JP2003290958A - Method for forming through-hole to multilayered both- side copper clad plate by laser - Google Patents

Method for forming through-hole to multilayered both- side copper clad plate by laser

Info

Publication number
JP2003290958A
JP2003290958A JP2002095751A JP2002095751A JP2003290958A JP 2003290958 A JP2003290958 A JP 2003290958A JP 2002095751 A JP2002095751 A JP 2002095751A JP 2002095751 A JP2002095751 A JP 2002095751A JP 2003290958 A JP2003290958 A JP 2003290958A
Authority
JP
Japan
Prior art keywords
copper foil
hole
holes
laser
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002095751A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Taro Yoshida
太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002095751A priority Critical patent/JP2003290958A/en
Publication of JP2003290958A publication Critical patent/JP2003290958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for boring through-holes of 30 to 180 μm in hole diameter by directly irradiating the surface of a multilayered both-side copper clad plate with a laser. <P>SOLUTION: First, the points to be bored with the through-holes of the inner layer substrate (a) are previously formed with holes (e) by etching copper foil (j) at the diameter smaller than the diameter of the through-holes and thereafter the multilayered both-side copper clad plate is manufactured by performing multilayer molding. The top of the outer layer copper foil (i) in the bored positions of the inner layer is directly irradiated with the laser to form the holes through the points formed with the holes by previously etching the copper foil of the outer layer copper foil (i), an insulating layer (h) and inner layer copper foil (j) and thereafter, the copper foil is again irradiated with the laser from the same position on the opposite surface and is worked in the same manner, by which the holes penetrating the front and rear are formed. Accordingly, the through-holes having a good hole shape and excellent reliability can be bored and the high-density printed wiring board which has through holes of small diameter and is formed with the fine and dense patterns can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層両面銅張板の表面
及び裏面銅箔からUV(エキシマ、YAG)レーザー及び/又
は炭酸ガスレーザーを直接照射して貫通孔を形成する方
法であり、得られた貫通孔を有する両面多層銅張板は、
小径の孔を有する、高密度の小型プリント配線板とし
て、新規な半導体プラスチックパッケージ、マザーボー
ド用等に使用される。
TECHNICAL FIELD The present invention relates to a method of directly irradiating a UV (excimer, YAG) laser and / or a carbon dioxide laser from front and back copper foils of a multilayer double-sided copper clad board to form a through hole, The obtained double-sided multilayer copper clad plate having through holes,
As a high-density small printed wiring board with small diameter holes, it is used for new semiconductor plastic packages, motherboards, etc.

【0002】[0002]

【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度の多層プリント配線板は、スルーホ
ール用の貫通孔を金属ドリルであけていた。近年、ます
ますドリルの径は小径となり、孔径が150μmφ以下とな
ってきており、このような小径の孔をあける場合、ドリ
ル径が細いため、孔あけ時に金属ドリルが曲がる、折れ
る、加工速度が遅い等の欠点があり、生産性、信頼性等
に問題のあるものであった。
2. Description of the Related Art Conventionally, in a high-density multilayer printed wiring board used for a semiconductor plastic package or the like, a through hole for a through hole is formed by a metal drill. In recent years, the diameter of drills has become smaller and smaller, and the hole diameter has become less than 150 μmφ.When drilling such small holes, the drill diameter is thin, so the metal drill bends, breaks, and the processing speed is high. However, there were drawbacks such as slowness, and there were problems with productivity, reliability, etc.

【0003】また、スルーホール用貫通孔をあける場
合、上下の銅箔にあらかじめネガフィルムを使用して所
定の方法で同じ大きさの孔をあけておき、炭酸ガスレー
ザーで上下を貫通して貫通孔を形成しようとすると、上
下の孔の位置にズレを生じ、ランドが形成しにくい等の
欠点があった。
When a through hole for a through hole is to be formed, holes of the same size are prepared in advance by using a negative film on the upper and lower copper foils, and the upper and lower sides are penetrated by a carbon dioxide laser. When a hole is to be formed, there is a defect that the positions of the upper and lower holes are displaced and the land is difficult to form.

【0004】一方、銅箔の表面に処理を施し、この上か
ら銅箔に直接炭酸ガスレーザーで孔あけを行い、貫通孔
をあける方法があるが、多層銅張積層板の内層銅箔前後
の絶縁層の加工度が異なるために孔径が均一でない等の
欠点があった。
On the other hand, there is a method in which the surface of the copper foil is treated, and then the copper foil is directly perforated with a carbon dioxide laser to form through holes. Since the insulating layers have different degrees of processing, there are drawbacks such as non-uniform pore size.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決した、多層両面銅張板の孔形状良好な小径のス
ルーホール用貫通孔を形成する方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention provides a method for solving the above problems and forming a through hole for a through hole having a good hole shape in a multilayer double-sided copper clad board.

【0006】[0006]

【発明が解決するための手段】多層両面銅張板に30〜18
0μmの貫通孔をあける方法において、予め内層銅箔の貫
通孔をあける箇所に、貫通孔径より小さい孔をエッチン
グしてあけておいた内層板を用いて作製した多層両面銅
張板の片面からレーザーを銅箔の上に直接照射し、外層
銅箔、絶縁層及び予め孔をあけておいた内層銅箔部を貫
通して孔を形成した後、反対側の同位置より再度レーザ
ーを照射して外層銅箔、絶縁層及び予め孔をあけておい
た内層銅箔部を貫通して貫通孔を形成することにより、
特に厚く、内層銅箔層数の多層銅張板の孔形状の良好な
ものが得られる。
A multi-layer double-sided copper clad board with 30-18
In the method of forming a through hole of 0 μm, laser is applied from one side of a multilayer double-sided copper clad plate prepared by using an inner layer plate in which a hole smaller than the through hole diameter is preliminarily etched at the place where the through hole of the inner layer copper foil is formed. After directly irradiating on the copper foil, after forming a hole through the outer layer copper foil, the insulating layer and the inner layer copper foil portion that has been pre-drilled, irradiate the laser again from the same position on the opposite side. By forming a through-hole through the outer-layer copper foil, the insulating layer and the inner-layer copper foil portion that has been pre-drilled,
In particular, a multilayer copper clad plate having a large number of inner copper foil layers and a good hole shape can be obtained.

【0007】貫通孔の孔径が30μm以上で80μm未満の貫
通孔をUVレーザーであけ、80μm以上で180μm以下の貫
通孔を炭酸ガスレーザーであけるが、これに限定される
ものではない。又、表層銅箔加工をUVレーザーで行い、
その後に炭酸ガスレーザーで孔あけする方法でも加工で
きる。それ以外にUVレーザーと炭酸ガスレーザーとの任
意の組み合わせで孔あけ可能である。
The through holes having a diameter of 30 μm or more and less than 80 μm can be opened by a UV laser, and the through holes having a diameter of 80 μm or more and 180 μm or less can be formed by a carbon dioxide laser, but not limited to this. Also, the surface copper foil processing is performed with a UV laser,
After that, it can be processed by a method of making holes with a carbon dioxide laser. Other than that, it is possible to make holes with an arbitrary combination of a UV laser and a carbon dioxide laser.

【0008】炭酸ガスレーザーを厚い銅箔上に直接照射
しで貫通孔を形成した場合、その後、孔周辺に銅箔のバ
リが発生する。この表層銅箔バリは機械的研磨で取るこ
とも可能であるが、完全にバリを取るためには銅箔の両
表面を厚さ方向に平面的に元の銅箔の一部の厚さをエッ
チング除去すると同時に、孔部に張り出した内外層銅箔
バリもエッチング除去することが好ましく、孔周囲の銅
箔が残存した貫通孔を形成することによって、接続信頼
性にも優れ、スルーホールは上下曲がることもなく形成
でき、且つ、表層銅箔が薄くなるために、その後の金属
メッキでメッキアップして得られた表裏銅箔の細線の回
路形成において、ショートやパターン切れ等の不良の発
生もなく、高密度のプリント配線板を作成することがで
きる。また、加工速度はメカニカルドリルであける場合
に比べて格段に速く、生産性も良好で、経済性にも優れ
ているものが得られ、更に表裏の孔位置ズレも殆どない
貫通孔を得ることができた。
When a through hole is formed by directly irradiating a thick copper foil with a carbon dioxide laser, after that, a burr of the copper foil occurs around the hole. This surface copper foil burr can be removed by mechanical polishing, but in order to completely remove the burr, both surfaces of the copper foil should be planarized in the thickness direction so that a part of the original copper foil has a flat thickness. At the same time as the etching removal, it is preferable to remove the inner and outer layer copper foil burrs overhanging the holes as well.By forming a through hole in which the copper foil around the hole remains, the connection reliability is excellent and the through hole is It can be formed without bending, and since the surface copper foil becomes thin, defects such as shorts and pattern breaks may occur in the circuit formation of the fine wire of the front and back copper foil obtained by plating up with the subsequent metal plating. Without, it is possible to create a high-density printed wiring board. In addition, the processing speed is much faster than that of a mechanical drill, the productivity is good, and the economy is excellent. Furthermore, it is possible to obtain a through hole with almost no hole position deviation between the front and back. did it.

【0009】[0009]

【発明の実施の形態】本発明は、レーザーを用いて、3
層以上の銅の層を有する多層両面銅張板に小径で形状の
良好な貫通孔をあける方法に関する。UVレーザーを使用
して銅箔の表面上から直接孔あけを行い、内層銅箔に作
製した予め孔をエッチングしてあけておいた箇所を貫通
した後に多層両面銅張板をひっくり返し、反対面銅箔上
にレーザーを直接照射して外層銅箔及び絶縁層を加工し
て貫通孔をあける。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a laser to
The present invention relates to a method for forming a through hole having a small diameter and a good shape in a multilayer double-sided copper clad board having at least two copper layers. Holes are directly drilled from the surface of the copper foil using a UV laser, the holes are made in the inner copper foil by etching, and the holes are pierced. A laser is directly irradiated on the copper foil to process the outer copper foil and the insulating layer to form a through hole.

【0010】或いは炭酸ガスレーザーを用いて、表層の
銅箔の表面に孔あけ用補助材料を配置するか、ニッケル
及び/又はコバルト、更には公知の合金処理を施した銅
箔を使うか、銅箔表面を黒色酸化銅処理、薬液処理等を
施すか、銅箔の厚さの薄いものを使用して、この銅箔の
上に直接炭酸ガスレーザービームを照射して外層の銅
箔、絶縁層及び予めエッチングで銅箔に孔をあけておい
た箇所の内層銅箔を貫通加工してから、多層両面銅張板
をひっくり返して反対面から同様にレーザービームを照
射し、外層の銅箔、絶縁層及び予め銅箔をエッチングし
て孔をあけておいた内層銅箔箇所を貫通して表裏貫通し
た貫通孔をあける。炭酸ガスレーザーで孔あけした場
合、銅箔が厚いと形成した孔部に銅箔のバリが発生する
が、この内外層バリを薬液でエッチング除去すると同時
に表裏の銅箔の厚さ方向の一部をエッチング除去する。
この薄銅化、バリ取りにより、その後の銅メッキにおい
て、孔部のメッキによる張り出しもなく、表裏の銅箔の
メッキ後の総厚さも薄く保持でき、細密パターン形成に
適したものが得られ、高密度のプリント配線板が作製で
きる。
Alternatively, by using a carbon dioxide laser, an auxiliary material for drilling is arranged on the surface of the copper foil on the surface layer, nickel and / or cobalt, or a copper foil which has been subjected to a known alloy treatment is used. Apply black carbon oxide treatment, chemical treatment, etc. on the foil surface, or use a thin copper foil and irradiate a carbon dioxide gas laser beam directly onto this copper foil to form an outer copper foil or insulating layer. And, after processing the inner layer copper foil at the location where holes have been made in the copper foil by etching in advance, turn over the multilayer double-sided copper clad plate and irradiate the same with a laser beam from the opposite side, the outer layer copper foil, A through hole is formed by penetrating the insulating layer and the inner copper foil portion where the copper foil has been previously etched to make a hole. When drilling with a carbon dioxide laser, if the copper foil is thick, burr of the copper foil will occur in the formed hole, but this inner and outer layer burr is etched away with a chemical solution and at the same time a part of the front and back copper foil in the thickness direction Are removed by etching.
Due to this thinning of copper and deburring, in the subsequent copper plating, there is no overhang due to the plating of the holes, the total thickness of the front and back copper foil after plating can be kept thin, and a suitable one for fine pattern formation can be obtained. A high-density printed wiring board can be manufactured.

【0011】多層両面銅張板の炭酸ガスレーザーによる
孔あけにおいて、レーザーを照射する表面に、融点900
℃で、且つ原子の結合エネルギー300kJ/mol 以上の酸化
金属粉、カーボン、又は金属粉の1種以上を水溶性樹脂
等の樹脂に混合した塗料を、銅箔表面に塗布、乾燥して
塗膜とするか、熱可塑性フィルムの片面に上記塗料を塗
布して得られる孔あけ用補助材料を配置し、好適には銅
箔面に接着させて、その上から炭酸ガスレーザーを直接
表面に照射して銅箔を加工除去する。また、銅箔のシャ
イニー面に、ニッケル金属層、コバルト金属層、それら
の合金層を形成した銅箔を用いて銅張板を作製し、この
上から直接炭酸ガスレーザーを照射することにより小径
の孔を外層に形成できる。更には、一般の銅箔を張った
銅張板の銅箔表面を、黒色酸化銅処理で処理するか、薬
液によって銅箔表面を処理して微細な凹凸を形成する等
を行い、その後直接炭酸ガスレーザーを照射することに
より外層に孔を形成できる。その後、絶縁層を加工し、
更に内層銅箔を予めエッチングで孔をあけておいた箇所
を貫通加工して孔あけしてから、多層両面銅張板をひっ
くり返して同様に孔あけし、表裏が貫通した孔を形成す
る。
When drilling a multi-layer double-sided copper clad plate with a carbon dioxide gas laser, the surface irradiated with the laser has a melting point of 900
A coating that mixes at least one kind of metal oxide powder, carbon, or metal powder having an atomic binding energy of 300 kJ / mol or more with a resin such as a water-soluble resin at a temperature of ℃, is dried on the copper foil surface, and then is coated. Or, arrange the auxiliary material for perforation obtained by applying the above-mentioned paint to one side of the thermoplastic film, preferably adhered to the copper foil surface, and directly irradiate the surface with carbon dioxide gas laser. Process and remove the copper foil. In addition, on the shiny surface of the copper foil, a copper clad plate is prepared using a copper foil having a nickel metal layer, a cobalt metal layer, and an alloy layer thereof, and a carbon dioxide laser is directly irradiated onto the copper clad plate to reduce the diameter of the copper foil. The holes can be formed in the outer layer. Furthermore, the copper foil surface of a copper clad plate overlaid with a general copper foil is treated with black copper oxide treatment, or the copper foil surface is treated with a chemical solution to form fine irregularities, and then carbon dioxide is directly applied. The holes can be formed in the outer layer by irradiating with a gas laser. After that, the insulating layer is processed,
Further, the inner layer copper foil is subjected to perforation at a portion where a hole has been previously formed by etching to form a hole, and then the multilayer double-sided copper clad plate is turned upside down and similarly perforated to form a hole having front and back sides penetrating therethrough.

【0012】本発明で使用する補助材料の中の、融点90
0℃以上で、且つ、結合エネルギー300kJ/mol 以上の金
属化合物としては、一般に公知のものが使用できる。具
体的には、酸化物としては、酸化チタン等のチタニア
類、酸化マグネシウム等のマグネシア類、酸化鉄等の鉄
酸化物、酸化ニッケル等のニッケル酸化物、二酸化マン
ガン、酸化亜鉛等の亜鉛酸化物、二酸化珪素、酸化アル
ミニウム、希土類酸化物、酸化コバルト等のコバルト酸
化物、酸化錫等のスズ酸化物、酸化タングステン等のタ
ングステン酸化物、等が挙げられる。非酸化物として
は、炭化珪素、炭化タングステン、窒化硼素、窒化珪
素、窒化チタン、窒化アルミニウム、硫酸バリウム、希
土類酸硫化物等、一般に公知のものが挙げられる。その
他、カーボンも使用できる。更に、その酸化金属粉の混
合物である各種ガラス類が挙げられる。又、カーボン粉
が挙げられ、更に銀、アルミニウム、ビスマス、コバル
ト、銅、鉄、マグネシウム、マンガン、モリブデン、ニ
ッケル、パラジウム、アンチモン、ケイ素、錫、チタ
ン、バナジウム、タングステン、亜鉛等の単体、或いは
それらの合金の金属粉が使用される。これらは一種或い
は二種以上が組み合わせて使用される。平均粒子径は、
特に限定しないが、1μm以下が好ましい。
Among the auxiliary materials used in the present invention, the melting point of 90
As the metal compound having a binding energy of 300 kJ / mol or more at 0 ° C. or higher, generally known compounds can be used. Specifically, as the oxide, titania such as titanium oxide, magnesia such as magnesium oxide, iron oxide such as iron oxide, nickel oxide such as nickel oxide, zinc oxide such as manganese dioxide and zinc oxide. , Silicon dioxide, aluminum oxide, rare earth oxides, cobalt oxides such as cobalt oxide, tin oxides such as tin oxide, and tungsten oxides such as tungsten oxide. Examples of the non-oxide include generally known ones such as silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, barium sulfate, and rare earth oxysulfide. In addition, carbon can also be used. Further, various kinds of glass which are a mixture of the metal oxide powder can be mentioned. Further, carbon powder may be mentioned, and further, simple substances such as silver, aluminum, bismuth, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, antimony, silicon, tin, titanium, vanadium, tungsten, zinc, or the like. The metal powder of the alloy is used. These are used alone or in combination of two or more. The average particle size is
Although not particularly limited, it is preferably 1 μm or less.

【0013】炭酸ガスレーザーの照射で分子が原子に解
離するために、金属が孔壁等に付着して、半導体チッ
プ、孔壁密着性等に悪影響を及ぼさないようなものが好
ましい。Na,K,Clイオン等は、特に半導体の信頼
性に悪影響を及ぼすため、これらの成分を含むものは好
適でない。配合量は、3〜97容積%、好適には5〜95容積%
が使用され、水溶性樹脂に配合され、均一に分散され
る。
Since molecules are dissociated into atoms by irradiation with a carbon dioxide laser, it is preferable that the metal does not adhere to the pore wall and the like and does not adversely affect the semiconductor chip, the adhesion to the pore wall and the like. Since Na, K, Cl ions, etc., particularly adversely affect the reliability of the semiconductor, those containing these components are not suitable. The compounding amount is 3 to 97% by volume, preferably 5 to 95% by volume.
Is mixed with the water-soluble resin and uniformly dispersed.

【0014】補助材料中の樹脂は特に限定はしないが、
加工後に付着した場合に除去するのに水溶性樹脂が好ま
しい。この水溶性樹脂としては、特に制限はしないが、
混練して銅箔表面に塗布、乾燥した場合、或いはシート
状とした場合、剥離欠落しないものを選択する。例えば
ポリビニルアルコール、ポリエステル、ポリエーテルポ
リオール、ポリエチレンオキサイド、澱粉等、一般に公
知の樹脂が使用される。
The resin in the auxiliary material is not particularly limited,
A water-soluble resin is preferable to be removed when it adheres after processing. The water-soluble resin is not particularly limited,
When kneading is applied to the surface of the copper foil, dried, or formed into a sheet, a material that does not peel off is selected. For example, generally known resins such as polyvinyl alcohol, polyester, polyether polyol, polyethylene oxide and starch are used.

【0015】金属化合物粉、カーボン粉、又は金属粉の
1種以上と樹脂からなる組成物を調整する方法は、特に
限定しないが、ニーダー等で無溶剤にて高温で練り、熱
可塑性フィルム上にシート状に押し出して付着する方
法、水又は水溶性有機溶剤に水溶性樹脂を溶解させ、こ
れに上記粉体を加え、均一に攪拌混合して、これを用
い、塗料として熱可塑性フィルム上に塗布、乾燥して膜
を形成する方法等、一般に公知の方法が使用できる。厚
みは、特に限定はないが、直接表層銅箔に塗布する場
合、好適には20〜200μm、熱可塑性フィルムに塗布する
場合、総厚み30〜200μmとして使用する。
The method for preparing a composition comprising a metal compound powder, carbon powder, or at least one kind of metal powder and a resin is not particularly limited, but it is kneaded at a high temperature in a solvent-free manner, and is kneaded on a thermoplastic film. A method of extruding and adhering to a sheet shape, dissolving a water-soluble resin in water or a water-soluble organic solvent, adding the above powder to it, stirring and mixing uniformly, and using this, coating it on a thermoplastic film as a paint A generally known method such as a method of drying to form a film can be used. The thickness is not particularly limited, but when it is directly applied to the surface copper foil, it is preferably 20 to 200 μm, and when it is applied to the thermoplastic film, the total thickness is 30 to 200 μm.

【0016】炭酸ガスレーザーは、赤外線波長域にある
9.3〜10.6μmの波長が一般に使用される。エネルギーは
5〜60mJ、好適には7〜50mJ にてパルス発振で銅箔を加
工し、孔をあける。エネルギーは表層の銅箔上の処理、
銅箔の厚さによって適宜選択する。
The carbon dioxide laser is in the infrared wavelength range.
Wavelengths of 9.3 to 10.6 μm are commonly used. Energy is
The copper foil is processed by pulse oscillation at 5 to 60 mJ, preferably 7 to 50 mJ, and holes are drilled. Energy is processed on the surface copper foil,
It is appropriately selected depending on the thickness of the copper foil.

【0017】UVレーザーは、UV波長のレーザー光を照射
して孔あけするものであり、波長は特に限定はないが、
一般に200〜400nm、1.06μm の波長が使用される。特に
ソリッドステートUVレーザーが使用される。これは、有
機物に極力熱の影響を与えないで、有機物を構成してい
る分子結合を断ち切るメカニズムで加工するものであ
る。孔の中は炭酸ガスレーザーに比べて炭素が発生せ
ず、クリーンなために、その後の銅メッキを信頼性良く
付着させることができる。UVレーザー波長は短いため
に、銅にも吸収され、孔あけ補助材料を使用しないでも
直接銅張板の上にレーザーを照射することにより、銅箔
への孔あけ、更には絶縁層の孔あけが可能である。UVレ
ーザーは、特に限定はなく、エキシマレーザー、Nd-YAG
レーザー等公知のものが使用される。
The UV laser is for irradiating a laser beam having a UV wavelength to make a hole, and the wavelength is not particularly limited.
Generally, wavelengths of 200-400 nm and 1.06 μm are used. Especially solid state UV lasers are used. In this method, the organic substance is processed by a mechanism of breaking the molecular bond constituting the organic substance without giving the influence of heat to the utmost. Carbon is not generated in the holes as compared with the carbon dioxide laser, and the holes are clean, so that the subsequent copper plating can be deposited with high reliability. Since the UV laser wavelength is short, it is also absorbed by copper, and by irradiating the laser directly on the copper-clad plate without using a hole-aiding material, holes can be made in the copper foil and even in the insulating layer. Is possible. The UV laser is not particularly limited, excimer laser, Nd-YAG
Known ones such as laser are used.

【0018】レーザーの貫通孔をあける多層両面銅張板
の内層又は外層の表裏同位置にターゲットマーク(アラ
イメントマークとも言う)を、少なくともワークサイズ
の3隅、好ましくは4隅以上に事前に形成しておく。更
に好ましくは、各々1個の面付けしたプリント配線板の
4隅に形成する。このターゲットマークをCCDカメラで
読み込んだ後、孔あけを行うことにより、孔の形成位置
が正確で、表裏の孔位置が殆どずれることなく、同位置
に貫通孔をあけることができる。孔内部の表裏孔位置ズ
レによる貫通孔のズレが5-10μm程度あるが、孔径が大
きいために特にスルーホールのメッキ不良になることは
ない。
Target marks (also referred to as alignment marks) are formed in advance on at least three corners of the work size, preferably four corners or more, at the same position on the front and back sides of the inner layer or outer layer of the multilayer double-sided copper clad plate in which a laser through hole is formed. Keep it. More preferably, it is formed at each of the four corners of the printed wiring board with one imposition. By reading this target mark with a CCD camera and then making a hole, the hole forming position is accurate, and the through hole can be formed at the same position with almost no deviation between the front and back hole positions. The displacement of the through hole due to the displacement of the front and back holes inside the hole is about 5-10 μm, but due to the large diameter of the hole, there is no particular defective plating of the through hole.

【0019】本発明で使用する銅張板は、3層以上の銅
の層を有する多層両面銅張板であり、公知のものが使用
できる。熱硬化性樹脂多層両面銅張積層板としては、無
機、有機基材の公知の熱硬化性多層両面銅張積層板、表
層又は内部に樹脂付き銅箔シート、フィルムを使用した
多層板等、一般に公知の構成の多層銅張板、また、ポリ
イミドフィルム、ポレエステルフィルム、ポリパラバン
酸フィルム、全芳香族ポリアミドフィルム等の基材の銅
張板が挙げられるが、好適には積層成形時に寸法収縮等
が小さい基材のものが使用される。
The copper-clad board used in the present invention is a multi-layer double-sided copper-clad board having three or more copper layers, and known ones can be used. The thermosetting resin multilayer double-sided copper-clad laminate, inorganic, known thermosetting multilayer double-sided copper-clad laminate of an organic substrate, a copper foil sheet with a resin in the surface layer or inside, a multilayer plate using a film, etc. Multilayer copper clad plate of known configuration, also, a polyimide film, a polyester film, a polyparabanic acid film, a copper clad plate of a substrate such as a wholly aromatic polyamide film can be mentioned, but preferably dimensional shrinkage during lamination molding. A small substrate is used.

【0020】基材補強多層両面銅張積層板は、まず補強
基材に熱硬化性樹脂組成物を含浸、乾燥させてBステー
ジとし、プリプレグを作成する。次に、このプリプレグ
を所定枚数重ね、その外側に銅箔を配置して、加熱、加
圧下に積層成形し、銅張積層板とする。銅箔の種類は特
に限定はないが、好適には電解銅箔を使用する。これは
ニッケル箔、その合金箔等も使用可能である、内層銅箔
の厚みは好適には12〜35μmである。この内層基板用銅
張積層板に、必要によりメカニカルドリル、レーザー等
で貫通孔をあけ、デスミア処理後の回路形成時に貫通孔
をあける箇所の銅箔を貫通孔径より小さい、好適には貫
通孔の50〜80%の径で孔をエッチングしてあけ、銅箔表
面の黒色酸化銅処理等の化学処理を行い、その両面にプ
リプレグ、Bステージ樹脂シート等を配置し、その外側
に銅箔を配置するか、内層板の両側に銅箔付きBステー
ジ樹脂シートを配置し、加熱、加圧、好適には真空下に
積層成形して多層両面銅張積層板とする。外層銅箔の厚
みは、好適には5〜12μmである。外層も一般の金属箔、
例えばニッケル箔、合金箔でも使用できる。
In the base material-reinforced multilayer double-sided copper-clad laminate, a reinforcing base material is first impregnated with a thermosetting resin composition and dried to prepare a B stage to prepare a prepreg. Next, a predetermined number of the prepregs are stacked, a copper foil is arranged on the outer side of the prepregs, and the prepreg is laminated under heat and pressure to form a copper-clad laminate. The type of copper foil is not particularly limited, but electrolytic copper foil is preferably used. A nickel foil, an alloy foil thereof, or the like can be used for this. The thickness of the inner copper foil is preferably 12 to 35 μm. In this copper clad laminate for the inner layer substrate, if necessary, a through hole is formed with a mechanical drill, a laser, etc., and the copper foil at the place where the through hole is formed during circuit formation after desmearing is smaller than the through hole diameter, preferably the through hole. Holes with a diameter of 50 to 80% are etched and opened, chemical treatment such as black copper oxide treatment is performed on the copper foil surface, prepreg, B stage resin sheet, etc. are placed on both sides, and copper foil is placed on the outside. Alternatively, the B-stage resin sheet with copper foil is placed on both sides of the inner layer board, and laminated under heat, pressure, and preferably under vacuum to form a multilayer double-sided copper clad laminate. The thickness of the outer layer copper foil is preferably 5 to 12 μm. The outer layer is also a general metal foil,
For example, nickel foil or alloy foil can be used.

【0021】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。具体的には、無機の繊維
としては、具体的にはE、S、D、M、NEガラス等の繊
維等が挙げらる。又、有機繊維としては、全芳香族ポリ
アミド、液晶ポリエステル等一般に公知の繊維等が挙げ
られる。これらは、混抄でも良い。また、フィルム基材
も挙げられる。
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specific examples of the inorganic fiber include E, S, D, M and NE glass fibers. Examples of the organic fiber include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed papers. Moreover, a film base material can also be used.

【0022】本発明使用される熱硬化性樹脂組成物の樹
脂としては、一般に公知の熱硬化性樹脂が使用される。
具体的には、一般に公知のエポキシ樹脂、多官能性シア
ン酸エステル樹脂、 多官能性マレイミドーシアン酸エ
ステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポ
リフェニレンエーテル樹脂、等が挙げられ、1種或いは2
種類以上が組み合わせて使用される。出力の高い炭酸ガ
スレーザー照射による加工でのスルーホール形状の点か
らは、ガラス転移温度が150℃以上の熱硬化性樹脂組成
物が好ましく、更には無機充填剤を10〜80重量%、好適
には15〜60重量%配合したものを使用する。耐湿性、耐
マイグレーション性、吸湿後の電気的特性等の点から多
官能性シアン酸エステル樹脂組成物が好適である。
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used.
Specifically, generally known epoxy resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanate ester resin, polyfunctional maleimide resin, unsaturated group-containing polyphenylene ether resin, and the like, 1 type Or 2
More than one type is used in combination. From the viewpoint of the through-hole shape in the processing by high-power carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable, and further an inorganic filler is 10 to 80% by weight, preferably Is used in an amount of 15 to 60% by weight. A polyfunctional cyanate ester resin composition is preferable from the viewpoints of moisture resistance, migration resistance, electrical characteristics after moisture absorption, and the like.

【0023】本発明の好適な熱硬化性樹脂分である多官
能性シアン酸エステル化合物とは、分子内に2個以上の
シアナト基を有する化合物である。具体的に例示する
と、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシア
ナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-
ジシアナトナフタレン、1,3,6-トリシアナトナフタレ
ン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフ
ェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパ
ン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロ
パン、ビス(4-シアナトフェニル)エーテル、ビス(4-シ
アナトフェニル)チオエーテル、ビス(4-シアナトフェニ
ル)スルホン、トリス(4-シアナトフェニル)ホスファイ
ト、トリス(4-シアナトフェニル)ホスフェート、および
ノボラックとハロゲン化シアンとの反応により得られる
シアネート類などである。これらの公知のBr付加化合物
も挙げられる。
The polyfunctional cyanate ester compound which is a suitable thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-
Dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2- Bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulphone, tris (4-cis) Anatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac with cyanogen halide. These known Br addition compounds are also included.

【0024】これらのほかに特公昭41-1928、同43-1846
8、同44-4791、同45-11712、同46-41112、同47-26853及
び特開昭51-63149等に記載の多官能性シアン酸エステル
化合物類、シアナト化ポリフェニレンエーテル樹脂も用
いら得る。また、これら多官能性シアン酸エステル化合
物のシアナト基の三量化によって形成されるトリアジン
環を有する分子量400〜6,000 のモノマーとプレポリマ
ーの混合物が使用される。このプレポリマーは、上記の
多官能性シアン酸エステルモノマーを、例えば鉱酸、ル
イス酸等の酸類;ナトリウムアルコラート等、第三級ア
ミン類等の塩基;炭酸ナトリウム等の塩類等を触媒とし
て重合させることにより得られる。このプレポリマー中
には一部未反応のモノマーも含まれており、モノマーと
プレポリマーとの混合物の形態をしており、このような
原料は本発明の用途に好適に使用される。一般には可溶
な有機溶剤に溶解させて使用する。
[0024] In addition to these, Japanese Patent Publications 41-1928 and 43-1846
8, the same 44-4791, the same 45-11712, the same 46-41112, the same 47-26853 and polyfunctional cyanate ester compounds described in JP-A-51-63149, cyanate polyphenylene ether resin may also be used. . Further, a mixture of a prepolymer and a monomer having a molecular weight of 400 to 6,000 and having a triazine ring formed by trimerization of cyanato groups of these polyfunctional cyanate compounds is used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate ester monomer using, for example, acids such as mineral acid and Lewis acid; bases such as sodium alcoholate and tertiary amines; salts such as sodium carbonate as a catalyst. It is obtained by The prepolymer also contains some unreacted monomer and is in the form of a mixture of the monomer and the prepolymer. Such a raw material is suitably used for the purpose of the present invention. Generally, it is used by dissolving it in a soluble organic solvent.

【0025】エポキシ樹脂としては、一般に公知のもの
が使用できる。具体的には、液状或いは固形のビスフェ
ノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタ
ジエン、ペンタジエン、ビニルシクロヘキセン、ジシク
ロペンチルエーテル等の二重結合をエポキシ化したポリ
エポキシ化合物類;ポリオール、水酸基含有シリコン樹
脂類とエポハロヒドリンとの反応によって得られるポリ
グリシジル化合物類、更にはエポキシ化ポリフェニレン
エーテル樹脂等が挙げられる。また、これらの公知のBr
含有物、リン含有物が挙げられる。これらは1種或いは2
種類以上が組み合わせて使用され得る。
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. Polyepoxy compounds having epoxidized double bond thereof; polyol, polyglycidyl compounds obtained by reaction of hydroxyl group-containing silicone resins with epohalohydrin, and further epoxidized polyphenylene ether resin. In addition, these known Br
Examples include inclusions and phosphorus inclusions. These are 1 or 2
More than one type can be used in combination.

【0026】ポリイミド樹脂としては、一般に公知のも
のが使用され得る。具体的には、多官能性マレイミド類
とポリアミン類との反応物、特公昭57-005406 に記載の
末端三重結合のポリイミド類が挙げられる。
As the polyimide resin, a generally known one can be used. Specific examples thereof include reaction products of polyfunctional maleimides and polyamines, and polyimides having a terminal triple bond described in JP-B-57-005406.

【0027】これらの熱硬化性樹脂は、単独でも使用さ
れるが、特性のバランスを考え、適宜組み合わせて使用
するのが良い。
Although these thermosetting resins can be used alone, it is preferable to use them in combination in consideration of the balance of properties.

【0028】本発明の熱硬化性樹脂組成物には、組成物
本来の特性が損なわれない範囲で、所望に応じて種々の
添加物を配合することができる。これらの添加物として
は、不飽和ポリエステル等の重合性二重結合含有モノマ
ー類及びそのプレポリマー類;ポリブタジエン、エポキ
シ化ブタジエン、マレイン化ブタジエン、ブタジエン-
アクリロニトリル共重合体、ポリクロロプレン、ブタジ
エン-スチレン共重合体、ポリイソプレン、ブチルゴ
ム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量
のelasticなゴム類;ポリエチレン、ポリプロピレン、ポ
リブテン、ポリ-4-メチルペンテン、ポリスチレン、AS
樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、
アクリルゴム、これらのコアシェルゴム、ポリエチレン
-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチ
レン共重合体類;ポリカーボネート、ポリフェニレンエ
ーテル、ポリスルホン、ポリエステル、ポリフェニレン
サルファイド等の高分子量プレポリマー若しくはオリゴ
マー;ポリウレタン等が例示され、適宜使用される。ま
た、その他、公知の有機、無機の充填剤、染料、顔料、
増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感
剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の
各種添加剤が、所望に応じて適宜組み合わせて用いられ
る。特にレーザーでの孔形成には樹脂の加工速度が基材
より大きいため、孔形状を良好にするために一般に公知
の無機充填剤を添加するのが好ましい。又、必要によ
り、反応基を有する化合物を配合した場合は硬化剤、触
媒が適宜配合され得る。
Various additives can be added to the thermosetting resin composition of the present invention as desired, as long as the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyester and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-
Low molecular weight liquid to high molecular weight elastic rubbers such as acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, polyisoprene, butyl rubber, fluororubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methyl Penten, polystyrene, AS
Resin, ABS resin, MBS resin, styrene-isoprene rubber,
Acrylic rubber, these core shell rubber, polyethylene
-Propylene copolymers, 4-fluorinated ethylene-6-fluorinated ethylene copolymers; high molecular weight prepolymers or oligomers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide; polyurethane and the like are used as appropriate. To be done. In addition, other known organic and inorganic fillers, dyes, pigments,
Various additives such as a thickener, a lubricant, an antifoaming agent, a dispersant, a leveling agent, a photosensitizer, a flame retardant, a brightening agent, a polymerization inhibitor, and a thixotropic agent are appropriately combined and used as desired. To be In particular, in the case of forming holes with a laser, the processing speed of the resin is higher than that of the substrate. Therefore, it is preferable to add a generally known inorganic filler in order to improve the shape of the holes. If necessary, when a compound having a reactive group is added, a curing agent and a catalyst may be added appropriately.

【0029】本発明の熱硬化性樹脂組成物は、それ自体
は加熱により硬化するが硬化速度が遅く、作業性、経済
性等に劣るため使用した熱硬化性樹脂に対して公知の熱
硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量
部に対して0.005〜10重量部、好ましくは0.01〜5重量部
である。
The thermosetting resin composition of the present invention is itself cured by heating, but has a slow curing rate and is inferior in workability, economical efficiency and the like. Therefore, a known thermosetting catalyst for the thermosetting resin used. Can be used. The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.

【0030】銅張積層板の積層条件は、特に限定はない
が、一般には温度100〜280℃、好適には120〜250℃で、
圧力は一般には2〜50kgf/cm2 ,好適には5〜30kgf/cm2
で、好適には真空下で積層成形する。
The lamination conditions of the copper clad laminate are not particularly limited, but generally, the temperature is 100 to 280 ° C, preferably 120 to 250 ° C,
The pressure is generally 2 to 50 kgf / cm 2 , preferably 5 to 30 kgf / cm 2.
Then, it is preferable to laminate-mold under a vacuum.

【0031】炭酸ガスレーザーを、出力5〜60mJでパル
ス発振にて照射して貫通孔を形成した場合、銅箔の厚み
が例えば7〜12μmと厚い場合には孔周辺はバリが発生す
る。そのため、炭酸ガスレーザー照射後、銅箔の両表面
を平面的に厚さ方向を、好適には薬液でエッチングし、
もとの金属箔の一部の厚さを除去することにより、同時
にバリも除去し、且つ、薄くなった表層銅箔は細密パタ
ーン形成に適しており、高密度のプリント配線板を作製
できる。この場合、機械研磨よりはエッチングの方が、
孔部のバリ除去、研磨による寸法変化等の点から好適で
ある。
When a through hole is formed by irradiating a carbon dioxide laser with pulse oscillation at an output of 5 to 60 mJ, when the thickness of the copper foil is as thick as 7 to 12 μm, burrs are generated around the hole. Therefore, after carbon dioxide laser irradiation, both surfaces of the copper foil are planarly etched in the thickness direction, preferably with a chemical solution,
By removing a part of the thickness of the original metal foil, burrs are also removed at the same time, and the thinned surface copper foil is suitable for forming a fine pattern, and a high-density printed wiring board can be manufactured. In this case, etching is better than mechanical polishing.
It is preferable from the viewpoints of removing burrs from the holes and changing the dimensions due to polishing.

【0032】また、UVレーザーでもバリは発生する場合
があり、このバリも同様な手法で取り除くことが可能で
ある。
Burrs may also be generated by the UV laser, and these burrs can be removed by a similar method.

【0033】本発明の孔部に発生した銅のバリをエッチ
ング除去する方法としては、特に限定しないが、例え
ば、特開平02-22887、同02-22896、同02-25089、同02-2
5090、同02-59337、同02-60189、同02-166789、同03-25
995、同03-60183、同03-94491、同04-199592、同04-263
488で開示された、薬品で金属表面を溶解除去する方法
(SUEP法と呼ぶ)による。エッチング速度は、0.02
〜1.0μm/秒 で行う。又、薬液を吹き付けるか、貫通孔
内を吸引して通し、内層銅箔バリをエッチング除去する
方法等が好適に使用される。
The method of etching away the copper burr generated in the holes of the present invention is not particularly limited, but for example, JP-A-02-22887, 02-22896, 02-25089, 02-2.
5090, 02-59337, 02-60189, 02-166789, 03-25
995, same 03-60183, same 03-94491, same 04-199592, same 04-263
Method for dissolving and removing metal surfaces with chemicals disclosed in 488
(Called the SUEP method). Etching rate is 0.02
Perform at ~ 1.0 μm / sec. Further, a method of spraying a chemical solution or sucking the inside of the through hole to remove the inner layer copper foil burr by etching is preferably used.

【0034】[0034]

【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン100部を150℃に溶融させ、
撹拌しながら4時間反応させてモノマーとプレポリマー
の混合物を得た。これをメチルエチルケトンとジメチル
ホルムアミドの混合溶剤に溶解した。これにビスフェノ
ールA型エポキシ樹脂(商品名:エピコート1001、油化シ
ェルエポキシ<株>製)400部、クレゾールノボラック型
エポキシ樹脂(商品名:ESCN-220F、住友化学工業<株>
製)600部を加え、均一に溶解混合した。更に触媒として
オクチル酸亜鉛0.4部を加え、溶解混合し、これに無機
充填剤(商品名:焼成タルク、日本タルク<株>製)2000
部を加え、均一撹拌混合してワニスAを得た。このワニ
スを厚さ100μmのガラス織布に含浸し150℃で乾燥し
て、ゲル化時間(at170℃)120秒、熱硬化性樹脂組成物の
含有量が47重量%のプリプレグ(プリプレグB)及び熱硬化
性樹脂組成物の含有量が58重量%のプリプレグ(プリプレ
グC)を作製した。厚さ25μmの電解銅箔を、上記プリプ
レグB6枚の上下に配置し、200℃、20kgf/cm2、30mmHg
以下の真空下で2時間積層成形し、絶縁層厚み0.6mm
の両面銅張積層板Dを得た。この両面銅張積層板Dのワ
ーキングサイズ内の各プリント配線板の4隅のターゲッ
トマークの位置に、径0.5mmのメカニカルドリルで1つ
ずつ丁寧に貫通孔をあけた。この4隅のターゲットマー
ク用貫通孔に焼き付け用フィルムを合わせて定法にてパ
ターンを作製すると同時に、貫通孔をあける位置の銅箔
を径70μmでエッチングした。この内層板銅箔に黒色酸
化銅処理を施した後、両面にプリプレグCを各1枚配置
し、その外側に厚さ12μmの電解銅箔を配置して同様に
積層成形し、4層両面銅張積層板を作製した。このター
ゲットマークの箇所の上の銅箔を3mm径でエッチング除
去し、4層両面銅張積層板Eとした。
The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise specified, “part” means part by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane, bis (4-
Maleimide phenyl) 100 parts of methane is melted to 150 ℃,
The mixture was reacted for 4 hours with stirring to obtain a mixture of a monomer and a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 400 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, Yuka Shell Epoxy Co., Ltd.), cresol novolac type epoxy resin (trade name: ESCN-220F, Sumitomo Chemical Co., Ltd.)
(Manufactured by Mitsui Chemicals Co., Ltd.) was added and uniformly dissolved and mixed. Furthermore, 0.4 parts of zinc octylate was added as a catalyst, dissolved and mixed, and this was mixed with inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.)
Parts were added and mixed with uniform stirring to obtain a varnish A. A glass woven cloth having a thickness of 100 μm was impregnated with this varnish and dried at 150 ° C., gelling time (at 170 ° C.) 120 seconds, and the content of the thermosetting resin composition was 47 wt% prepreg (prepreg B) and A prepreg (prepreg C) containing 58% by weight of the thermosetting resin composition was prepared. Electrolytic copper foil with a thickness of 25 μm is placed above and below the above six prepreg B sheets, and the temperature is 200 ° C, 20 kgf / cm 2 , 30 mmHg.
Laminated and molded for 2 hours under the following vacuum, insulation layer thickness 0.6mm
A double-sided copper-clad laminate D was obtained. Through holes were carefully drilled one by one with a mechanical drill having a diameter of 0.5 mm at the positions of the target marks at the four corners of each printed wiring board within the working size of the double-sided copper-clad laminate D. A baking film was put in the through holes for the target marks at the four corners to form a pattern by a standard method, and at the same time, the copper foil at the position where the through holes were to be opened was etched with a diameter of 70 μm. After this inner layer copper foil is treated with black copper oxide, one prepreg C is placed on each side, and an electrolytic copper foil with a thickness of 12 μm is placed on the outside of the copper foil, and laminated in the same manner. A stretched laminate was prepared. The copper foil on the target mark was removed by etching with a diameter of 3 mm to obtain a 4-layer double-sided copper-clad laminate E.

【0035】一方、金属粉として黒色酸化銅粉(平均粒
子径:0.8μm)800部に、ポリビニルアルコール粉体を
水に溶解したワニスに加え、均一に攪拌混合した(ワニ
スF)。これを厚さ25μmのポリエチレンテレフタレー
トフィルム片面上に、厚さ60μmとなるように塗布し、
110℃で30分間乾燥して、金属化合物含有量65容積%の
補助材料Gを形成した。上記多層両面銅張積層板Eの表裏
に補助材料Fを、4隅のターゲットマークの上を被覆し
ないように樹脂面が銅箔側を向くように配置し、温度10
0℃のロールにて、線圧5kgf/cmでラミネートし、接着さ
せた。CCDカメラで内層板の4隅にあるターゲットマー
クを読み込み、この多層両面銅張積層板の表面から、内
層基板に予め銅箔をエッチングしてあけた箇所に孔径12
0μmの孔を900個直接炭酸ガスレーザーで、パルスエネ
ルギー30mJで4ショット照射して、70ブロックに、外層
銅箔、絶縁層、及び内層銅箔を貫通して孔あけした。次
にこれを裏返し、同様にCCDカメラで内層板の4隅にあ
るターゲットマークを読み込み、反対面である裏面の同
位置に120μmの孔を同一エネルギーで4ショット照射し
て外層銅箔、絶縁層及び内層銅箔を加工して表裏を貫通
する孔をあけた。この表裏の孔位置ズレは最大5μmであ
った。SUEP法にて、薬液を孔内部に吸引して通し、
内外層孔周辺に発生した銅箔バリを溶解除去すると同時
に、表面の銅箔も4μmまで溶解した。この板に通常の方
法にて銅メッキを15μm(総厚み:19μm)施した。この表
裏に、既存の方法にてパターン(ライン/スペース=50/5
0μmを200個)、ハンダボール用ランド等を形成し、少な
くとも半導体チップ部、ボンディング用端子部、ハンダ
ボールランド部を除いてメッキレジストで被覆し、ニッ
ケル、金メッキを施し、多層プリント配線板を作成し
た。この多層プリント配線板の評価結果を表1に示す。
On the other hand, 800 parts of black copper oxide powder (average particle diameter: 0.8 μm) as a metal powder was added to a varnish prepared by dissolving polyvinyl alcohol powder in water, and uniformly stirred and mixed (varnish F). This is coated on one side of a 25 μm thick polyethylene terephthalate film so that the thickness is 60 μm,
After drying at 110 ° C. for 30 minutes, auxiliary material G having a metal compound content of 65% by volume was formed. Auxiliary material F is arranged on the front and back of the multilayer double-sided copper clad laminate E so that the resin surface faces the copper foil side so as not to cover the target marks at the four corners, and the temperature is set to 10
A roll at 0 ° C. was laminated at a linear pressure of 5 kgf / cm and adhered. The target marks at the four corners of the inner layer board were read with a CCD camera, and the hole diameter of 12
900 holes of 0 μm were directly irradiated with a carbon dioxide laser with a pulse energy of 30 mJ for 4 shots, and 70 blocks were punched through the outer copper foil, the insulating layer and the inner copper foil. Next, turn this over, and similarly read the target marks at the four corners of the inner layer plate with a CCD camera, irradiate the same position on the back side, which is the opposite side, with a 120 μm hole at the same energy for four shots, and then use the outer copper foil and insulating layer. And the inner layer copper foil was processed to form holes penetrating the front and back. The maximum deviation of the hole positions between the front and back was 5 μm. By the SUEP method, the chemical solution is sucked and passed through the inside of the hole,
At the same time as the copper foil burr generated around the inner and outer layer holes was dissolved and removed, the copper foil on the surface was also dissolved to 4 μm. The plate was plated with copper by 15 μm (total thickness: 19 μm) by a usual method. Patterns (line / space = 50/5
(200 μm of 0 μm), solder ball lands, etc. are formed, and at least semiconductor chips, bonding terminals, and solder ball lands are covered with plating resist, and nickel and gold plating is applied to create a multilayer printed wiring board. did. Table 1 shows the evaluation results of this multilayer printed wiring board.

【0036】実施例2 エポキシ樹脂(商品名:エピコート5045)700部、及びエポ
キシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35
部、2-エチル-4-メチルイミダゾール1部をメチルエチル
ケトンとジメチルホルムアミドの混合溶剤に溶解し、さ
らに実施例1の焼成タルクを800部を加え、強制撹拌し
て均一分散し、ワニスを得た。これを厚さ100μmのガラ
ス織布に含浸、乾燥して、ゲル化時間150秒、熱硬化性
樹脂組成物含有量48重量%のプリプレグ(プリプレグH)及
び熱硬化性樹脂組成物含有量57重量%のプリプレグ(プリ
プレグI)を作製した。このプリプレグHを8枚使用し、
両面に厚さ18μmの電解銅箔を置き,190℃、20kgf/cm2
30mmHg以下の真空下で2時間積層成形して絶縁層厚さ
0.8mmの両面銅張積層板Jを作製した。この銅箔表面
にパターンを形成し、貫通孔を形成する位置の銅箔を径
80μmでエッチング除去し、各プリント配線板の4隅に
ターゲットマークを実施例1と同様にドリルで作製し、
銅箔表面に薬液処理(メック処理:CZ8110+CL8300E処
理、銅箔表面凹凸3μm)を施してから、その両面にプリ
プレグIを各1枚配置し、その両面に、銅箔シャイニー
面をニッケル・コバルト合金処理した厚さ12μmの電解
銅箔を置き、同様に積層成形して4層両面銅張積層板Kを
作製した。
Example 2 700 parts of epoxy resin (trade name: Epicoat 5045), 300 parts of epoxy resin (trade name: ESCN220F), dicyandiamide 35
And 1 part of 2-ethyl-4-methylimidazole were dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was forcibly stirred and uniformly dispersed to obtain a varnish. This was impregnated into a glass woven fabric having a thickness of 100 μm and dried, and a gelling time of 150 seconds, a thermosetting resin composition content of 48 wt% prepreg (prepreg H) and a thermosetting resin composition content of 57 wt% % Prepreg (prepreg I) was prepared. Use 8 pieces of this prepreg H,
Place 18μm thick electrolytic copper foil on both sides, 190 ℃, 20kgf / cm 2 ,
A double-sided copper-clad laminate J having an insulating layer thickness of 0.8 mm was produced by laminating and forming under a vacuum of 30 mmHg or less for 2 hours. A pattern is formed on the surface of this copper foil, and the copper foil at the position where the through hole is to be formed
Etching off at 80 μm, and making target marks at four corners of each printed wiring board by drilling in the same manner as in Example 1,
After chemical treatment (mech treatment: CZ8110 + CL8300E treatment, copper foil surface unevenness 3 μm) is applied to the copper foil surface, one prepreg I is placed on each side, and the copper foil shiny surface is nickel / cobalt on both sides. An alloy-treated electrolytic copper foil having a thickness of 12 μm was placed, and similarly laminated and formed to prepare a four-layer double-sided copper-clad laminate K.

【0037】この多層両面銅張積層板Kの内層板に形成
したターゲットマーク表面の表裏銅箔を径2mmφでエッ
チング除去し、表面からターゲットマークを読みとれる
ようにした。この表面からCCDカメラで内層に形成され
たターゲットマークを読みとり、表面から炭酸ガスレー
ザーエネルギー12mJで4ショット照射して外層銅箔、絶
縁層更に内層銅箔を加工した後、更にこの多層両面銅張
積層板を裏返し、同様にCCDカメラで内層に形成された
ターゲットマークを読みとり、同位置に裏面となる銅箔
上から12mJのエネルギーで4ショット照射して外層銅
箔、絶縁層及び内層銅箔を加工して表裏を貫通して孔径
120μmの貫通孔をあけた。この孔位置ズレは最大7μmで
あった。これを用い、同様に多層プリント配線板とし
た。評価結果を表1に示す。
The front and back copper foil on the surface of the target mark formed on the inner layer plate of this multilayer double-sided copper-clad laminate K was removed by etching with a diameter of 2 mmφ so that the target mark could be read from the surface. After reading the target mark formed on the inner layer with a CCD camera from this surface, irradiating 4 shots with carbon dioxide gas laser energy of 12 mJ from the surface to process the outer layer copper foil, insulating layer and inner layer copper foil, and then further this multilayer double-sided copper clad Turn the laminate upside down, read the target mark formed on the inner layer with a CCD camera in the same way, and irradiate 4 shots at the same position on the backside copper foil with 12 mJ of energy to expose the outer copper foil, insulating layer and inner copper foil. Processed through both front and back hole diameter
A 120 μm through hole was formed. The maximum positional deviation was 7 μm. Using this, a multilayer printed wiring board was similarly prepared. The evaluation results are shown in Table 1.

【0038】比較例1 実施例1の多層両面銅張積層板Eを用い、下面にバックッ
プシートを使用せず、銅張板を少し浮かして下面を空気
層とし、炭酸ガスレーザーエネルギー35mJで12ショット
照射して貫通孔あけを行なったが、内層銅箔周辺の孔形
状が大きくなり、又下孔の周囲に加工屑が付着した。SU
EP処理を行い、同様に多層プリント配線板とした。評価
結果を表1に示す。
Comparative Example 1 Using the multilayer double-sided copper clad laminate E of Example 1, without using a back sheet on the lower surface, the copper clad board was slightly floated to form an air layer on the lower surface, and carbon dioxide laser energy was 35 mJ for 12 shots. When irradiation was performed to form a through hole, the shape of the hole around the inner layer copper foil became large, and processing chips adhered to the periphery of the pilot hole. SU
EP treatment was performed to obtain a multilayer printed wiring board in the same manner. The evaluation results are shown in Table 1.

【0039】比較例2 実施例2の両面銅張積層板Jの内層となる箇所に孔径120
μmの孔を定法にてエッチングしてあけ、同時にパター
ンも形成した。この銅箔表面に黒色酸化銅処理を施した
後、その両側にプリプレグIを各1枚配置し、その外側
に一般の12μm電解銅箔を配置し、実施例2と同様の条
件で積層成形し、4層両面銅張積層板を得た。この内層
の銅箔の孔径120μmの孔をあけた箇所と同一箇所に定
法にて表層銅箔をエッチングしてあけ、この上から炭酸
ガスエネルギー15mJを7ショット照射して貫通孔をあけ
た。デスミア処理を施し、SUEP処理を行わず、銅メッキ
を15μm施し、表裏に回路を形成し、同様に多層プリン
ト配線板を作成した。評価結果を表1に示す。
COMPARATIVE EXAMPLE 2 A hole diameter of 120 is provided at an inner layer of the double-sided copper clad laminate J of Example 2.
A μm hole was etched by a conventional method to form a pattern at the same time. After this copper foil surface is subjected to black copper oxide treatment, one prepreg I is placed on each side of the copper foil, and a general 12 μm electrolytic copper foil is placed on the outside of the prepreg I, and laminated molding is performed under the same conditions as in Example 2. A four-layer double-sided copper clad laminate was obtained. The surface copper foil was etched by a conventional method at the same location as the location where a hole having a pore diameter of 120 μm was formed in this inner layer copper foil, and 15 mJ of carbon dioxide gas energy was irradiated for 7 shots to form a through hole. Desmear treatment was performed, SUEP treatment was not performed, copper plating was performed at 15 μm, circuits were formed on the front and back surfaces, and a multilayer printed wiring board was similarly prepared. The evaluation results are shown in Table 1.

【0040】比較例3 実施例1の多層両面銅張積層板Eを用い、この上に厚さ10
0μmのアルミニウム箔を置き、裏面に厚さ1.6mmの紙フ
ェノール板を置き、径120μmのメカニカルドリルで貫
通孔をあけた。デスミア処理後、銅メッキを15μm付着
させ、SUEP処理を行わず同様に多層プリント配線板とし
た。評価結果を表1に示す。
Comparative Example 3 The multilayer double-sided copper clad laminate E of Example 1 was used, and a thickness of 10
A 0 μm aluminum foil was placed, a 1.6 mm-thick paper phenol plate was placed on the back surface, and a through hole was made with a mechanical drill having a diameter of 120 μm. After the desmear treatment, copper plating was adhered to a thickness of 15 μm and the multilayer printed wiring board was similarly prepared without the SUEP treatment. The evaluation results are shown in Table 1.

【0041】 ( 表1) 項目 実施例 比較例 1 2 1 2 3 表裏孔位置のズレ (μm) 5 7 <5 21 38 孔壁と内層銅箔との隙間(μm) 0 0 0 16 0 孔形状 ほぼ円形 ほぼ円形 不定形 不定形 円形 パターン切れ及び ショート (個) 0/200 0/200 0/200 51/200 47/200 孔周辺銅箔欠落 無し 無し 無し 有り 無し ガラス転移温度 (℃) 235 160 235 160 235 スルーホール・ヒートサイクル試験(%) 2.4 3.9 17.9 27.1 2.8 耐マイグレーション性 常態 1x1014 2x1014 ー ー ー 300hrs. 4x1011 4x109 ー ー ー 500hrs. 5x1010 <108 ー ー ー(Table 1) Item Example Comparative Example 1 2 1 2 3 Deviation of front and back hole positions (μm) 5 7 <5 21 38 Gap between hole wall and inner copper foil (μm) 0 0 0 16 0 Hole shape Almost circular Almost circular Irregularly irregular Irregularly circular pattern breaks and shorts (pieces) 0/200 0/200 0/200 51/200 47/200 Missing copper foil around holes No No No Yes No No Glass transition temperature (℃) 235 160 235 160 235 Through-hole heat cycle test (%) 2.4 3.9 17.9 27.1 2.8 Migration resistance Normal 1x10 14 2x10 14ー ー 300hrs. 4x10 11 4x10 9ー ー 500hrs. 5x10 10 <10 8ー ー

【0042】<測定方法> 1)表裏孔位置のズレ及び表面孔と内層孔位置のズレ: ワ
ークサイズ250mm角内に、孔径100μmの孔を900孔/ブロ
ック として70ブロック作成し(孔計63,000孔)作成
し、表裏及び孔壁と内層銅箔の孔位置のズレの最大値を
測定した。 2)パターン切れ、及びショート: 実施例、比較例で作製
した孔のあいている銅張板に銅メッキを15μm付着させ
たものを用い、ライン/スペース=50/50μm の櫛形パタ
ーンを作成した後、拡大鏡でエッチング後の200パター
ンを目視にて観察し、パターン切れ、及びショートして
いるパターンの合計を分子に示した。 3)ガラス転移温度: JIS C6481のDMA法にて測定し
た。 4)スルーホール・ヒートサイクル試験: 各実施例、比較
例において、孔径120μmのスルーホールに200μmのラン
ドをで作製し、900孔を表裏交互につなぎ、1サイクル
が、260℃・ハンダ・浸せき30秒→室温・5分 で、200サ
イクル実施し、抵抗値の変化率の最大値を示した。 5)ランド周辺銅箔切れ: SUEP後に孔周辺に銅箔が残存し
ているか欠落しているかを観察した。 6)耐マイグレーション性: 各実施例、比較例において、
内層基板にライン/スペーシ=50/50μmで櫛形パターン
を作製し、黒色酸化銅処理後に、この上に各実施例、比
較例において、それぞれ用いたプリプレグを使用して積
層成形して4層板を作製し、表層の銅箔をエッチング除
去した後、これを85℃・85%RH・50VDC印加し、所定時間
処理後に取り出して25℃・65%RHの雰囲気下に2時間放置
後、500VDCの電圧を印加してパターン間の絶縁抵抗値を
測定した。
<Measurement method> 1) Deviation of front and back hole position and deviation of surface hole and inner layer hole position: 70 blocks were created with a hole size of 100 μm as 900 holes / block within a work size of 250 mm square (a total of 63,000 holes). ) Was prepared, and the maximum value of the deviation of the hole position between the front and back and the hole wall and the inner layer copper foil was measured. 2) Pattern break and short circuit: After forming a comb-shaped pattern of line / space = 50/50 μm using a copper clad plate with holes made in Examples and Comparative Examples to which copper plating was adhered by 15 μm The 200 patterns after etching were visually observed with a magnifying glass, and the total number of broken and short patterns was shown in the molecule. 3) Glass transition temperature: Measured by the DMA method of JIS C6481. 4) Through-hole heat cycle test: In each example and comparative example, a 200-μm land was made in a through-hole with a hole diameter of 120 μm, and 900 holes were connected alternately on the front and back sides. 200 cycles were carried out from seconds to room temperature for 5 minutes, and the maximum rate of change in resistance was shown. 5) Copper foil break around land: After SUEP, it was observed whether copper foil remained around the hole or was missing. 6) Migration resistance: In each Example and Comparative Example,
A comb-shaped pattern was formed on the inner layer substrate with a line / space = 50/50 μm, and after the black copper oxide treatment, a prepreg used in each of the examples and comparative examples was laminated and molded to form a four-layer board. After making and removing the copper foil on the surface layer by etching, apply this at 85 ℃ ・ 85% RH ・ 50VDC, and after processing for a predetermined time, take it out and leave it in an atmosphere of 25 ℃ ・ 65% RH for 2 hours, then apply a voltage of 500VDC. Was applied to measure the insulation resistance value between the patterns.

【0043】[0043]

【発明の効果】多層両面銅張板に30〜180μmの貫通孔を
両側からあける方法であり、まず内層基板の貫通孔をあ
ける箇所に予め貫通孔径より小さい径で銅箔をエッチン
グして孔を形成しておき、その後多層成形して多層両面
銅張板を作製してから、内層の孔あけした位置の外層銅
箔上にレーザーを直接照射して外層銅箔、絶縁層及び内
層銅箔の予め銅箔をエッチングして孔を形成しておいた
箇所を貫通して孔を形成した後、反対面の同位置より再
度レーザーを照射して外層銅箔、絶縁層及び予め銅箔を
エッチングして孔を形成しておいた内層銅箔を貫通して
表裏を貫通する孔を形成することにより、事前に外層銅
箔をエッチング除去する必要もなく、銅張板の表裏の孔
位置のズレも殆どなく、良好な形状の貫通孔が形成でき
た。更に後処理で銅箔の両表面を平面的にエッチング
し、もとの銅箔の一部の厚さをエッチング除去すると同
時に孔部に発生した銅箔のバリをエッチング除去でき、
その後の銅メッキでメッキアップして得られた表裏銅箔
の回路形成においても、ショートやパターン切れ等の不
良発生もなく、内層銅箔との接続も良好な高密度のプリ
ント配線板を作成でき、信頼性に優れたものを得ること
ができた。
EFFECTS OF THE INVENTION A method of forming a through hole of 30 to 180 μm on a multilayer double-sided copper clad plate from both sides. After forming, and then multilayer molding to produce a multilayer double-sided copper clad board, laser is directly irradiated on the outer layer copper foil at the position where the inner layer is perforated to form the outer layer copper foil, the insulating layer and the inner layer copper foil. After forming a hole through the place where the copper foil was previously etched to form the hole, the outer layer copper foil, the insulating layer and the copper foil were previously etched by irradiating the laser again from the same position on the opposite surface. By forming holes that penetrate the front and back of the inner layer copper foil that has been formed with holes, it is not necessary to etch and remove the outer layer copper foil in advance, and the position of the holes on the front and back of the copper clad plate can be misaligned. Almost no through holes having a good shape could be formed. Furthermore, both surfaces of the copper foil can be planarly etched by post-treatment, and the thickness of part of the original copper foil can be removed by etching, and at the same time, the burrs of the copper foil generated in the holes can be removed by etching.
Even in the circuit formation of the front and back copper foil obtained by plating up with subsequent copper plating, defects such as shorts and pattern breaks do not occur, and it is possible to create a high-density printed wiring board that is well connected to the inner copper foil. , I was able to obtain a highly reliable one.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例2の貫通孔形成工程(前半)FIG. 1 is a through-hole forming process of the second embodiment (first half).

【図2】 実施例2の貫通孔形成工程(後半)FIG. 2 is a through-hole forming process of the second embodiment (second half).

【図3】 比較例2の貫通孔形成工程FIG. 3 is a through-hole forming step of Comparative Example 2.

【符号の説明】[Explanation of symbols]

a 内層両面銅張積層板 b 1個のプリント配線板 c メカニカルドリルで内層板に形成したターゲットマ
ーク(アライメントマーク) d 断面を見た箇所 e 予めあける貫通孔より小さめの径でエッチングして
形成した内層板の貫通孔形成部分 f パターン作製エリア g 内層絶縁層部 h プリプレグで積層成形した部分 i コバルト合金処理した外層銅箔 j 予め貫通孔をあける部分の銅箔をエッチング除去し
た内層銅箔 k CCDカメラ l ターゲットマーク上の外層銅箔をエッチング除去し
た部分 m 4層銅張積層板の内層のターゲットマーク n 炭酸ガスレーザー孔あけで発生した外層銅箔バリ o 炭酸ガスレーザー孔あけで発生した内層銅箔バリ p 内層銅箔を貫通して途中まであけた孔 q 裏返して反対面から炭酸ガスレーザーを照射して
あけた貫通孔 r SUEPで薄くエッチングした外層銅箔 s SUEPでエッチング除去した内層銅箔バリ部 t SUEPでエッチング除去した外層銅箔バリ部 u 銅メッキした表層銅箔部及び貫通孔部 v 外層に形成されたパターン w 予めエッチング除去した外層銅箔部 x 一般の電解銅箔 y 貫通孔をあける部分の内層銅箔を予め外層銅箔に
形成した大きさと同じ大きさの孔をエッチング除去した
部分 z 炭酸ガスレーザーで貫通孔をあけた際に生じた孔
壁と外層銅箔との隙間 α 炭酸ガスレーザーで貫通孔をあけた際に生じた孔
壁と内層銅箔との隙間
a Inner layer double-sided copper clad laminate b One printed wiring board c Target mark (alignment mark) formed on the inner layer board with a mechanical drill d Location seen from cross section e Formed by etching with a diameter smaller than the through hole to be drilled in advance Through-hole forming part of inner layer f Pattern formation area g Inner insulating layer part h Layer formed by prepreg i Outer layer copper foil treated with cobalt alloy j Inner layer copper foil obtained by etching away the copper foil at the part where the through hole is to be formed in advance k CCD Camera l Part of the target mark where the outer layer copper foil is removed by etching m Target mark of the inner layer of the 4-layer copper clad laminate n Outer layer copper foil burr generated by carbon dioxide gas laser drilling o Inner layer copper generated by carbon dioxide gas laser drilling Foil burr p A hole halfway through the inner layer copper foil q A reverse etching, through which a carbon dioxide laser was applied from the opposite side, and a through hole r SUEP for thin etching Outer layer copper foil s Inner layer copper foil burr part removed by etching with SUEP t Outer layer copper foil burr part removed by etching with SUEP u Copper plated surface layer copper foil part and through hole part v Pattern formed on outer layer w Outer layer removed by etching in advance Copper foil part x General electrolytic copper foil y Part of the inner layer copper foil of the part where the through hole is to be formed is removed by etching the hole of the same size as the size of the outer layer copper foil previously formed z When the through hole is opened by carbon dioxide laser Gap between the hole wall and the outer layer copper foil α Gap between the hole wall and the inner layer copper foil generated when a through hole was opened with a carbon dioxide laser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 太郎 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場内 Fターム(参考) 4E068 AA01 AF01 CA08 DA11 DB14 5E346 AA29 AA42 CC04 CC05 CC09 CC10 CC12 CC13 CC32 CC37 DD02 DD12 DD32 EE01 EE06 EE09 EE13 FF07 GG15 GG17 GG22 GG28 HH07 HH22 HH25 HH26 HH33    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Taro Yoshida             6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Mitsubishi tile             The chemical company Tokyo factory F-term (reference) 4E068 AA01 AF01 CA08 DA11 DB14                 5E346 AA29 AA42 CC04 CC05 CC09                       CC10 CC12 CC13 CC32 CC37                       DD02 DD12 DD32 EE01 EE06                       EE09 EE13 FF07 GG15 GG17                       GG22 GG28 HH07 HH22 HH25                       HH26 HH33

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多層両面銅張板に30〜180μmの貫通孔を
両側からあける方法であり、まず内層基板の貫通孔をあ
ける箇所に予め貫通孔径より小さい径で銅箔をエッチン
グして孔を形成しておき、その後多層成形して多層両面
銅張板を作製してから、外層銅箔の片面にレーザーを直
接照射して外層銅箔、絶縁層及び内層銅箔の予め銅箔を
エッチングして孔を形成しておいた箇所を貫通して孔を
形成した後、反対面の同位置より再度レーザーを照射し
て外層銅箔、絶縁層及び予め銅箔をエッチングして孔を
形成しておいた内層銅箔を貫通して貫通孔を形成するこ
とを特徴とするレーザーによる多層両面銅張板への貫通
孔形成方法。
1. A method of forming a through hole of 30 to 180 μm on both sides of a multi-layer double-sided copper clad plate by first etching a copper foil with a diameter smaller than the through hole diameter in advance at the place where the through hole of the inner layer substrate is to be formed. After forming it, and then forming a multilayer double-sided copper clad board by multi-layer molding, one side of the outer layer copper foil is directly irradiated with a laser to etch the outer layer copper foil, the insulating layer and the inner layer copper foil in advance. After forming a hole through the place where the hole was formed, laser is irradiated again from the same position on the opposite surface to etch the outer copper foil, the insulating layer and the copper foil in advance to form the hole. A method of forming a through hole in a multilayer double-sided copper clad plate by a laser, which comprises forming a through hole through the inner layer copper foil.
【請求項2】 該内層銅箔をエッチングして予め形成す
る孔径が、貫通孔径の50〜80%である請求項1記載のレ
ーザーによる多層両面銅張板への貫通孔形成方法。
2. The method for forming a through hole in a multilayer double-sided copper clad board by a laser according to claim 1, wherein the hole diameter preformed by etching the inner layer copper foil is 50 to 80% of the through hole diameter.
JP2002095751A 2002-03-29 2002-03-29 Method for forming through-hole to multilayered both- side copper clad plate by laser Pending JP2003290958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095751A JP2003290958A (en) 2002-03-29 2002-03-29 Method for forming through-hole to multilayered both- side copper clad plate by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095751A JP2003290958A (en) 2002-03-29 2002-03-29 Method for forming through-hole to multilayered both- side copper clad plate by laser

Publications (1)

Publication Number Publication Date
JP2003290958A true JP2003290958A (en) 2003-10-14

Family

ID=29239099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095751A Pending JP2003290958A (en) 2002-03-29 2002-03-29 Method for forming through-hole to multilayered both- side copper clad plate by laser

Country Status (1)

Country Link
JP (1) JP2003290958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081961A (en) * 2011-10-06 2013-05-09 Disco Corp Ablation method for passivation film-laminated substrate
JP2016041448A (en) * 2015-11-18 2016-03-31 株式会社ディスコ Ablation processing method for passivation film-laminated substrate
KR20160089823A (en) * 2015-01-20 2016-07-28 (주)엔에스 Laser cutting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081961A (en) * 2011-10-06 2013-05-09 Disco Corp Ablation method for passivation film-laminated substrate
KR20160089823A (en) * 2015-01-20 2016-07-28 (주)엔에스 Laser cutting apparatus
KR101659497B1 (en) * 2015-01-20 2016-09-23 (주)엔에스 Laser cutting apparatus
JP2016041448A (en) * 2015-11-18 2016-03-31 株式会社ディスコ Ablation processing method for passivation film-laminated substrate

Similar Documents

Publication Publication Date Title
KR100630487B1 (en) Method of making through hole with laser, copper-clad laminate suitable for making hole, and auxiliary material for making hole
JP2009119879A (en) High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP2001135910A (en) Boring method for copper-plated multilayer board with carbon dioxide laser
JP2003290958A (en) Method for forming through-hole to multilayered both- side copper clad plate by laser
JP2003209365A (en) Method for forming through-hole on multilayer double side copper-plated board by laser
JP2001044597A (en) Copper clad plate having excellent carbon dioxide laser boring properties
JP4727013B2 (en) Manufacturing method of multilayer printed wiring board having through hole by carbon dioxide laser processing
JP4854834B2 (en) Method for forming holes in copper-clad plate using carbon dioxide laser
JP2001007535A (en) Manufacture of multilayer printed wiring board with through-hole of high reliability
JP2001156460A (en) Build-up multilayer printed wiring board
JP4826031B2 (en) Formation method of through-hole by carbon dioxide laser
JP2001308493A (en) Method for forming hole by carbonic acid gas laser and method for posttreating
JP2003218539A (en) Method of forming through hole through multilayered double-sided copper-clad board with laser beam
JPH11330310A (en) Laser boring copper-plated laminate
JP4826033B2 (en) Backup sheet for through-hole formation by carbon dioxide laser
JPH11342492A (en) Auxiliary sheet for carbon dioxide laser piercing
JPH11320174A (en) Auxiliary material for carbon dioxide gas laser boring
JP2002353637A (en) Multi-layer copper-clad board with good laser direct boring processability
JP2001177257A (en) Holing method fort build-up multiplayer printed wiring board
JP2001156461A (en) Build-up multilayer printed wiring board
JP2001135911A (en) Boring method on copper-plated board with carbon dioxide
JP2001156424A (en) Method of boring hole on copper-clad board
JP2003188492A (en) Method of boring through hole through double-sided copper-plated board with laser beam
JP2001111235A (en) Method of manufacturing flip-chip mounting high-density multilayer printed interconnection board
JPH11346044A (en) Backup sheet for making penetration hole by laser