was produced.

【0035】この多層両面銅張積層板Kの内層板に形成
したターゲットマーク表面の表裏銅箔を径2mmでエッチ
ング除去し、表面からターゲットマークを読みとれるよ
うにした。この表面からCCDカメラで内層に形成された
ターゲットマークを読みとり、表面から炭酸ガスレーザ
ーエネルギー17mJで2ショット照射して外層銅箔を貫通
し、更に内層銅箔の40〜70%を加工してから、この多層
両面銅張積層板を裏返し、同様にCCDカメラで内層に形
成されたターゲットマークを読みとり、同位置に裏面と
なる銅箔上から17mJのエネルギーで6ショット照射して
外層銅箔及び絶縁層を加工して孔あけし、貫通孔をあけ
た。この孔位置ズレは最大7μmであった。これを用い、
同様に多層プリント配線板とした。評価結果を表1に示
す。
The front and back copper foil on the surface of the target mark formed on the inner layer plate of this multilayer double-sided copper-clad laminate K was removed by etching with a diameter of 2 mm so that the target mark could be read from the surface. Read the target mark formed on the inner layer with a CCD camera from this surface, irradiate 2 shots with carbon dioxide laser energy of 17 mJ from the surface to penetrate the outer copper foil, and further process 40 to 70% of the inner copper foil. Then, turn over this multilayer double-sided copper clad laminate, read the target mark formed on the inner layer with a CCD camera in the same way, and irradiate 6 shots with the energy of 17 mJ from the copper foil on the back at the same position to the outer layer copper foil and insulation. The layers were processed and perforated and perforated. The maximum positional deviation was 7 μm. Using this,
Similarly, a multilayer printed wiring board was used. The evaluation results are shown in Table 1.

【0036】実施例3 実施例1の多層両面銅張積層板Eの表裏の銅箔をエッチ
ングし、厚さ4μmとした。この表面に直接波長355nmのU
V-YAGレーザーを250ショット照射して外層銅箔及び絶縁
層及び内層銅箔の約67%を加工して孔径50μmの孔を途中
まであけ、更にこれを裏返して反対面から同様に260シ
ョット照射して50μmの貫通孔をあけた。デスミア処理
を施した後、銅メッキを15μm付着させ、同様に多層プ
リント配線板とした。評価結果を表1に示す。
Example 3 The copper foils on the front and back sides of the multilayer double-sided copper clad laminate E of Example 1 were etched to a thickness of 4 μm. Directly on this surface U with a wavelength of 355 nm
Irradiate 250 shots of V-YAG laser to process about 67% of outer layer copper foil, insulation layer and inner layer copper foil, open a hole with a hole diameter of 50 μm halfway, and turn it over again and similarly irradiate 260 shots from the other side. Then, a 50 μm through hole was formed. After the desmear treatment, copper plating was adhered to 15 μm to obtain a multilayer printed wiring board in the same manner. The evaluation results are shown in Table 1.

【0037】比較例1 実施例1の多層両面銅張積層板Eを用い、下面にバックッ
プシートを使用せず、銅張板を少し浮かして下面を空気
層とし、炭酸ガスレーザーエネルギー35mJで12ショット
照射して貫通孔あけを行なったが、内層銅箔周辺の孔形
状が大きくなり、又下孔の周囲に加工屑が付着した。SU
EP処理を行い、同様に多層プリント配線板とした。評価
結果を表1に示す。
Comparative Example 1 Using the multilayer double-sided copper clad laminate E of Example 1, without using a backing sheet on the lower surface, the copper clad board was slightly floated to form an air layer on the lower surface, and 12 shots were made with carbon dioxide laser energy of 35 mJ. When irradiation was performed to form a through hole, the shape of the hole around the inner layer copper foil became large, and processing chips adhered to the periphery of the pilot hole. SU
EP treatment was performed to obtain a multilayer printed wiring board in the same manner. The evaluation results are shown in Table 1.

【0038】比較例2 実施例2の両面銅張積層板Jの内層となる箇所に孔径120
μmの孔を定法にてエッチングしてあけ、同時にパター
ンも形成した。この銅箔表面に黒色酸化銅処理を施した
後、その両側にプリプレグIを各1枚配置し、その外側
に一般の12μm電解銅箔を配置し、実施例2と同様の条
件で積層成形し、4層両面銅張積層板を得た。この内層
の銅箔の孔径120μmの孔をあけた箇所と同一箇所に定
法にて表層銅箔を120μm径でエッチングしてあけ、この
上から炭酸ガスエネルギー15mJを7ショット照射して貫
通孔をあけた。デスミア処理を施し、SUEP処理を行わ
ず、銅メッキを15μm施し、表裏にパターンを形成し、
同様に多層プリント配線板を作成した。評価結果を表1
に示す。
Comparative Example 2 A hole diameter of 120 is provided in the inner layer of the double-sided copper-clad laminate J of Example 2.
A μm hole was etched by a conventional method to form a pattern at the same time. After this copper foil surface is subjected to black copper oxide treatment, one prepreg I is placed on each side of the copper foil, and a general 12 μm electrolytic copper foil is placed on the outside of the prepreg I, and laminated molding is performed under the same conditions as in Example 2. A four-layer double-sided copper clad laminate was obtained. The copper foil of the inner layer has a hole diameter of 120 μm, and the surface copper foil is etched by a conventional method at a diameter of 120 μm at the same place where the hole having a hole diameter of 120 μm is formed. It was Desmear treatment is applied, SUEP treatment is not applied, copper plating is applied to 15 μm, and patterns are formed on the front and back sides.
Similarly, a multilayer printed wiring board was prepared. Table 1 shows the evaluation results
Shown in.

【0039】比較例3 実施例1の多層両面銅張積層板Eを用い、この上に厚さ10
0μmのアルミニウム箔を置き、裏面に厚さ1.6mmの紙フ
ェノール板を置き、径120μmのメカニカルドリルで貫
通孔をあけた。デスミア処理後、銅メッキを15μm付着
させ、同様に多層プリント配線板とした。評価結果を表
1に示す。
Comparative Example 3 The multilayer double-sided copper clad laminate E of Example 1 was used, and a thickness of 10
A 0 μm aluminum foil was placed, a 1.6 mm-thick paper phenol plate was placed on the back surface, and a through hole was made with a mechanical drill having a diameter of 120 μm. After desmearing, copper plating was adhered to a thickness of 15 μm to obtain a multilayer printed wiring board in the same manner. The evaluation results are shown in Table 1.

【0040】 (表1) 項目 実施例 比較例 1 2 3 1 2 3 表裏孔位置のズレ(μm) 5 7 5 <5 21 38 孔壁と内層銅箔のズレ(μm) 0 0 0 0 16 0 孔形状 ほぼ円形 ほぼ円形 ほぼ円形 不定形 不定形 ほぼ円形 パターン切れ及びショート (個) 0/200 0/200 0/200 12/200 51/200 47/200 ランド周辺銅箔欠落 無し 無し 無し 無し 有り 無し ガラス転移温度(℃) 235 160 235 235 160 235 スルーホール・ヒートサイクル試験(%) 2.9 4.0 2.7 17.5 27.0 2.8(Table 1) Item Example Comparative Example 1 2 3 1 2 3 Deviation between front and back hole positions (μm) 5 7 5 <5 21 38 Deviation between hole wall and inner layer copper foil (μm) 0 0 0 0 16 0 Hole shape Almost circular Almost circular Almost irregular Irregular irregular Almost circular Pattern breaks and shorts (pieces) 0/200 0/200 0/200 12/200 51/200 47/200 Land peripheral copper foil missing None None None None None Yes None Glass transition temperature (℃) 235 160 235 235 235 160 235 Through hole heat cycle test (%) 2.9 4.0 2.7 17.5 27.0 2.8

【0041】<測定方法> 1)表裏孔位置のズレ及び表面孔と内層孔位置のズレ ワークサイズ250mm角内に、貫通孔を900孔/ブロック と
して70ブロック作成し(孔計63,000孔)作成し、表裏及
び孔壁と内層銅箔の孔位置のズレの最大値を測定した。 2)パターン切れ、及びショート 実施例、比較例で、作製した孔のあいている銅張板に銅
メッキを10μm付着させたものを用い、ライン/スペース
=50/50μm の櫛形パターンを作成した後、拡大鏡でエ
ッチング後の200パターンを目視にて観察し、パターン
切れ、及びショートしているパターンの合計を分子に示
した。 3)ガラス転移温度 JIS C6481のDMA法にて測定した。 4)スルーホール・ヒートサイクル試験 各スルーホールにランド径200μmを作成し、900孔を表
裏交互につなぎ、1サイクルが、260℃・ハンダ・浸せき
30秒→室温・5分 で、200サイクル実施し、抵抗値の変
化率の最大値を示した。 5)ランド周辺銅箔切れ SUEP後に孔周辺に銅箔が残存しているか否かを観察し
た。
<Measurement method> 1) Misalignment of front and back hole positions and misalignment of surface hole and inner layer hole position Work size 250 mm square, 70 through holes with 900 through holes / block (total 63,000 holes) were created. The maximum deviation of the hole position between the front and back and the hole wall and the inner layer copper foil was measured. 2) Pattern break and short circuit After creating a comb-shaped pattern with line / space = 50/50 μm using the copper clad plate with holes that was made and copper plating adhered to it in Examples and Comparative Examples. The 200 patterns after etching were visually observed with a magnifying glass, and the total number of broken and short patterns was shown in the molecule. 3) Glass transition temperature Measured by the DMA method of JIS C6481. 4) Through-hole / heat cycle test A land diameter of 200 μm was created in each through-hole, 900 holes were connected alternately on the front and back sides, and one cycle was 260 ° C / solder / immersion.
200 cycles were carried out from 30 seconds to room temperature for 5 minutes, and the maximum rate of change in resistance was shown. 5) Cutting of copper foil around the land After SUEP, it was observed whether the copper foil remained around the hole.

【0042】[0042]

【発明の効果】多層両面銅張板に30〜180μmの貫通孔を
両側からあける方法であり、多層両面銅張板の片側から
レーザーを銅箔の上に直接照射し、外層銅箔、絶縁層及
び内層銅箔の厚さ方向の一部まで孔を形成した後、反対
側の同位置より再度レーザーを照射して、孔の孔径が30
μm以上で80μm未満の貫通孔をUVレーザーであけ、80μ
m以上で180μm以下の貫通孔を炭酸ガスレーザーであけ
ることにより、事前に銅箔をエッチング除去する必要も
なく、銅張板の表裏の孔位置のズレも殆どなく、良好な
形状の貫通孔が加工可能であり、且つ、後処理で銅箔の
両表面を平面的にエッチングし、もとの銅箔の一部の厚
さをエッチング除去することにより、同時に孔部に発生
した銅箔のバリをエッチング除去でき、その後の銅メッ
キでメッキアップして得られた表裏銅箔のパターン形成
においても、ショートやパターン切れ等の不良発生もな
く高密度のプリント配線板を作成でき、信頼性に優れた
ものを得ることができた。
EFFECT OF THE INVENTION A method of forming a through hole of 30 to 180 μm on a multilayer double-sided copper clad plate from both sides, and irradiating a laser directly on the copper foil from one side of the multilayer double-sided copper clad plate to form an outer layer copper foil and an insulating layer. And after forming a hole to a part of the thickness direction of the inner layer copper foil, irradiate the laser again from the same position on the opposite side, the hole diameter of the hole is 30
80 μm through holes with a diameter of 80 μm or more
By opening a through hole of m or more and 180 μm or less with a carbon dioxide gas laser, there is no need to remove the copper foil by etching in advance, there is almost no deviation of the hole position on the front and back of the copper clad plate, and a through hole with a good shape is formed. It is workable, and both surfaces of the copper foil are planarly etched in the post-treatment to remove the thickness of part of the original copper foil by etching, so that the burr of the copper foil generated in the holes at the same time. Can be removed by etching, and even in the pattern formation of the front and back copper foil obtained by plating up with copper plating, it is possible to create a high-density printed wiring board without defects such as shorts and pattern breaks, and it has excellent reliability. I was able to get what I had.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例2の貫通孔形成工程(前半)FIG. 1 is a through-hole forming process of the second embodiment (first half).

【図2】 実施例2の貫通孔形成工程(後半)FIG. 2 is a through-hole forming process of the second embodiment (second half).

【図3】 比較例2の貫通孔形成工程FIG. 3 is a through-hole forming step of Comparative Example 2.

【符号の説明】[Explanation of symbols]

a 内層両面銅張積層板 b 1個のプリント配線板 c メカニカルドリルで内層板に形成したターゲットマ
ーク(アライメントマーク) d 断面を見た箇所 e 内層板の貫通孔形成する部分のランド f パターン作製エリア g 内層絶縁層部 h プリプレグで積層成形した部分 i コバルト合金処理した外層銅箔 j 予め貫通孔をあける部分の銅箔をエッチング除去し
た内層銅箔 k CCDカメラ l ターゲットマーク上の外層銅箔をエッチング除去し
た部分 m 4層銅張積層板の内層のターゲットマーク n 炭酸ガスレーザー孔あけで発生した外層銅箔バリ o 炭酸ガスレーザー孔あけで内層銅箔の一部を加工し
た箇所 p 内層銅箔を貫通して途中まであけた孔 q 裏返して反対面から炭酸ガスレーザーを照射してあ
けた貫通孔 r SUEPで薄くエッチングした外層銅箔 s SUEPでエッチング除去した内層銅箔バリ部 t SUEPでエッチング除去した外層銅箔バリ部 u 銅メッキした表層銅箔部及び貫通孔部 v 外層に形成されたパターン w 予めエッチング除去した外層銅箔部 x 一般の電解銅箔 y 貫通孔をあける部分の内層銅箔を予め外層銅箔に形
成した大きさと同じ大きさの孔をエッチング除去した部
分 z 炭酸ガスレーザーで貫通孔をあけた際に生じた孔壁
と外層銅箔との隙間 α 炭酸ガスレーザーで貫通孔をあけた際に生じた孔壁
と内層銅箔との隙間
a Inner-layer double-sided copper-clad laminate b One printed wiring board c Target mark (alignment mark) formed on the inner-layer board with a mechanical drill d Cross-section view e Land of the through-hole forming area of the inner-layer board f Pattern making area g Inner layer Insulation layer h Part laminated and formed with prepreg i Cobalt alloy treated outer layer copper foil j Inner layer copper foil with the copper foil in the part to be pre-drilled removed by etching k CCD camera l Etching the outer layer copper foil on the target mark Removed part m Target mark of inner layer of 4-layer copper clad laminate n Outer layer copper foil burr generated by carbon dioxide laser drilling o Part of inner layer copper foil processed by carbon dioxide laser drilling p Inner layer copper foil Hole penetrated halfway q Inside out copper foil that is thinly etched with SUEP s SUEP with inner layer copper that is turned inside out and a carbon dioxide laser is irradiated from the opposite side Burr portion t Outer copper foil burr portion removed by etching with SUEP u Copper-plated surface copper foil portion and through hole portion v Pattern formed on outer layer w Outer layer copper foil portion previously removed by etching x General electrolytic copper foil y Through hole Area where holes of the same size are formed by etching the inner copper foil of the outer copper foil previously removed by etching z A gap between the hole wall and the outer copper foil created when a through hole was opened with a carbon dioxide laser α Gap between the inner wall and the inner wall of the hole created when a through hole was opened with a carbon dioxide laser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 太郎 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場内 Fターム(参考) 4E068 AA05 AF01 AF02 AJ04 CA01 CA04 CA08 DA11 DB14 5E346 AA42 CC08 CC09 CC32 DD02 FF03 GG15 HH32    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Taro Yoshida             6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Mitsubishi tile             The chemical company Tokyo factory F-term (reference) 4E068 AA05 AF01 AF02 AJ04 CA01                       CA04 CA08 DA11 DB14                 5E346 AA42 CC08 CC09 CC32 DD02                       FF03 GG15 HH32

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多層両面銅張板に30〜180μmの貫通孔を
両側からあける方法であり、多層両面銅張板の片側から
レーザーを外層銅箔の上に直接照射し、外層銅箔と内層
の銅箔の一部に孔を形成した後、反対側の同位置より再
度レーザーを照射して外層銅箔及び内層銅箔を加工して
貫通孔を形成することを特徴とするレーザーによる多層
両面銅張板への貫通孔形成方法。
1. A method of forming a through hole of 30 to 180 μm on both sides of a multilayer double-sided copper clad board by directly irradiating a laser onto the outer side copper foil from one side of the multilayer double-sided copper clad board to form an outer layer copper foil and an inner layer. After forming a hole in a part of the copper foil, laser is irradiated again from the same position on the opposite side to process the outer layer copper foil and the inner layer copper foil to form a through hole. Method for forming through-holes in copper-clad plate
【請求項2】 該孔の孔径が30μm以上で80μm未満の貫
通孔をUVレーザーであけ、80μm以上で180μm以下の貫
通孔を炭酸ガスレーザーであける請求項1記載の多層両
面銅張板への貫通孔形成方法。
2. The multilayer double-sided copper-clad sheet according to claim 1, wherein a through hole having a hole diameter of 30 μm or more and less than 80 μm is opened by a UV laser, and a through hole of 80 μm or more and 180 μm or less is formed by a carbon dioxide gas laser. Through-hole forming method.
【請求項3】 炭酸ガスレーザーを銅箔上に直接照射し
で貫通孔を形成した後、孔周辺に発生した内外層銅箔の
バリを薬液にて溶解除去すると同時に表裏銅箔の厚さ方
向の一部を溶解することを特徴とする請求項1又は2記
載の多層両面銅張板への貫通孔形成方法。
3. A carbon dioxide laser is directly irradiated onto a copper foil to form a through hole, and then burrs of the inner and outer copper foils generated around the hole are dissolved and removed by a chemical solution, and at the same time, thickness directions of the front and back copper foils are removed. 3. A method of forming a through hole in a multilayer double-sided copper clad board according to claim 1 or 2, wherein a part of the above is melted.
JP2002010114A 2002-01-18 2002-01-18 Method of forming through hole through multilayered double-sided copper-clad board with laser beam Pending JP2003218539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010114A JP2003218539A (en) 2002-01-18 2002-01-18 Method of forming through hole through multilayered double-sided copper-clad board with laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010114A JP2003218539A (en) 2002-01-18 2002-01-18 Method of forming through hole through multilayered double-sided copper-clad board with laser beam

Publications (1)

Publication Number Publication Date
JP2003218539A true JP2003218539A (en) 2003-07-31

Family

ID=27647933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010114A Pending JP2003218539A (en) 2002-01-18 2002-01-18 Method of forming through hole through multilayered double-sided copper-clad board with laser beam

Country Status (1)

Country Link
JP (1) JP2003218539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844142A (en) * 2010-04-12 2012-12-26 三菱电机株式会社 Laser-machining device, laser-machining method, and laser-machining control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844142A (en) * 2010-04-12 2012-12-26 三菱电机株式会社 Laser-machining device, laser-machining method, and laser-machining control device
CN102844142B (en) * 2010-04-12 2015-03-04 三菱电机株式会社 Laser-machining device, laser-machining method, and laser-machining control device

Similar Documents

Publication Publication Date Title
US6337463B1 (en) Method of making through hole with laser, copper-clad laminate suitable for making hole, and auxiliary material for making hole
US8377544B2 (en) Glass fabric base material/thermosetting resin copper-clad laminate having a high-elasticity
JP2004330236A (en) Auxiliary sheet for laser boring
JP2009119879A (en) High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP2001135910A (en) Boring method for copper-plated multilayer board with carbon dioxide laser
JP2003209365A (en) Method for forming through-hole on multilayer double side copper-plated board by laser
JP2001044597A (en) Copper clad plate having excellent carbon dioxide laser boring properties
JP2003290958A (en) Method for forming through-hole to multilayered both- side copper clad plate by laser
JP2003218539A (en) Method of forming through hole through multilayered double-sided copper-clad board with laser beam
JP4727013B2 (en) Manufacturing method of multilayer printed wiring board having through hole by carbon dioxide laser processing
JP2001156460A (en) Build-up multilayer printed wiring board
JP4854834B2 (en) Method for forming holes in copper-clad plate using carbon dioxide laser
JP2001007535A (en) Manufacture of multilayer printed wiring board with through-hole of high reliability
JPH11330310A (en) Laser boring copper-plated laminate
JP4826031B2 (en) Formation method of through-hole by carbon dioxide laser
JP4826033B2 (en) Backup sheet for through-hole formation by carbon dioxide laser
JP2001177257A (en) Holing method fort build-up multiplayer printed wiring board
JP2001135911A (en) Boring method on copper-plated board with carbon dioxide
JPH11346044A (en) Backup sheet for making penetration hole by laser
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring
JPH11266067A (en) Forming method of hole for through-hole
JPH11342492A (en) Auxiliary sheet for carbon dioxide laser piercing
JP2000061678A (en) Method for forming through hole by laser beam
JPH11347767A (en) Method of making through-hole on copper-plate sheet by laser
JP2002353637A (en) Multi-layer copper-clad board with good laser direct boring processability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070425