TW201134590A - Laser processing method and laser processing device - Google Patents

Laser processing method and laser processing device Download PDF

Info

Publication number
TW201134590A
TW201134590A TW100105771A TW100105771A TW201134590A TW 201134590 A TW201134590 A TW 201134590A TW 100105771 A TW100105771 A TW 100105771A TW 100105771 A TW100105771 A TW 100105771A TW 201134590 A TW201134590 A TW 201134590A
Authority
TW
Taiwan
Prior art keywords
defect
irradiation
laser light
region
laser
Prior art date
Application number
TW100105771A
Other languages
Chinese (zh)
Inventor
Takayuki Akahane
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of TW201134590A publication Critical patent/TW201134590A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides a laser processing method and a laser processing device capable of reliably correcting defects. The invented laser processing method uses a laser beam for correcting defects on a substrate and comprises: a step of obtaining information regarding the location of a defect, a step of correspondingly moving an irradiation part, and a step of irradiation of laser beam. The step of obtaining information regarding the location of a defect comprises obtaining information regarding the location of a defect. The step of corresponding moving an irradiation part comprises moving a laser beam irradiation part of the above-mentioned laser beam relative to the above-mentioned substrate based on the above-mentioned location information so that the above-mentioned defect is located in the irradiable region. The step of irradiation of laser beam comprises setting an irradiation region on a non-patterned region of the above-mentioned substrate not based on the above-mentioned location of defect and using the above-mentioned laser beam irradiation part for irradiating the above-mentioned laser beam.

Description

201134590 六、發明說明: 【發明所屬之技彳椅領域】 發明領域 本發明係有關於一種以雷射光修正於用於液晶顯示器 (LCD)及其他平板顯示器(FPD)之基板、半導體晶圓、印刷 基板等基板之缺陷的雷射加工方法及雷射加工裝置。 發明背景 習知,有於用於平板顯示器(FPD)之玻璃基板上形成電 路元件或配線等圖形之際,有因粒子之有無、其他製造裝 置内之環境、薄膜形成時之析出或曝光不良等原因,於玻 璃基板上產生缺陷之情形。因此,於各圖形化製程後,以 外觀檢查裝置逐次檢查配線之短路、連接不良、斷線或圖 形不良等缺陷是否存在。 對以此種外觀檢查檢測出之玻璃基板上之缺陷進行藉 照射雷射光,修正缺陷之雷射加工(修復處理)。雷射加工之 方去採用了下述方法,前述方法係使從紫外線雷射振盪器 輸出之紫外線雷射光入射至可變矩形開口,以各刀口之可 動,開關可變矩形開口,將紫外線雷射光之截面形狀修整 成所期大小後,對缺陷照射者。 又’已知有使用DMD(Digital Mirror Device)等空間調 變元件之以雷射光之修整所行的雷射加工方法(例如參照 專利文獻1)。如此,藉使用空間調變元件,修整雷射光, 可進行高精確度之雷射加工。 201134590 又,亦已知有一種雷射加工方法,該雷射加工方法係 在將圖形區域設定作為雷射修復禁止區域後,對位於不包 含此雷射修復禁止區域之區域的缺陷照射雷射光者(例如 參照專利文獻2)。在此雷射加工方法,從拍攝基板而得之 圖像’反覆抽出構成重複性圖形之1單位之1像素量,將此1 像素量之圖形區域設定作為雷射修復禁止區域。 先行技術文獻 專利文獻 專利文獻1日本專利公開公報2007-29983號 專利文獻2 國際公開手冊第2004/099866號 【發明内容】 發明概要 發明欲解決之課題 而於基板產生之上述缺陷有於其周圍同時存在細微之 缺陷之情形。此種細微之缺陷大多不易以掃瞄等 AOI(Automatic Optical Inspection)檢測。 又’以雷射光修正缺陷之際,有因雷射加工引起之缺 陷之殘渣飛散至周圍之情形。因此,即使可修正缺陷,仍 有因雷射加工引起之殘渣成為新缺陷之情形。 本發明之目的係鑑於上述習知之實際情形,而提供可 確實地修正缺陷之雷射加工方法及雷射加工裝置。 用以欲解決課題之手段 本發明之雷射加工方法係以雷射光修正基板上之缺陷 者,其具有缺陷位置資訊取得步驟、照射部相對移動步驟、 201134590 及雷射光照射步驟,該缺陷位置資訊取得步驟係取得前述 缺陷之位置資訊者;該照射部相對移動步驟係依據前述位 置資訊,使照射前述雷射光之雷射光照射部與前述基板相 對地移動,俾使前述缺陷位於其可照射區域者;該雷射光 照射步驟係對不根據前述缺陷之位置設定於前述基板之非 圖形區域之照射區域 > 以如述雷射光照射部照射則述雷射 光者。 本發明之雷射加工裝置係以雷射光修正基板上之缺陷 者,其包含有照射雷射光之雷射光照射部、及使該雷射光 照射部與前述基板相對地移動之照射部相對驅動部;又, 前述雷射光照射部對不根據前述缺陷之位置,而設定於非 圖形區域之照射區域照射前述雷射光。 發明效果 在本發明中,可對不根據缺陷之位置,而設定於基板 之非圖形區域之照射區域照射雷射光。因此,修正於周圍 同時存在細微缺陷之缺陷之際,也可同時修正細微之缺 陷。又,可防止因雷射加工引起之缺陷之殘渣成為新缺陷。 是故,根據本發明,可確實地修正缺陷。 圖式簡單說明 第1圖係顯示本發明一實施形態之雷射加工裝置之主 要部份立體圖。 第2圖係顯示本發明一實施形態之雷射加工裝置之平 面圖。 第3圖係顯示本發明一實施形態之雷射加工裝置之概 201134590 略結構圖。 圖係用以β兒明本發明__實施形態之雷射加工方法 之流程圖。 $ 5圖係用以說明本發明—實施形態之參照圖像之作 成的說明圖(1)。 胃6圖係用以說明本發明—實施形態之參照圖像之作 成的說明圖(2)。 $ 7圖係用以說明本發明-實施形態之參照圖像之作 成的說明圖(3)。 第8圖係用以說明本發明一實施形態之參照圖像之作 成的說明圖(4)。 第9圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(1)。 第10圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(2)。 第11圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(3)。 第12圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(4)。 第13圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(5)。 第14圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(6)。 第15圖係用以說明本發明一實施形態之照射區域之設 6 201134590 定的說明圖(7)。 第16圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(8)。 第17圖係用以說明本發明—實施形態之照射區域之設 定的說明圖(9)。 第18圖係用以說明本發明—實施形態之照射區域之設 定的說明圖(10)。 第19圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(11)。 第20圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(12)。 第21圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(13)。 第2 2圖係用以說明本發明一實施形態之修正與否之判 定的說明圖。 第2 3圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(1)。 第24圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(2)。 第25圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(3)。 第26圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(4)。 第27圖係用以說明本發明一實施形態之空間調變元件 201134590 之控制的說明圖(5)。 【實施冷武】 用以實施發明之形雜 以下,就本發明一實施形 T ^ ^ . 心;射加工方法及雷射加 工裝置-面參照圖式,一面說明。 第1圖〜第3圖係顯示本發明 貫妩形態之雷射加工裝 礼立體圖、平面圖及概略結構圖。 如圖所示’雷―置〗包含 、雷^先源單元20、㈣部3〇、平台部4〇、高架單元 50、2個冋架用基底部6〇、6〇、 龙幂70、輪入部80。雷射加 工裝置1在本實施形態中用於以雷射光修正為LCD之陣列 基板之基板100上的缺陷之修復加工等。 如第3圖所示,作為雷射光照射部之顯微鏡單元1〇具有 作為將雷射光之光錢面修整成所_狀之光束修整機構 之DMD(Dlgltal Minw Dev㈣的空間調變元件"、物鏡替 換部12、拍攝部13、二向分光鏡14。 空間調變元件11將業經以雷射光源單元20振盈之雷射 光空間調變(修整)。在空_變元件u,可獨立搖動控制成 啟動狀態及關閉狀態之複數個微小鏡以2維排列於矩形調 變區域内。 此外’本結構係使用諸如DMD之空間調變元件作為光 束修整機構,除此之外,尚可以液晶狹縫等其他元件替代。 即,光束修整機構係只要為可將雷射光之光束截面修整成 所期形狀之機構,可包含任何結構者。 8 201134590 具有修正與否判定用物鏡(例如5倍)i2a及較此修正與 否判定用物鏡12a高倍率之雷射光照射用物鏡(例如2〇倍)之 複數個物鏡以可藉圖中未示之旋轉器設備或滑動器設備等 物鏡切換機構替換之狀態保持於物鏡替換部丨2。 此外,於空間調變元件11與物鏡替換部12間之光程中 配置有朝物鏡12a、12b使雷射光反射至絡直下方之二向分 光鏡14。此二向分光鏡14使在基板1〇〇反射之圖中未示之照 明部的照明光穿透至鉛直上方。 於空間調變元件11與二向分光鏡14間配置有圖中未示 之成像透鏡。藉此成像透鏡之焦點距離除以物鏡12a、12b 之焦點距離,訂定物鏡12a、12b之倍率。 拍攝部13具有CCD等拍攝元件,並藉將在基板1〇〇反 射’穿透二向分光鏡14之照明光引導至上述拍攝元件,來 拍攝基板100。如此所拍攝之圖像可以控制部圖像處理, 並且’顯示於螢幕7〇。 如第3圖所示,雷射光源單元2〇具有振盪雷射光之雷射 光源21。業經以此雷射光源21振盪之雷射光藉由成像透鏡 22、光纖23等,引導至顯微鏡單元1〇之空間調變元件u。 此外,雷射光源21依據預先訂定之振盪條件(光輸出、波 長、振盪脈衝寬度等),振盪雷射光。 控制部30將空間調變元件11之微小鏡獨立搖動控制成 啟動狀態及關閉狀態,以使空間調變元件將雷射光空間調 變(修整)成所期形狀。又,控制部3〇進行物鏡替換部丨2之物 鏡替換動作、以及雷射光源單元20、平台部4〇、高架單元 201134590 50 '高架用基底部60及螢幕70之動作控制等。 此外’在本贯施形態’在第1圖及第2圖,於高架5〇上 顯示控制部3 0作為控制部,關於後述之雷射光之照射區域 的设定或以拍攝部13拍攝之圆像之圖像處理,亦可以與高 架50上之控制部30不同之控制部進行,控制部3〇並可取得 以此不同之控制部進行之控制的資訊。 控制部30可使用資訊處理終端機,該資訊處理終端機 具有極標準之結構之電腦、即藉執行控制程式,控制各構 成要件之CPU、記憶部、於第3圖所示之螢幕(顯示部)7〇提 示各種資料,以通知用戶之輸出部、及提供用以與其他機 器相互交接資料之介面功能的I/F部者,該記憶部係由 ROM、RAM、磁性記錄媒體等構成,使用作為使cpu控制 各構成要件之控制程式的記憶或CPU執行控制程式時之工 作區或各種資料之記憶區域者。此外,控制部3〇連接於可 取得對應於用戶所作之操作之各種資料之第3圖所示的輸 入部80及上述螢幕7〇。 此外,要使控制部30進行第4圖所示之後述雷射加工處 理,舉例言之,只要作成使控制部30進行第4圖所示之程序 之處理的控制程式,使之預先記錄於可以電腦讀取之記錄 媒體’使控制部30從記錄媒體讀取該控制程式來執行即可。 此外’可以控制部30讀取所記錄之控制程式之記錄媒 體可利用可搬式記錄媒體等,記錄媒體亦可為藉由電路與 控制部30連接’具有作為程式伺服器之功能之記憶裝置。 此時’將以顯現控制程式之資料信號調變載波而得之傳送 201134590 信號從程式伺服器經由為傳送媒體之電路傳送,且在控制 部30將所接收之傳送信號解調,將控制程式再生,而可執 行控制程式。 如第1圖所示,平台部40具有具消振構造之基底部41、 配置於此基底部41上之浮起板42、保持基板100之圖中未示 之基板保持部、及進行基板100之定位之圖中未示之定位設 備。 °又 浮起板42係將圖中未示之矩形瓷磚狀板排列成矩陣狀 而形成,可從各板之上面喷出空氣。玻璃基板1〇〇以藉空氣 之喷出浮起之狀態,以上述基板保持部保持。基板保持部 只要為固定或支樓基板1〇〇之機構,為任可結構皆無妨。舉 例s之’可為以夾設備或夾持設備固定基板1〇〇之結構或以 複數個銷支撐玻璃基板100之結構。 此外,上述浮起板42從本發明之結構省略亦無妨。又, 為使用輥設備取代浮起板42之平台部亦無妨。 如第2圖所示,尚架單元50具有呈跨越平台部4〇之門型 形狀之高架5卜正面側X方向導引部Μ、及上面淑方向導 引部53。 如第1圖所示,高架51具有水平樑51a、及支撐此水平 樑51a兩端之共計2個腳部51b(於第丨圖僅顯示一者)。此外, 細節後述,高架Μ沿著高架用基底部6〇、6〇,於¥方向(第2 圖之紙面之上下方向)移動。 正面側X方向導引部52具有設於高架51之水平標5U正 面之2條一對導引轨道Ma、沿著此導引軌道52&於\方向(第 201134590 2圖之紙面之左右方向)移動之矩形板狀滑動器521)、支撐固 定於此滑動器52b之顯微鏡單元1〇之顯微鏡支撐部52c。 導引執道52a以線性馬達藉由滑動器52b,使顯微鏡單 元10於X方向移動。如此,正面側X方向導引部52與後述γ 方向導引部62同樣地具有使相對於基板1〇〇之顯微鏡單元 10之位置相對地移動之照射部相對驅動部的功能。 此外’在本實施形態中,使顯微鏡單元10移動之結構 可以較使基板100移動之結構簡單的結構實現,照射部相對 驅動部亦可為使基板1〇〇於γ方向移動之結構或使基板1〇〇 於X-Y方向移動之結構來取代如上述使高架51於γ方向移 動’只要為使相對於基板10之顯微鏡單元1〇之位置相對地 移動者,為任何結構皆可。 上面側X方向導引部53具有設於高架51之水平樑51a上 面之2條1對導引軌道53a、及沿著此導引軌道53a移動之矩 形板狀滑動器53b。 導引軌道53a以線性馬達,使設置於滑動器53b之雷射 光源單元20及控制部30移動。 此外’由於配置於正面側X方向導引部52上之雷射光源 單元20以光纖23連接於配置在上面側X方向導引部53之顯 微鏡單元10 ’故正面側X方向導引部52之滑動器52b與上面 側X方向導引部53之滑動器53b同步移動。 如第2圖所示,高架用基底部60、6〇配置成隔著平台部 40相互相對。各高架用基底部6〇具有基底61及¥方向導引部 62 ° 12 201134590 Y方向導引部62具有設於基底部61上面之2條1對導引 執道62a。此導引軌道62a以線性馬達藉由高架單元50,使 顯微鏡單元10於Y方向移動。如此,Y方向導引部62與上述 正面側X方向導引部52同樣地具有使相對於基板丨〇〇之顯微 鏡單元10之位置相對地移動之照射部相對驅動部的功能。 以下,就參照圖像之作成及照射區域之設定說明後, 就第4圖所示之雷射加工之流程圖作說明。 參照圖像之作成 第5圖〜第8圖係用以說明本實施形態之參照圖像之作 成的說明圖。 用戶一面確認顯示於第3圖所示之螢幕70等之第5圖所 示之圖像顯示視窗300, 一面可在圖中未示之設定畫面作成 參照圖像。 首先,用戶設定顯示於圖像顯示視窗300之圖像顯示部 310之拍攝圖像311的大小。此拍攝圖像3n係用以選擇第7 圖所示之參照圖像312之基板1〇〇之圖形圖像。此外,細節 後述’參照圖像312可在雷射光之照射區域之設定及缺陷修 正與否之判定中供參照。 當第7圖所示之參照圖像312為具週期性之重複性圖形 2〇〇(於第5圖以二點鏈線顯示)時,拍攝圖像311之大小可設 定成大於重複性圖形200,舉例言之,縱橫(X方向、γ方向) 分別為重複性圖形2〇〇之大小的丨.5倍左右。此外,重複性 圖形綱分別由由掃晦線210、資料線22〇及電路元件230構 成之RGB3個像素構成 13 201134590 第3圖所示之顯微鏡單元10為作成上述拍攝圖像311, 乃反覆進行視野尺寸之拍攝及X方向與γ方向之移動。如此 拍攝之圖像以控制部30貼合,形成為拍攝圖像311 ,並記憶 於控制部30之記憶部。此外,使用已作成之拍攝圖像311 , 作成參照圖像312時,可從控制部30之記憶部讀取拍攝圖像 311。 接著,如第6圖所示,用戶將顯示於拍攝圖像312内之 粗框C(與顯示重複性圖形200之二點鏈線不同,實際上顯示 於圖像顯示視窗300之框)之大小、位置以第3圖所示之輸入 部80之滑鼠調整成重複性圖形之丨週期量。藉此,以粗框c 所選擇之區域可重新登錄為第7圖所示之參照圖像312。 如第8圖所示,參照圖像312(以2點鏈線顯示)係縱橫連 續貼合’而作成為貼合圖像313,可用在第4圖所示之雷射 加工之修正與否判定步驟(S 4)之型樣匹配及後述照射區域 之設定。此外,貼合圖像313可藉與以顯微鏡單元10之修正 與否判定用物鏡12a等低倍率之物鏡所拍攝之基板1〇〇的圖 像重疊顯示,來確認有無作成失誤。 照射區域設定 第9圖〜第21圖係用以說明本實施形態之照射區域之設 定的說明圖。 細節後述之,照射區域係對基板100照射雷射光之區 域’不根據缺陷之位置,設定於非圖形區域之全部或一部 份。非圖形區域係不包含第9圖等所示之為圖形區域之掃瞄 線210、資料線22〇及電路元件23的之區域。 14 201134590 由掃瞄線210、資料線220及電路元件230構成之圖形區 域可分區為如第9圖所示,由設成相互交叉之掃瞄線21〇及 資料線220構成之第1區域R1、及如第1〇圖所示,由電路元 件230構成之第2區域R2。此分區係為了以按各區域設定之 擴大量使圖形區域擴大為禁止區域或設定重要區域之故。 在此’重要區域係指設定重要度之區域,後述之,重 要度係利用於判斷缺陷修正之際,當一定值以上之區域存 在缺陷時,無條件進行修正等。 此外,如第9圖及第10圖所示,為圖形區域之第1區域 R1及第2區域R2可以手動從顯示於圖像顯示視窗3〇〇之圖 像顯示部310之參照圖像312選擇用戶以第3圖之輸入部8〇 之滑鼠等設定作為區域的圖形,亦可利用圖形區域與非圖 形區域之亮度值之差等,自動設定。 如第11圖所示,用戶可使為圖形區域之第i區域^擴 大’而設定作為禁止區域(業經擴大之第1區域R1,),進一 步’如第12圖所示,可使第2區域R2擴大,設定作為禁止區 域(業經擴大之第2區域R2,)。 第1區域R1'及第2區域R2'於圖像顯示視窗300之上下 左右所有方向擴大,舉例言之,亦可於上下左右4方向中之 1方向擴大,亦可僅使用戶所選擇之部份擴大。 此外,亦可以按第1區域R1或第2區域R2等各指定範圍 不同之擴大量(例如擴大寬度、以擴大前為基準之擴大率等) 使圖形區域擴大,來設定作為禁止區域。在第U圖及第12 圖所示之例中,第1區域R1及第2區域R2之擴大量為一定之 15 201134590 擴大寬度。 在第13圖之例中,第2區域R2以大於第1區域ri之擴大 量擴大,來設定作為禁止區域(第2區域R2〃)。此外,亦可 以上述重要度為基礎,自動決定擴大量。 如第14圖所示之第2區域R2般,對實際之圖形區域有脫 落部份R2a及突出部份R2b時,藉用戶選擇第15圖以虛線所 示之預定形狀之區域追加框R2c或區域刪除框R2d,將之配 置在圖像顯示視窗300上,可適當變更區域。 如第16圖所示’照射區域R3設定於不包含為圖形區域 之掃目苗線21 〇、資料線22 0及電路元件23 0之部份的非圖形區 域全部或—部份。第16圖所示之照射區域R3為上述第1區域 R1及第2區域R2以外之區域。 此外’要設定照射區域,亦可利用於圖形區域Rl、R2 與其他之非圖形區域產生之亮度值之差,自動地設定。舉 你J 夕 __ ° ’可利用階度差所作之2值化或形態(morphology)等。 如上述,使第1區域R1及第2區域R2擴大時(Rl,、R2,、 , j, ^ 如第17圖所示,照射區域r3,可設定於不包含為業經 擴大之修正禁止區域之第1區域R1,及第2區域R2,、R2,,之 部份。 如第18圖所示’於基板100之重複性圖形200之複數個 週期(在第18圖為3個週期)有1個與其他重複性圖形200不同 反吊圖升> 240時’如第19圖所示,可令所有重複性圖形200 二為有反常圖形240者(假想圖形24〇,),來決定如第20圖所 不包含假想圖形240,之照射區域R3,。 16 201134590 如此’藉設定假想圖形240, ’可將照射區域之設定簡 易化。 如第21圖所示,照射區域R3,可按包含於此之區域 R3’-l、R3、2、R3 ·3變更照射條件。照射條件可舉雷射光 之照射次數、光輸入、波長、振盪脈衝寬度等為例。 此如,照射條件之變更亦可藉不令排列於第3圖所示之 空間調變元件11之微小鏡中位於照射區域R3,之所有微小 鏡皆呈啟動狀態,而在可確保光學分解能之範圍抽取照射 區域之一部份作為關閉狀態來變更。 雷射加工 如第4圖之流程圖所示,第3圖等所示之控制部3〇從與 雷射加工裝置10獨立之檢查裝置取得所抽出之基板1〇〇之 缺陷之位置資訊(S1 :缺陷位置資訊取得步驟)。此檢查裝置 為位於基板100之搬送路徑之上游側之裝置。此外,檢查裝 置與雷射加工裝置亦可不需相互獨立,而構成為兼具進行 缺陷檢查之功能及雷射加工之功能之複合裝置。 又,控制部30為使缺陷位於倍率5倍之修正與否判定用 物鏡12a裝设時之觀察區域(參照第23圖之觀察區域pi),依 據上述缺陷之位置資訊,以第】圖及第2圖所示之正面側乂 方向導引部52及Y方向導引部62使顯微鏡單元1〇移動,藉 此,與基板100相對地移動(SL第丨照射部相對移動步驟)。 控制部30使顯微鏡單元1〇移動後,以圖中未示之自動 對焦設備進打自動對焦然後,控制部3〇以藉顯微鏡單 兀10而付之觀察圖形為基礎,判斷是否需修正缺陷(S4)。 17 201134590 在此缺陷修正之判斷(S4)中,控制部3〇進行經貼合第8 圖所不之參照圖像312而形成之貼合圖像313與上述觀察圖 形之型樣匹配(參照比較)或從觀察圖像抽出之鄰近之重複 性圖形間之比較(鄰近比較),以進行缺陷之檢測。 然後,如第22圖所不,橫亙資料線22〇(第丨區域R1)與 電路元件230(第2區域R2)之缺陷4〇1因第2區域尺2之重要度 為一定值以上,故視為引起短路者,控制部3〇判斷為「修 正j 〇 又,控制部30因由電路元件23〇構成之第2區域R2之重 要度為一定值以上,而判斷接觸電路元件23〇之缺陷4〇2無 條件地「修正」。 又,控制部30於由掃瞄線21〇構成之上述第1區域幻之 重要度不到-定值’或未設定重要度時,判斷僅接觸掃瞒 線210之缺陷403為「不修正 又,控制部判斷未接觸任何圖形之缺陷404為「不修 正」。控制部以預先訂定之條件自動進行此種判斷。 當缺陷不需要修正時,控制部30判斷是否有其他未修 正之缺陷(S13),若無未修正之缺陷,雷射加工之處理便結 束。又,控制部30於有未修正之缺陷時,如第4圖所示,從 上述第1照射部相對移動步驟(S2)再開始處理。 此外,雖未於第4圖之流程顯示,但不需使顯微鏡單元 1〇移動時或不需進行自動對焦(S3)時,可省略該等步驟 (S2 、 S3)。 當修正缺陷時,控制部30取入以顯微鏡單元1〇之拍攝 201134590 部13所拍攝之缺陷之圖像(S5),將之記憶於記憶部。此圖像 藉與後述修正後之缺陷圖像(S11)比較,可在判斷缺陷修正 與否之際之步驟S12使用。 於拍攝部13拍攝缺陷之圖像後,控制部30將修正與否 判定用物鏡12a替換成倍率20倍之雷射光照射用物鏡 12b(S6)。藉此,如第23圖所示,顯微鏡單元1〇之觀察區域 F1形成為觀察區域F2。 接著’控制部30以圖中未示之自動對焦設備再次進行 自動對焦(S7)。然後,控制部3〇為使缺陷位於雷射光照射用 物鏡12b裝設時之可照射區域F3,而以第1圖及第2圖所示之 正面側X方向導引部52及γ方向導引部62使顯微鏡單元1〇 移動,藉此’與基板1〇〇相對地移動,將缺陷401定心在可 照射區域F3内(S8 :第2照射部相對移動步驟)。 此外,以高精確度進行上述顯微鏡移動(S2 :第1照射 部相對移動步驟)等於不需進行定心(S8 :第2照射部相對移 動步驟)時,亦可省略。 控制部30使雷射光照射至如第16圖所示,為#圖形區 域之上述照射區域R3及如第π圖所示,為非圖形區域中不 包含修正禁止區域(使圖形區域擴大之第1區域R1,及第2區 域R2D之部份的照射區域R3,(S9、S10 :雷射光照射步驟)° 具體言之,如第24圖所示,控制部30將空間調變元件 11之微小鏡控制成顯微鏡單元10之可照射區域F3中’對應 於照射區域R3之空間調變元件11之微小鏡呈開啟狀態’對 應於圖形區域Rl、R2之空間調變元件11之微小鏡形成關閉 19 201134590 狀態,而使雷射光空間調變(S9)。 此外,關於使可照射區域F3如何對應於照射區域R3, 舉例s之’只要從上述所取入之圖像(S5)等而得之顯微鏡單 元1 〇(可照射區域F3)之位置為基礎,從第8圖所示之參照圖 像312之貼合圖像313等,修整可照射區域F3之照射區域R3 即可。 接著’控制部30對如上述控制了微小鏡之空間調變元 件11以雷射光源早元20照射雷射光,進行缺陷4〇 1之加工 (修正)(S10)。 此外,控制部30亦可如上述,按第21圖所示之照射區 域R3'之區域R3M、R3'-2、R3'-3變更照射條件,照射複數 次雷射光。 進行缺陷401之加工後,控制部30取入於顯微鏡單元1〇 之拍攝部13所拍攝之缺陷之圖像(S11)。控制部3〇將此圖像 以與上述修正前之缺陷(S5)或第7圖所示之參照圖像312之 型樣匹配等’判斷缺陷修正與否(s 12)。 若缺陷修正未完畢,控制部30便從雷射加工(sl〇)再開 始處理。 又,若缺陷修正完畢時,控制部30判斷是否有其他未 修正之缺陷(S12) ’若無未修正之缺陷,雷射加工之處理便 結束。 當有未修正之缺陷時,控制部3〇如第4圖所示,從上述 第1照射部相對移動步驟(S2)再開始處理,此時,雖未顯示 於第4圖之流程,但需將雷射光照射用物鏡12b替換成修正 20 201134590 與否判定用物鏡12a。此外’當不需使顯微鏡單元10移動 時’可省略顯微鏡移動之步驟(S2)。 如以此進行,缺陷之修正處理結束,但若如第25圖所 示,線狀缺陷405未納入可照射區域F3時,控制部30—面適 當進行上述定心(S8),一面反覆進行複數次雷射光照射步驟 (S9、S10)〇 此時’如第26圖所示,由於可照射區域F3為圓形,故 在相鄰之照射區域F 3間產生重複部份F 3 - Ο (以斜線顯示)。 因此,藉控制部30不令照射區域R3為可照射區域F3之非圖 形區域全區’而將相鄰之照射區域R3各縮小重複部份F3-0 之一半,可解決重複部份F3-0。又,如第27圖所示,亦可 將照射區域R3縮小成矩形等,來解決可照射區域F3之重複 部份F3-0。 在以上所說明之實施形態中,對不根據缺陷之位置, 設於基板100之非圖形區域之照射區域R3照射雷射光。因 此’修正於周圍同時存在細微之缺陷之際,亦可同時修正 細微之缺陷。又,藉在包含缺陷之大範圍照射雷射光,可 防止雷射光之發射遺漏(殘留缺陷)。再者,可防止僅對缺陷 照射雷射光時產生之飛散之殘渣成為新缺陷之問題。是 故,可確實地修正缺陷。再者,由於可省略按缺陷之形狀 等之空間調變元件U之控制,故可將雷射加工之控制簡單 化。 又,在本實施形態中,控制部30在雷射光照射步驟 (S9、S10) ’如第21圖所示,在照射區域R3’所含之複數個 21 201134590 區域R3'-l、R3,-2、R3,-3改變照射條件,使雷射光照射。 因此,可以適合基板1〇〇之條件確實地修正缺陷。 又,在本實施形態中,控制部30在雷射光照射步鄉 (S9、S10) ’對第24圖等所示之可照射區域F3全區(或幾乎食 區)之照射區域R3—併照射雷射光時,可迅速地修正缺陷。 又’在本實施形態中,控制部3〇在雷射光照射步驟中, 如第21圖所示,對非圖形區域中為不包含使圖形區威 (210、220、230)擴大之修正禁止之區域Ri'、R2'的部份之 照射區域R3'照射雷射光。因此,即使於圖形區域有製造偏 差’或於雷射加工裝置10產生振動,亦可防止正常圖形之 破壞等之影響。又,可減低對正常圖形造成之熱之影響。 又’在本實施形態中,控制部3〇在雷射光照射步驟, 如第13圖所示,對非圖形區域中,不包含以按各指定範圍 设定之擴大量使圖形區域擴大之修正禁止的區域(擴大f 小之區域Rr、擴大率大之區域R2〃)之照射區域照射雷射 光。因此,可更有效地防止正常圖形之破壞或熱之影響。 又,在本實施形態中,控制部3〇進行第1照射部相對移 動步驟(S2)與第2照射部相對移動步驟(S8)。在第1照射部相 對移動步驟(S2)’控制部30使為雷射光照射部之顯微鏡單元 10與基板100相對地移動,俾使缺陷位於修正與否判定用物 鏡12a裝設時之觀察區域F1。在第2照射部相對移動步驟 (S8) ’控制部30使顯微鏡單元1〇與基板1〇〇相對地移動’俾 使缺陷定心在雷射光照射用物鏡12b裝設時之玎照射區域 F3。因此,可在大範圍修正位於缺陷周 圍之細微之缺陷, 22 201134590 因而,可更確實地修正缺陷。 又’在本實施形態中,控制部3〇進行判定缺陷修正與 否之修正與否判定步驟(S4),在此修正與否判定步驟,如第 22圖所示,依據按基板之圖形區域所含之複數個區域(ri、 R2)設定之重要度,當缺陷4〇2位於重要度為一定值以上之 區域R2時,判斷為必須修正等...判定缺陷修正與否。因此, 可更確實地修正缺陷。 又,在本實施形態中,控制部30進行判定缺陷修正與 否之修正與否判定步驟(S4),在此修正與否判定步驟中,以 藉比較所拍攝之缺陷之圖像與為比較用圖像之參照圖像 312所行之型樣匹配,進行缺陷修正與否,並在雷射光照射 步驟(S9、S10),對依據上述參照圖像312所設定之照射區 域R3照射雷射光。因此,可以簡單之控制,設定照射區域 R3。 又’在本實施形態中,如第25圖〜第27圖所示,控制部 30對不納入可照射區域F3之缺陷405反覆進行複數次雷射 光照射步驟(S9 ' S10),並藉縮小照射區域R3,解決複數次 雷射光照射步驟之可照射區域F3之重複部份F3-0。因此, 可抑制不必要之雷射光之照射。 此外,在本實施形態中,以液晶顯示器(LCD)之陣列基 板說明了基板100,除了液晶顯示器(LCD)以外,亦可於 PDP(Plasma Display Panel)、有機EL(ElectroLuminescence) 顯示器、表面電動型電子發射顯示器(SED : Surface-conduction Electro-emitter Display)等用於其他平板 23 201134590 顯示器(FPD)之基板、半導體晶圓、印刷基板等基板應用本 實施形態。 又,上述實施形態及其變形例僅為用以實施本發明之 一例,本發明非藉該等實施形態之記載以單義限定者。舉 例言之,將發明詳細說明之各種結構置換成對該業者而言 可置換之結構,進行各種變形係在本發明之範圍内。 t圖式簡單說明3 第1圖係顯示本發明一實施形態之雷射加工裝置之主 要部份立體圖。 第2圖係顯示本發明一實施形態之雷射加工裝置之平 面圖。 第3圖係顯示本發明一實施形態之雷射加工裝置之概 略結構圖。 第4圖係用以說明本發明一實施形態之雷射加工方法 之流程圖。 第5圖係用以說明本發明一實施形態之參照圖像之作 成的說明圖(1)。 第6圖係用以說明本發明一實施形態之參照圖像之作 成的說明圖(2)。 第7圖係用以說明本發明一實施形態之參照圖像之作 成的說明圖(3)。 第8圖係用以說明本發明一實施形態之參照圖像之作 成的說明圖(4)。 第9圖係用以說明本發明一實施形態之照射區域之設 24 201134590 定的說明圖(1)。 第10圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(2)。 第11圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(3)。 第12圖係用以說明本發明一實施形態之照射區域之設 疋的說明圖(4)。 第13圖係用以說明本發明一實施形態之照射區域之設 疋的說明圖(5)。 第14圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(6)。 第15圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(7)。 第16圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(8)。 第Π圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(9)。 第18圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(10)。 第19圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(11)。 第20圖係用以說明本發明一實施形態之照射區域之設 定的說明圖(12)。 第21圖係用以說明本發明一實施形態之照射區域之設 25 201134590 定的說明圖(13)。 第22圖係用以說明本發明一實施形態之修正與否之判 定的說明圖。 第23圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(1)。 第24圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(2)。 第25圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(3)。 第26圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(4)。 第27圖係用以說明本發明一實施形態之空間調變元件 之控制的說明圖(5)。 【主要元件符號說明】 1...雷射加工裝置 22...成像透鏡 10...顯微鏡單元 23...光纖 11...空間調變元件 30...控制部 12...物鏡替換部 40...平台部 12a...修正與否判定用物鏡 41...基底部 12b...雷射光照射用物鏡 42...浮起板 13...拍攝部 50...高架單元 14...二向分光鏡 51…南架 20...雷射光源單元 5 la...水平樑 21...雷射光源 51b...腳部 26 201134590 52.. .正面側X方向導引部 52a,53a,62a...導引軌道 52b,53b...滑動器 52c...顯微鏡支撐部 53.. .上面側X方向導引部 60.. .高架用基底部 61.. .基底 62.. . Y方向導引部 70.. .螢幕 80.. .輸入部 100.. .基板 200.. .重複性圖形 210.. .掃瞄線 220.. .貢料線 230.. .電路元件 240·.·反常圖形 24(Τ...假想圖形 300…圖像顯示視窗 310.. .圖像顯示部 311.. .拍攝圖像 312.. .參照圖像 313.. .貼合圖像 401-405...缺陷 C...粗框 FI,F2...觀察區域 F3...可照射區域 重複部份...F3-0 R1...第1區域 Rr...已擴大之第1區域 R2...第2區域 R2',R2〃…已擴大之第2區域 R2a...脫落部份 R2b...突出部份 R3,R3'...照射區域 RT-1,R3'-2,RT-3...區域 S1-S13...步驟 27201134590 VI. Description of the Invention: [Technical Field of the Invention] Field of the Invention The present invention relates to a laser-corrected substrate, semiconductor wafer, and printing for liquid crystal displays (LCDs) and other flat panel displays (FPDs). A laser processing method and a laser processing apparatus for defects of a substrate such as a substrate. BACKGROUND OF THE INVENTION It is known that when a circuit element or a wiring pattern is formed on a glass substrate used for a flat panel display (FPD), there are particles, an environment in another manufacturing apparatus, precipitation during film formation, or poor exposure. The reason is that a defect is generated on the glass substrate. Therefore, after each patterning process, the visual inspection device sequentially checks for defects such as short-circuits, poor connections, broken wires, or poor graphics. The laser beam is irradiated with the defect on the glass substrate detected by such visual inspection to correct the laser processing of the defect (repair process). The laser processing method adopts the following method. The above method is such that the ultraviolet laser light output from the ultraviolet laser oscillator is incident on the variable rectangular opening, and the movable edge of each knife edge is switched, and the variable rectangular opening is opened to expose the ultraviolet laser light. After the cross-sectional shape is trimmed to the desired size, the defect is illuminated. Further, a laser processing method using laser light trimming using a spatial modulation element such as a DMD (Digital Mirror Device) is known (for example, see Patent Document 1). In this way, by using the spatial modulation component to trim the laser light, high-precision laser processing can be performed. 201134590 Further, a laser processing method is known in which a laser beam is irradiated to a defect located in a region not including the laser repair prohibition region after the graphic region is set as a laser repair prohibition region. (For example, refer to Patent Document 2). In this laser processing method, the image obtained by photographing the substrate is repeatedly extracted by one pixel of one unit constituting the repeating pattern, and the pattern area of one pixel is set as the laser repair prohibition region. PRIOR ART DOCUMENT PATENT DOCUMENT Patent Document 1 Japanese Patent Laid-Open Publication No. 2007-29983 Patent Document 2 International Publication No. 2004/099866 SUMMARY OF INVENTION Summary of the Invention The above-mentioned defects occurring in a substrate are simultaneously caused by the object of the invention. There are subtle defects. Most of these subtle defects are not easily detected by AOI (Automatic Optical Inspection) such as scanning. In addition, when the defect is corrected by laser light, there is a case where the residue due to the laser processing is scattered to the surroundings. Therefore, even if the defect can be corrected, there is a case where the residue caused by the laser processing becomes a new defect. SUMMARY OF THE INVENTION The object of the present invention is to provide a laser processing method and a laser processing apparatus capable of reliably correcting defects in view of the above-described conventional circumstances. Means for Solving the Problem The laser processing method of the present invention corrects defects on a substrate by laser light, and has a defect position information acquisition step, an irradiation portion relative movement step, 201134590, and a laser light irradiation step, the defect position information The obtaining step is to obtain the position information of the defect; the illuminating unit relative moving step is to move the laser light irradiating portion of the laser light relative to the substrate according to the position information, so that the defect is located in the illuminable region The laser light irradiation step is an irradiation region set in a non-pattern area of the substrate not based on the position of the defect; and the laser beam is irradiated as described above. The laser processing apparatus of the present invention corrects a defect on a substrate by laser light, and includes a laser beam irradiating portion that irradiates the laser beam, and an irradiating portion that moves the laser beam irradiating portion relative to the substrate to the driving portion; Further, the laser light irradiation unit irradiates the laser light to the irradiation area set in the non-pattern area without depending on the position of the defect. Advantageous Effects of Invention In the present invention, it is possible to irradiate laser light to an irradiation region set in a non-pattern area of a substrate without depending on the position of the defect. Therefore, it is possible to correct minor defects at the same time when the defects of fine defects are present at the same time. Moreover, it is possible to prevent the residue due to the defect caused by the laser processing from becoming a new defect. Therefore, according to the present invention, the defect can be surely corrected. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a principal part of a laser processing apparatus according to an embodiment of the present invention. Fig. 2 is a plan view showing a laser processing apparatus according to an embodiment of the present invention. Fig. 3 is a schematic structural view showing a laser processing apparatus according to an embodiment of the present invention. The figure is a flow chart of a laser processing method of the invention according to the invention. The $5 figure is an explanatory diagram (1) for explaining the creation of the reference image of the present invention. The stomach 6 is a diagram (2) for explaining the creation of a reference image of the present invention. Fig. 7 is an explanatory diagram (3) for explaining the creation of a reference image of the present invention. Fig. 8 is an explanatory view (4) for explaining the creation of a reference image according to an embodiment of the present invention. Fig. 9 is an explanatory view (1) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 10 is an explanatory view (2) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 11 is an explanatory view (3) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 12 is an explanatory view (4) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 13 is an explanatory view (5) for explaining the setting of the irradiation region according to the embodiment of the present invention. Fig. 14 is an explanatory view (6) for explaining the setting of the irradiation region according to the embodiment of the present invention. Fig. 15 is an explanatory diagram (7) for explaining the setting of the irradiation region of an embodiment of the present invention. Fig. 16 is an explanatory view (8) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 17 is an explanatory view (9) for explaining the setting of the irradiation region of the present invention. Fig. 18 is an explanatory view (10) for explaining the setting of the irradiation region of the present invention. Fig. 19 is an explanatory view (11) for explaining the setting of the irradiation region according to the embodiment of the present invention. Fig. 20 is an explanatory view (12) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 21 is an explanatory view (13) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 2 is an explanatory diagram for explaining the determination of the correction of an embodiment of the present invention. Fig. 2 is a diagram (1) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 24 is an explanatory diagram (2) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 25 is an explanatory diagram (3) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 26 is an explanatory view (4) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Figure 27 is an explanatory diagram (5) for explaining the control of the spatial modulation element 201134590 according to an embodiment of the present invention. [Implementation of Cold Wu] The following is an embodiment of the present invention.  The heart; the shooting method and the laser processing device-surface reference pattern are described. Fig. 1 through Fig. 3 are perspective views, plan views and schematic structural views of a laser processing apparatus according to the present invention. As shown in the figure, 'Ray-Set' contains, Thunder first source unit 20, (four) part 3〇, platform part 4〇, elevated unit 50, 2 truss base parts 6〇, 6〇, Long Power 70, round Enter section 80. In the present embodiment, the laser processing apparatus 1 is used for repair processing of defects on the substrate 100 of the array substrate of the LCD by laser light. As shown in Fig. 3, the microscope unit 1 as the laser beam irradiation unit has a DMD (Dlgltal Minw Dev (4) spatial modulation element" and an objective lens as a beam shaping mechanism for trimming the light surface of the laser light. The replacement unit 12, the imaging unit 13, and the dichroic beam splitter 14. The spatial modulation element 11 spatially modulates (trimming) the laser light that has been oscillated by the laser light source unit 20. In the air-variable element u, the vibration can be independently controlled. The plurality of micromirrors in the activated state and the closed state are arranged in a two-dimensional arrangement in the rectangular modulation region. Further, the present structure uses a spatial modulation component such as DMD as a beam trimming mechanism, and in addition, a liquid crystal slit can be used. In other words, the beam trimming mechanism may include any structure as long as it can trim the beam cross section of the laser beam into a desired shape. 8 201134590 Objective lens with correction or not (for example, 5 times) i2a and Compared with the correction, the objective lens 12a is used for a plurality of objective lenses of a high-magnification laser light irradiation objective lens (for example, 2 times), and an objective lens such as a rotator device or a slider device not shown in the figure can be used. The state in which the replacement mechanism is replaced is held in the objective lens replacing portion 。 2. Further, in the optical path between the spatial modulation element 11 and the objective lens replacing portion 12, two-way spectroscopic light is reflected toward the objective lens 12a, 12b to reflect the laser light to the lower portion. The mirror 14. The dichroic beam splitter 14 illuminates the illumination light of the illumination unit (not shown) on the substrate 1 to be vertically above. The space modulation element 11 and the dichroic beam splitter 14 are arranged in the figure. An imaging lens, not shown, whereby the focal length of the imaging lens is divided by the focal length of the objective lenses 12a, 12b, and the magnification of the objective lens 12a, 12b is set. The imaging portion 13 has an imaging element such as a CCD, and is reflected by the substrate 1 The illumination light penetrating the dichroic beam splitter 14 is guided to the above-described imaging element to capture the substrate 100. The image thus captured can be image-processed by the control unit and displayed on the screen 7〇. As shown in FIG. 3, The laser light source unit 2 has a laser light source 21 that oscillates the laser light. The laser light that has been oscillated by the laser light source 21 is guided to the spatial modulation element u of the microscope unit 1 by the imaging lens 22, the optical fiber 23, and the like. In addition, the laser source 2 1. The laser light is oscillated according to a predetermined oscillation condition (light output, wavelength, oscillation pulse width, etc.). The control unit 30 independently controls the micro mirror of the spatial modulation element 11 to be in an activated state and a closed state to spatially modulate The element modulates (trimming) the laser light into a desired shape. Further, the control unit 3 performs the objective lens replacement operation of the objective lens replacing unit 丨2, and the laser light source unit 20, the platform unit 4〇, and the overhead unit 201134590 50' overhead. The operation of the base portion 60 and the screen 70 is controlled. In the first and second figures, the control unit 30 is displayed on the overhead frame 5 as a control unit, and the laser light to be described later is irradiated. The setting of the area or the image processing of the circular image captured by the imaging unit 13 may be performed by a control unit different from the control unit 30 on the overhead 50, and the control unit 3 may obtain control by the different control unit. Information. The control unit 30 can use an information processing terminal having a computer having a very standard structure, that is, a CPU that controls each component, a memory unit, and a screen (display portion) shown in FIG. 7) Prompt various information to inform the user of the output unit and the I/F part that provides the interface function for transferring data to and from other devices. The memory unit is composed of ROM, RAM, magnetic recording medium, etc. The memory area or the memory area of various materials when the cpu controls the control program of each component or the CPU executes the control program. Further, the control unit 3 is connected to the input unit 80 and the screen 7 shown in Fig. 3 which can acquire various kinds of data corresponding to the operation by the user. In addition, the control unit 30 is required to perform the laser processing described later in FIG. 4, and for example, a control program for causing the control unit 30 to perform the processing of the program shown in FIG. 4 is recorded in advance. The recording medium read by the computer 'move the control unit 30 to read the control program from the recording medium and execute it. Further, the recording medium in which the control unit 30 can read the recorded control program can use a portable recording medium or the like, and the recording medium can be connected to the control unit 30 by a circuit having a function as a program server. At this time, the transmission of the 201134590 signal by the data signal of the display control program is transmitted from the program server via the circuit for the transmission medium, and the control unit 30 demodulates the received transmission signal to regenerate the control program. And can execute the control program. As shown in Fig. 1, the platform portion 40 has a base portion 41 having a vibration-damping structure, a floating plate 42 disposed on the base portion 41, a substrate holding portion not shown in the drawing substrate 100, and the substrate 100. A positioning device not shown in the figure of positioning. Further, the floating plate 42 is formed by arranging rectangular tile-shaped plates (not shown) in a matrix, and air can be ejected from the upper surfaces of the respective plates. The glass substrate 1 is held by the substrate holding portion in a state where it is floated by air ejection. The substrate holding portion may be any structure as long as it is a mechanism for fixing or supporting the substrate. The 's' may be a structure in which the substrate 1 is fixed by a clip device or a holding device or a structure in which the glass substrate 100 is supported by a plurality of pins. Further, the floating plate 42 may be omitted from the configuration of the present invention. Further, it is also possible to replace the platform portion of the floating plate 42 with a roller device. As shown in Fig. 2, the shelf unit 50 has an elevated frame 5, a front side X-direction guide portion 呈, and a top direction guide portion 53 which are formed in a gate shape across the land portion 4''. As shown in Fig. 1, the overhead frame 51 has a horizontal beam 51a and a total of two leg portions 51b supporting the both ends of the horizontal beam 51a (only one of which is shown in the figure). In addition, as will be described later in detail, the elevated sill moves along the elevated base portion 6〇, 6〇 in the ¥ direction (upward and downward direction of the paper surface of Fig. 2). The front side X-direction guide portion 52 has two pairs of guide rails Ma disposed on the front surface of the horizontal mark 5U of the elevated frame 51, along the guide rails 52 & in the \ direction (the left and right direction of the paper surface of the 201134590 2 drawing) The moving rectangular plate slider 521) supports the microscope support portion 52c of the microscope unit 1A fixed to the slider 52b. The guide channel 52a moves the microscope unit 10 in the X direction by a slider 52b with a linear motor. In the same manner as the γ-direction guide portion 62 to be described later, the front-side X-direction guide portion 52 has a function of moving the illuminating portion relative to the position of the microscope unit 10 of the substrate 1 to the drive portion. Further, in the present embodiment, the structure for moving the microscope unit 10 can be realized by a structure having a simple structure for moving the substrate 100, and the irradiation portion or the driving portion can be configured to move the substrate 1 in the γ direction or to cause the substrate. The structure that moves in the XY direction instead of moving the overhead 51 in the γ direction as described above may be any structure as long as the position of the microscope unit 1 相对 relative to the substrate 10 is relatively moved. The upper side X-direction guide portion 53 has two pairs of guide rails 53a provided on the horizontal beam 51a of the elevated frame 51, and a rectangular plate-shaped slider 53b that moves along the guide rail 53a. The guide rail 53a moves the laser light source unit 20 and the control unit 30 provided in the slider 53b by a linear motor. In addition, the laser light source unit 20 disposed on the front side X-direction guide portion 52 is connected to the microscope unit 10' disposed on the upper side X-direction guide portion 53 by the optical fiber 23, so that the front side X-direction guide portion 52 is The slider 52b moves in synchronization with the slider 53b of the upper side X-direction guide portion 53. As shown in Fig. 2, the elevated base portions 60, 6 are disposed to face each other across the platform portion 40. Each of the elevated base portions 6A has a base 61 and a direction-direction guide portion 62° 12 201134590 The Y-direction guide portion 62 has two pairs of guide lanes 62a provided on the base portion 61. This guide rail 62a moves the microscope unit 10 in the Y direction by the overhead unit 50 by a linear motor. In the same manner as the front side X-direction guide portion 52, the Y-direction guide portion 62 has a function of moving the illuminating portion relative to the position of the micro-mirror unit 10 of the substrate 相对 relative to the driving portion. Hereinafter, the description of the creation of the reference image and the setting of the irradiation area will be described with reference to the flowchart of the laser processing shown in FIG. Reference image creation Fig. 5 to Fig. 8 are explanatory views for explaining the creation of a reference image in the embodiment. The user confirms that the image display window 300 shown in Fig. 5 of the screen 70 or the like shown in Fig. 3 is displayed, and a reference image can be created on a setting screen not shown. First, the user sets the size of the captured image 311 displayed on the image display unit 310 of the image display window 300. This captured image 3n is a graphic image for selecting the substrate 1〇〇 of the reference image 312 shown in FIG. Further, the details of the reference image 312 described later can be referred to in the setting of the irradiation area of the laser light and the determination of the defect correction. When the reference image 312 shown in FIG. 7 is a periodic repeating pattern 2 (displayed by a two-dot chain line in FIG. 5), the size of the captured image 311 can be set larger than the repeating pattern 200. For example, the vertical and horizontal (X direction, γ direction) are the size of the repeating pattern 2〇〇. About 5 times. In addition, the repetitive graphics are composed of RGB three pixels consisting of the broom line 210, the data line 22, and the circuit element 230. The microscope unit 10 shown in FIG. 3 is created as the captured image 311, and is repeated. Shooting of the field of view and movement of the X and γ directions. The image thus captured is bonded to the control unit 30, and is formed as a captured image 311, and is stored in the memory unit of the control unit 30. Further, when the created image 311 is created and the reference image 312 is created, the captured image 311 can be read from the storage unit of the control unit 30. Next, as shown in FIG. 6, the user displays the size of the thick frame C (which is different from the two-point chain line of the display repeatability pattern 200 and actually displayed in the frame of the image display window 300) in the captured image 312. The position is adjusted to the cycle amount of the repeating pattern by the mouse of the input unit 80 shown in FIG. Thereby, the area selected by the thick frame c can be re-registered as the reference image 312 shown in FIG. As shown in Fig. 8, the reference image 312 (displayed by a two-dot chain line) is continuously bonded to the image 313, and the correction image can be determined by the correction of the laser processing shown in Fig. 4. The pattern of the step (S 4) is matched and the setting of the irradiation area described later. Further, the bonding image 313 can be displayed by superimposing an image of the substrate 1A imaged by the objective lens of a low magnification such as the objective lens 12a for correcting the microscope unit 10, and confirming whether or not the creation error has occurred. Irradiation area setting Fig. 9 to Fig. 21 are explanatory views for explaining the setting of the irradiation area of the embodiment. As will be described later in detail, the irradiation region is set to the region where the laser light is irradiated to the substrate 100, and is set to all or a part of the non-graphic region without depending on the position of the defect. The non-graphic area does not include the area of the scan line 210, the data line 22A, and the circuit element 23 which are the pattern areas shown in Fig. 9 and the like. 14 201134590 The graphic area formed by the scanning line 210, the data line 220 and the circuit component 230 can be divided into the first area R1 composed of the scanning line 21〇 and the data line 220 which are arranged to intersect each other as shown in FIG. And as shown in Fig. 1, the second region R2 composed of the circuit element 230. This partition is used to enlarge the graphic area to a prohibited area or set an important area in an amount of expansion set by each area. Here, the "important area" refers to an area in which importance is set. The importance is described later. When the defect is corrected, when there is a defect in a certain value or more, the correction is unconditionally performed. Further, as shown in FIGS. 9 and 10, the first region R1 and the second region R2 which are the pattern regions can be manually selected from the reference image 312 of the image display portion 310 displayed in the image display window 3A. The user sets the pattern as the area by the mouse or the like of the input unit 8 of FIG. 3, and can automatically set the difference between the brightness values of the graphic area and the non-graphic area. As shown in Fig. 11, the user can set the ith region ^ of the graphics area to be expanded as the forbidden region (the first region R1 that has been enlarged), and further, as shown in Fig. 12, the second region can be made. R2 is expanded and set as a prohibited area (the second area R2 that has been expanded). The first region R1' and the second region R2' are enlarged in all directions above and below the image display window 300. For example, the first region R1' and the second region R2' may be enlarged in one of the up, down, left, and right directions, or may be selected only by the user. Expansion. In addition, the pattern area may be enlarged and set as the prohibited area in accordance with the amount of expansion of each of the predetermined ranges such as the first region R1 or the second region R2 (for example, the expanded width and the enlargement ratio based on the expansion). In the examples shown in the U and 12, the amount of expansion of the first region R1 and the second region R2 is a constant 15 201134590 expanded width. In the example of Fig. 13, the second region R2 is enlarged larger than the amount of expansion of the first region ri, and is set as the prohibited region (the second region R2〃). In addition, the amount of expansion can be automatically determined based on the above importance. As in the second region R2 shown in Fig. 14, when there is a falling portion R2a and a protruding portion R2b for the actual pattern region, the user selects the region of the predetermined shape indicated by the broken line in Fig. 15 to add the frame R2c or the region. The frame R2d is deleted and placed on the image display window 300, and the area can be changed as appropriate. As shown in Fig. 16, the irradiation region R3 is set to all or part of the non-graphic area which does not include the portion of the scanning line 21 〇, the data line 22 0 and the circuit element 23 0 of the pattern area. The irradiation region R3 shown in Fig. 16 is a region other than the first region R1 and the second region R2. Further, the irradiation area is set to be automatically set by the difference between the luminance values generated by the pattern areas R1 and R2 and other non-graphic areas. For example, you can use the gradation difference to make the binarization or morphology. As described above, when the first region R1 and the second region R2 are enlarged (R1, R2, , j, ^ as shown in Fig. 17, the irradiation region r3 can be set not to include the expanded correction prohibition region. The first region R1, and the second region R2, R2, and the portion. As shown in Fig. 18, the plurality of cycles of the repeating pattern 200 of the substrate 100 (three cycles in the eighteenth figure) have 1 Different from other repetitive patterns 200, the inverse of the graph is as follows: [240] As shown in Fig. 19, all the repeating patterns 200 can be made to have an abnormal pattern 240 (imaginary figure 24〇,), to determine as the first The figure 20 does not include the imaginary pattern 240, and the irradiation area R3, 16 201134590 Thus, the setting of the irradiation area can be simplified by setting the imaginary pattern 240, 'as shown in Fig. 21, the irradiation area R3 can be included in The irradiation conditions are changed in the regions R3'-l, R3, 2, and R3. 3. The irradiation conditions may be, for example, the number of times of irradiation of the laser light, the light input, the wavelength, the oscillation pulse width, etc., for example, the irradiation conditions may be changed. By arranging the micro-mirrors arranged in the spatial modulation element 11 shown in FIG. 3 in the illumination area R3 All of the micromirrors are in an activated state, and a part of the illumination area is extracted as a closed state in a range in which the optical decomposition energy can be ensured. The laser processing is as shown in the flowchart of FIG. 4, as shown in FIG. The control unit 3 obtains the position information of the defect of the extracted substrate 1 from the inspection device independent of the laser processing apparatus 10 (S1: defect position information acquisition step). The inspection device is located upstream of the transfer path of the substrate 100. Further, the inspection device and the laser processing device may be configured as a composite device having both a function of performing a defect inspection and a function of laser processing without being independent of each other. Further, the control unit 30 sets the defect at a magnification of 5 The observation area at the time of mounting the objective lens 12a (see the observation area pi in Fig. 23) is determined based on the position information of the defect, and is guided by the front side 乂 direction shown in Fig. 2 and Fig. 2 The portion 52 and the Y-direction guide portion 62 move the microscope unit 1〇, thereby moving relative to the substrate 100 (SL first irradiation unit relative movement step). The control unit 30 causes the microscope unit 1 to After the movement, the autofocus device (not shown) is used to perform autofocus, and then the control unit 3 determines whether or not the defect needs to be corrected based on the observation pattern paid by the microscope unit 10 (S4). In the correction (S4), the control unit 3 performs matching (see comparison) or observation from the pattern of the above-mentioned observation pattern by the bonding image 313 formed by bonding the reference image 312 of the eighth drawing. A comparison between the repetitive patterns of adjacent extractions (proximity comparison) to detect defects. Then, as shown in Fig. 22, the data line 22〇 (the second area R1) and the circuit element 230 (the second area) In the defect 4〇1 of R2), since the importance of the second area rule 2 is equal to or greater than a certain value, the control unit 3 determines that the correction is short, and the control unit 30 is constituted by the circuit element 23〇. The importance of the second region R2 is equal to or greater than a certain value, and it is judged that the defect 4〇2 of the contact circuit element 23 is "corrected" unconditionally. Further, when the degree of importance of the first region constituting the scan line 21A is less than a constant value or the degree of importance is not set, the control unit 30 determines that the defect 403 contacting only the broom line 210 is "not corrected yet. The control unit judges that the defect 404 that is not in contact with any of the graphics is "no correction". The control unit automatically performs such determination on a predetermined condition. When the defect does not need to be corrected, the control unit 30 determines whether there are other uncorrected defects (S13), and if there are no uncorrected defects, the processing of the laser processing ends. Further, when there is an uncorrected defect, the control unit 30 restarts the processing from the first irradiation unit relative movement step (S2) as shown in Fig. 4 . Further, although not shown in the flow of Fig. 4, the steps (S2, S3) may be omitted when it is not necessary to move the microscope unit 1〇 or when autofocus is not required (S3). When the defect is corrected, the control unit 30 takes in an image (S5) of the defect photographed by the microscope unit 1〇, and records it in the memory unit. This image can be used in step S12 when it is judged whether or not the defect is corrected by comparing it with the corrected defect image (S11) described later. After the image capturing unit 13 has taken an image of the defect, the control unit 30 replaces the objective lens 12a for correction or not with the objective lens 12b for laser light irradiation 20 times (S6). Thereby, as shown in Fig. 23, the observation area F1 of the microscope unit 1 is formed as the observation area F2. Then, the control unit 30 performs autofocus again with an autofocus device (not shown) (S7). Then, the control unit 3 is guided by the front side X-direction guide portion 52 and the γ direction shown in FIGS. 1 and 2 so that the defect is located in the irradiatable region F3 when the laser beam irradiation objective lens 12b is mounted. The portion 62 moves the microscope unit 1〇, thereby moving relative to the substrate 1〇〇, and centering the defect 401 in the irradiatable region F3 (S8: second irradiation unit relative movement step). Further, the above-described microscope movement (S2: relative movement step of the first irradiation unit) is performed with high accuracy, and the centering is not required (S8: second irradiation unit relative movement step), and may be omitted. The control unit 30 causes the laser beam to be irradiated to the irradiation region R3 which is the #graphic region as shown in Fig. 16, and the correction prohibition region is not included in the non-graphic region as shown in the πth diagram (the first region in which the graphics region is enlarged) The region R1 and the irradiation region R3 of the portion of the second region R2D (S9, S10: laser light irradiation step). Specifically, as shown in Fig. 24, the control portion 30 sets the micromirror of the spatial modulation element 11 Controlled into the illuminable region F3 of the microscope unit 10, the 'micro mirrors corresponding to the spatial modulation elements 11 of the illumination regions R3 are in an open state'. The micro mirrors of the spatial modulation elements 11 corresponding to the pattern regions R1, R2 are closed. 19 201134590 In the state, the laser light is spatially modulated (S9). Further, regarding how the illuminable region F3 corresponds to the irradiation region R3, for example, the microscope unit obtained by the image (S5) taken in, etc. Based on the position of 1 〇 (irradiated area F3), the irradiation area R3 of the illuminable area F3 may be trimmed from the bonding image 313 of the reference image 312 shown in Fig. 8. Next, the 'control unit 30' Controlling the spatial adjustment of the micro mirror as described above The element 11 irradiates the laser light with the laser light source 20, and performs processing (correction) of the defect 4〇1 (S10). Further, the control unit 30 may also be an area of the irradiation region R3' shown in Fig. 21 as described above. R3M, R3'-2, and R3'-3 change the irradiation conditions and irradiate a plurality of laser beams. After the processing of the defect 401, the control unit 30 takes in an image of the defect captured by the imaging unit 13 of the microscope unit 1 ( S11) The control unit 3 determines whether or not the defect is corrected (s 12) by matching the image with the pattern of the defect (S5) before the correction or the reference image 312 shown in Fig. 7 (s 12). When the correction is not completed, the control unit 30 restarts the processing from the laser processing (s1). When the defect correction is completed, the control unit 30 determines whether there are other uncorrected defects (S12) 'if there are no uncorrected defects, The processing of the laser processing is completed. When there is an uncorrected defect, the control unit 3 restarts the processing from the first irradiation unit relative movement step (S2) as shown in Fig. 4, and is not shown at this time. The flow of Fig. 4, but the objective lens 12b for laser illumination needs to be replaced with the correction 20 201134590 and No objective lens 12a is determined. Further, 'when the microscope unit 10 is not required to be moved', the step of moving the microscope (S2) can be omitted. As this is done, the defect correction processing is finished, but as shown in Fig. 25, the line is When the defect 405 is not included in the irradiatable region F3, the control unit 30 performs the centering (S8) as described above, and repeats the plurality of laser light irradiation steps (S9, S10), as shown in Fig. 26, because The illuminable region F3 is circular, so that a repeating portion F 3 - Ο (shown by oblique lines) is generated between the adjacent irradiation regions F 3 . Therefore, the borrowing control unit 30 does not make the irradiation region R3 the non-graphic region of the illuminable region F3 and reduces the adjacent irradiation region R3 by half of the repeated portion F3-0, thereby solving the repeated portion F3-0. . Further, as shown in Fig. 27, the irradiation portion R3 can be reduced to a rectangular shape or the like to solve the overlapping portion F3-0 of the irradiatable region F3. In the embodiment described above, the laser beam is irradiated to the irradiation region R3 provided in the non-pattern area of the substrate 100 without depending on the position of the defect. Therefore, when the correction is accompanied by subtle defects, it is also possible to correct subtle defects at the same time. Further, by irradiating the laser light in a wide range including defects, it is possible to prevent the emission of the laser light from being missed (residual defects). Further, it is possible to prevent the problem that the scattered residue generated when only the laser beam is irradiated with the defect becomes a new defect. Therefore, the defect can be corrected. Further, since the control of the spatial modulation element U such as the shape of the defect can be omitted, the control of the laser processing can be simplified. Further, in the present embodiment, the control unit 30 performs a plurality of 21 201134590 regions R3'-l, R3, - in the irradiation region R3' as shown in Fig. 21 in the laser light irradiation step (S9, S10). 2. R3, -3 change the illumination conditions to illuminate the laser. Therefore, the defect can be reliably corrected under the conditions of the substrate 1〇〇. Further, in the present embodiment, the control unit 30 irradiates the irradiation region R3 of the entire region (or almost the food zone) of the irradiatable region F3 shown in Fig. 24 and the like in the laser light irradiation step (S9, S10). Defects can be quickly corrected when laser light is emitted. Further, in the present embodiment, the control unit 3 〇 in the laser light irradiation step, as shown in FIG. 21, does not include the correction prohibition for enlarging the graphic area (210, 220, 230) in the non-graphic area. The irradiated region R3' of the portion of the regions Ri', R2' illuminates the laser light. Therefore, even if there is manufacturing variation in the pattern area or vibration is generated in the laser processing apparatus 10, the influence of damage or the like of the normal pattern can be prevented. Also, the effect of heat on normal graphics can be reduced. Further, in the present embodiment, the control unit 3 〇 in the laser light irradiation step, as shown in Fig. 13, does not include the correction prohibition for expanding the pattern area by the amount of expansion set for each designated range in the non-pattern area. The area of the area (the area where R is small and the area where R is large) is irradiated with laser light. Therefore, it is possible to more effectively prevent the destruction of the normal pattern or the influence of heat. Further, in the present embodiment, the control unit 3 performs a first moving unit relative moving step (S2) and a second moving unit relatively moving step (S8). In the first irradiation unit relative movement step (S2), the control unit 30 moves the microscope unit 10, which is the laser light irradiation unit, to the substrate 100, and causes the defect to be located in the observation area F1 when the objective lens 12a for correction determination is mounted. . In the second irradiation unit relative movement step (S8), the control unit 30 moves the microscope unit 1A and the substrate 1A to face each other. 俾 The defect is centered in the 玎 irradiation area F3 when the laser light irradiation objective lens 12b is mounted. Therefore, it is possible to correct the subtle defects located around the defect in a wide range, 22 201134590 Thus, the defect can be corrected more surely. Further, in the present embodiment, the control unit 3 determines whether or not the defect correction determination step (S4) is performed, and the correction determination step is as shown in Fig. 22, depending on the pattern area of the substrate. When the defect 4〇2 is located in the region R2 whose importance is equal to or greater than a certain value, it is judged that it is necessary to correct it, etc., when the defect 4〇2 is located in the region R2 whose importance is equal to or greater than a certain value. . . Determine whether the defect is corrected or not. Therefore, the defect can be corrected more surely. Further, in the present embodiment, the control unit 30 performs a step of determining whether or not the defect correction is correct (S4). In the correction determination step, the image of the defect captured by the comparison is used for comparison. The pattern of the reference image 312 of the image is matched, and the defect is corrected. In the laser light irradiation step (S9, S10), the laser beam is irradiated to the irradiation region R3 set in accordance with the reference image 312. Therefore, the irradiation area R3 can be set simply by control. Further, in the present embodiment, as shown in Figs. 25 to 27, the control unit 30 repeatedly performs a plurality of laser light irradiation steps (S9 'S10) on the defect 405 not included in the irradiatable region F3, and reduces the irradiation. The region R3 solves the repeated portion F3-0 of the irradiatable region F3 of the plurality of laser light irradiation steps. Therefore, irradiation of unnecessary laser light can be suppressed. Further, in the present embodiment, the substrate 100 is described by an array substrate of a liquid crystal display (LCD), and may be a PDP (Plasma Display Panel), an organic EL (Electro Luminescence) display, or a surface-electric type in addition to a liquid crystal display (LCD). This embodiment is applied to a substrate such as a substrate, a semiconductor wafer, or a printed substrate of another flat panel 23 201134590 display (FPD), such as a surface-conduction electro-emitter display (SED). Further, the above-described embodiments and their modifications are merely examples for carrying out the invention, and the invention is not limited by the description of the embodiments. For example, the various structures detailed in the description of the invention are replaced by a structure that can be replaced by the manufacturer, and various modifications are possible within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a main part of a laser processing apparatus according to an embodiment of the present invention. Fig. 2 is a plan view showing a laser processing apparatus according to an embodiment of the present invention. Fig. 3 is a schematic block diagram showing a laser processing apparatus according to an embodiment of the present invention. Fig. 4 is a flow chart for explaining a laser processing method according to an embodiment of the present invention. Fig. 5 is an explanatory diagram (1) for explaining the creation of a reference image according to an embodiment of the present invention. Fig. 6 is an explanatory view (2) for explaining the creation of a reference image according to an embodiment of the present invention. Fig. 7 is an explanatory diagram (3) for explaining the creation of a reference image according to an embodiment of the present invention. Fig. 8 is an explanatory view (4) for explaining the creation of a reference image according to an embodiment of the present invention. Fig. 9 is an explanatory view (1) for explaining the setting of the irradiation area according to an embodiment of the present invention. Fig. 10 is an explanatory view (2) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 11 is an explanatory view (3) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 12 is an explanatory view (4) for explaining the arrangement of the irradiation region according to the embodiment of the present invention. Fig. 13 is an explanatory view (5) for explaining the arrangement of the irradiation region according to the embodiment of the present invention. Fig. 14 is an explanatory view (6) for explaining the setting of the irradiation region according to the embodiment of the present invention. Fig. 15 is an explanatory view (7) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 16 is an explanatory view (8) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 1 is an explanatory view (9) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 18 is an explanatory view (10) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 19 is an explanatory view (11) for explaining the setting of the irradiation region according to the embodiment of the present invention. Fig. 20 is an explanatory view (12) for explaining the setting of an irradiation region according to an embodiment of the present invention. Fig. 21 is an explanatory view (13) for explaining an irradiation area of an embodiment of the present invention. Fig. 22 is an explanatory view for explaining the determination of the correction of an embodiment of the present invention. Fig. 23 is an explanatory diagram (1) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 24 is an explanatory diagram (2) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 25 is an explanatory diagram (3) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 26 is an explanatory view (4) for explaining the control of the spatial modulation element according to the embodiment of the present invention. Fig. 27 is an explanatory diagram (5) for explaining the control of the spatial modulation element according to the embodiment of the present invention. [Main component symbol description] 1. . . Laser processing equipment 22. . . Imaging lens 10. . . Microscope unit 23. . . Optical fiber 11. . . Space modulation element 30. . . Control unit 12. . . Objective lens replacement unit 40. . . Platform Department 12a. . . Correction or notation objective lens 41. . . Base bottom 12b. . . Objective lens for laser illumination 42. . . Floating plate 13. . . Shooting department 50. . . Elevated unit 14. . . Two-way beam splitter 51...Southern frame 20. . . Laser source unit 5 la. . . Horizontal beam 21. . . Laser source 51b. . . Foot 26 201134590 52. .  . Front side X direction guides 52a, 53a, 62a. . . Guide track 52b, 53b. . . Slider 52c. . . Microscope support 53. .  . The upper side X direction guiding portion 60. .  . Elevated base portion 61. .  . Substrate 62. .  .  Y direction guide 70. .  . Screen 80. .  . Input section 100. .  . Substrate 200. .  . Repetitive graphics 210. .  . Scanning line 220. .  . Gourmet line 230. .  . Circuit component 240·. · Abnormal graphics 24 (Τ. . . Imaginary graphic 300...image display window 310. .  . Image display unit 311. .  . Taking an image 312. .  . Reference image 313. .  . Fitting image 401-405. . . Defect C. . . Thick frame FI, F2. . . Observation area F3. . . Irradiable area Repeated part. . . F3-0 R1. . . Zone 1 Rr. . . Expanded first area R2. . . The second area R2', R2〃...the expanded second area R2a. . . Shedding part R2b. . . Prominent part R3, R3'. . . Irradiation area RT-1, R3'-2, RT-3. . . Area S1-S13. . . Step 27

Claims (1)

201134590 七、申請專利範圍: 種田射加JL方法,係以雷射光修正基板上之缺陷者, 其特徵在於具有: 1缺陷位置資訊取得步驟’係取得前述缺陷之位置資 δίΐ 者; 么照射部相對移動步驟,係依據前述位置資訊,使照 射前述雷射光之雷射光照射部與前述基板相對地移 動’俾使前述缺陷位於其可照射區域者;及 雷射光照射㈣’係料根據前述顧之位置設定 於前述基板之非_區域之照射區域,以前述雷射光照 射部照射前述雷射光者。 •如申Μ專利视圍第丨項之雷射加卫方法,其中在前述雷 射光,、、、射步驟中,在前述照射區域所包含之複數個區域 改變照射條件,來照射前述雷射光。 .如申明專利|(L圍第丨項之雷射加工方法,其中在前述雷 ^光照射步驟中’對前述可照射區域全d或幾乎全區之 月1J述照射區域一併照射前述雷射光。 4.如申明專利範圍第i項之雷射加工方法,其中在前述雷 射光照射步驟巾,對前述非圖形區域中為不包含使前述 圖形區域擴大之修正禁止區域之部份的前述照射區域 照射雷射光。 5·如申請專利範圍第4項之雷射加工方法,其中在前述雷 射光照射步驟巾,對前述非圖形區域中為不包含使前述 圖形區域以按各指定範圍所設定之擴大量擴大之前述 28 201134590 修正禁止區域之部份的前述照射區域照射前述雷射光。 6.如申請專利範圍第1至5項中任一項之雷射加工方法,其 中前述照射部相對移動步驟具有: 第1照射部相對移動步驟,係使前述雷射光照射部 依據前述位置資訊,與前述基板相對地移動’俾使前述 缺陷位於修正與否判定用物鏡裝設時之觀察區域者;及 第2照射部相對移動步驟,係使前述雷射光照射部 與前述基板相對地移動,俾使前述缺陷定心於雷射光照 射用物鏡裝設時之前述可照射區域者; 又,前述雷射加工方法更具有: 修正與否判定步驟,係於前述第1照射部相對移動 步驟後,判定位於前述觀察區域之前述缺陷之修正與否 者。 7·如申請專利範圍第1至5項中任一項之雷射加工方法,該 雷射加工方法更具有判定前述缺陷之修正與否之修正 與否判定步驟, 在前述修正與否判定步驟中’依據按前述基板之圖 形區域所包含之各複數個區域設定之重要度,判定前述 缺陷之修正與否。 8.如申請專利範圍第1至5項中任一項之雷射加工方法,該 雷射加工方法更具有判定前述缺陷之修正與否之修正 與否判定步驟, 在前述修正與否判定步驟中,藉以比較所拍攝之缺 陷之圖像與為比較用圖像之參照圖像所行之型樣匹 29 201134590 配,進行前述缺陷之修正與否, 在前述雷射光照射步驟中,對依據前述參照圖像所 設定之照射區域照射前述雷射光。 9. 如申請專利範圍第1至5項中任一項之雷射加工方法,其 中對未納入前述可照射區域之前述缺陷反覆進行複數 次前述雷射光照射步驟, 藉縮小前述照射區域,可解決該複數次雷射光照射 步驟之前述可照射區域之重複部份。 10. —種雷射加工裝置,係以雷射光修正基板上之缺陷者, 其特徵在於包含有: 雷射光照射部,係照射雷射光者;及 照射部相對驅動部,係使該雷射光照射部與前述基 板相對地移動者; 又,前述雷射光照射部對不根據前述缺陷之位置設 定於非圖形區域之照射區域照射前述雷射光。 30201134590 VII. Patent application scope: The farming and adding JL method is to correct the defects on the substrate by laser light, and is characterized by: 1) the defect position information obtaining step ' is the position of obtaining the aforementioned defect δίΐ; The moving step is to move the laser light irradiating portion of the laser light to the substrate relative to the substrate according to the position information, so that the defect is located in the irradiatable region; and the laser light irradiation (4) is based on the position The irradiation region of the non-region of the substrate is set, and the laser beam is irradiated to the laser beam. The laser-assisting method according to the third aspect of the invention, wherein in the laser light, the, and the spraying step, the plurality of regions included in the irradiation region are changed in irradiation conditions to illuminate the laser light. The invention relates to a laser processing method according to the invention, wherein in the step of irradiating the light, the laser light is irradiated to the irradiated region of the entire irradiated region or the region of the irradiated region. 4. The laser processing method according to claim i, wherein in the laser light irradiation step, the irradiation area of the non-pattern area that does not include a portion of the correction prohibition area for enlarging the pattern area is provided. 5. The laser processing method of claim 4, wherein in the laser light irradiation step, the non-graphic area does not include the expansion of the graphic area by each specified range. The laser irradiation method according to any one of the preceding claims, wherein the illuminating portion relative movement step has : the first illuminating unit relative movement step of causing the laser light irradiation unit to move relative to the substrate in accordance with the position information; The defect is located in the observation area when the objective lens is mounted for correction or not; and the second irradiation unit is moved relative to the substrate by moving the laser beam irradiation unit to the substrate, and the defect is centered on the laser beam. Further, the laser processing method further includes: a correction necessity determining step of determining a correction of the defect located in the observation area after the first irradiation unit relative movement step 7. The laser processing method according to any one of claims 1 to 5, wherein the laser processing method further has a step of determining whether the correction of the defect is correct or not, and whether the correction is correct or not. In the determining step, 'the correction of the defect is determined according to the importance degree of each of the plurality of regions included in the pattern region of the substrate. 8. The laser processing according to any one of claims 1 to 5. According to the method, the laser processing method further has a step of determining whether the correction of the defect is correct or not, and the step of determining whether the defect is determined or not Comparing the image of the captured defect with the type of the reference image for the comparison image 29 201134590, and correcting the defect, in the laser light irradiation step, according to the reference image The laser irradiation method according to any one of claims 1 to 5, wherein the foregoing laser light is not repeatedly applied to the aforementioned defect that is not included in the irradiatable region. In the step of reducing the aforementioned irradiation area, the repeated portion of the irradiatable area of the plurality of laser light irradiation steps can be solved. 10. A laser processing apparatus for correcting defects on a substrate by laser light, characterized in that The laser light irradiation unit is configured to emit laser light; and the irradiation unit is driven relative to the driving unit to move the laser light irradiation unit relative to the substrate; and the laser light irradiation unit does not depend on the defect. The irradiation light set in the non-graphic area irradiates the aforementioned laser light. 30
TW100105771A 2010-03-18 2011-02-22 Laser processing method and laser processing device TW201134590A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063312A JP5495875B2 (en) 2010-03-18 2010-03-18 Laser processing method and laser processing apparatus

Publications (1)

Publication Number Publication Date
TW201134590A true TW201134590A (en) 2011-10-16

Family

ID=44598678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105771A TW201134590A (en) 2010-03-18 2011-02-22 Laser processing method and laser processing device

Country Status (4)

Country Link
JP (1) JP5495875B2 (en)
KR (1) KR20110105339A (en)
CN (1) CN102189332A (en)
TW (1) TW201134590A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818721B2 (en) * 2012-03-06 2015-11-18 住友重機械工業株式会社 Laser processing apparatus and laser processing method
KR101821239B1 (en) * 2015-09-04 2018-01-24 주식회사 이오테크닉스 Method and apparatus for removing adhesive

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138588A (en) * 1982-02-12 1983-08-17 Hitachi Ltd Optical irradiate-working equipment
JPH02241686A (en) * 1989-03-14 1990-09-26 Nec Corp Image formation optical system for laser beam machine
JPH0542381A (en) * 1991-08-09 1993-02-23 Nec Corp Method for correcting fault by using laser beam machine
JP3042155B2 (en) * 1992-03-05 2000-05-15 日本電気株式会社 Photomask repair apparatus and photomask repair method
JP2809134B2 (en) * 1995-06-20 1998-10-08 日本電気株式会社 Defect repair method and apparatus for color filter for liquid crystal display
JP3858571B2 (en) * 2000-07-27 2006-12-13 株式会社日立製作所 Pattern defect inspection method and apparatus
JP4335422B2 (en) * 2000-07-31 2009-09-30 Ntn株式会社 Pattern correction device
KR100457565B1 (en) * 2002-07-29 2004-11-18 엘지전자 주식회사 laser repair device and method
KR101061653B1 (en) * 2003-05-09 2011-09-01 올림푸스 가부시키가이샤 Pattern defect repair system and pattern defect repair method
JP2005103581A (en) * 2003-09-29 2005-04-21 Olympus Corp Repair method and device therefor
JP4688525B2 (en) * 2004-09-27 2011-05-25 株式会社 日立ディスプレイズ Pattern correction device and display device manufacturing method
KR101120531B1 (en) * 2005-03-24 2012-03-06 올림푸스 가부시키가이샤 Repairing method and apparatus therefor
JP5036144B2 (en) * 2005-06-28 2012-09-26 オリンパス株式会社 Laser processing equipment
JP4947933B2 (en) * 2005-07-26 2012-06-06 オリンパス株式会社 Laser repair device
TWI408358B (en) * 2006-07-03 2013-09-11 Olympus Corp Semiconductor substrate defects correction device
JP4951323B2 (en) * 2006-12-08 2012-06-13 オリンパス株式会社 Defect correction method and defect correction apparatus
JP5064778B2 (en) * 2006-12-11 2012-10-31 オリンパス株式会社 Laser processing equipment
JP2008153024A (en) * 2006-12-15 2008-07-03 Ntn Corp Micro pattern correction method
JP5114943B2 (en) * 2006-12-25 2013-01-09 ソニー株式会社 Defect correction apparatus and defect correction method
JP5110894B2 (en) * 2007-02-05 2012-12-26 株式会社ジャパンディスプレイウェスト Defect correction apparatus, wiring board manufacturing method, display device manufacturing method
JP4955425B2 (en) * 2007-03-08 2012-06-20 オリンパス株式会社 Laser processing equipment
JP4937185B2 (en) * 2008-05-15 2012-05-23 Ntn株式会社 Pattern correction method
JP5331421B2 (en) * 2008-09-12 2013-10-30 オリンパス株式会社 Laser repair device and laser repair method
JP5730528B2 (en) * 2010-03-05 2015-06-10 オリンパス株式会社 Defect correction apparatus and defect tracking method

Also Published As

Publication number Publication date
KR20110105339A (en) 2011-09-26
CN102189332A (en) 2011-09-21
JP2011194432A (en) 2011-10-06
JP5495875B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US8363209B2 (en) Method and apparatus to adjust misalignment of the maskless exposure apparatus
CN203265909U (en) Repairing device
US7830502B2 (en) Substrate inspection device and substrate inspection method
TW201013817A (en) Laser repairing device and laser repairing method
JP2011025316A (en) Defect correction device
CN203409425U (en) Repairing device
TW200911432A (en) Laser processing device
EP4377070A1 (en) Calibration systems and methods for additive manufacturing systems with multiple image projection
JP6423294B2 (en) Laser processing apparatus and processing method
TW201134590A (en) Laser processing method and laser processing device
KR20130098838A (en) Laser processing apparatus, laser processing method and computer-readable recording medium storing laser processing program
KR100935241B1 (en) Peripheral exposure apparatus and method of manufacturing the same
KR100931712B1 (en) Laser beam exposure apparatus and method
JP5077887B2 (en) Color filter defect correcting method and color filter defect correcting apparatus
JP2008209295A (en) Device for measuring size
CN110032047A (en) Double-sided plate making method and screen processing equipment
JP4338628B2 (en) Exposure equipment
KR20150032772A (en) Drawing apparatus, substrate processing system and drawing method
JP2010060991A (en) Liquid crystal panel inspecting device and liquid crystal panel inspection method
JP2004045327A (en) Instrument and method for measuring spot
JP2016031502A (en) Drawing device and drawing method
JP2004347846A (en) Pattern plotting apparatus
JP2002040385A (en) Pattern correction system
JP2022100674A (en) Drawing device and drawing method
JP2001091919A (en) Defect correcting device for display device