TW201013817A - Laser repairing device and laser repairing method - Google Patents

Laser repairing device and laser repairing method Download PDF

Info

Publication number
TW201013817A
TW201013817A TW098127716A TW98127716A TW201013817A TW 201013817 A TW201013817 A TW 201013817A TW 098127716 A TW098127716 A TW 098127716A TW 98127716 A TW98127716 A TW 98127716A TW 201013817 A TW201013817 A TW 201013817A
Authority
TW
Taiwan
Prior art keywords
irradiation
spatial modulation
laser
illumination
condition
Prior art date
Application number
TW098127716A
Other languages
Chinese (zh)
Inventor
Takayuki Akahane
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of TW201013817A publication Critical patent/TW201013817A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing

Abstract

The subject of the invention is to more precisely control the illumination of a laser beam and more suitably repair the defects. To solve the problem, a recipe storage part is provided to store images corresponding to the illuminating conditions of the laminated substance for each of plural lamination domains on the surface of a glass substrate. An image processing part is provided to identify the range of defects on a Flat Panel Display (FPD) substrate manufactured by various substances laminated on the glass substrate, and discriminate the illumination domain by determining which lamination domain is overlapped with the range of defects based on the images of the illuminating conditions. A master control part makes use of a laser control part and a space modulation control part to sequentially assign more than one space modulation patterns to a quadratic space light modulator for each illumination domain and also control a laser unit, so as to illuminate a laser beam on the illumination domain with the illuminating condition corresponding to the lamination domain overlapped with the illumination domain.

Description

201013817 六、發明說明: 【韻^明月t屬技^椅々貝滅^】 技術領域 本發明關於對製品表面照射雷射束以修正缺陷的技 術,而該製品係將用以形成電路之一種類以上物質積層一 層以上於基板表面而製造者。 背景技術 ❹ 平面板顯示器(FPD : Flat Panel Display)之製造工程 中,例如藉著使用複數片光罩之光蝕刻的處理,並一面反 覆圖案一面藉著姓刻技術或賤鑛技術而於玻璃基板上形成 電極圖案或薄膜電晶體(TFT : Thin Film Transistor)。特別 是液晶顯示器(LCD : Liquid Crystal Display)之TFT基板,係 使用閘極匯流排線(gate bus line)層、絕緣膜層、非晶質石夕 層、源極或汲極匯流排線(source-drain bus line)層、絕緣膜 層、形成透明電極層之4至5片遮罩而製造TFT基板。關於 ® FPD,除了液晶顯示器以外,另具有電漿顯示面板(PDp ··201013817 VI. Description of the invention: [Rhyme ^ Mingyue t is a technology ^ chair 々 灭 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The above substances are laminated on one surface of the substrate to be manufactured. BACKGROUND OF THE INVENTION In the manufacturing process of a flat panel display (FPD), for example, by using a photolithography process using a plurality of reticle, the pattern is reversed by a surname technique or a bismuth technique on a glass substrate. An electrode pattern or a thin film transistor (TFT: Thin Film Transistor) is formed thereon. In particular, a TFT substrate of a liquid crystal display (LCD) uses a gate bus line layer, an insulating film layer, an amorphous layer, a source or a drain bus line (source). A -drain bus line layer, an insulating film layer, and 4 to 5 masks forming a transparent electrode layer were used to manufacture a TFT substrate. About ® FPD, in addition to the liquid crystal display, there is also a plasma display panel (PDp ··

Plasma Display Panel)、表面傳導電子發射顯示器(SEd : Surface-conduction Electron Display)等各式各樣的種類。 又,於基板上積層各種物質所製造之製品本身也有稱 為「基板」、「玻璃基板」、「FPD玻璃基板」等。 以下為了區別作為尚未有任何積層之基板(substrate) 的玻璃基板’與積層各種物質並形成有電極圖宰及TFT之製 品’乃將Θ者稱為「玻璃基板」’而將後者稱為「Fpd基板」。 201013817 又’「製品」的用語包含製造中途之半成品(work_in_process) 也包含製造完了後之完成品。 於FPD之製造工程中,進行對FpD基板之缺陷的檢查及 修正。近年來,伴隨著FPD之大型化,修正各製造工程中 發生之成為動作不良之要因的缺陷而提昇製成率的事情成 為重要的課題。 例如,成為動作不良之要因的缺陷有配線之間連接「短 路缺陷」與配線在中途斷了的「開放缺陷」。又成為於抗 ㈣案成形時可能發生之「短路缺陷」之原因的抗侧帛 φ 的形狀不良也構成修正對象的缺陷。而且,附著於FPD基 板表面之粒子(partieal)與抗蝕劑(resist)等異物也係藉著去 除而應修正之缺陷的例子。缺陷之修正方法依據缺陷的種 類而不同藉著照射雷射束來修正缺陷之所謂「雷射 修復(laSerrepair)J的技術為人所知。 例如,關於短路缺陷係藉著照射雷射束而去除已形成Plasma Display Panel), surface conduction electron emission display (SEd: Surface-conduction Electron Display) and other various types. Further, the products produced by laminating various substances on the substrate are also referred to as "substrate", "glass substrate", "FPD glass substrate" and the like. In the following, in order to distinguish a glass substrate which is a substrate which has not been laminated, and a product in which various materials are laminated and formed with electrodes and TFTs, the latter is referred to as a "glass substrate" and the latter is referred to as "Fpd". Substrate". 201013817 The term "product" includes semi-finished products (work_in_process) in the middle of manufacturing, and also includes finished products after manufacture. In the manufacturing process of the FPD, inspection and correction of the defects of the FpD substrate are performed. In recent years, with the increase in the size of the FPD, it has become an important issue to correct the defects that cause malfunctions in various manufacturing processes and to increase the production rate. For example, defects that cause malfunctions include "short-circuit defects" between wirings and "open defects" in which wiring is broken. Further, the shape defect of the anti-side 帛 φ which is a cause of the "short-circuit defect" which may occur during the formation of the (4) case also constitutes a defect to be corrected. Further, foreign matter such as a partieal and a resist attached to the surface of the FPD substrate is also an example of a defect to be corrected by removal. The method of correcting the defect is known by the technique of laser repair to correct the defect by the laser beam to correct the defect. For example, the short defect is removed by irradiating the laser beam. Formed

在基板上之配線間連結的短路缺陷而修正,附著於FpDCorrected by short-circuit defects connected between wirings on the substrate, attached to FpD

板表面之粒子或抗㈣丨等造成動彳林良要因之異物也 以照射雷射束來去除而修正。即,短路缺陷與異物均為雷 射修復的對象。 於雷射修復上 適切地照射雷射束 期望依據各個缺陷的種類與形狀等而 出昭㈣’在金屬圖案之短路缺陷的修正上,以較高的輸 =,於去除金屬之波長(例如I)的雷射束。相對 ; 4物的去除上,係照射適於去除非金屬之粒子或 4 201013817 抗餘劑之較短波長(例如355nm)的雷射束。又,為了避免缺 陷以外之圖案部分的損傷而依據各個缺陷的形狀設定雷射 束的照射範圍。 又,習知例如以切斷配線的狀態而使像素無能化,進 行將像素經常點亮之點亮缺陷設成像素經常燈滅之非點亮 缺陷的修正。但是’如今要求將不良像素修正成良好狀態 之更高度的修正。而在各種修正工程中修正為複雜者係進 行透明電極之最後層(layer)工程結束後的修正。 於最後層之下層有已形成完了之金屬(metal)配線或薄 膜電晶體(TFT: Thin Film Transitor)。又,透明電極為透明, 因此透過修正用的雷射束,其結果雷射束到達金屬配線或 TFT而有破壞像素之虞。爰此,形成最後層之後的修正上, 要求用以防止破壞像素的技術而為複雜。 於雷射修復裝置中’可得知電荷電耦元件(CCD:Charge Coupled Device)照像機拍攝成為被檢查對象之FPD基板而 產生影像資訊,影像處理部由影像資訊產生可顯示缺陷特 徵的缺陷特徵資訊,依據缺陷特徵資訊。數位微型反射鏡 元件(DMD : Digital Micromirror Device)整形雷射光的技術 (例如,參考專利文獻1)。 又’具有依據與參考影像之比較而檢測於FPD基板產 生之缺陷之缺陷檢測部的缺陷修正裝置,更可包含以下各 部(例如’參考專利文獻2)。 •對於驅動電路元件上或配線上的缺陷,設定禁止修 正領域的禁止領域設定部 5 201013817 •設定去除關聯禁止領域之部分的缺陷部分,與無關 禁止領域之缺陷作為修正領域的修正領域設定部 •對修正領域設定修正順序之優先度的優先度設定部 •依照優先度而修正缺陷的修正部 【專利文獻1】特開2007 —29983號公報 【專利文獻2】國際公開W02004/099866號公報 【發明内容3 發明揭示 發明欲解決之課題 如以上所述,以FPD基板表面之缺陷為對象之雷射修 復上,為了實現更適切的雷射束照射,乃開發有若干技術。 本發明之目的在於實現更精細地控制於雷射修復中的雷射 束照射,實現更適切地修正缺陷。 用以欲解決課題之手段 依據本發明之一樣態,提供對製品表面的缺陷照射雷 射束以修正缺陷的雷射修復裝置,而該製品係將用以形成 電路之-種類以上物質積層-層以上於基板表面而製造 者又,依據本發明之另-樣態,提供執行前述雷射修復 裝置的方法。 前述雷射修復裝置包含有射出機構、二次元空間光調 變機構、齡機構、賴機構、區分機構及控制機構。 前述射出機構射出前述雷射束。 月'J述二次元空間光調變機構係依照業經指定之空間調 變圖案而空間調變由前述射出機構射出之前述雷射束而照 201013817 射於刖述製品表面上的機構。 前述儲存機構針對前述基板表面上 領域上積層-:二 速-種_上物質對應之照射條件對應的昭射條= 則述辨識機構辨識前述缺陷的範圍。 。。 前述區分機構根據已儲存於 條件資訊’並依據與前述複數積層領照射 ❹The particles on the surface of the plate or the anti-(four) 丨, etc. caused the foreign matter to be removed due to the irradiation of the laser beam. That is, short-circuit defects and foreign matter are targets of laser repair. It is desirable to illuminate the laser beam on the laser repair according to the type and shape of each defect. (4) 'In the correction of the short-circuit defect of the metal pattern, the higher the input = the wavelength at which the metal is removed (for example, I) ) the laser beam. On the removal of the object, a laser beam suitable for removing non-metallic particles or a shorter wavelength (for example, 355 nm) of the 201013817 anti-surge agent is irradiated. Further, in order to avoid damage of the pattern portion other than the defect, the irradiation range of the laser beam is set in accordance with the shape of each defect. Further, for example, it is conventionally possible to disable the pixels by cutting off the wiring, and to correct the lighting defects in which the pixels are always lit, and to correct the non-lighting defects in which the pixels are often turned off. However, it is now required to correct bad pixels to a higher level of correction. In the various correction works, the correction is made after the end of the layer project of the transparent electrode. Below the last layer, there is a formed metal wiring or a thin film transistor (TFT: Thin Film Transitor). Further, since the transparent electrode is transparent, the laser beam for correction is transmitted, and as a result, the laser beam reaches the metal wiring or the TFT and the pixel is destroyed. Thus, the correction after forming the final layer is complicated by the technique required to prevent destruction of the pixels. In the laser repairing device, it is known that a CCD (Charge Coupled Device) camera captures an FPD substrate to be inspected to generate image information, and the image processing unit generates defects capable of displaying defect characteristics from image information. Feature information, based on defect feature information. A technique of shaping laser light by a digital micromirror device (DMD) (for example, refer to Patent Document 1). Further, the defect correcting device having the defect detecting portion for detecting the defect generated in the FPD substrate in comparison with the reference image may further include the following (for example, 'Reference Patent Document 2'). • For the defect on the drive circuit component or on the wiring, set the prohibited area setting unit 5 of the prohibition correction field. 201013817 • Set the defect part of the part of the related prohibited area to be removed, and the defect area of the unrelated prohibited area as the correction area setting part of the correction field. A priority setting unit that sets the priority of the correction order in the correction field, and a correction unit that corrects the defect in accordance with the priority. [Patent Document 1] JP-A-2007-29983 (Patent Document 2) International Publication No. WO2004/099866 [Invention DISCLOSURE OF THE INVENTION PROBLEM TO BE SOLVED BY THE INVENTION As described above, in the laser repair for the defect of the surface of the FPD substrate, several techniques have been developed in order to achieve more suitable laser beam irradiation. SUMMARY OF THE INVENTION An object of the present invention is to achieve a finer control of laser beam irradiation in laser repair, thereby achieving more appropriate correction of defects. Means for Solving the Problem According to the same aspect of the present invention, a laser repairing apparatus for irradiating a laser beam with defects on a surface of a product to correct a defect is provided, and the product is used to form a circuit-layer-layer Further, in accordance with another aspect of the present invention, a method of performing the foregoing laser repair apparatus is provided. The laser repairing device includes an injection mechanism, a secondary element spatial light modulation mechanism, an age mechanism, a Lai mechanism, a classification mechanism, and a control mechanism. The injection mechanism emits the laser beam. The second-dimensional spatial light modulation mechanism of the month is a mechanism for spatially modulating the aforementioned laser beam emitted by the above-mentioned injection mechanism according to the specified spatial modulation pattern, and is directed to the surface of the product. The storage mechanism recognizes the range of the defect by the identification mechanism corresponding to the irradiation condition corresponding to the irradiation condition of the layer--second speed-species substance on the surface of the substrate. . . The foregoing distinguishing mechanism is based on the conditional information that has been stored and is illuminated according to the plurality of laminated layers.

以上的照射領軸的前述範_分成—個 前=制機構針對前述區分機構已區分之前述—個以 之各照射領域’―面對前述二次元空間調變機 f序日定—個以上空間調變圖案-面控制前述射出機 構,而以對應與該照射領域重疊之前述積層領域之前述Γ ㈣件’對該照射領域照射前述雷射束。 發明效果 依據本發明,將較一個缺陷小的各個照射領域作為 位,能依據照射條件而照射雷射束。_,能實現將—個 陷作為單位而決定照射條件之習知雷射修復更精、 制。 二 又’照射條件資訊對於各積層領域,賦與較許可或禁 止照射之二者擇-的照射條件更細敏之多種照射條件: 應使對各照射領域之雷射束的照射可控制得較習知精細。 依據本發明’藉著如此精細的控制,可達到更適切的 雷射修復。 7 201013817 圖式簡單說明 第1圖係本發明之一實施樣態之雷射修復裝置的構成 圖。 第2圖係FPD基板之剖面圖的例子。 第3圖係參考圖像的例子。 第4圖係照射條件影像的例子。 第5圖係映照缺陷之攝像影像的例子。 第6圖係說明關於一片FPD基板之雷射修復裝置之動 作的流程圖。 第7圖顯示空間調變圖案群之第1例。 第8圖顯示空間調變圖案群之第2例。 第9圖顯示空間調變圖案群之第3例。 【實施方式3 用以實施發明之最佳形態 以下一面參考圖面一面詳細說明本發明之實施樣態。 又,以下的實施樣態中也如上述定義,區分使用「玻 璃基板」與「FPD基板」的用語來說明。即,「玻璃基板」 係尚未有任何積層之基板,「FPD基板」係於玻璃基板上積 層有各種物質之製品。僅稱「基板」時乃指與「製品」即 FPD基板對比的玻璃基板。 又,「製品」即「FPD基板」可為製造閘極匯流排線層、 絕緣膜層、非晶質矽層、源極或汲極匯流排線層、絕緣膜 層、透明電極層之各製造工程中途的半成品,也可為形成 有各層之製造完了後之完成品。以下實施樣態之雷射修復 201013817 的對象係如此定義的FPD基板。 第1圖係本發明之一實施樣態之雷射修復裝置的構成 圖。本實施樣態之雷射修復裝置100係對發生於FPD基板 101之構成動作不良要因之缺陷照射雷射束以修正的裝 置。FPD基板1〇1係於基板(即玻璃基板)的表面上積層一層 以上用以形成以TFT作為開關元件而使用之動態矩陣 (active matrix)型液晶顯示器之電路的一種類以上物質而製 造的製品。例如,一般LCD用之FPD基板具有將物質積層4 〜5層程度之多層構造。本實施樣態中,半成品之FPD基板 101也包含於藉著雷射加工而欲修正之加工對象物(工作 物:work)。爰此,如上所述將FPD基板101上的層數定義為 「一層以上」。 雷射修復裝置100直接或藉由網路而間接與顯示器102 及缺陷檢查裝置103連接著。 缺陷檢查裝置103係檢查FPD基板101表面是否有缺陷 的裝置《當缺陷檢查裝置103檢測出缺陷時,產生包含表示 已檢測出缺陷之位置之座標的缺陷資訊。缺陷檢查裝置1〇3 可辨別已檢測出的大小、形狀、種類等,也可將已辨別的 結果包含於缺陷資訊。 缺陷檢查裝置103對雷射修復裝置1〇〇輸出缺陷資訊。 爰此,雷射修復裝置100依據由缺陷檢查裝置1〇3輸入之缺 陷資訊而能辨識FPD基板101之何處有缺陷,並進行缺陷的 修正。 本實施樣態之雷射修復裝置100包含有pC(pers〇nal 9 201013817The above-mentioned singularity of the above-mentioned illuminating collar is divided into a front-forward mechanism for the aforementioned distinguishing mechanism, and the above-mentioned respective illuminating fields are faced with the above-mentioned two-dimensional space modulating machine The modulation pattern-surface controls the emission mechanism, and the laser beam is irradiated to the illumination field in accordance with the aforementioned 四(4) piece corresponding to the laminated field overlapping the illumination area. EFFECT OF THE INVENTION According to the present invention, each of the irradiation fields having a small defect is used as a position, and the laser beam can be irradiated depending on the irradiation conditions. _, it is possible to achieve a finer correction of the conventional laser repair that determines the illumination conditions by using a trap as a unit. Secondly, the conditions of the irradiation conditions are more sensitive to the illumination conditions of the laminated areas, which are more sensitive or prohibited. The irradiation of the laser beams in each illumination area should be controlled. Know the fine. According to the present invention, a more suitable laser repair can be achieved by such fine control. 7 201013817 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of a laser repairing apparatus according to an embodiment of the present invention. Fig. 2 is an example of a cross-sectional view of an FPD substrate. Figure 3 is an example of a reference image. Fig. 4 is an example of an image of an irradiation condition. Figure 5 is an example of a camera image that maps defects. Figure 6 is a flow chart showing the operation of the laser repairing apparatus for a piece of FPD substrate. Fig. 7 shows a first example of a spatial modulation pattern group. Fig. 8 shows a second example of the spatial modulation pattern group. Fig. 9 shows a third example of the spatial modulation pattern group. [Embodiment 3] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the terms "glass substrate" and "FPD substrate" are used as described above. In other words, the "glass substrate" is a substrate in which no layer is laminated, and the "FPD substrate" is a product in which various materials are laminated on a glass substrate. The term "substrate" as used herein refers to a glass substrate that is compared with a "product", that is, an FPD substrate. Moreover, the "product", that is, the "FPD substrate", can be manufactured by manufacturing a gate bus bar layer, an insulating film layer, an amorphous germanium layer, a source or drain bus bar layer, an insulating film layer, and a transparent electrode layer. The semi-finished product in the middle of the project may also be a finished product in which each layer is formed. The following embodiment of the laser repair 201013817 object is the FPD substrate thus defined. Fig. 1 is a view showing the configuration of a laser repairing apparatus according to an embodiment of the present invention. The laser repairing apparatus 100 of the present embodiment is a device that illuminates a laser beam to correct a defect occurring in the FPD substrate 101. The FPD substrate 1〇1 is a product manufactured by laminating one or more layers of a circuit of a substrate (ie, a glass substrate) to form a circuit of an active matrix type liquid crystal display using a TFT as a switching element. . For example, a general FPD substrate for LCD has a multilayer structure in which a substance layer is layered to 4 to 5 layers. In the present embodiment, the FPD substrate 101 of the semi-finished product is also included in the object to be corrected (work: work) to be corrected by laser processing. Thus, the number of layers on the FPD substrate 101 is defined as "one or more layers" as described above. The laser repair apparatus 100 is indirectly connected to the display 102 and the defect inspection apparatus 103 directly or via a network. The defect inspection device 103 is a device for inspecting whether or not the surface of the FPD substrate 101 is defective. When the defect inspection device 103 detects a defect, defect information including a coordinate indicating a position at which the defect has been detected is generated. The defect inspection device 1〇3 can discriminate the size, shape, type, and the like that have been detected, and can also include the identified result in the defect information. The defect inspection device 103 outputs defect information to the laser repair device 1A. As a result, the laser repairing apparatus 100 can recognize where the FPD substrate 101 is defective based on the defect information input from the defect inspection apparatus 1〇3, and correct the defect. The laser repair apparatus 100 of the present embodiment includes pC (pers〇nal 9 201013817)

Computer)104、雷射單元(laser unit)105、二次元空間光調 變器106、載台1〇7、攝像部1〇8及鏡與透鏡等各種光學元件。 PC104控制雷射修復裝置1〇〇的動作。雷射修復裝置1〇〇 也可包含工作站或伺服機等任意的其他電腦以取代PCi〇4。 PC104包含有執行處理之未以圖式顯示之CPU(Central Processing Unit)、R〇M(Read Only Memory)等未以圖式顯示 之非依電性記憶體、作為工作區(working area)使用之未以 圖式顯示的RAM(Random Access Memory)、硬碟裝置等外 部記憶裝置及用以接受來自於操作者之輸入的輸入裝置。 藉著CPU執行程式而可實現將於後述之各部的機能。 程式可被記憶於PC104之外部記憶裝置或R〇M。或是 程式可被記憶於電腦可讀取之記憶媒體,透過記憶媒體之 驅動裝置而提供至PC104,也可透過網路而提供至pci〇4。 無論如何處理,CPU將程式負載至RAM,一面將RAM 作為工作站利用一面執行程式’藉此實現第1圖中PC 104内 所示之各部的機能。關於PC104内之各部的機能將於後述。 雷射單元105具有作為射出雷射束之射出機構的機 能’包含有雷射光源109、耗合單元(coupling unit)110、將 雷射束予以導光之光纖(fiber)lll及用以朝所希望之方向射 出雷射束之投影單元112。雷射光源1〇9係例如釔鋁石榴石 (YAG : yttrium-aluminum-garnet)雷射振盈器。 本實施樣態中構成雷射修復對象的缺陷主要為附著於 FPD基板101表面之粒子與抗蝕膜等。爰此,可利用射出適 合於去除粒子與抗蝕膜之較短波長之雷射束的雷射光源 201013817 109 °本實施樣態之雷射束的波長例如可為355nn,也可為 266mn ’其他近紫外線波長也可。 又’雷射光源109可為進行脈波振盪的機構,也可為進 行連續振盪的機構。即,本實施樣態之雷射束可為脈波雷 射束’也可為連續波(CW: Continous Wave)雷射束。當為 脈波雷射束時,脈波幅例如為5ns,脈波反覆頻率例如為 100Hz。 從雷射光源109射出的雷射束透過耦合單元11〇與光纖 ❿ 111而從投影單itll2射出。 一 '人元空間光調變器106係用以依據所指定之空間調 變圖案而將從具有作為射出機構機能之雷射單元1〇5射出 之雷射束予以空間調變,並照射於雷射修復對象之製品即 FPD基板1〇1表面上的機構。二次元空間光調變器1〇6於本 實施樣態中係微小鏡配列成二次元陣列狀的DMD(Digital Micromirror Device),藉著各微小鏡的0N/0FF而可將雷射 束之反射剖面形狀形成任意的形狀。又,與藉著習知遮光 ® 板形成矩形開口之機械性的機構不同,DMD可於複數處將 反射圖案總括形成任意的形狀,並將各反射圖案反射之雷 射束照射於FPD基板。又,也可將使用液晶之透過型或反 射型之空間光調變器作為二次元空間光調變器1〇6來利用 以取代DMD。 載台107保持FPD基板1〇1,攝像部1〇8拍攝FPD基板1〇1 表面。載台107可利用例如夾箝器(ciamp)與吸著塾(suct〇n pad)來保持FPD基板1(Π。載台1〇7可為使空氣喷出以使17]?〇 11 201013817 基板101浮起的浮起式載台。 載台107建構成可修正且拍攝FPD基板101表面上的位 意位置。即,載台107建構成可朝XY方向二次元移動成可 任意地改變雷射束之光路與FPD基板101之相對位置、及攝 像部108之光轴與FPD基板101之相對位置。也可取代此XY 載台107而以固定可載置FPD基板101之載台,並設置跨此 固定載台架設之高架(gantry)可沿著固定載台移動,並將雷 射修復頭(laser repair head)設置成可移動於高架之水平臂 部。又,在說明雷射修復裝置100之光學系之後,說明依據 © 載台107所為之相對移動的詳細内容。 攝像部108可為例如CCD(Charge Coupled Device)照相 機’也可為互補性氧化金屬半導體(CMOS : Complementary Metal-Oxide Semiconductor)照相機。又,攝像部1〇8可為拍 攝彩色影像的機構,也可為拍攝所謂亮度影像之單色之灰 階(gray scale)影像的機構。 如以上所述,雷射修復裝置100以二次元空間光調變器 106將由雷射單元105射出之雷射束的剖面形狀成形為雷射 ® 修復對象之缺陷形狀而照射於FPD基板101上的狀態,修正 位於FPD基板101表面的缺陷。為了實現如此的雷射束照 射,本實施樣態之雷射修復裝置100之光學系如以下構成配 置。 即’由雷射單元1〇5射出之雷射束在鏡113反射而以預 定的角度θίη射入二次元空間光調變器106。如以上所述,本 實施樣態之二次元空間光調變器106係微小鏡配列於二次 12 201013817 元陣列上的DMD。 驅動用之記憶格(mem〇ry ce⑴與DMD之各微小鏡對應 著’依據驅_之記憶格的狀態而將各微小鏡之鏡面驅動 成不同的傾斜角。記憶格的狀態有「導通狀態」與「斷開 狀態」。朝向各記憶格之信號獨立著,因此,各微小鏡也獨 立地被驅動成導通狀態與斷開狀態之其中一狀態。 相對於導通狀態之微小鏡以上述預定角度θίη射入之入 射光相對於二次元空間光調變器1〇6以預定角度射出。 但是,導通狀態與斷開狀態之微小鏡之鏡面的傾斜角不 同,因此,相對於斷開狀態之微小鏡以相同預定角度h射 入之入射光朝向與預定角度0<^不同的方向反射。例如,於 導通狀態與斷開狀態之微小鏡之傾斜角的差為1〇度。 於導通狀態之微小鏡以上述預定角度0灿反射之雷射 束射入鏡114,藉著鏡114朝向與成像透鏡115之光軸平行的 方向反射,透過成像透鏡115而到達束分離器116。如此一 來,雷射束於束分離器116反射,透過半鏡117並藉由接物 透鏡118而照射於FPD基板1〇1表面。 即,如第1圖所示,沿著成像透鏡115之光軸而從鏡114 到達束分離器116之雷射束藉著束分離器ι16朝向接物透鏡 118之光軸方向反射。束分離器116可為例如為分光鏡 (dichroic mirror)。 又,於二次元空間光調變器106之斷開狀態之微小鏡反 射之雷射束如第1圖以虛線所示,朝不射入鏡114的方向反 射。因此,射入鏡114之雷射束的束剖面形狀成為使二次元 13 201013817 空間光調變器! 〇 6之各微小鏡對應導通狀態與斷開狀態而 驅動的空間調變圖案的形狀。 雷射修復裝置副更包含有照明光源m與成像透鏡 12〇,上述攝像部108配置成攝像部1〇8之光軸與接物透鏡 118之光轴致。由照明光源119射出之照明光透過成像透 鏡120而到達半鏡11?,在半鏡m朝接物透鏡川之光轴方 向反射而照射於FPD基板1〇1表面。Computer 104, laser unit 105, quadratic spatial light modulator 106, stage 1〇7, imaging unit 1〇8, and various optical elements such as mirrors and lenses. The PC 104 controls the operation of the laser repairing device 1〇〇. The laser repairing device 1〇〇 may also include any other computer such as a workstation or a servo machine instead of the PCi〇4. The PC 104 includes a non-electrical memory that is not shown in the figure, such as a CPU (Central Processing Unit) or R〇M (Read Only Memory), which is not shown in the figure, and is used as a working area. An external memory device such as a RAM (Random Access Memory) or a hard disk device that is not shown in the drawing, and an input device for accepting input from an operator. By executing the program by the CPU, the functions of each unit to be described later can be realized. The program can be memorized in the external memory device of the PC 104 or R〇M. Or the program can be stored in a computer-readable memory medium, provided to the PC104 via a memory media drive, or provided to the pci〇4 via the Internet. Regardless of the processing, the CPU loads the program into the RAM and executes the program by using the RAM as a workstation, thereby realizing the functions of the respective units shown in the PC 104 in Fig. 1. The functions of the respective units in the PC 104 will be described later. The laser unit 105 has a function as an injection mechanism for emitting a laser beam, and includes a laser light source 109, a coupling unit 110, a fiber 111 for guiding the laser beam, and a light source for The projection unit 112 of the laser beam is emitted in the desired direction. The laser light source 1〇9 is a YAG: yttrium-aluminum-garnet laser oscillator. The defects constituting the laser repair target in the present embodiment are mainly particles adhering to the surface of the FPD substrate 101, a resist film, and the like. Thus, a laser light source that emits a laser beam suitable for removing a shorter wavelength of a particle and a resist film can be used. The wavelength of the laser beam of the present embodiment can be, for example, 355 nn or 266 mn. The near ultraviolet wavelength is also acceptable. Further, the laser light source 109 may be a mechanism for performing pulse oscillation, or may be a mechanism for continuously oscillating. That is, the laser beam of the present embodiment may be a pulsed laser beam or a continuous wave (CW: Continous Wave) laser beam. When it is a pulsed laser beam, the pulse amplitude is, for example, 5 ns, and the pulse repetition frequency is, for example, 100 Hz. The laser beam emitted from the laser light source 109 is transmitted from the projection unit itll2 through the coupling unit 11 and the optical fiber 111. A 'human space spatial light modulator 106 is configured to spatially modulate a laser beam emitted from a laser unit 1 〇 5 functioning as an injection mechanism according to a specified spatial modulation pattern, and illuminate the ray The article on which the object to be repaired is the surface of the FPD substrate 1〇1. In the present embodiment, the quadratic-spatial optical modulator 1〇6 is a DMD (Digital Micromirror Device) arranged in a quadratic array, and the reflection of the laser beam can be performed by the 0N/0FF of each micromirror. The cross-sectional shape forms an arbitrary shape. Further, unlike the mechanical mechanism for forming a rectangular opening by a conventional shading plate, the DMD can collectively form the reflection pattern into an arbitrary shape at a plurality of points, and irradiate the laser beam reflected by each reflection pattern onto the FPD substrate. Further, a transmissive or reflective type spatial light modulator using liquid crystal may be used as the secondary element spatial light modulator 1〇6 instead of the DMD. The stage 107 holds the FPD board 1〇1, and the imaging unit 1〇8 photographs the surface of the FPD board 1〇1. The stage 107 can hold the FPD substrate 1 by using, for example, a caliper and a squirting pad (Π. The stage 1 〇 7 can be used to eject air to make 17] 〇 11 201013817 substrate 101 floating floating stage. The stage 107 is constructed to be corrected and photographed on the surface of the FPD substrate 101. That is, the stage 107 is constructed to be movable in the XY direction to be arbitrarily changeable. The relative position of the beam path to the FPD board 101 and the relative position of the optical axis of the imaging unit 108 to the FPD board 101. Instead of the XY stage 107, the stage on which the FPD board 101 can be mounted can be fixed, and the cross section can be set. The gantry of the fixed stage can be moved along the fixed stage, and the laser repair head is set to be movable to the horizontal arm of the elevated frame. Further, the laser repairing device 100 is illustrated. After the optical system, the details of the relative movement of the stage 107 will be described. The imaging unit 108 may be, for example, a CCD (Charge Coupled Device) camera or a complementary metal oxide semiconductor (CMOS: Complementary Metal-Oxide Semiconductor) camera. Also, the camera unit 1〇8 can The mechanism for capturing a color image may also be a mechanism for capturing a monochrome gray scale image of a so-called luminance image. As described above, the laser repair device 100 is to be a laser by a two-dimensional spatial light modulator 106. The cross-sectional shape of the laser beam emitted from the unit 105 is shaped into a defect shape of the laser repair target and irradiated onto the FPD substrate 101, and the defect located on the surface of the FPD substrate 101 is corrected. In order to achieve such laser beam irradiation, the present embodiment The optical system of the laser repairing apparatus 100 of the aspect is configured as follows. That is, the laser beam emitted by the laser unit 1〇5 is reflected by the mirror 113 and injected into the secondary element spatial light modulator 106 at a predetermined angle θίη. As described above, the second-element spatial light modulator 106 of the present embodiment is a micro-mirror arranged on the DMD of the secondary 12 201013817 element array. The memory cell for driving (mem〇ry ce(1) and the micro-mirrors of the DMD Corresponding to the state of the memory cell according to the drive, the mirror faces of the micromirrors are driven to different tilt angles. The state of the memory cell has "on state" and "off state". The signal toward each memory cell is independent. Therefore, each of the micromirrors is independently driven into one of a conductive state and an open state. The incident light of the micromirror that is incident with the predetermined angle θίη with respect to the conductive state is opposite to the quadratic spatial light modulator. 1〇6 is emitted at a predetermined angle. However, the inclination angle of the mirror surface of the micro mirror in the on state and the off state is different, and therefore, the incident light incident on the micromirror at the same predetermined angle h with respect to the off state is oriented at a predetermined angle. 0<^ different direction reflections. For example, the difference between the tilt angles of the micro mirrors in the on state and the off state is 1 degree. The laser beam in the on state is incident on the mirror 114 at a predetermined angle 0, and is reflected by the mirror 114 toward the direction parallel to the optical axis of the imaging lens 115, and passes through the imaging lens 115 to reach the beam splitter 116. In this manner, the laser beam is reflected by the beam splitter 116, transmitted through the half mirror 117, and irradiated onto the surface of the FPD substrate 1〇1 by the contact lens 118. That is, as shown in Fig. 1, the laser beam from the mirror 114 to the beam splitter 116 along the optical axis of the imaging lens 115 is reflected by the beam splitter ι 16 toward the optical axis of the objective lens 118. The beam splitter 116 can be, for example, a dichroic mirror. Further, the laser beam reflected by the micromirror in the off state of the secondary element spatial light modulator 106 is reflected in the direction in which the mirror 114 is not incident as indicated by a broken line in Fig. 1 . Therefore, the beam profile shape of the laser beam incident on the mirror 114 becomes a secondary light 13 201013817 spatial light modulator! The shape of the spatial modulation pattern driven by each of the micro mirrors of the 对应 6 corresponding to the on state and the off state. The laser repairing device pair further includes an illumination source m and an imaging lens 12, and the imaging unit 108 is disposed such that the optical axis of the imaging unit 1〇8 and the optical axis of the objective lens 118 are aligned. The illumination light emitted from the illumination light source 119 passes through the imaging lens 120 to reach the half mirror 11 and is reflected by the half mirror m toward the optical axis of the objective lens and is irradiated onto the surface of the FPD substrate 1〇1.

雷射修復裝置100更包含有成像透鏡12ι。成像透鏡121 之光軸也與接物透鏡118之光轴一致。因此,在FpD基板丨 Q 表面反射之光沿著接物透鏡118之光軸如以下所述的情形 前進。即,在FPD基板101表面的反射光藉由接物透鏡118 而射入半鏡117 ’透過半鏡117而射入束分離器116,透過束 分離器116之後藉由成像透鏡121而成像於攝像部1〇8的受 光面上。 如此一來,束分離器116發揮使雷射束之照射光路與攝 像部108所為之觀察光路合流的功能。 又,雷射修復裝置1〇〇建構成FPD基板101表面與二次 ® 元空間光調變器106成為共軛的位置’且’ FPD基板101表 面與攝像部108之受光面成為共軛的位置。 又,鏡114、成像透鏡115、束分離器116、半鏡117、 接物透鏡118、照明光源119、成像透鏡120、成像透鏡121 也可總合成為一個顯微鏡單元。顯微鏡單元具有縮小以二 次元空間光調變器106空間調變之雷射束而投影於FPD基 板101表面上的功能、及放大觀察FPD基板101表面的功能。 14 201013817 如以上構成之雷射修復裝置100藉著PC104而控制成如 以下所述情形。 PCHM具有作為主控制部122、配方(recipe)儲存部 123、載台控制部124、雷射控制部125、空間調變控制部126 及影像處理部127的功能。 主控制部122以PC104之CPU執行程式的狀態而實現。 主控制部122控制載台控制部124、雷射控制部125、空間調 變㈣部126及影像處理部127。又’主控卿122由缺陷檢 錢置103接受缺陷資訊’由方齡部123讀出用以指定 所謂「配方」之修正方法的資訊,由影像處理部127接受影 像處理的結果。 配方儲存部123藉著PC104具有之未以圖式顯示的 Ram而實現’並儲存著配方。配方儲存部123也可利用ram 與硬碟裝置之雙方來實現。 在此,FPD基板1〇1係將用以形成閘極匯流排線層絕 ❹ 緣媒層、非晶質㈣、源極或祕匯流排線層、絕緣膜層、 透明電極層之電路之各種物質於玻璃基板表面積層一層或 複數層而製造之製造中或製造完了後的製品。配方之詳細 内容將於後述,惟,本實施樣態登錄第3圖所例示之參考影 像300與第4圖所例示之照射條件影像4〇〇作為配方。照射條 件影像400係依據對於構成該圖案之物質之特定波長之雷 射束的反射率、雷射耐性、熱作用(吸收率、熱傳導率)等物 理特性與雷射修復禁止領域,而對玻璃基板表面上形成複 數層之閘極匯流排線層、絕緣膜層、非晶質矽層、源極或 15 201013817 域…:排線層、絕緣膜層、透明電極層之各層的圖案領 二。g &置),職與對應照射條件之照射條件資訊的-r傷,P配方儲存部12 3具有為了防止因雷射照射所造成的 二而對形成最上層之透明電極與形成下層之設定雷 三復禁止帶,對存在於較透明電極還下層之金屬配線, 没疋不會因雷射照射所造成熱作用而損傷周邊之程度的弱 雷射功率等,儲存每—雷射照射領域設定變更所區分之雷 射功率之闕條件資訊之神機構的功能。The laser repair device 100 further includes an imaging lens 12ι. The optical axis of the imaging lens 121 also coincides with the optical axis of the objective lens 118. Therefore, the light reflected on the surface of the FpD substrate 丨 Q advances along the optical axis of the object lens 118 as described below. That is, the reflected light on the surface of the FPD substrate 101 is incident on the half mirror 117' through the mirror lens 118, passes through the half mirror 117, enters the beam splitter 116, passes through the beam splitter 116, and is imaged by the imaging lens 121. The light receiving surface of the part 1〇8. In this manner, the beam splitter 116 functions to merge the illumination light path of the laser beam with the observation optical path of the imaging unit 108. Further, the laser repairing apparatus 1 is configured to constitute a position where the surface of the FPD board 101 and the secondary-element spatial light modulator 106 are conjugated, and the surface of the FPD substrate 101 and the light receiving surface of the imaging unit 108 are conjugate. . Further, the mirror 114, the imaging lens 115, the beam splitter 116, the half mirror 117, the objective lens 118, the illumination light source 119, the imaging lens 120, and the imaging lens 121 may be combined into one microscope unit. The microscope unit has a function of reducing the laser beam spatially modulated by the two-dimensional spatial light modulator 106 and projecting onto the surface of the FPD substrate 101, and a function of magnifying the surface of the FPD substrate 101. 14 201013817 The laser repairing apparatus 100 constructed as above is controlled by the PC 104 as described below. The PCHM has functions as a main control unit 122, a recipe storage unit 123, a stage control unit 124, a laser control unit 125, a spatial modulation control unit 126, and a video processing unit 127. The main control unit 122 is realized by the state in which the CPU of the PC 104 executes the program. The main control unit 122 controls the stage control unit 124, the laser control unit 125, the spatial modulation (four) unit 126, and the video processing unit 127. Further, the "master control 122 receives the defect information from the defect check 103", and the information of the correction method for designating the so-called "recipe" is read by the party-age unit 123, and the image processing unit 127 receives the result of the image processing. The recipe storage unit 123 realizes by the PC 104 which has a Ram which is not shown in the figure and stores the recipe. The recipe storage unit 123 can also be realized by both the ram and the hard disk device. Here, the FPD substrate 1〇1 is used to form a circuit for forming a gate bus layer, an amorphous (four), a source or a secret bus layer, an insulating film layer, and a transparent electrode layer. A product manufactured or manufactured after the material is produced in one or more layers of the surface area of the glass substrate. The details of the recipe will be described later, but the reference image 300 illustrated in Fig. 3 and the irradiation condition image 4 illustrated in Fig. 4 are registered as a recipe. The irradiation condition image 400 is based on a physical property such as a reflectance, a laser resistance, a thermal action (absorption rate, a thermal conductivity) of a laser beam of a specific wavelength of a substance constituting the pattern, and a laser repair prohibition field, and a glass substrate. A plurality of layers of the gate bus bar layer, the insulating film layer, the amorphous germanium layer, the source or the surface layer of the layer of the wiring layer, the insulating film layer and the transparent electrode layer are formed on the surface. g & setting, the -r injury corresponding to the irradiation condition information of the irradiation condition, the P recipe storage portion 12 3 has a setting for forming the uppermost transparent electrode and forming the lower layer in order to prevent the laser irradiation The thunder three complex forbidden band, for the metal wiring existing in the lower layer of the transparent electrode, there is no weak laser power that will not damage the surrounding due to the thermal effect caused by the laser irradiation, and the storage per laser irradiation field setting The function of the god institution that changes the conditional information of the laser power that is distinguished.

栽台控制部124藉著執行程式之PC1〇4的CPU和載台 1〇7與PCHM之間的介面而實現。又,載台控制部124依照來 自於主控制部122之指示而控制載台1〇7。 即,載台控制部124控制載台107以使接物透鏡118之光 轴與FPD基板1〇1表面相交在主控制部122所指定之位置。 依照載台控制部124的控制,載台107使FPD基板1〇1在與接 物透鏡118之光軸垂直的平面内相對地移動。 ❹ 此相對的移動係用以將雷射束照射於FPD基板1〇1表 面上任忍的位置,且將FPD基板1〇1表面上之任意位置作為 視野的中心來進行拍攝的移動。相對的移動之具體的方法 因載台107之具體的構成而不同。 例如’將與地板面平行且相互正交之兩根軸設為x軸及 y轴,接物透鏡118之光轴垂直地板面,載台1〇7設成與地板 面平行地保持著FPD基板101。此情形下,例如可為以下記 載(a)〜(c)的構成’依據載台107的構成,載台控制部124如 以下所述地動作。 16 201013817 (a) 載台107建構成藉著未以圖式顯示之馬達而可使 FPD基板101朝X方向及y方向移動。 此情形下,載台控制部124依照主控制部122的指示, 控制載台107以使FPD基板1〇1沿著x軸及^^軸移動。 (b) 載台107建構成藉著未以圖式顯示之馬達而可使 FPD基板101朝X方向移動,且包含有固定於架台之門塑的 高架(gantry)跨此單軸移動載台1〇7。 此情形下’高架具有平行於的水平樑,設成雷射修 復單元(雷射單元105、雷射照射光學系、觀察光學系)可沿 著水平樑移動。載台控制部124對載台收之未以圖式顯示 之馬達,指示FPD基板1〇1之乂方向的移動量與光學單元之y 方向的移動量,精此,控制接物透鏡118與FpD基板FpD基 板101之間之X方向與y方向的相對位置。 (c) 載台107包含有固定於架台並搭於此固定載台1〇7 兩側且可沿著固定載台朝x方向移動的門型高架。 此情形下,與(b)的情形同樣具有平行於y軸的水平樑, 且設成與(b)的情形同樣的雷射修復單元可朝此水平樑移 動。載台控制部Π4對載台107之未以圖式顯示之馬達指示 咼架之X方向的移動量,與雷射修復單元之y方向的移動 量,藉此,控制接物透鏡118與FPD基板FpD基板1〇1之間之 X方向及y方向的相對位置。 例如,藉著以上(a)〜(c)的構成,可實現將雷射束照射 於FPD基板1〇1表面上之任意位置且以FpD基板ι〇ι表面上 之任意位置為視野的中心進行拍攝的相對移動。 17 201013817 雷射控制部12 5依照來自於主控制部j 2 2的指示而控制 雷射單元105。雷射控制部125藉著執行帛式之pc刚的cpu 和載台1〇7與PC104之間的介面而實,見。雷射控制部】25控制 以下5己載的⑷。雷射㈣部⑵依據雷射單㈣$的規格等 進—步控制(b)〜(h)之中一個以上。 (a) 開始照射雷射束的時序。 (b) 雷射束之輸出功率(即雷射束之剖面之每一單位的 能量強度) (C)雷射束的波長 (d) 雷射束的照射時間 (e) 雷射束為脈波雷射料,欲照射的脈波數 (f) 雷射束為脈波雷射束時,脈波反覆頻率 (g) 雷射束為脈波雷射束時,脈波幅 (h) 連續振盪或脈波振盪The plant control unit 124 is realized by the CPU of the program PC1〇4 and the interface between the stage 1〇7 and the PCHM. Further, the stage control unit 124 controls the stage 1 to 7 in accordance with an instruction from the main control unit 122. That is, the stage control unit 124 controls the stage 107 so that the optical axis of the objective lens 118 intersects the surface of the FPD board 1〇1 at a position designated by the main control unit 122. In accordance with the control of the stage control unit 124, the stage 107 relatively moves the FPD board 1〇1 in a plane perpendicular to the optical axis of the receiver lens 118. ❹ This relative movement is used to irradiate the laser beam to the position on the surface of the FPD board 1〇1, and to move the image at any position on the surface of the FPD board 1〇1 as the center of the field of view. The specific method of relative movement differs depending on the specific configuration of the stage 107. For example, 'the two axes parallel to the floor surface and orthogonal to each other are set to the x-axis and the y-axis, the optical axis of the objective lens 118 is perpendicular to the floor surface, and the stage 1〇7 is arranged to hold the FPD substrate in parallel with the floor surface. 101. In this case, for example, the following configurations (a) to (c) can be performed. According to the configuration of the stage 107, the stage control unit 124 operates as follows. 16 201013817 (a) The stage 107 is constructed to move the FPD substrate 101 in the X direction and the y direction by a motor not shown in the drawing. In this case, the stage control unit 124 controls the stage 107 to move the FPD board 1〇1 along the x-axis and the axis in accordance with an instruction from the main control unit 122. (b) The stage 107 is constructed to allow the FPD substrate 101 to move in the X direction by a motor not shown in the drawing, and includes a gantry that is fixed to the gantry to cross the single-axis moving stage 1 〇7. In this case, the overhead has parallel horizontal beams, and the laser repair unit (laser unit 105, laser illumination optical system, observation optical system) can be moved along the horizontal beam. The stage control unit 124 instructs the motor that is not shown in the drawing on the stage to indicate the amount of movement of the FPD board 1〇1 in the x direction and the amount of movement of the optical unit in the y direction. In this case, the control lens 118 and FpD are controlled. The relative position between the substrate FpD substrate 101 in the X direction and the y direction. (c) The stage 107 includes a door type elevated frame fixed to the gantry and placed on both sides of the fixed stage 1〇7 and movable along the fixed stage in the x direction. In this case, as in the case of (b), there is a horizontal beam parallel to the y-axis, and the same laser repairing unit as that of the case of (b) can be moved toward the horizontal beam. The stage control unit Π4 indicates the movement amount of the truss in the X direction to the motor not shown in the drawing, and the amount of movement of the laser repair unit in the y direction, thereby controlling the object lens 118 and the FPD substrate. The relative position between the FpD substrate 1〇1 in the X direction and the y direction. For example, by the above configurations (a) to (c), it is possible to irradiate the laser beam to an arbitrary position on the surface of the FPD substrate 1〇1 and to perform the center of the field of view on the surface of the FpD substrate ι〇ι. The relative movement of the shot. 17 201013817 The laser control unit 12 5 controls the laser unit 105 in accordance with an instruction from the main control unit j 2 2 . The laser control unit 125 is realized by executing the interface between the cpu of the PC and the interface between the stage 1 and the PC 104. Laser Control Department] 25 Controls The following 5 (4) are loaded. The laser (four) part (2) controls one or more of (b) to (h) according to the specification of the laser single (four) $. (a) The timing at which the laser beam begins to illuminate. (b) The output power of the laser beam (ie the energy intensity per unit of the beam profile) (C) the wavelength of the laser beam (d) the exposure time of the laser beam (e) the laser beam is the pulse wave Laser material, the number of pulses to be irradiated (f) When the laser beam is a pulsed laser beam, the pulse wave repeats the frequency (g) When the laser beam is a pulsed laser beam, the pulse amplitude (h) continuously oscillates or Pulse oscillation

空間調變控制部126依照來自於主控制部122的指 將二次元㈣光調變器1G6之各個微小鏡獨立驅動成 狀態或斷開狀態以控制二次元空間光調變器】〇 6。 影像處理部m接受攝像部1〇8拍攝並輸出的攝 像。影像處理部127將已接受之攝像影像輪出至顯. =2且處理已接受之攝像影像麵處理結果輸出至主. 又,影像處理和7具有依據已料 構功能之配方儲存部123的照射條件資訊,將已==機 的範圍根據與複數積層領域之其中# s 、右干重疊而區分成一個 18 201013817 以上照射領域的區分機構的功能。具有作為區分機構功沪 之影像處理部127將區分的結果即—個以上照射領域 至主控制部122。 又’主控制部m、雷射控制部125及空間調變控制部 126具有-面對作為二次以間調變機構之空間調變控制 部126依依序指定一個以上空間調變圖案,一面控制作為射 出機構之雷射單元1〇5之控制機構的功能。作為控制機構之 主控制部12 2、雷射控制部12 5及空間調變控制部丨2 6對影像 處理部127所區分之一個以上照射領域之各個領域,進行控 制來以對應與該照射領域重疊的積層領域之照射條件,對 該照射領域照射雷射束。 接著切合FPD基板101之具體例來說明雷射修復裝置 100的動作。第2圖〜第5圖係切合FPD基板101之具體例的 圖式’第6圖係說明雷射修復裝置100之動作的流程圖。 第2圖係FPD基板之剖面圖的例子。第2圖之fpd基板 200係第1圖之FPD基板101的具體例。 FPD基板200係於玻璃基板2〇1表面上積層一層以上用 以形成電路之一種類以上物質所製造之製品的例子。第2圖 中,如以下所述於玻璃基板201上積層六層各種物質而形成 FPD基板200。 •第1層:閘極202用之金屬 •第2層:絕緣膜203 •第 3層:非晶質石夕(amorphoussilicon)204 •第4層:源極205與汲極206用用的金屬 19 201013817 .第5層:絕緣膜207 •第6層.透明電極用之銦錫氧化物(ιτο : Indium Tin 〇乂1(16)210與211 又,於絕緣膜207形成有用以將源極205與ITO210之透 明電極連接的接觸孔(contact hole)208,與用以將没極206 與ΠΌ211之透明電極連接的接觸孔209。如此地將各種物質 積層於玻璃基板201上而形成TFT(Thin Film Transistor)電 路。 於第2圖中,直線A、B及C以垂直於玻璃基板201表面 © 之接物透鏡118之光軸的方向,直線A、B或C依據缺陷的位 置而構成雷射束的照射光路。 在此,ITO210與ΙΤΌ211為透明,絕緣膜203與絕緣膜207 也多使用例如二氧化矽(Si02)等透明的物質。因此,所照射 之雷射束不僅會影響形成於最上層之透明電極,且會透過 而影響存在於下層的金屬配線。 又’發明人等由實驗獲得「與金屬不位於下層的情形 比較’當金屬位於下層時上層的物質易受損傷」的見識。 修 例如’第2圖之直線A、B及C為金屬位於下層之照射光路的 例子’沿著此等照射光路照射雷射束時,金屬之上層的物 質易受損傷。可考量當金屬位於下層時,上層的物質易受 損傷的理由如以下兩者。 第1理由在於受到透過光與反射光之兩者的影響。例 如’可考量沿著直線B照射雷射束時,非晶質矽204不僅受 到從上照射而透過絕緣膜207之雷射束的影響,且會受到透 20 201013817 過各層而在閘極202之金屬反射之雷射束的影響。 因此,於此例子中,非晶質矽204受到過度照射雷射束 的影響,有損傷的可能性。同樣地,沿著直線A或C照射雷 射束的情形也會受到透過光與反射光之兩者的影響,有金 屬之上層的物質受到損傷的可能性。 第2理由在於受到熱的影響。金屬被雷射束照射時會達 到高溫。爰此,可考量例如沿著第2圖之直線C照射雷射束 時’被閘極202與源極205之金屬包夾的絕緣膜203與非晶質 矽層204不僅受到雷射束的直接影響,且受到來自於金屬之 熱的影響。 因此,於此例子中,有絕緣膜203與非晶質矽層204受 到損傷的可能性。同樣地,沿著直線A或B照射雷射束的情 形也會受到熱的影響’有鄰接於金屬之層受到損傷的可能 性。 如以上所述,因雷射束而受到損傷的程度依據已積層 完成之下層的物質而不同。爰此,於雷射修復上為了更適 切地進行雷射束的照射,以不僅考慮在進行雷射修復之時 間點之最上層的狀態,且下層的物質也納入考慮而控制照 射方式為佳。 因此,為了抑制損傷並且充分修正缺陷,本實施樣態 利用第4圖或將於後述之照射條件影像4〇〇,下層的物質也 納入而照射雷射束。 接著參考第3圖持續說明FPD基板的具體例。 第3圖係參考影像的例子。第3圖之參考影像3 〇 〇係依每 21 201013817 一成為雷射修復對象之FPD基板的品種且每一進行雷射修 復之工程而準備的範本(template)。例如第3圖之參考影像 300係針對某品種之FpD基板,在積層物質至第2圖之第6層 元了的時間點用於雷射修復而準備者。例如,若是在各層 積層完了之時間點必須分別雷射修復,則對相同品種的 FPD基板也有準備第1層用〜第5層用之參考影像的必要。 參考影像300藉著雷射修復裝置1〇〇或其他裝置而準 備。本實施樣態中,說明雷射修復裝置1〇〇係作為準備參考 影像300的裝置。 φ 參考影像300係拍攝無缺陷之FPD基板之一部分所獲 得的影像。以下將為了取得參考影像300而拍攝的FPD基板 稱為「參考FPD基板」’而與雷射修復之對象的第丨圖之FpD 基板100區別。 第3圖之參考影像300係以參考FpD基板被載置於載台 1〇7的狀態下,攝像部1〇8拍攝參考FpD基板之一部分而獲 得又,進行用以取得參考影像3〇〇之拍攝時,照明光源 以與進行雷射修復時相同條件照射照射光。又,將η設為正 φ 整數’而要取得在積層物質完了至第η層之時間㈣以進行 雷射修復之參考影像3〇〇時,使用積層物質至第η層完了之 狀態的參考FPD基板。 參考FPD基板與FPD基板1〇1之其中任一者,均係以將 相同電路圖案於玻璃基板上反覆形成二次元陣列狀的狀態 而製造。以下,將電路圖案之反覆的最小單位定義為「畫 素」。例如’於卿之i點係以與紅色(R)、綠色⑹、藍色⑻ 22 201013817 分別的濾色器對應之3晝素的組來顯示。 第3圖中因考量紙寬度的情況,顯示與2畫素分別對應 之整體電路圖案與僅2畫素之一部分電路圖案。但是,參考 影像300也可為包含相當於更多晝素之範圍的影像。 如以上所述取得之參考影像3〇〇中映照著TFT與其下層 之微細的金屬配線等。即,參考影像3〇〇映照著閘極匯流排 線(gate bus line)301a 及 301c、儲存電容器(CS : storage capacitor)匯流排線301b、源極/汲極配線302a〜302c、由 CS匯流排線301b上的接觸孔303a&3〇3bs伸之輔助的配 線、積層非晶質矽204所形成之TFT304a〜304d、透明電極 305a〜305d。又,第3圖中,源極/汲極配線3〇2a〜3〇2c橫 切於閘極匯流排線301a之上的情形,與於第2圖中較閘極 202之金屬更上層積層有源極205與汲極2〇6之金屬的情形 對應。 C S匯流排線3 01 b係用以對TFT3 〇如及3 〇仆流通充分的 電流而與閘極匯流排線301a及301c相同地積層於第丨層的 金屬所構成。又,第3圖中省略圖示透明的電極之範圍。又, 雖然第3圖中顯示著透明電極305a〜305d的範圍,實際上透 明電極305a〜305d為透明,故於參考影像3〇〇中不—定限定 如第3圖明瞭地映照著輪廓。 如此的參考影像300作為配方的一部分而儲存於例如 PC104之未以圖式顯示之硬碟裝置。之後,依據需要而於藉 著RAM實現之配方儲存部123讀出、儲存參考影像3〇〇。又, 參考影像300也可利用於產生第4圖之照射條件影像。 23 201013817 第4圖係照射條件影像。第4圖之照射條件影像4 1圖據之春參考影像⑽""併包含於配方。又,闕條件影像400 據參考影像_產生。本實施樣祕以操作者依據參考影 〇’、°予雷射修復裝置100指示而,影像處理部127 射條件影像400。 …、 首先說明第4圖之照射條件影像4〇〇的内容與意義之後 說明照射條件影像働的產生。如以上㈣,照射條件影像The spatial modulation control unit 126 independently drives each of the micromirrors of the secondary element (four) optical modulator 1G6 into a state or an off state in accordance with a finger from the main control unit 122 to control the secondary element spatial optical modulator. The image processing unit m receives the image captured and output by the imaging unit 1〇8. The image processing unit 127 outputs the received image of the captured image to the display page ==2 and outputs the received image of the captured image surface to the main image. The image processing and image 7 has the illumination of the recipe storage unit 123 according to the texture function. Conditional information, the range of the == machine is divided into a function of a division of 18 201013817 or more in accordance with the overlapping of # s and right stem in the complex layered field. The image processing unit 127, which is the function of the division mechanism, has a plurality of illumination fields to the main control unit 122. Further, the main control unit m, the laser control unit 125, and the spatial modulation control unit 126 have one-to-one spatial modulation pattern in the order of the spatial modulation control unit 126 serving as the secondary inter-modulation mechanism. The function of the control mechanism of the laser unit 1〇5 of the injection mechanism. The main control unit 12 as a control unit 2, the laser control unit 125 and the spatial modulation control unit 丨26 control each field of one or more illumination areas distinguished by the image processing unit 127 to correspond to the illumination field Irradiation conditions in overlapping superposed areas direct the laser beam to the illumination field. Next, the operation of the laser repairing apparatus 100 will be described by a specific example in which the FPD board 101 is cut. Fig. 2 to Fig. 5 are diagrams showing a specific example of the FPD board 101. Fig. 6 is a flow chart showing the operation of the laser repairing apparatus 100. Fig. 2 is an example of a cross-sectional view of an FPD substrate. The fpd substrate 200 of Fig. 2 is a specific example of the FPD board 101 of Fig. 1 . The FPD substrate 200 is an example in which one or more layers of a material for forming one or more types of circuits are laminated on the surface of the glass substrate 2〇1. In Fig. 2, six layers of various substances are laminated on the glass substrate 201 as follows to form the FPD substrate 200. • Layer 1: Metal for Gate 202 • Layer 2: Insulation Film 203 • Layer 3: Amorphous Silicon 204 • Layer 4: Metal for Source 205 and Bungee 206 19 201013817. Layer 5: Insulating film 207 • Layer 6. Indium tin oxide for transparent electrodes (ιτο: Indium Tin 〇乂1 (16) 210 and 211 Further, it is useful for forming an insulating film 207 to connect the source 205 with A contact hole 208 to which a transparent electrode of the ITO 210 is connected, and a contact hole 209 for connecting the transparent electrode of the electrode 206 and the crucible 211. Thus, various substances are laminated on the glass substrate 201 to form a TFT (Thin Film Transistor). In Fig. 2, the straight lines A, B, and C are in a direction perpendicular to the optical axis of the objective lens 118 of the surface of the glass substrate 201, and the straight line A, B, or C constitutes a laser beam depending on the position of the defect. Here, the ITO 210 and the crucible 211 are transparent, and the insulating film 203 and the insulating film 207 are also made of a transparent material such as cerium oxide (SiO 2 ). Therefore, the irradiated laser beam not only affects the formation of the uppermost layer. Transparent electrode, which will pass through and affect the gold present in the lower layer It is a wiring. In the inventor, the experiment obtained the "comparison with the case where the metal is not in the lower layer" when the metal is in the lower layer, and the material in the upper layer is susceptible to damage. For example, the lines A, B, and C in Fig. 2 are An example of the illumination path of the metal in the lower layer. When the laser beam is irradiated along the illumination path, the material on the upper layer of the metal is susceptible to damage. Considering the reason why the upper layer is susceptible to damage when the metal is in the lower layer, the following two The first reason is that it is affected by both transmitted light and reflected light. For example, when the laser beam is irradiated along the straight line B, the amorphous germanium 204 is not only subjected to the laser beam transmitted from the upper surface and transmitted through the insulating film 207. The effect, and will be affected by the laser beam reflected by the metal of the gate 202 in each layer. Therefore, in this example, the amorphous germanium 204 is affected by excessive irradiation of the laser beam, and is damaged. Possibility. Similarly, the case where the laser beam is irradiated along the straight line A or C is also affected by both the transmitted light and the reflected light, and the substance in the upper layer of the metal is damaged. Under the influence of heat, the metal will reach a high temperature when it is irradiated by the laser beam. Therefore, for example, when the laser beam is irradiated along the line C of FIG. 2, it is trapped by the metal of the gate 202 and the source 205. The insulating film 203 and the amorphous germanium layer 204 are not only directly affected by the laser beam but also affected by the heat from the metal. Therefore, in this example, the insulating film 203 and the amorphous germanium layer 204 are damaged. Possibility. Similarly, the case where the laser beam is irradiated along the straight line A or B is also affected by the heat 'there is a possibility that the layer adjacent to the metal is damaged. As described above, the degree of damage due to the laser beam differs depending on the substance that has been layered to complete the underlying layer. Therefore, in order to more appropriately perform the irradiation of the laser beam in the laser repair, it is preferable to consider not only the state of the uppermost layer at the time of the laser repair but also the substance of the lower layer to take control into the irradiation mode. Therefore, in order to suppress the damage and sufficiently correct the defect, the present embodiment uses the fourth image or the irradiation condition image 4 to be described later, and the lower layer material is also incorporated to irradiate the laser beam. Next, a specific example of the FPD board will be continuously described with reference to FIG. Figure 3 is an example of a reference image. The reference image 3 of Fig. 3 is a template prepared for each project of the FPD substrate to be laser repaired and each of which is subjected to laser repair. For example, the reference image 300 of Fig. 3 is prepared for use in laser repair at a time point when the layered material reaches the sixth layer of the second layer of the FpD substrate of a certain type. For example, if it is necessary to separately perform laser repair at the time when the layers are completed, it is necessary to prepare reference images for the first layer to the fifth layer for the same type of FPD substrate. The reference image 300 is prepared by a laser repair device 1 or other device. In the present embodiment, the laser repairing apparatus 1 is described as a means for preparing the reference image 300. The φ reference image 300 is an image obtained by photographing a portion of a defect-free FPD substrate. Hereinafter, the FPD substrate photographed to obtain the reference image 300 is referred to as a "reference FPD substrate" and is distinguished from the FpD substrate 100 of the first image of the laser repair target. The reference image 300 of FIG. 3 is obtained by placing the reference FpD substrate on the stage 1〇7, and the imaging unit 1〇8 captures a part of the reference FpD substrate and obtains the reference image 3 At the time of shooting, the illumination source illuminates the illumination light under the same conditions as when the laser is repaired. Further, when η is set to a positive φ integer ', and a reference image 3 〇〇 for performing laser repair at the time (4) when the laminated material is completed to the n-th layer is obtained, the reference FPD in which the laminated material is completed to the n-th layer is completed. Substrate. Any of the FPD board and the FPD board 110 is manufactured by repeating the same circuit pattern on the glass substrate to form a quad array. Hereinafter, the minimum unit of the reverse of the circuit pattern is defined as "pixel". For example, 'Yu Qing's i point is displayed in groups of three elements corresponding to the color filters of red (R), green (6), and blue (8) 22 201013817, respectively. In Fig. 3, considering the width of the paper, the entire circuit pattern corresponding to the two pixels and the partial circuit pattern of only one pixel are displayed. However, the reference image 300 may also be an image containing a range corresponding to more pixels. The reference image 3 obtained as described above reflects the thin metal wiring of the TFT and the lower layer thereof. That is, the reference image 3〇〇 reflects the gate bus lines 301a and 301c, the storage capacitor (CS: storage capacitor) bus line 301b, the source/drain wirings 302a to 302c, and the CS bus. The wiring of the contact hole 303a & 3〇3bs on the line 301b is extended, the TFTs 304a to 304d formed by the laminated amorphous germanium 204, and the transparent electrodes 305a to 305d. Further, in Fig. 3, the source/drain wirings 3〇2a to 3〇2c are transverse to the gate bus bar line 301a, and the metal layers of the gate electrode 202 in Fig. 2 are stacked on the upper layer. The source 205 corresponds to the case of the metal of the drain 2〇6. The C S bus bar 3 01 b is formed by laminating the metal of the second layer in the same manner as the gate bus bars 301a and 301c with a sufficient current flowing through the TFTs 3 and 3 . Moreover, the range of the transparent electrode is not shown in FIG. Further, although the range of the transparent electrodes 305a to 305d is shown in Fig. 3, the transparent electrodes 305a to 305d are actually transparent, so that the reference image 3A is not limited to the outline as shown in Fig. 3. Such reference image 300 is stored as part of the recipe on a hard disk device such as PC 104 that is not shown. Thereafter, the reference image storage unit 123 realized by the RAM reads and stores the reference image 3〇〇 as needed. Moreover, the reference image 300 can also be used to generate the illumination condition image of FIG. 23 201013817 Figure 4 is an image of the irradiation conditions. The irradiation condition image of Fig. 4 is based on the spring reference image (10) "" and is included in the recipe. Also, the condition image 400 is generated based on the reference image_. In the present embodiment, the image processing unit 127 instructs the conditional image 400 by the operator instructing the laser repair apparatus 100 in accordance with the reference image 、. ..., first, the content and meaning of the illumination condition image 4〇〇 in Fig. 4 will be described. As above (4), the illumination condition image

係作為影像而表現之照射條件資訊的—例。照射條件資 訊也能以影像以外的形式來表現。 本實施樣態之照射條件影像4〇〇為所謂亮度影像之單 色之灰階(grayscale)影像,照射條件影像4〇〇之各像素分配 者表示照射條件的亮度。又,第4圖之說明中的「像素」乃 指作為構成照射條件影像_本身之最小單位的「像素」。An example of the illumination condition information that is expressed as an image. Irradiation conditions can also be expressed in a form other than images. The irradiation condition image 4 of the present embodiment is a grayscale image of a single color of a so-called luminance image, and the pixel assigner of the irradiation condition image 4 indicates the brightness of the irradiation condition. Further, "pixel" in the description of Fig. 4 means "pixel" which is the minimum unit constituting the irradiation condition image_ itself.

為了說明的簡單化,構成本實施樣態之照射條件影像 400之各像素的亮度設為〇以上1〇〇以下的整數值。即,構成 顯示製成TFT504a與透明電極5〇5a之形狀的第4條件領域 404a、404b之影像的各像素的亮度〇與第4圖之黑色對應, 構成顯示未形成圖案之第〖條件領域4〇la、4〇lb之影像之像 素的亮度100與白色對應。 照射條件影像400内之像素P的亮度L表示雷射束照射 於與像素P對應之FPD基板1〇丨上之點Q時的照射條件。亮度 L之值愈大則表示雷射束強烈照射於點q的情形 。又,雖然 §己述為「強烈照射」,但是可如與第7圖〜第9圖一併於後述 以各種方法控制照射的強度。 24 201013817 於第4圖之照射條件影像4〇〇中,相同亮度之複數像素 與相同一個照射條件對應。如第4圖所示,照射條件影像4 〇 〇 包含與第1條件對應並以亮度1〇〇顯示白色之第丨條件領域 401a與401b、與第2條件對應並以亮度6〇顯示淡灰色之第之 條件領域402a〜402c、與第3條件對應並以亮度3〇顯示濃灰 色之第3條件領域403 a〜403 c、與第4條件對應並以亮度〇顯 示黑色之第4條件領域4〇4a〜404h。For simplification of the description, the luminance of each pixel constituting the irradiation condition image 400 of the present embodiment is an integer value of 〇 or more and 〇〇 or less. In other words, the luminance 〇 of each pixel constituting the image of the fourth condition fields 404a and 404b which is the shape of the TFT 504a and the transparent electrode 5〇5a corresponds to the black of the fourth figure, and constitutes the conditional field 4 in which the pattern is not formed. The brightness 100 of the pixel of the image of 〇la, 4〇lb corresponds to white. The luminance L of the pixel P in the irradiation condition image 400 indicates the irradiation condition when the laser beam is irradiated onto the point Q on the FPD substrate 1 corresponding to the pixel P. The larger the value of the luminance L, the more the laser beam is strongly irradiated to the point q. Further, although § has been described as "strong irradiation", the intensity of the irradiation can be controlled by various methods as will be described later with reference to Figs. 7 to 9 . 24 201013817 In the irradiation condition image 4 of Fig. 4, the complex pixels of the same brightness correspond to the same one of the irradiation conditions. As shown in FIG. 4, the irradiation condition image 4 〇〇 includes the second condition regions 401a and 401b corresponding to the first condition and displaying white at a luminance of 1 、, corresponding to the second condition, and displaying light gray at a luminance of 6 〇. The first conditional areas 402a to 402c and the third conditional areas 403a to 403c corresponding to the third condition and displaying the rich gray with the luminance of 3〇, and the fourth conditional field 4 corresponding to the fourth condition and displaying the black with the luminance 〇 4a~404h.

例如,第4圖之照射影像條件400係區分塗有分別與 1〇〇、60、30及〇之4種類亮度對應的白色、淡灰色濃灰色 及黑色的4色。以下為了方便而於第4圖〜第8圖的說明中, 將與亮度1G G、6 G、3 G及_應之照射條件分別稱為「第i條 件」、「第2條件」、「第3條件」、「第4條件」。以白色顯示之 第1條件顯示最強的照射。以淡灰色顯示之第2條件表示第i 條件之60%的強度照射,以濃灰色顯示之第3條件表示第】 條件之3G%的強度照射。以黑色顯示之第4條件表示第工條 件的〇%的照射,換言之,第4條件表示不能照射雷射束的 照射禁止領域。 此等各領域係依據玻璃基板2〇1表面上以如何的物質 如何地積層而區分的領域,係上述「積層領域」的例子。 照射條件影像400係對於複數積層領域之各領域,賦與該積 層領域上積層-層以上之—種類以上物質對應之照射條件 對應之照射條件資訊的一例。 如此一來,照射條件影像400中複數積層領域之各個亮 度設定為依據與該積層領域賦與對應之照射條件的值。例 25 201013817 如,照射條件表示對每一單位面積欲照射之能量,而於複 數積層領域之各個領域設定與能量成比例之值作為亮度。 於照射條件影像400顯示白色之第1條件領域4〇1&與 401 b可由與第3圖之參考影像3〇〇比較而清楚明白係未形成 電極、TFT及配線的領域。 換言之,第1條件領域4〇la與4〇lb係於第2圖中玻璃基 板201上僅積層絕緣膜2〇3與絕緣膜2〇7的領域。如此的領域 幾乎無因照射雷射束造成損傷之虞,因此,可強烈照射雷 射束而適切地與第丨條件對應。 _ 又,於照射條件影像400以淡灰色顯示之第2條件領域 402a,與第3圖參考影像3〇〇比較即可清楚明白,係在形成 有閘極匯流排線3〇la的領域中,用以形成其他電路要素之 物質(具體上’非晶質石夕2〇4、源極2〇5用之金屬汲極2〇6 用之金屬、ITO210或ΙΤ〇211)未積層於上層的領域。 於FPD基板1〇1中,當對與第2條件領域4〇2&對應的領域 照射雷射束時’則如參考第2圖說明的情形,因閘極2〇2之For example, the irradiation image condition 400 of Fig. 4 is divided into four colors of white, light gray, rich gray, and black, which are respectively applied to the brightness of four types of 1〇〇, 60, 30, and 〇. Hereinafter, in the description of FIGS. 4 to 8 for convenience, the irradiation conditions of the luminances 1G G, 6 G, 3 G, and _ are referred to as "i-th condition", "second condition", and "dimension", respectively. 3 conditions" and "4th condition". The first condition shown in white shows the strongest illumination. The second condition shown in light gray indicates 60% intensity irradiation of the i-th condition, and the third condition shown in rich gray indicates intensity irradiation of 3G% of the condition. The fourth condition shown in black indicates the irradiation of 〇% of the working condition, in other words, the fourth condition indicates the area of the irradiation prohibition in which the laser beam cannot be irradiated. Each of these fields is an area in which the above-mentioned "layered field" is exemplified in the field of how the substance is laminated on the surface of the glass substrate 2〇1. The irradiation condition image 400 is an example of irradiation condition information corresponding to the irradiation conditions corresponding to the substance of the above-mentioned type or more in the layered layer in the field of the plurality of layers. In this manner, the respective luminances of the plurality of laminated regions in the irradiation condition image 400 are set to values according to the irradiation conditions corresponding to the laminated region. Example 25 201013817 For example, the irradiation condition indicates the energy to be irradiated per unit area, and the value proportional to the energy is set as the brightness in each field of the complex laminated field. In the case where the irradiation condition image 400 displays white, the first condition fields 4〇1& and 401b can be clearly compared with the reference image 3〇〇 of Fig. 3, and the fields of the electrodes, the TFTs, and the wiring are not formed. In other words, the first condition areas 4〇1a and 4〇lb are in the field of laminating only the insulating film 2〇3 and the insulating film 2〇7 on the glass substrate 201 in Fig. 2 . In such a field, there is almost no damage caused by the irradiation of the laser beam, and therefore, the laser beam can be strongly irradiated and appropriately corresponds to the second condition. Further, in the second condition field 402a in which the irradiation condition image 400 is displayed in light gray, it can be clearly understood from the comparison with the reference image 3 in FIG. 3, in the field in which the gate bus line 3〇la is formed. A substance used to form other circuit elements (specifically, 'amorphous stone 〇2〇4, metal for metal 汲 2〇6 for source 2〇5, ITO210 or ΙΤ〇211) is not laminated in the upper layer. . In the FPD board 1〇1, when the laser beam is irradiated to the field corresponding to the second condition field 4〇2&, as described with reference to FIG. 2, due to the gate 2〇2

金屬所造成的影響’有對上層之物質等周圍給予損傷的可 Q 能性。因此,以對第2條件領域4〇2a照射較第丨條件弱的雷 射束為適切。 但是,於第2條件領域402a僅形成閘極匯流排線3〇ia, 而於上層未形成其他電路要素,因此,較已形成TFT等之領 域’對電路之動作造成不良影響的損傷之虞少。爰此,於 FPD基板101對與第2條件領域购對應之領域照射雷射束 不必要極端弱。因此,本實施樣態使第2條件領域對應 26 201013817 第2條件。 同樣,在與閘極匯流排線301a相同地形成於第1層之CS 匯流排線301b與閘極匯流排線3〇1之中,用以形成其他電路 要素之物質未積層於上層的部分分別與照射條件影像4〇〇 以淡灰色表示之第2條件領域402b與402c對應。 又,於照射條件影像400中,以濃灰色表示之第3條件 領域403a〜403c與第3圖之參考影像3〇〇比較時即可清楚明 白’分別為已積層源極/汲極配線3〇2a〜3〇2c用之金屬的 領域之中,透明電極3〇5a〜5〇3d未積層於上層的領域。 於FPD基板1〇1中’當對與第3條件領域4〇3&〜4〇沘對應 的領域照射雷射束時,則如參考第2圖說明的情形,因源極 205或汲極206之金屬所造成的影響,有對上下層之物質等 周圍給予損傷的可能性。因此,以於FpD基板⑻對與第3 條件領域403a〜403c對應的領域照射較第丨條件弱的雷射 束為適切。 又,第3條件領域403a〜403c之-部分橫切於最下層積 層有閘極匯流排線30U等金屬的領域。爰此,於FpD基板ι〇ι 中,當對與第3條件領域她〜條對應之領域照射雷射束 時,也會產生透過上層到達最下層之f射束的影響。因此, 以於基板ΗΠ對與第3條件領域條〜條對應的領域 照射雷射束,係以較第2條件弱的第3條件來進行為適切。 當然’也可依據於下層是否有閘極匯流排線術、Μ 匯流排線3Glb或閘極匯流排線3Qle之金屬,進—步將源極 /汲極配線施〜302e之各範圍細細地分類並分別對應 27 201013817 不同的照射條件。但是,本實施樣態中,要取得產生照射 條件影像400的簡潔度與依據照射條件影像4〇〇所指定照射 條件之精密度的平衡,更細的分類則採取保守。 又,於第3圖中,由接觸孔3〇3b朝TFT304b延伸之輔助 的配線也形成於與源極205及汲極206同層。爰此,對於此 等之輔助的配線之中不與透明電極3〇5a〜305d重複的部分 也與第3條件領域403a〜403c相同對應第3條件,於第4圖中 以濃灰色表示。 又,於照射條件影像400中,黑色顯示之第4條件領域 ® 404a〜404h與第3圖之參考影像300比較即可清楚明白,係 TFT304a〜304d及透明電極305a〜305d之中任一者重複的 領域。即,此等第4條件領域404a〜404h係積層有非晶質石夕 204、ITO210或IT0211 的領域。 TFT304a〜304d及透明電極305a〜305d易受照射雷射 束所造成的損傷,受到損傷時電路故障的可能性高,因此, 本實施樣態禁止對形成有TFT304a〜304d及透明電極3〇5a 〜305d的領域照射雷射束。如以上記述,照射的禁止係相 _ 當於第4條件。因此,使第4條件領域404a〜404h對應第4條 件。 如以上所述,照射條件影像400之各像素p之亮度L表示 對與像素P對應之FPD基板101上之點Q照射雷射束時的照 射條件。又,表示亮度L之值愈大則對Q點愈強烈照射雷射 束的情形。 依據由第3圖之參考影像300產生如此的照射條件影像 28 201013817 400之方法,依據實施樣態而為各式各樣。本實施樣態中’ 依據操作者之輸入,第1圖之影像處理部127產生照射條件 影像400。 又,雖然於第1圖中省略以圖式顯示,然而PC104具備 了包含有滑鼠或接觸感測器(touch sensor)等指向裝置 (pointing device)及鍵盤等的輸入裝置。 本實施樣態中,操作者一面觀看顯示器102顯示之參考 影像300—面藉由輸入裝置而指定參考影像300中的源極/ 汲極配線302a的範圍,並對已指定之範圍輸入用以分配表 示照射條件之所謂「30」之值的指示。本實施樣態之照射 條件以0〜100的數值表示,因此,也可說是表示相對於最 強照射條件的百分率(percentage)。 對於其他積層領域也同樣,操作者藉由輸入裝置來指 定參考影像300中的各積層領域的範圍。操作者藉由輸入裝 置而輸入表示已指定之積層領域欲分配之照射條件的數 值。 又’本實施樣態之影像處理部127在作為輔助操作者之 輪入作業之功能上包含有自動化反覆相同處理的功能。 參考影像300映照規則正確地周期性配列之多數畫素 之各電路圖案。因此,影像處理部127將對任意的一畫素之 電路圖案也適用於其他晝素之電路圖案的狀態,減少操作 者之輸入的負擔。 即,影像處理部127藉著進行擷取反覆圖案之最小單位 之畫素的影像處理,或,從藉著輸入裝置藉由主控制部122 29 201013817 Γ接Γ來自於指定1畫素之電路圖案範圍之操作者的輸 呈辨識1畫素之電路圖案的範圍。 音1盒本象處理部127對其他晝素之電路圖案也適用針對任 ^、之電路圖案所進行之各積層領域之㈣的指示對 層領域賦與對應照射條件的指示。其結果,僅以操作 者針對1晝素給予指示的狀態,即可從包含複數畫素之電路 圖案的參考影像300,自動地產生包含複數畫素之電路圖案 的照射條件影像400。 又t/像處理部127為了輔助操作者指示積層領域之範 @ 圍的情形’提供與賴周知之描“具或光再觸工具(ph〇t〇 retouch tools)同樣的功能。 例如’應禁止照射雷射束之透明電極3〇5&之範圍的形 狀如第3圖所不為不規則的六角形。操作者在顯示器1〇2顯 示之畫面上使指示器移動而指定透明電極3〇允之六角形的 六個頂點。影像處理和7也可從已輸人之六_點的座標 而選擇透明電極305a之六角形的範圍。 又,本實施樣態建構成一旦藉著指向裝置選擇參考影 像300内之1點時,則藉由主控制部122輸入影像處理部 127,並自動地設定具有已選擇之點之亮度的範圍對已茂 定之領域自動地設定對應亮度的照射條件,且操作者可 更已設定之領域的照射條件。影像處理部127將選擇妹果 示於顯示器102以使操作者可依據需要而修正選擇社果 上述照射條件可為影像處理部127預先決定的數值u 為操作者由輸入裝置輸入之數值、也可為影像處理部依 30 201013817 據參考影像300之亮度的分布而決定的數值。 例如,當依據輸入裝置指定源極//汲極配線3〇2a内之i 點時,選擇於參考影像300映照約相同亮度之源極/汲極配 線3〇2a的範圍。其結果,在用以指定源極/汲極配線302a 之範圍方面,變得不須藉由指向裝置等輸入裝置來描繪複 雜的形狀。 又,也可建構成當影像處理部127依據輸入裝置於參考 影像300上指定1條直料,產生顯示⑽定之直線上之亮 度變化的圖表並顯示於顯示器102,操作者一面參考圖表一 面可選擇或變更各圖案領域之照射條件。 例如,設成於cs匯流排線30115與閘極匯流排線3〇lc之 間,輸入裝置接受指定與CS匯流排線3〇115平行的直線的輸 入。業經減之直線上之亮度與源極/汲極配線術〜 302c的部分在其他部分不同。爰此,表示業麵定之直線 上的亮度變化之圖表,對於操作者依據參考歸3_之記 度來決定源極/汲極配線302a之範圍上有效。 影像處理部m提供以上各式各樣的辅助功能以減輕 操作者之輪人負擔,且依據輸入裝置接受的輸人而由參考 影像300產生照射條件影像4〇〇。 又,以照射條件影像400那般灰階影像顯現照射條件資 訊’操作者在視覺上容易掌握照射條件,可抑制在配方之 0又疋上的人為誤差(human error) 〇 第5圖係映照缺陷之攝像影像的例子。第5圖之攝像影 像500係以攝像部⑽拍攝雷射修復之對象的FpD基板ι〇ι 31 201013817 而取得。 即,主控制部122由缺陷檢查裝置103接受缺陷資訊。 因此’將欲藉著雷射修復修正之缺陷稱為「對象缺陷」。主 控制部122由來自於缺陷檢查裝置103之缺陷資訊選擇對象 缺陷。主控制部122為了將對象缺陷納入接物透鏡118的視 野内,乃依據已指定之缺陷的位置資訊(缺陷座標資料)指令 載台控制部124將載台107朝X方向及y方向移動以使對象缺 陷與接物透鏡的光軸一致。載台控制部1124依照來自於主 控制部122的指令而控制載台1〇7。 ^ 上述相對移動之後’攝像部108拍攝FPD基板1〇1表面 並將攝像影像500輸出至顯示器1〇2,且也輸出至影像處理 部 127。 於已拍攝雷射修復對象之FPD基板101之第5圖的攝像 影像500 ’映照著閘極匯流排線501a、CS匯流排線5〇lb、問 極匯流排線501c及源極/汲極配線502a〜502c。而且,形 成於與源極/汲極配線502a〜502c同層且由CS匯流排線 501b上之接觸孔503a與503b延伸之輔助的配線也映照於攝 參 像影像500。又,攝像影像500也映照著積層著非晶質石夕2〇4 而形成之TFT504a〜504d。與參考影像300同樣,透明電極 505a〜505d為透明,因此,雖然於實際的攝像影像500不一 定輪廓明確,但是,於第5圖顯示有透明電極5〇5a〜505d的 輪廓。 又,於攝像影像500也映照著成為對象缺陷之缺陷 506。缺陷506例如為附著於FPD基板101表面之粒子或抗姓 32 201013817 膜之殘餘等。缺陷506涵蓋存在於閘極匯流排線501c、源極 /汲極配線502b及透明電極505a〜505c等分別積層不同物 質之複數領域。依據本實施樣態,於此等每一不同領域以 不同照射條件將雷射束照射於缺陷506上,在缺陷506内之 雷射束之照射的方式可極精細地控制。 以上,參考第2圖〜第5圖,切合FPD基板之具體例說 明了配方及攝像影像。 接著參考第6圖〜第9圖來說明雷射修復裝置1〇〇的動 作。又,如關於第4圖所說明者,雖然照射條件顯示照射的 強弱’但是能以各式各樣的方法來控制照射的強弱。因此, 首先參考第6圖說明非決取於控制照射的強弱的共通點之 後,參考第7圖〜第9圖來具體地說明控制照射的強弱之各 式各樣的方法。 第6圖係說明雷射修復裝置1〇〇之動作的流程圖。又, 設成在開始第6圖之處理前,已完成以下(a)〜(c)之處理者。 (a) 將FPD基板101搬入雷射修復裝置1〇〇的處理。 (b) 例如未以圖式顯示之輸入裝置接受FPD基板1〇1之 品種與FPD基板101之識別符等資訊而賦與主控制部122的 處理。 (c)缺陷檢查裝置1〇3將關於FPD基板101之缺陷資訊 輸出至雷射修復裝置1〇〇,主控制部122將缺陷資訊朝RAM 讀出的處理。 此等⑷〜(c)之處理結束後,開始第6圖的處理,第6圖 之處理結束後,從雷射修復裝置100搬出FPD基板101。 33 201013817 於第6圖之步驟S101,主控制部122從配方儲存部123 讀出預先儲存的配方。 接著於步驟S102,主控制部122讀取關於由缺陷資訊指 定之一個對象缺陷的缺陷座標,而該缺陷資訊係由缺陷檢 查裝置103接受者。 於步驟S103,攝像部108拍攝FPD基板101表面的對象 缺陷,取得例如第5圖的攝像影像500 攝像部1〇8將已拍攝 之攝像影像500輸出至顯示器1〇2與影像處理部127。 接著於步驟S104,影像處理部127依據由攝像部ι〇8輪 出之第5圖之攝像影像500而辨識缺陷506的範圍。 例如,影像處理部127將攝像影像500與配方所包含之 第3圖之參考影像300比較,而從參考影像3〇〇與攝像影像 500之差分影像辨識對象缺陷的範圍。影像處理部以利 用適當的門檻值將差分影像予以二進制化等方法,能辨識 缺陷506之大小、形狀、位置及範圍。 於其次的步驟S105,影像處理部127將已辨識之缺陷 506的範圍與配方所包含之第4圖之照射條件影像4⑽比 較。又,影像處理部127進行攝像影像5〇〇與由參考影像3〇〇 產生之照射條件影像4 G G的對準以作為比較的前處理。依據 對準後之攝㈣像巾的缺陷寫之·㈣射條件影像 400之比較結果,影像處理部127將缺陷5〇6的範圍區分成— 個以上的照射領域。 即,第4圖與第5圖所示之本實施樣態的例子中,影像 處理部i27將缺陷5〇6的_區分成以下⑷〜⑴的照:領 34 201013817 域。 (a) 與白色的第1條件領域401b重疊的領域。 (b) 位於第4條件領域404b之周圍且與第4圖中未賦與 參考符號之白色的領域重疊的領域。 (c) 位於第4條件領域404d之周圍且與第4圖中未賦與 參考符號之白色的領域重疊的領域。 (d) 位於第4條件領域404f之周圍且與於第4圖中未賦 與參考符號之白色的領域重疊的領域。 ® (e)與淡灰色之第2條件領域402c重疊的領域(分離成 兩個的領域)。 (f) 與濃灰色之第3條件領域403b重疊的領域。 (g) 與黑色的第4條件領域404b重疊的領域。 (h) 與黑色的第4條件領域404d重疊的領域。 ⑴與黑色的第4條件領域404f重疊的領域。 當影像處理部127如此地將缺陷506的範圍區分成複數 照射領域(a)〜⑴時,則將區分的結果輸出至主控制部122。 ® 如此一來,處理朝步驟S106轉移。 於步驟S106,主控制部122依據在步驟S105的區分結果 而產生與各檢查條件對應的空間調變圖案。 又,各「空間調變圖案」係二次元空間光調變器106指 定的圖案。具體上,各空間調變圖案係二次元空間光調變 器106對各微小鏡獨立地指定導通狀態或斷開狀態之其中 任一者的圖案。 例如,Μ與N為正整數,二次元空間光調變器106設為 35 201013817 具有ΜχΝ個微小零件。例如,若是二次元空 死謂變器】06 為DMD,則微小零件為微小鏡。此情形下, I空間調變圖 案,能以白色表示導通狀態而以黑色表示斷開狀熊μ Ν 像素之二進制影像來表示。 主控制部12 2決定如何控制照射條件所示 < 射的強 度’配β控制照射的強度的方式而決定因應各照射條件的 空間調變圖案。空間調變圖案的例子與第7圖〜第9圖一併 於後記述。The influence of metal 'has the ability to damage the surrounding material and the like. Therefore, it is appropriate to irradiate the second condition field 4〇2a with a weaker beam than the second condition. However, in the second condition field 402a, only the gate bus line 3〇ia is formed, and no other circuit elements are formed in the upper layer. Therefore, there is little damage to the field of the TFT or the like which adversely affects the operation of the circuit. . Accordingly, it is not necessary for the FPD substrate 101 to illuminate the laser beam in the field corresponding to the second conditional field. Therefore, this embodiment makes the second condition field correspond to the 26 201013817 second condition. Similarly, in the same manner as the gate bus bar 301a, the CS bus bar line 301b and the gate bus bar line 3〇1 of the first layer are formed, and the portions for forming other circuit elements are not stacked on the upper layer. The second condition fields 402b and 402c corresponding to the irradiation condition image 4 〇〇 in light gray color correspond to each other. Further, in the irradiation condition image 400, when the third condition fields 403a to 403c indicated by the rich gray are compared with the reference image 3〇〇 of the third figure, it can be clearly understood that 'the laminated source/drain wiring 3' respectively. Among the fields of the metal used for 2a to 3〇2c, the transparent electrodes 3〇5a to 5〇3d are not laminated in the upper layer. In the FPD substrate 1〇1, when the laser beam is irradiated to the field corresponding to the third condition field 4〇3&~4〇沘, the source electrode 205 or the drain electrode 206 is used as described with reference to FIG. The influence of the metal may cause damage to the surroundings of the upper and lower layers. Therefore, it is appropriate for the FpD substrate (8) to irradiate the field corresponding to the third condition fields 403a to 403c with a laser beam having a weaker second-order condition. Further, the portion of the third condition fields 403a to 403c is transverse to the field in which the metal such as the gate bus bar 30U is laminated in the lowermost layer. Thus, in the FpD substrate ι〇ι, when the laser beam is irradiated to the region corresponding to the third condition field, the f beam is transmitted to the lowermost layer through the upper layer. Therefore, it is appropriate to irradiate the laser beam with the substrate ΗΠ for the field corresponding to the strips of the third conditional field to the third condition which is weaker than the second condition. Of course, it can also be based on whether the lower layer has a gate bus line, a 汇 bus line 3Glb or a gate bus line 3Qle metal, and the source/drain wiring is applied to the range of 302e. Classification and corresponding to 27 201013817 different irradiation conditions. However, in the present embodiment, the balance between the simplicity of the image 400 for generating the irradiation condition and the precision of the irradiation condition specified by the irradiation condition image 4 is obtained, and the finer classification is conservative. Further, in Fig. 3, the auxiliary wiring extending from the contact hole 3?3b toward the TFT 304b is also formed in the same layer as the source electrode 205 and the drain electrode 206. Here, the portion which is not overlapped with the transparent electrodes 3A5a to 305d among the wirings which are auxiliary to these is also the third condition corresponding to the third condition fields 403a to 403c, and is shown in dark gray in Fig. 4 . Further, in the irradiation condition image 400, it can be clearly understood that the fourth condition fields 404a to 404h of the black display are compared with the reference image 300 of the third figure, and any of the TFTs 304a to 304d and the transparent electrodes 305a to 305d are repeated. field of. In other words, the fourth condition fields 404a to 404h are in the field of amorphous slabs 204, ITO 210, or IT0211. The TFTs 304a to 304d and the transparent electrodes 305a to 305d are easily damaged by the irradiation of the laser beam, and the possibility of circuit failure during the damage is high. Therefore, in this embodiment, the formation of the TFTs 304a to 304d and the transparent electrodes 3〇5a are prohibited. The 305d field illuminates the laser beam. As described above, the prohibition phase of the irradiation is based on the fourth condition. Therefore, the fourth condition fields 404a to 404h are made to correspond to the fourth condition. As described above, the luminance L of each pixel p of the irradiation condition image 400 indicates the irradiation condition when the laser beam is irradiated to the point Q on the FPD substrate 101 corresponding to the pixel P. Further, the larger the value of the luminance L is, the more intense the laser beam is applied to the Q point. The method of generating such an illumination condition image 28 201013817 400 from the reference image 300 of Fig. 3 is various depending on the embodiment. In the present embodiment, the image processing unit 127 of Fig. 1 generates an irradiation condition image 400 in accordance with an operator's input. Further, although not shown in the drawings in Fig. 1, the PC 104 is provided with an input device including a pointing device such as a mouse or a touch sensor, a keyboard, and the like. In this embodiment, the operator views the range of the source/drain wiring 302a in the reference image 300 by the input device while viewing the reference image 300-surface displayed by the display 102, and inputs the specified range for distribution. An indication indicating the value of the "30" of the irradiation condition. The irradiation conditions of this embodiment are represented by numerical values of 0 to 100, and therefore, can also be said to represent the percentage with respect to the strongest irradiation conditions. Similarly, for other laminated fields, the operator specifies the range of each laminated field in the reference image 300 by means of an input device. The operator inputs a value indicating the irradiation condition to be assigned in the specified layered area by the input means. Further, the image processing unit 127 of the present embodiment includes a function of automatically repeating the same processing as a function of the wheeled operation of the assisting operator. The reference image 300 maps the correct periodic arrangement of the various circuit patterns of the plurality of pixels. Therefore, the video processing unit 127 applies the circuit pattern of an arbitrary one pixel to the state of the circuit pattern of the other pixels, thereby reducing the burden on the operator's input. That is, the image processing unit 127 performs image processing of the pixel of the smallest unit of the reverse pattern, or the circuit pattern from the designated 1 pixel by the main control unit 122 29 201013817 by the input device. The operator of the range identifies the range of circuit patterns that identify 1 pixel. The sound-in-one-box image processing unit 127 applies an instruction to the circuit pattern of the other elements to the (4) of each of the laminated fields performed by the circuit pattern of any of the layers to give an instruction to the corresponding irradiation condition. As a result, the irradiation condition image 400 including the circuit pattern of the plurality of pixels can be automatically generated from the reference image 300 including the circuit pattern of the plurality of pixels, only in a state in which the operator gives an instruction to the pixel. Further, in order to assist the operator in instructing the operator to indicate the situation of the layered area, the t/image processing unit 127 provides the same function as the "recognition" tool or the ph〇t〇retouch tools. For example, it should be prohibited. The shape of the range of the transparent electrodes 3〇5& which illuminate the laser beam is not an irregular hexagon as shown in Fig. 3. The operator moves the pointer on the screen displayed on the display 1〇2 to designate the transparent electrode 3 The six vertices of the hexagonal shape. The image processing and the range of the hexagonal shape of the transparent electrode 305a can also be selected from the coordinates of the six points that have been input. Further, the present embodiment is constructed by selecting a reference by the pointing device. At one point in the image 300, the main control unit 122 inputs the image processing unit 127, and automatically sets the irradiation condition having the range of the brightness of the selected point to automatically set the corresponding brightness for the field to be activated, and operates. The image processing unit 127 may display the selection result on the display 102 so that the operator can correct the selection condition according to the need, and the image processing unit 127 may preliminarily determine the irradiation condition. The value u is a value input by the operator from the input device, and may be a value determined by the image processing unit according to the distribution of the brightness of the reference image 300 according to 30 201013817. For example, when the source//drain wiring 3 is specified according to the input device. When the i point in 〇2a is selected, the reference image 300 is selected to reflect the range of the source/drain wiring 3〇2a of the same brightness. As a result, the range of the source/drain wiring 302a is specified. It is not necessary to draw a complicated shape by an input device such as a pointing device. Alternatively, the image processing unit 127 may specify a straight material on the reference image 300 according to the input device to generate a brightness change on the straight line of the display (10). The chart is displayed on the display 102, and the operator can select or change the illumination conditions of each pattern area while referring to the chart. For example, it is set between the cs bus line 30115 and the gate bus line 3〇lc, and the input device accepts the designation. The input of the line parallel to the CS bus line 3〇115. The brightness of the subtracted line is different from that of the source/drain wire wiring ~ 302c in other parts. The graph of the change in luminance on the straight line is effective for the operator to determine the range of the source/drain wiring 302a based on the reference 3_. The image processing unit m provides the above various auxiliary functions to reduce the operation. The wheel of the person is burdened, and the illumination condition image is generated from the reference image 300 according to the input received by the input device. Moreover, the illumination condition information is displayed in the gray-scale image as the illumination condition image 400. The operator is visually easy. Mastering the irradiation conditions, it is possible to suppress the human error in the formula 0. The image of the image of the defective image is shown in Fig. 5. The image of the image in the fifth image is taken by the camera (10). Obtained by the object's FpD substrate ι〇ι 31 201013817. That is, the main control unit 122 receives the defect information from the defect inspection device 103. Therefore, the defect that is to be corrected by the laser repair is called "object defect". The main control unit 122 selects an object defect from the defect information from the defect inspection device 103. The main control unit 122 instructs the stage control unit 124 to move the stage 107 in the X direction and the y direction in accordance with the position information (defect coordinate data) of the specified defect in order to incorporate the target defect into the field of view of the object lens 118. The object defect coincides with the optical axis of the lens of the object. The stage control unit 1124 controls the stage 1 to 7 in accordance with an instruction from the main control unit 122. ^ After the relative movement described above, the imaging unit 108 captures the surface of the FPD board 101 and outputs the captured image 500 to the display 1〇2, and also outputs it to the image processing unit 127. The captured image 500' of the fifth image of the FPD substrate 101 on which the laser repair target has been taken reflects the gate bus line 501a, the CS bus line 5〇1b, the terminal bus line 501c, and the source/drain wiring. 502a~502c. Further, the auxiliary wiring formed in the same layer as the source/drain wirings 502a to 502c and extending through the contact holes 503a and 503b on the CS bus bar 501b is also reflected on the parallax image 500. Further, the captured image 500 also reflects the TFTs 504a to 504d formed by laminating the amorphous stone 〇2〇4. Similarly to the reference image 300, the transparent electrodes 505a to 505d are transparent. Therefore, although the actual imaged image 500 is not clearly defined, the outline of the transparent electrodes 5A5 to 505d is shown in Fig. 5. Further, the captured image 500 also reflects the defect 506 which is a target defect. The defect 506 is, for example, a particle attached to the surface of the FPD substrate 101 or a residue of the anti-surname 32 201013817 film or the like. The defect 506 covers a plurality of fields which are present in the gate bus line 501c, the source/drain wiring 502b, and the transparent electrodes 505a to 505c, respectively, in which different substances are laminated. According to this embodiment, the laser beam is irradiated onto the defect 506 under different illumination conditions in each of the different fields, and the manner of illumination of the laser beam within the defect 506 can be extremely finely controlled. As described above, with reference to Figs. 2 to 5, a specific example of the FPD substrate is described, and the recipe and the image of the image are described. Next, the operation of the laser repairing apparatus 1A will be described with reference to Figs. 6 to 9. Further, as described in Fig. 4, although the irradiation condition indicates the intensity of the irradiation, the intensity of the irradiation can be controlled by various methods. Therefore, first, referring to Fig. 6, the method of controlling the intensity of the irradiation will be specifically described with reference to Figs. 7 to 9 after the non-determination is taken from the common point of controlling the intensity of the irradiation. Fig. 6 is a flow chart showing the action of the laser repairing device. Further, it is assumed that the following (a) to (c) processors have been completed before the processing of the sixth drawing is started. (a) The process of loading the FPD board 101 into the laser repairing apparatus 1〇〇. (b) For example, the input device not shown in the figure is subjected to the processing of the main control unit 122 by receiving information such as the type of the FPD board 101 and the identifier of the FPD board 101. (c) The defect inspection device 1〇3 outputs the defect information about the FPD substrate 101 to the laser repairing device 1A, and the main control unit 122 reads the defect information to the RAM. After the processing of (4) to (c) is completed, the processing of Fig. 6 is started, and after the processing of Fig. 6 is completed, the FPD board 101 is carried out from the laser repairing apparatus 100. 33 201013817 In step S101 of Fig. 6, the main control unit 122 reads out the recipe stored in advance from the recipe storage unit 123. Next, in step S102, the main control unit 122 reads the defect coordinates regarding one object defect specified by the defect information, and the defect information is accepted by the defect inspection device 103. In step S103, the imaging unit 108 captures the target defect on the surface of the FPD substrate 101, and acquires, for example, the captured image 500 of Fig. 5, the imaging unit 1〇8 outputs the captured imaging image 500 to the display 1〇2 and the image processing unit 127. Next, in step S104, the image processing unit 127 recognizes the range of the defect 506 based on the captured image 500 of Fig. 5 which is rotated by the imaging unit ι8. For example, the image processing unit 127 compares the captured image 500 with the reference image 300 of FIG. 3 included in the recipe, and recognizes the range of the target defect from the difference image between the reference image 3 and the captured image 500. The image processing unit can recognize the size, shape, position, and range of the defect 506 by binarizing the difference image with an appropriate threshold value. In the next step S105, the image processing unit 127 compares the range of the identified defect 506 with the irradiation condition image 4 (10) of Fig. 4 included in the recipe. Further, the image processing unit 127 performs alignment of the captured image 5 〇〇 with the irradiation condition image 4 G G generated by the reference image 3 以 as a pre-comparison of the comparison. The image processing unit 127 divides the range of the defect 5〇6 into one or more irradiation fields, based on the comparison result of the (4) defect of the image taken after the alignment (4). That is, in the example of the present embodiment shown in Figs. 4 and 5, the image processing unit i27 divides the _ of the defect 5〇6 into the following (4) to (1): collar 34 201013817 domain. (a) A field that overlaps with the white first condition field 401b. (b) An area that is located around the fourth condition field 404b and overlaps with the white area in the fourth picture to which the reference symbol is not assigned. (c) A field that is located around the fourth condition field 404d and overlaps with the white field in which the reference symbol is not assigned in Fig. 4. (d) A field that is located around the fourth condition field 404f and overlaps with the field of white which is not assigned the reference symbol in Fig. 4. ® (e) The area that overlaps with the second conditional field 402c of light gray (separated into two fields). (f) A field that overlaps with the third condition field 403b of the rich gray. (g) A field that overlaps with the black fourth condition field 404b. (h) A field that overlaps with the black fourth condition field 404d. (1) A field overlapping with the black fourth condition field 404f. When the image processing unit 127 divides the range of the defect 506 into the plural illumination areas (a) to (1) as described above, the result of the division is output to the main control unit 122. ® As such, the process shifts to step S106. In step S106, the main control unit 122 generates a spatial modulation pattern corresponding to each inspection condition based on the discrimination result in step S105. Further, each "space modulation pattern" is a pattern designated by the binary element spatial light modulator 106. Specifically, each of the spatial modulation patterns is a binary element spatial light modulator 106 that independently designates a pattern of any of the on state or the off state for each of the micromirrors. For example, Μ and N are positive integers, and the second-element spatial light modulator 106 is set to 35 201013817 with a small number of parts. For example, if the secondary element is a DMD, the tiny part is a tiny mirror. In this case, the I spatial modulation pattern can be represented by a white representation of the on state and a binary image of the broken bear μ Ν pixel in black. The main control unit 12 2 determines how to control the spatial modulation pattern corresponding to each irradiation condition by controlling the intensity of the irradiation indicated by the irradiation condition. Examples of the spatial modulation pattern will be described later in conjunction with Figs. 7 to 9.

接著於步職07,主控㈣122進行—面依序切換在步 驟襲決定之空間調變圖案—面照射雷射束的控制。於步 驟S107的控制,係對在步驟請5所區分之—個以上照射領 域之各個領域,以賦與和該照射領域重#之積層領域對應 的照射條件對該照射領域照射雷射束的控制。Then, in the step 07, the main control (four) 122 performs the control of the spatially modulated pattern-surface illumination laser beam in the step-by-step manner. In the control of step S107, the laser beam is irradiated to the illumination field in accordance with the illumination conditions corresponding to the laminated field of the illumination field in the respective fields of the above-mentioned illumination fields. .

Ρ主控制部122將各空間調變圖案輸入空間調變控制 部126,且於每—各空__案對雷射㈣部125指定關 於成為.,、、射條件之照射雷射束的參數,—面改變照射條件 一面修正對象缺陷506。 於進行以上所述一連串的流程處理之後 ,於其次的步 驟S108纟控制部122判斷是否朗關於未處理之其他缺陷 的資巩。若是未處理之其他缺陷,則回到步驟S102而同樣 進/亍連串的流程處理,若是全部的缺陷已處理完了, 則結束第6圖的處理。 乂上參考第ό圖說明了雷射修復裝置1〇〇之一連串的動 作0 36 201013817 以下一面將第6圖之步驟S106及步驟S107賦與對應一 面參考第7圖〜第9圖來說明空間調變圖案群的例子。 第7圖顯示空間調變圖案群之第1例子。第7圖之空間調 變圖案群600由空間調變圖案6(Π、空間調變圖案604及空間 調變圖案607之三個空間調變圖案所構成。 空間調變圖案群600係適合於雷射光源109之輸出功率 為可變時之空間調變圖案群的一例。又,在空間調變圖案 群600内之三個空間調變圖案的順序為任意,但是,以下設 φ 成空間調變圖案6〇1、604、607的順序。 如以上所述’在二次元空間光調變器106為具有ΜχΝ 個微小鏡之DMD的情形下,各空間調變圖案,能以白色表 示導通狀態而以黑色表示斷開狀態之ΜχΝ像素之二進制影 像來表示。第7圖中,將空間調變圖案6〇1、6〇4及6〇7僅摘 錄相當於納入接物透鏡118之視野内之缺陷5〇6附近的部 分,而以白色與黑色之二進制值影像表示。 以下於空間調變圖案中,將指定導通狀態之白色領域 Ο 稱為「導通領域」’將指定斷開狀態之黑色領域稱為「斷開 領域」。又,第7圖中,為了方便以白色顯示缺陷5〇6之輪廉 線,惟,並非對各微小鏡指定導通狀態。 空間調變圖案6〇1於第4圖之照射條件影像働中,與以 「30」之亮度表示之第3條件對應之導通領域⑽和此領域 以外之斷開領域6〇3構成。 導通領域602包含關於第6圖之步驟S105所說明之(f)之 照射領域°又’第7圖之例子為了更確實修正缺陷,雷 37 201013817 射修復裝置_不僅對缺陷上,而且也對缺陷娜之㈣ 照射雷射束。因此’空間調變圖案601之導通領域為⑺ 之照射領域、及於缺陷附近與第4圖之第3條件領域娜 重疊之領域的和。 即’導通領域_係於缺陷娜内部或附近與第3條件領 域娜重叠的領域。第3條件領域㈣與第3條物,以所 e胃「30」的亮度表示的照射條件)對應。 又,空間調變圖案604於第4圖之照射條件影像彻中, 由與以所謂「60」之亮度表示之第2條件對應的導通領域 ❿ 605、及此領域以外的領域_構成。導通領域奶分離成兩 個,惟’總稱為「導通領域605」。 導通領域6〇5包含關於第6圖之步驟_已說明之⑷的 照射領域。又,導通領域6G5用以更確實地修正缺陷獨, 包含於缺陷506附近與第4圖之第2條件領域術。重叠的領 域。 即,導通領域605係於缺陷506⑽或附近與第2條件領 域402c重畳的領域。第2條件領域條與第2條件(即,以所 〇 謂「60」的亮度表示的照射條件)對應。 又’工間調變圖案607於第4圖之照射條件影像4〇〇中, 由與以所謂「100」之亮度表示之以條件對應的導通領域 608、及此領域以外的領域609構成。導通領域6〇8分離成四 個,惟,總稱為「導通領域6〇8」。 導通領域608包含關於第6圖之步驟81〇5已說明之⑷〜 (d)的照射領域。又,導通領域_用以更確實地修正缺陷 38 201013817 506,包含於缺陷506附近與第4圖之表示第丨條件之白色部 分重疊的領域。 即,導通領域608係於缺陷5〇6内部或附近與所謂「1〇〇」 之亮度表示之第1條件對應之領域(例如第丨條件領域仞化) 重疊的領域。 如此一來,空間調變圖案群6〇〇由與第3條件對應之空 間調變圖案601、與第2條件對應之空間調變圖案6〇4及與第 1條件對應之空間調變圖案607構成。與第3條件對應之=間 調變圖案601、604及607係具有依據照射條件影像4〇〇之特 定的灰階(即特定的亮度)之領域的形狀’係用以將雷射束整 形成與其相同形狀的圖案。於空間調變圖案群6〇〇無與第4 條件對應之空間調變圖案的理由,係在於本實施樣態之第4 條件表示禁止照射雷射束之故。 接著,說明空間調變圖案群6〇〇的使用方式。使用空間 調變圖案群600的時機為例如以下所述及成立的情 形。雷射光源109可連續振盪也可脈波振盪。 (a) 雷射光源109之輪出功率為可變。 (b) 與第4圖之照射條件影像4 〇 〇中表示最強的照射條 件之「1〇〇」的亮度對應之輸出功率Pmax和照射時間τ預先 設定著。例如’輸出功率pmax和照射時間T之值與照射條件 影像400對應並儲存於配方倚存部123。 (a)及(b)成立時’於第6圖之步驟S106 ’當主控制部122 產生空間調變圖案群6〇〇時,在步驟81〇7如以下所述依照空 間調變圖案群600進行雷射束的照射。 39 201013817 為了依照與以所謂「30」之亮度表示之第3條件對應之 空間調變圖案601,使二次元空間光調變器1〇6將雷射束予 以空間調變,主控制部122將空間調變圖案601的資料輸出 至空間調變控制部126。又,主控制部122依據式(1)算出與 第3條件對應的輪出功率p3。 h^PmaxXOO/lOO) ⑴ 如此一來,主控制部122指示雷射控制部125使進行涵 蓋照射時間T以輸出功率&從雷射單元1〇5持績射出雷射束 的控制。The main control unit 122 inputs the spatial modulation patterns to the spatial modulation control unit 126, and assigns parameters to the laser (four) unit 125 for each of the lasers. The surface defect 506 is corrected while changing the irradiation condition. After performing the series of flow processing described above, the control unit 122 determines whether or not the other defects of the unprocessed defect are satisfied in the next step S108. If it is another defect that has not been processed, the process returns to step S102 and the series process is performed in the same manner. If all the defects have been processed, the process of Fig. 6 is terminated. Referring to the figure, a series of actions of the laser repairing device 1 is described. 0 36 201013817 The following side assigns step S106 and step S107 of FIG. 6 to the corresponding side with reference to FIG. 7 to FIG. 9 to illustrate the spatial adjustment. An example of a variable pattern group. Fig. 7 shows a first example of a spatial modulation pattern group. The spatial modulation pattern group 600 of FIG. 7 is composed of three spatial modulation patterns of the spatial modulation pattern 6 (the spatial modulation pattern 604 and the spatial modulation pattern 607. The spatial modulation pattern group 600 is suitable for the mine. An example of the spatial modulation pattern group when the output power of the light source 109 is variable. The order of the three spatial modulation patterns in the spatial modulation pattern group 600 is arbitrary, but φ is spatially modulated as follows. The order of the patterns 〇1, 604, and 607. As described above, in the case where the two-dimensional spatial light modulator 106 is a DMD having a plurality of micro mirrors, each spatial modulation pattern can indicate the conduction state in white. The binary image of the ΜχΝ pixel in the off state is indicated by black. In Fig. 7, the spatial modulation patterns 6〇1, 6〇4, and 6〇7 are only extracted to be equivalent to the defects included in the field of view of the object lens 118. The part near 5〇6 is represented by a binary image of white and black. In the space modulation pattern, the white area of the specified conduction state is called “conduction area” and the black area of the specified disconnection state is called Disconnected collar In addition, in Fig. 7, in order to facilitate the display of the defect line of the defect 5〇6 in white, the conduction state is not specified for each micromirror. The spatial modulation pattern 6〇1 is the illumination condition image of Fig. 4. In the case, the conduction field (10) corresponding to the third condition indicated by the brightness of "30" and the disconnection field 6〇3 outside the field are formed. The conduction field 602 includes (f) explained in step S105 of Fig. 6. In the field of illumination ° and the example of Figure 7 in order to more accurately correct the defect, Ray 37 201013817 shot repair device _ not only on the defect, but also on the defect (4) illuminate the laser beam. Therefore, the conduction of the space modulation pattern 601 The field is the area of the illumination of (7) and the sum of the areas in the vicinity of the defect and the third conditional area of Fig. 4, that is, the 'conduction field _ is the field that overlaps with the third conditional field in or near the defect. (3) The conditional field (4) corresponds to the third article, and the irradiation condition indicated by the brightness of the stomach "30". Further, the spatial modulation pattern 604 is formed in the illumination condition image of Fig. 4, and is composed of a conduction field 605 605 corresponding to the second condition indicated by the brightness of "60", and a field other than the field. In the field of conduction, the milk is separated into two, but the term “conductor field 605” is collectively referred to. The field of conduction 6〇5 contains the field of illumination regarding the step (Fig. 6) of the figure 6 (4). Further, the conduction field 6G5 is used to more accurately correct the defect, and is included in the vicinity of the defect 506 and the second condition field in the fourth figure. Overlapping areas. That is, the conduction field 605 is in the field of the defect 506 (10) or the vicinity of the second condition field 402c. The second conditional field bar corresponds to the second condition (i.e., the irradiation condition indicated by the brightness of "60"). Further, the inter-process modulation pattern 607 is composed of the conduction field 608 corresponding to the condition indicated by the brightness of "100" and the field 609 outside the field in the irradiation condition image 4 of Fig. 4. The conductive field 6〇8 is divided into four, but it is collectively referred to as “conducting field 6〇8”. The conductive field 608 includes the field of illumination of (4) to (d) which have been described with respect to step 81〇5 of Fig. 6. Further, the conduction field _ is used to more reliably correct the defect 38 201013817 506, which is included in the field of the vicinity of the defect 506 and the white portion indicating the second condition of the fourth figure. In other words, the conduction field 608 is a field in which the field corresponding to the first condition indicating the brightness of the "1" is in or near the defect 5〇6 (for example, the second condition field is degraded). In this manner, the spatial modulation pattern group 6 is composed of the spatial modulation pattern 601 corresponding to the third condition, the spatial modulation pattern 6〇4 corresponding to the second condition, and the spatial modulation pattern 607 corresponding to the first condition. Composition. The inter-modulation patterns 601, 604, and 607 corresponding to the third condition have a shape of a field of a specific gray scale (ie, a specific brightness) according to the irradiation condition image 4' for forming a laser beam. A pattern of the same shape. The reason why the spatial modulation pattern group 6 has no spatial modulation pattern corresponding to the fourth condition is that the fourth condition of the present embodiment indicates that the irradiation of the laser beam is prohibited. Next, the manner of use of the spatial modulation pattern group 6〇〇 will be described. The timing of using the spatial modulation pattern group 600 is, for example, the following and established. The laser source 109 can oscillate continuously or pulse wave. (a) The power of the laser source 109 is variable. (b) The output power Pmax and the irradiation time τ corresponding to the luminance of "1" indicating the strongest illumination condition in the irradiation condition image 4 〇 第 in Fig. 4 are set in advance. For example, the values of the output power pmax and the irradiation time T correspond to the irradiation condition image 400 and are stored in the recipe dependency unit 123. (a) and (b) when the step S106 of the sixth figure is established, when the main control unit 122 generates the spatial modulation pattern group 6〇〇, the spatial modulation pattern group 600 is subjected to the spatial modulation pattern group 600 as described below. The laser beam is irradiated. 39 201013817 In order to spatially modulate the laser beam in accordance with the spatial modulation pattern 601 corresponding to the third condition indicated by the brightness of the "30", the main control unit 122 will spatially modulate the laser beam. The data of the spatial modulation pattern 601 is output to the spatial modulation control unit 126. Further, the main control unit 122 calculates the rounding power p3 corresponding to the third condition based on the equation (1). h^PmaxXOO/lOO) (1) In this manner, the main control unit 122 instructs the laser control unit 125 to control the ejector illumination time T to output the power of the laser beam from the laser unit 1〇5.

又,主控制部122藉由空間調變控制部126與雷射控制 部125使二次元空間光調變器1〇6與雷射單元1〇5之動作時 序同步。即,主控制部122進行同步控制使二次元空間光調 變器106依照空間調變圖案6〇1以驅動各微小鏡之時序,雷 射單元105開始射出雷射。 如以上所述,當涵蓋照射時間τ以輸出功率I射出的雷 射束依照空間調變圖案601空間調變並照射於FPD基板ι〇ι 表面時,接著,主控制部122切換照射的方式。 〇 即為了依照與所謂「60」之亮度表示之第2條件對森 的4間調變圖案604使二次元空間光調變器1〇6將雷射束予 从空間調變,主控制部122將空間調變圖案6〇4之資料輪出 至空間調變控制部126。又,主控制部122依據式(2)算出與 第2條件對應的輸出功率 ^^PmaxXCeO/lOO) (2) 如此一來,主控制部122指示雷射控制部125使進行涵 40 ’〇13817 =照射時間T以輸出功率p2從雷射單元1〇5射出雷射束。 又,主控制部122進行與上述同樣的同步控制。 如以上所述,當涵蓋照射時間τ以輸出功率p2射出的雷 束依照空間調變圖案604空間調變並照射於FpD基板1〇1 表面時,再度,主控制部122切換照射的方式。 即,為了依照與所謂「100」之亮度表示之第丨條件對 應的空間調變圖案607使二次元空間光調變器i 〇 6將雷射束 彆 X a間調變’主控制部122將空間調變圖案6〇7之資料輸 =空間調變控制部126。又’主控制部122依據式(3)算出 與第1條件對應的輸出功率Ρι。Further, the main control unit 122 synchronizes the operation timing of the secondary element spatial light modulator 1〇6 with the laser unit 1〇5 by the spatial modulation control unit 126 and the laser control unit 125. That is, the main control unit 122 performs the synchronous control so that the secondary element spatial light modulator 106 drives the respective micro mirrors in accordance with the spatial modulation pattern 6〇1, and the laser unit 105 starts to emit the laser. As described above, when the laser beam that is emitted from the output power I in the irradiation time τ is spatially modulated in accordance with the spatial modulation pattern 601 and is irradiated onto the surface of the FPD substrate, the main control unit 122 switches the manner of irradiation. That is, in order to adjust the laser beam to the second modulation mode 604 by the second-order spatial light modulator 1〇6 in accordance with the second condition indicated by the brightness of the so-called "60", the main control unit 122 The data of the spatial modulation pattern 6〇4 is rotated to the spatial modulation control unit 126. Further, the main control unit 122 calculates the output power corresponding to the second condition according to the equation (2). (2) The main control unit 122 instructs the laser control unit 125 to perform the culling 40 '〇13817. = Irradiation time T The laser beam is emitted from the laser unit 1〇5 at the output power p2. Further, the main control unit 122 performs the same synchronization control as described above. As described above, when the lightning beam emitted from the irradiation power τ at the output power p2 is spatially modulated in accordance with the spatial modulation pattern 604 and irradiated onto the surface of the FpD substrate 1〇1, the main control unit 122 switches the manner of irradiation. That is, in order to adjust the laser beam modulator x 〇6 between the laser beam beams X a in accordance with the spatial modulation pattern 607 corresponding to the second condition indicated by the brightness of the "100", the main control unit 122 will The data of the spatial modulation pattern 6〇7 is output = spatial modulation control unit 126. Further, the main control unit 122 calculates the output power 对应 corresponding to the first condition based on the equation (3).

Pl==Pmax><(100/100) (3) —如此一來,主控制部122指示雷射控制部125使進行涵 盖照射時間τ以輸出功率Pl從雷射單元1〇5射出雷射束。 主控制部122進行與上述同樣的同步控制。 如以上所述,當涵蓋照射時間τ,以輸出功率p丨射出之 Q 雷射束依照空間調變圖案6〇7空間調變持續照射於FPD基 板101表面的狀態時,則結束缺陷506的修正。即,從第6圖 中的步驟S107轉移至步驟S108的處理。 又,以上的說明中,分別依照空間調變圖案6〇1、6〇4 及607進行之空間調變之時間的長度為相等照射時間τ,而 進行輸出功率A、Pa、p1的變化。但是,雷射光源丨〇9連續 振盪時,或是在雷射光源109脈波振盪時,脈波反覆周期遠 較於照射時間T短,可視為脈波數與照射時間成比例的情形 下,也可進行步驟S107中的控制。 201013817 即 ,主控制部122—面進行依據與第3條件對應之空間 調變圖案6()1之空間調變—面依據式⑷算出昭射 2曰 照射時間I。 田,果之 T3 = Tx(3〇/i〇0) (4) ,如此-來,主控制部I22藉由雷射控制和5而間接地 控制雷射單元1G5,使涵蓋照射時間T3以輪出功率p 雷射击。π ίβ 一射束又,主控制部122-面進行與上述同樣的同步控制 一面將空間調變圖案6G1之資料輪出至㈣調變控制部 © 經過照射時間τ3後,主控制部12 條件對應之_變議 漏面進:據與第2 出照射雷射束之照射時間τ”間調變—面依據式⑺算 Τ2 = Τχ(6〇/ι〇〇) . (5) 雷鼾# 時間Τ2以輸出功率ρ射出 雷射束。又,主控制部122_ ax耵出 ❿ -面將空間調變圖案604之資料:與上述同樣的同步控制 126。 只料輪出至空間調變控制部 122—面進行依據與第i 間調變一面依據式(6)算 、經過照射時間T邊,主控制邹 條件對應之空間調變圖案607之* 出照射雷射束之照射時間T1。 (6)Pl==Pmax><(100/100) (3) - In this way, the main control unit 122 instructs the laser control unit 125 to cause the coverage illumination time τ to output the laser from the laser unit 1〇5 at the output power P1. bundle. The main control unit 122 performs the same synchronization control as described above. As described above, when the irradiation time τ is covered and the Q laser beam emitted by the output power p丨 is continuously illuminating the surface of the FPD substrate 101 in accordance with the spatial modulation pattern 6〇7, the correction of the defect 506 is ended. . That is, the process proceeds from step S107 in Fig. 6 to the process of step S108. Further, in the above description, the lengths of the spatial modulation times in accordance with the spatial modulation patterns 6〇1, 6〇4, and 607 are equal to the irradiation time τ, and the output powers A, Pa, and p1 are changed. However, when the laser source 丨〇9 continuously oscillates, or when the laser source 109 oscillates, the pulse repetition period is much shorter than the irradiation time T, and it can be considered that the pulse wave number is proportional to the irradiation time. The control in step S107 can also be performed. 201013817 In other words, the main control unit 122 performs the spatial modulation/surface modification of the spatial modulation pattern 6()1 corresponding to the third condition, and calculates the illumination time I according to the equation (4). Field, fruit T3 = Tx (3〇 / i〇0) (4), so - the main control unit I22 indirectly controls the laser unit 1G5 by laser control and 5, so that the irradiation time T3 is covered by the wheel Output power p thunder shot. π ίβ, the main control unit 122 performs the same synchronization control as described above, and rotates the data of the spatial modulation pattern 6G1 to (4) the modulation control unit © after the irradiation time τ3, the main control unit 12 corresponds to the condition. _ 漏 漏 漏 漏 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Τ2 emits the laser beam at the output power ρ. Further, the main control unit 122_ax outputs the data of the spatial modulation pattern 604: the same synchronization control 126 as described above. Only the wheel-to-space modulation control unit 122 is rotated. - The face is adjusted according to the inter-i-modulation, according to the equation (6), after the irradiation time T, the main control Z-condition corresponding to the spatial modulation pattern 607* emits the irradiation time T1 of the laser beam. (6)

Tl^TxGOO/lOO) 如此一來,主控制部122 和r制街- 1 nc . 雷射控制部125而間接地 控制雷射早兀1〇5,以使涵蓋 射Tl^TxGOO/lOO) In this way, the main control unit 122 and the r-street- 1 nc. laser control unit 125 indirectly control the laser early 1兀5 to cover the shot.

‘、、、射時間Τι以輸出功率P 42 201013817 雷射束。又,主控制部122—面進行與上述同樣的同步控 '面將空間調變圖案607輪出至空間調變控制部126。 ^如以上所述,主控制部122、雷射控制部125及空間調 變控制部126作為控制機構而具有以下的功能。即,作為控 制機構之各部_面對二:欠元空間光調㈣I%依序指定複 數工間調變圖案_~面控制雷射單元⑻’以使於—個以上照 射領域之各個領域於與該照射領域對應之照射條件的時間 照射雷射束。 又’使輸出功率與照射時間之其中任何者改變,作為 &制機構之各部’—面控制雷射單元⑽依序切換輸出功率 並射出雷射束…崎二次元空間光調變^觸依序指定複 數空間調變圖案’以使於一個以上照射領域之各個領域於 每一單位面積所照射之能量相當於與該照射領域對應的照 射條件。 如此一來’上述之例子中,作為控制機構之各部更進 行控制’以使二次元空間光調變器1〇6依據順序指定之複數 的空間調變圖案切換空間調變之方式的時序,與雷射單元 1〇5切換輪出功率的時序同步。 如此一來,主控制部122—面藉由空間調變控制部126 對二次元空間光調變器1〇6順序指定三個空間調變圖案 601、604及607 ’ 一面藉由雷射控制部125控制雷射單元 105 °主控制部122以進行固定照射時間與輸出功率之一者 而改變另一者之控制的情形下,可實現關於第6圖之步驟 S105已說明之照射領域(a)〜⑴之各個領域照射適切的雷射 43 201013817 束。 即,可進行以較一個缺陷506還小之領域即各個照射領 域(a)〜(i)為單位之極精細之雷射束照射的控制。本實施樣 態對缺陷506附近之小領域也附加性地照射雷射束,而如上 述說明,缺陷506附近之小領域也對應各積層領域設定。因 此’依據本實施樣態,對照射領域(a)〜(i)之各個領域以與 該照射領域重疊之積層領域對應之照射條件對該照射領域 照射雷射束。 又,可得知習知用以將雷射束之束剖面形狀予以整形 而使用縫隙等物理機構的方法,然而,本實施樣態利用可 電性驅動之DMD作為二次元空間光調變器1〇6。 因此,本實施樣態可將切換空間調變圖案所需時間視 為零。爰此,本實施樣態與使用物理機構之習知方法比較, 能以非常短的時間,並以較一個缺陷506還小的領域作為單 位極精細地照射雷射束,且能適切地控制。 又,藉著極精細的控制也能防止浪費的照射雷射束, 因此,其結果也不會因雷射束而造成对二次元空間光調變 器106與其他光學元件徒然的應力。因此,也不會使二次元 空間光調變器106等的壽命過度縮短。 第8圖顯示空間調變圖案群之第2例子。第8圖之空間調 變圖案群700由空間調變圖案70卜空間調變圖案7〇4及空間 調變圖案7〇7之三個空間調變圖案所構成。又,空間調變圖 案群700内之空間調變圖案的順序為任意但是以下設成 空間調變圖案701、704、707的順序。 201013817 與第7圖同樣第8圖也將空間調變圖案7〇卜7〇4及7〇7僅 摘錄相當於納入接物透鏡118之視野内之缺陷5〇6附近的部 分’而以白色與黑色之二進制值影像表示。又,將缺陷5〇6 之輪廓線方便地予以圖示之點也與第7圖同樣。 空間調變圖案701由用以將對應的微小鏡驅動成導通 狀態之導通領域702,與該等領域以外的領域7〇3構成。‘,,, and time Τι to output power P 42 201013817 laser beam. Further, the main control unit 122 performs the same synchronization control surface as described above to rotate the spatial modulation pattern 607 to the spatial modulation control unit 126. As described above, the main control unit 122, the laser control unit 125, and the spatial modulation control unit 126 have the following functions as control means. That is, as the control mechanism, each part _ face two: the under-dimensional space light adjustment (four) I% sequentially specifies the complex inter-process modulation pattern _ ~ surface control laser unit (8) 'to enable more than one area of the field of illumination The laser beam is illuminated at a time corresponding to the illumination condition of the illumination field. In addition, 'any of the output power and the illumination time are changed, as the various parts of the & mechanism'--the surface control laser unit (10) sequentially switches the output power and emits the laser beam... Saki two-dimensional space light modulation ^ touch The complex spatial modulation pattern is designated so that the energy irradiated per unit area in each of the one or more illumination fields corresponds to the illumination condition corresponding to the illumination area. In this way, in the above example, each part of the control mechanism is further controlled to cause the second-dimensional spatial light modulator 1〇6 to switch the spatial modulation mode according to the sequence of the plurality of spatial modulation patterns, and The laser unit 1〇5 switches the timing synchronization of the wheel output power. In this way, the main control unit 122 is configured by the spatial modulation control unit 126 to sequentially design the three spatial modulation patterns 601, 604, and 607' to the second-dimensional spatial light modulators 1 to 6 by the laser control unit. 125. When the laser control unit 105 controls the main control unit 122 to change the control of the other one of the fixed illumination time and the output power, the illumination field (a) described in the step S105 of FIG. 6 can be realized. ~ (1) The various areas of the appropriate laser irradiation 43 201013817 bundle. Namely, it is possible to perform control of extremely fine laser beam irradiation in units smaller than one defect 506, i.e., in each of the irradiation fields (a) to (i). In this embodiment, the laser beam is additionally irradiated to a small area in the vicinity of the defect 506, and as described above, the small area in the vicinity of the defect 506 is also set corresponding to each laminated field. Therefore, according to the present embodiment, the irradiation field is irradiated with the laser beam for each of the fields of the fields (a) to (i) in the irradiation field in accordance with the irradiation conditions corresponding to the laminated region overlapping the irradiation region. Further, a conventional method for shaping a cross-sectional shape of a beam of a laser beam and using a physical mechanism such as a slit can be known. However, in this embodiment, an electrically-driven DMD is used as the secondary element spatial light modulator 1 〇 6. Therefore, the present embodiment can treat the time required to switch the spatial modulation pattern to zero. Accordingly, in the present embodiment, compared with the conventional method using the physical mechanism, the laser beam can be extremely finely irradiated in a very short time and in a field smaller than the defect 506, and can be appropriately controlled. Moreover, it is possible to prevent wasted illumination of the laser beam by extremely fine control, and as a result, there is no violent stress on the secondary element spatial light modulator 106 and other optical elements due to the laser beam. Therefore, the life of the secondary element spatial light modulator 106 or the like is not excessively shortened. Fig. 8 shows a second example of the spatial modulation pattern group. The spatially modulated pattern group 700 of Fig. 8 is composed of three spatially modulated patterns of the spatial modulation pattern 70, the spatial modulation pattern 7〇4, and the spatial modulation pattern 7〇7. Further, the order of the spatial modulation patterns in the spatially modulated pattern group 700 is arbitrary, but the order of the spatial modulation patterns 701, 704, and 707 is set hereinafter. 201013817 Similarly to Fig. 7, Fig. 8 also shows that the spatial modulation pattern 7〇7〇4 and 7〇7 only extract the portion corresponding to the defect 5〇6 in the field of view of the object lens 118. Black binary image representation. Further, the outline of the defect 5〇6 is conveniently illustrated as in the seventh drawing. The spatial modulation pattern 701 is composed of a conduction field 702 for driving the corresponding micro mirror to be in an on state, and a field 7 other than the fields.

導通領域702係於缺陷506或其附近,係在第4圖之照射 條件影像400中以與所謂「30」之亮度表示之第3條件對應 的領域、以與所謂「6〇」之亮度表示之第2條件義的領域、 以及以與所謂「100」之亮度表示之第1條件對應的領域之 全部重疊的領域。換言之,導通領域702包含關於第6圖之 步驟S105所說明之(a)〜(f)之照射領域的和。又,導通領域 7〇2係更於缺陷506附近,包含與第丨〜第3條件之全部對應 之照射條件影像400内的領域重疊的領域。 。 同樣地,空間調變圖案704由導通領域7〇5與斷開領域 7〇6構成。導通領域705分離成兩個,惟,總稱為「導通領 域705」。 ^ 導通領域705係於缺陷506或其附近,係在第4圖之照射 條件影像400中以與所謂「60」之亮度表示之第2條件^應 的領域、以及以與所謂「100」之亮度表示之第丨條件對^ 的各領域重疊的領域。換言之,導通領域7〇5包含(a)〜() 之照射領域的和,而且,包含與第1〜第2條件對應 ·展射 條件影像400内之各領域重疊的領域。 空間調變圖案707由於缺陷506或其附近,係由第4圖之 45 201013817 照射條件影像400中以與所謂「100」之亮度表示之第1條件 對應的領域重疊的導通領域708、以及其他領域709構成。 換言之,導通領域708包含(a)〜(d)之照射領域之和,而且, 包含與第1條件對應之照射條件影像400内之領域重疊的領 域。又,導通領域708分離成4個,,總稱為「導通領域708」。 即’導通領域702包含導通領域705,導通領域705包含 導通領域708。 接著說明空間調變圖案群700的使用方式。空間調變圖 案群700於雷射光源1〇9之輸出功率為一定的情形下也能使 着 用。又’雷射光源109可為連續振盪者,也可為脈波振盪者。 空間調變圖案群700於例如以下所述(a)或(b)成立時使用。 (a) 雷射光源109連續振盪時,與第4圖之照射條件影像 400中表示最強的照射條件之「1〇〇」的亮度對應之照射時 間Tmax( = T)預先設定著。例如,照射時間丁随之值與照射 條件影像400對應並儲存於配方儲存部丨23。 (b) 雷射光源1 〇9脈波振蘯時,與第4圖之照射條件影像 400中表示最強的照射條件之r 1〇〇」的亮度對應之脈波數 @The conduction field 702 is in the vicinity of the defect 506 or the vicinity thereof, and is represented by the field corresponding to the third condition indicated by the brightness of the so-called "30" in the irradiation condition image 400 of Fig. 4, and is expressed by the brightness of the so-called "6". The field of the second conditional sense and the field in which all of the fields corresponding to the first condition indicated by the brightness of "100" overlap. In other words, the conduction field 702 includes the sum of the illumination fields (a) to (f) described in the step S105 of Fig. 6. Further, the conduction field 7〇2 is closer to the defect 506, and includes a field in which the fields in the irradiation condition image 400 corresponding to all of the third to third conditions overlap. . Similarly, the spatial modulation pattern 704 is composed of the conduction field 7〇5 and the disconnection field 7〇6. The conductive field 705 is split into two, but is collectively referred to as "conducting field 705." ^ The conduction field 705 is in the vicinity of the defect 506 or in the vicinity of the illumination condition image 400 of FIG. 4, and the second condition indicated by the brightness of the so-called "60", and the brightness of the so-called "100". The area in which the third condition of the ^ condition overlaps. In other words, the conduction field 7〇5 includes the sum of the irradiation fields of (a) to (), and includes fields overlapping with the first to second conditions and the respective fields in the emission condition image 400. The spatial modulation pattern 707 is a conduction field 708 in which the field corresponding to the first condition indicated by the brightness of the so-called "100" is superimposed on the defect 506 or the vicinity thereof by the defect 506 or the vicinity thereof. 709 constitutes. In other words, the conduction field 708 includes the sum of the irradiation fields of (a) to (d), and includes the field in which the fields in the irradiation condition image 400 corresponding to the first condition overlap. Further, the conduction area 708 is divided into four, and is collectively referred to as "conduction area 708". That is, the conductive field 702 includes a conductive field 705 and the conductive field 705 includes a conductive field 708. Next, the manner of use of the spatial modulation pattern group 700 will be described. The spatial modulation map group 700 can also be used in the case where the output power of the laser light source 1〇9 is constant. Further, the laser light source 109 may be a continuous oscillating person or a pulse oscillating person. The spatially modulated pattern group 700 is used, for example, when (a) or (b) is established as follows. (a) When the laser light source 109 continuously oscillates, the irradiation time Tmax (= T) corresponding to the luminance of "1 〇〇" indicating the strongest irradiation condition in the irradiation condition image 400 of Fig. 4 is set in advance. For example, the irradiation time value corresponds to the irradiation condition image 400 and is stored in the recipe storage unit 丨23. (b) The number of pulse waves corresponding to the brightness of r 1 〇〇 which indicates the strongest irradiation condition in the irradiation condition image 400 of Fig. 4 when the laser light source 1 〇 9 pulse is vibrated

Nmax預先設定著。例如,脈波數!^^、之值與照射條件影像4〇〇 對應並儲存於配方儲存部123。 (a)或(b)成立時,於第6圖之步驟sl〇6,當主控制部 產生空間調變圖案群7〇〇時,在步驟81〇7如以下所述依照空 間調變圖案群700進行雷射束的照射。 主控制部122為了依照空間調變圖案7〇1使二次元空間 光調變器106將雷射束予以空間調變,乃將空間調變圖案 46 201013817 701之資料輸出至空間調變控制部126。又, :從:_射條件即第-件至最強的 ”,、複數_條件對應之似包含於導 菱此,雷射切__錄時,主控 ,出與所謂「3。」之亮度表示之第3條二= 時間T3。或是,雷射光源1()9脈波振盧時,主部;射 據式(7)算出與第3條件對應之脈波數叫。工 2依Nmax is preset. For example, the value of the pulse number!^^ is corresponding to the irradiation condition image 4〇〇 and stored in the recipe storage unit 123. When (a) or (b) is established, in step s1〇6 of Fig. 6, when the main control unit generates the spatial modulation pattern group 7〇〇, in step 81〇7, according to the spatial modulation pattern group as described below 700 is irradiated with a laser beam. The main control unit 122 causes the binary element spatial light modulator 106 to spatially modulate the laser beam in accordance with the spatial modulation pattern 7〇1, and outputs the data of the spatial modulation pattern 46 201013817 701 to the spatial modulation control unit 126. . Also, from: _ shooting condition is the first piece to the strongest, and the plural _ condition corresponds to the inclusion of the guide, the laser cut __ recorded, the master, the output and the so-called "3." brightness Indicates Article 3 II = Time T3. Alternatively, when the laser light source 1 () 9 is pulsed, the main portion; and the radiation expression (7) calculates the number of pulses corresponding to the third condition. Work 2

N3 = Nmaxx(3〇/i〇0) (?) 如此一來,雷射光源1〇9連續振遷時,主控制部卿 由雷射控制和5間接地控制f射單元奶以涵蓋照射時; 丁3持續射出雷射束。或是,雷射光源1G9脈波振料,主控 制部122藉由雷射控制部125間接地控制雷射單元1〇5以照 射脈波N3次。 ^ 同時,主控制部122在雷射單元1〇5射出雷射束之際, 進行與關於第7圖說明之同樣的同步控制,以進行藉著Ζ間 調變圖案701所為之空間調變。 經過照射時間A後,或是照射脈波Μ;次後,主控制部 122切換照射的方式。 即,主控制部122為了依照空間調變圖案7〇4使二次元 空間光調變器1〇6將雷射束予以空間調變,乃將空間調變圖 案704之資料輸出至空間調變控制部126。又,空間調變圖 案704係與第2條件及第1條件對應之領域包含於導通領域 705。又,導通領域705包含於導通領域702。 爰此,於依照空間調變圖案7〇4照射雷射束上,在與導 47 201013817 為基丰’“照射_或脈波數。即,主控制 部Γ進行依據於第2條件為必要域料量,與-面接= 以工間調變圖案701所為之空間調變-面依據已照射於 基板101表面上之雷射束所為之照射能量之差分的計 算。 主控制部122於雷射光源⑽連續振逢時,依據式⑻算 ❿ 出照射時間Ta’於雷射光_9脈波振料依據式(9 脈波數Na。N3 = Nmaxx(3〇/i〇0) (?) In this way, when the laser source 1〇9 is continuously relocated, the main control unit is controlled by the laser and 5 indirectly controls the f-unit milk to cover the illumination. ; D 3 continues to shoot the laser beam. Alternatively, the laser light source 1G9 is a pulse wave, and the main control unit 122 indirectly controls the laser unit 1〇5 by the laser control unit 125 to irradiate the pulse wave N3 times. At the same time, when the laser beam is emitted from the laser unit 1〇5, the main control unit 122 performs the same synchronization control as that described with reference to Fig. 7 to perform spatial modulation by the inter-turn modulation pattern 701. After the irradiation time A, the pulse wave is irradiated; after that, the main control unit 122 switches the mode of the irradiation. That is, the main control unit 122 causes the two-dimensional spatial light modulator 1〇6 to spatially modulate the laser beam in accordance with the spatial modulation pattern 7〇4, and outputs the data of the spatial modulation pattern 704 to the spatial modulation control. Part 126. Further, the space modulation map 704 is included in the conduction field 705 in the field corresponding to the second condition and the first condition. Also, the conductive field 705 is included in the conductive field 702. In this case, the laser beam is irradiated according to the spatial modulation pattern 7〇4, and the reference is made to the guide 47 201013817 as the "radiation_" or the pulse wave number. That is, the main control unit performs the necessary field according to the second condition. The amount of material, and the surface connection = the spatial modulation of the inter-process modulation pattern 701 - the calculation of the difference between the illumination energy of the laser beam irradiated on the surface of the substrate 101. The main control portion 122 is a laser source (10) In the case of continuous oscillation, the irradiation time Ta' is calculated according to the equation (8). The laser light is based on the laser _9 pulse wave according to the formula (9 pulse wave number Na).

Ta=Tx(60-30) /〇.Ta=Tx(60-30) /〇.

Na = Nmaxx((60-30)/ι〇0) (9) 如此=來,雷射光源109連績振盈時,主控制部122控 制雷射單元105以涵蓋照射時間Ta射出雷射束。或是,雷射 光源109脈波振蘯時’主控制部122藉由雷射控制部⑵間接 地控制雷射單元105以照射脈波队次。 同時’主控制部122在雷射單元1〇5射出雷射束之際, 進行同步控制’以進行藉著空間調變圖案7〇4所為之空間調 變。 經過照射時間以,或是照射脈波队次後,主控制部 122切換照射的方式。 即’主控制部122為了依照空間調變圖案7〇7使二次元 空間光調變器Η)6將雷射束予以空間調變,乃將空間調變圖 案707之資料輸出至空間調變控制部126。又,於空間調變 圖案而僅與第丨條件對應之領域包含於導通領域服。又, 48 201013817 導通領域708包含於導通領域702與導通領域705雙方。 爰此,於依照空間調變圖案707照射雷射束上,主控制 部12 2欲算出之照射時間或脈波數係與第1條件為必要之照 射能量和已照射之能量的差分對應之值。即,主控制部122 於雷射光源109連續振盪時,依據式(1〇)算出照射時間Tb, 於雷射光源109脈波振盪時,依據式(11)算出脈波數Nb。Na = Nmaxx ((60-30) / ι〇0) (9) In this case, when the laser light source 109 is continuously vibrating, the main control unit 122 controls the laser unit 105 to emit the laser beam covering the irradiation time Ta. Alternatively, when the laser source 109 is oscillated, the main control unit 122 indirectly controls the laser unit 105 by the laser control unit (2) to illuminate the pulse train. At the same time, the main control unit 122 performs synchronous control when the laser unit 1〇5 emits the laser beam to perform spatial modulation by the spatial modulation pattern 7〇4. After the irradiation time or the irradiation of the pulse train, the main control unit 122 switches the manner of the irradiation. That is, the main control unit 122 spatially modulates the laser beam in order to make the laser beam spatially modulated in accordance with the spatial modulation pattern 7〇7, and outputs the data of the spatial modulation pattern 707 to the spatial modulation control. Part 126. Further, the field corresponding to the second 丨 condition in the spatial modulation pattern is included in the conduction field. Further, 48 201013817 the conduction field 708 is included in both the conduction field 702 and the conduction field 705. As described above, the irradiation time or the number of pulse waves to be calculated by the main control unit 12 in accordance with the spatial modulation pattern 707 corresponds to the difference between the irradiation energy necessary for the first condition and the energy of the irradiation. . In other words, when the laser light source 109 continuously oscillates, the main control unit 122 calculates the irradiation time Tb according to the equation (1), and calculates the pulse wave number Nb according to the equation (11) when the laser light of the laser light source 109 oscillates.

Tb= Τχ((100- 60)/100) (10)Tb= Τχ((100- 60)/100) (10)

Nb = Nmaxx((100 —60)/100) (11) 如此一來’雷射光源109連續振盪時,主控制部122藉 由雷射控制部125間接地控制雷射單元1〇5以涵蓋照射時間 Tb持續射出雷射束。或是,雷射光源1〇9脈波振盪時,主控 制部122藉由雷射控制部125間接地控制雷射單元1〇5以照 射脈波Nb次。 同時,主控制部122在雷射單元1〇5射出雷射束之際, 進行同步控制,以進行藉著空間調變圖案707所為之空間調 變。 又,上述說明中的主控制部122藉由雷射控制部125明 白指示地控制與各空間調變圖案7(Π、704及705對應的照射 時間或脈波數。但是,主控制部122也可僅將雷射束之開始 照射之時序與照射時間Τ通知雷射控制部125。此情形下, 從雷射束之開始照射時間點經過照射時間Τ3後、以及從雷 射束之開始照射時間點經過照射時間T2(=T3 + Ta)後,主控 制部122藉由空間調變控制部126切換空間調變圖案的情形 下,雷射修復裝置100與上述同樣地運作。其理由在於二次 49 201013817 元空間光調變器106之空間調缴a +』认丄认 同變之方式的切換所需要時間 可視為零之故。 由式⑷〜⑼可清楚明白,依據上述的控制,雷射光 源109連續振盡時,雷射束照射於分別與第1〜第3條件對庫 之領域之時間的合計分別為T、T2、T3。又,依據上述的ς 制’雷射総Η)赚波振_ 1射束㈣於分辟第卜 第3條件對應之領域之脈波數的合計分別為N_、NmaxX(60 /100)、N3。Nb = Nmaxx ((100 - 60) / 100) (11) When the laser light source 109 continuously oscillates, the main control unit 122 indirectly controls the laser unit 1〇5 by the laser control unit 125 to cover the illumination. Time Tb continues to emit the laser beam. Alternatively, when the laser light source 1 〇 9 pulse oscillates, the main control unit 122 indirectly controls the laser unit 1 〇 5 by the laser control unit 125 to illuminate the pulse wave Nb times. At the same time, the main control unit 122 performs synchronous control when the laser beam is emitted from the laser unit 1〇5 to perform spatial modulation by the spatial modulation pattern 707. Further, in the above description, the main control unit 122 controls the irradiation time or the pulse wave number corresponding to each of the spatial modulation patterns 7 (Π, 704, and 705) by the laser control unit 125. However, the main control unit 122 also controls The laser control unit 125 may be notified only of the timing of the start of irradiation of the laser beam and the irradiation time 。. In this case, the irradiation time from the start of the laser beam after the irradiation time Τ3 and the irradiation time from the start of the laser beam When the main control unit 122 switches the spatial modulation pattern by the spatial modulation control unit 126 after the irradiation time T2 (= T3 + Ta), the laser repairing apparatus 100 operates in the same manner as described above. 49 201013817 The space space light modulator 106 space transfer a + 』 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄When 109 is continuously oscillated, the total of the time when the laser beam is irradiated to the fields of the first to third condition pairs is T, T2, and T3, respectively, and the wave is made based on the above-mentioned 'laser'. Vibration _ 1 beam (four) in the division of the third article Field of the pulse wave corresponding to the total number of, respectively N_, NmaxX (60/100), N3.

友此,依據利用了空間調變圖案群7〇〇之上述的控制, 能對第象步獅5說明之各_領域⑷,,以分別對 應之照射祕(即,與闕條件f彡像_之錢航例之強 度)照射雷射束。In this way, according to the above-mentioned control using the spatial modulation pattern group, the _ field (4) which can be explained to the lion lion 5, respectively, corresponds to the illuminating secret (ie, the 阙 condition f 彡 _ The intensity of the money voyage) illuminates the laser beam.

如以上所述’雷射光源_連續振盈時,主控制部122、 雷射控制和5及空_變控制部126作為控雜構而發揮 以下的功能,’作為控制機構之各部—面對二次元空間 ,調變器⑽依順序指定複數空_變圖案-面控制雷射 早元105,以使於-個以上照射領域之各個領域於與相當於 該照射領崎紅騎斜騎波數歸毅雷射束。 又’於第8圖之例子中’主控制部122不僅照射時間與 脈波數,也可進行改變輸出功率的控制。_,也可主㈣ 部122藉由雷射控制部125控制雷射單元奶以使對應空間 調變圖請、704及7〇7分別以輸出功率&、IΜ及⑺ P2)照射雷射束。此情形下,每—空間調變圖案之照射時 間的長度相等,例如為上述照射時間τ。 50 201013817 以上說明之實施樣態中,說明了將空間調變圖案群區 刀為複數空間調變圖案的情形,惟,也可將照射條件不同 之領域分割成複數而以一個空間調變圖案來構成。 第9圖顯示空間調變圖案群之第3例子。第9圖之例子係 利用與第3圖及第4圖所示者之其他配方之雷射修復的例子 第9圖之重疊概念圖8〇〇係概念地顯示將拍攝雷射修復 之對象即,將FPD基板101所得之攝像影像之缺陷gw區 刀成照射領域的圖式。又,第9圖之空間調變圖案900係調 整依照重疊概念圖800所區分之雷射束之功率的圖式。 重疊概念圖800分別顯示缺陷801的範圍,與分別與4個 照射條件對應而區分之第1條件領域802 '第2條件領域 803、第3條件領域8〇4、第4條件領域805。與第4圖之例子 同樣於第9®之例子也則〜丨⑽之整數表示照射條件。第9 圖之例子中的各照射條件以其次的數值表示。 •第1條件:50When the "laser light source" is continuously oscillated as described above, the main control unit 122, the laser control unit 5, and the air-to-variable control unit 126 function as a control structure, and the following functions are performed as the control unit. In the second-element space, the modulator (10) sequentially specifies the complex-empty-pattern-plane control laser early element 105 so that each field of the more than one illumination field is equivalent to the number of waves corresponding to the illumination of the collared red riding Guiyi Lei beam. Further, in the example of Fig. 8, the main control unit 122 can control not only the irradiation time but also the pulse wave number, but also the output power. _, the main (four) portion 122 can also control the laser unit milk by the laser control unit 125 so that the corresponding spatial modulation maps, 704 and 7〇7 respectively illuminate the laser beam with output power &, IΜ and (7) P2) . In this case, the irradiation time of each of the spatial modulation patterns is equal, for example, the above-described irradiation time τ. 50 201013817 In the above-described embodiment, the case where the spatial modulation pattern group knife is a complex spatial modulation pattern is described. However, the field in which the irradiation conditions are different may be divided into a plurality of spatial modulation patterns. Composition. Fig. 9 shows a third example of the spatial modulation pattern group. The example of Fig. 9 is an example of the overlap of the laser repair using the other formulas shown in Figs. 3 and 4, and the overlapping concept of Fig. 9 is conceptually shown to be the object of the laser repair. The defect gw area of the captured image obtained by the FPD substrate 101 is cut into a pattern of the irradiation field. Further, the spatial modulation pattern 900 of Fig. 9 adjusts the power of the laser beam divided by the overlapping concept map 800. The overlap concept map 800 displays the range of the defect 801, and the first condition field 802 'the second condition field 803, the third condition field 8〇4, and the fourth condition field 805 which are respectively distinguished from the four irradiation conditions. The example of Fig. 4 is the same as the example of the 9th®. The integer of 丨(10) indicates the irradiation condition. Each of the irradiation conditions in the example of Fig. 9 is represented by the next numerical value. • 1st condition: 50

第2條件:75 第3條件:100 第4條件:〇 803 =條件領域8G2為左側之長方形的領域,第2條件領域 , 下之長方形的領域,第3條件領域804為右側之L字 形的領織,第4條件領域8_右上之長方形的領域。 如重叠概念圖_所示,缺細崎著此等4個不同照射 …。因此,於第6圖之步驟S105中,影 陷謝的範圍區分為4個照射領域。即,缺陷咖的範圍: 51 201013817 為與第1條件領域802重疊的第1照射領域8〇6、與第2條件領 域803重疊的第2照射領域8〇7、與第3條件領域8〇4重疊的第 3照射領域808及與第4條件領域805重疊的第4照射領域 809。 依據如此區分之照射領域,於第6圖之步驟81〇6中,主 控制部122產生僅由一個空_變__構成之空間調變 圖案群。如此好額咐,主㈣部122、雷射控制部125 及空=調變控制部126進行用以—面以空間調變圖案900所 為之空間調變一面照射雷射束的控制。 空間調變圖案_與第7圖及第8圖同樣,在與具有ΜχΝ 個微小鏡之DMD對應之ΜχΝ像素之二進制影像中,係僅摘 錄相當於缺細丨岐㈣分而顯示者。又第9圖之例子 中,不進行對缺陷8〇1附近之附加性的雷射束照射。 又,為了圖式的方便上,乃將不同照射領域間之交界 線及缺陷_之輪廓線顯示於空間調變圖案刚。但是,表 示空間調變圖案_之實際的二進制影像不存在此等交界 …间調變圍·之小的各個正方 =0之二進制影像中的-像素,與各微小鏡對應。與 於空間調變圖案900,在與箆1 内,絲存在㈣料她6龍的範圍 之里㈣“ “从 白色的像素或顯示斷開狀態 色的像素。白色的像素與黑色的像素之個數的比,照 52 201013817 射條件以卜咖的整數表示,而由 之第1條件以所謂「5〇 照射領域806對應 」之數值表示,如 5〇 · (100-50)=! · ! 式(12)。 1 (12)The second condition: 75 The third condition: 100 The fourth condition: 〇 803 = the condition field 8G2 is the area of the rectangle on the left side, the second condition field, the area of the rectangle below, and the third condition field 804 is the collar of the L shape on the right side. We are the field of the rectangle of the upper right. As shown in the overlapping concept map _, there are 4 different illuminations. Therefore, in step S105 of Fig. 6, the range of shadowing is divided into four irradiation fields. That is, the range of the defective coffee: 51 201013817 is the first irradiation field 8〇6 overlapping the first condition field 802, the second irradiation field 8〇7 overlapping the second condition field 803, and the third condition field 8〇4 The third irradiation field 808 that overlaps and the fourth irradiation field 809 that overlaps with the fourth condition field 805. According to the illumination field thus distinguished, in the step 81〇6 of Fig. 6, the main control unit 122 generates a spatial modulation pattern group composed of only one null_change__. In such a good amount, the main (four) portion 122, the laser control unit 125, and the null=modulation control unit 126 perform control for irradiating the laser beam with the spatial modulation of the spatial modulation pattern 900. Spatial Modulation Pattern _ As in the seventh and eighth figures, in the binary image of the ΜχΝ pixel corresponding to the DMD having the 微小 micro mirrors, only the one corresponding to the missing 丨岐 (4) is extracted and displayed. Further, in the example of Fig. 9, the additional laser beam irradiation in the vicinity of the defect 8〇1 is not performed. Moreover, for the convenience of the drawing, the boundary line between the different illumination fields and the outline of the defect _ are displayed on the spatial modulation pattern. However, the actual binary image indicating the spatial modulation pattern _ does not have the - pixels in the binary image of each square =0 which is smaller than the boundary modulation, and corresponds to each micromirror. With respect to the spatial modulation pattern 900, in the 箆1, the silk exists (four) in the range of her 6 dragons (four) "" from the white pixels or the display disconnected state color pixels. The ratio of the number of white pixels to the number of black pixels is represented by an integer of 52 201013817, and the first condition is represented by the value of the so-called "5 〇 illumination field 806", such as 5〇· ( 100-50)=! · ! (12). 1 (12)

❹ 同樣地,於空間調變圖案9〇〇與第2 範圍内也混合存在顯示導通狀態之‘,、、射領域807對應的 狀態之黑色的像素。白㈣像Μ的像素與顯示斷開 比,係照射條件_〜副之整數來表像素之個數之 域807對應之第2條件以所謂「 ^估而由與第2照射領 75:_ — 75Η3:1表示,如綱。 又顯於=調變圖案與第3照射領域8〇8對應的範圍 之白色的像素。此乃與第職領域_ 對應的第3條件以所謂「議」之用以顯示照射條件而使用 最數值表示之故。換5之,於空間調變圖案9⑽與第3 照射領域808對應的範_之白色的像素與黑色的像素之 個數之比,如式(14)。 100 : (100— 1〇〇)=1 : 〇 (14) 反之’於空間調變圖案900與第4照射領域8〇9對應的範 圍内,僅顯示斷開狀態之黑色的像素。此乃與第4照射領域 809對應的第4條件以所謂「〇」之用以顯示照射條件而使用 之最小數值表示之故。換言之,於空間調變圖案9〇〇與第4 照射領域809對應的範圍内之白色的像素與黑色的像素之 個數之比,如式(15)。 0 : (100 — 〇)= 〇 : 1 (I;) 依照僅由空間調變圖案9〇〇構成之空間調變圖案群之 53 201013817 雷射束的照射’特別是在與一個微小鏡對應而被照射雷射 束之FPD基板ιοί之表面上的面積非常小的情形下適合其 理由在於此情形下,以—面依照空間調變圖案9〇〇進行空間 調變一面照射雷射束的狀態下,當平均一個照射領域内 時’則以與第4圖所示之照射條件影像之各條件影像對應之 照射條件對各照射領域照射雷射束之故。 例如,相對於顯示最強照射條件之所謂「100」之數值 以5 0 %之比率的值表示第丨條件,如(式)的情形對第丨照射領 域806之5G%照射雷射束。爰此,與—個微小鏡對應而被肖 修 射雷射束之FPD基板lG1之表面上的面積非常小的話,可視 為「當平均第1照射領域8〇6内時,則以最強的照射條件之 5〇%的強度均勻地照射雷射束」。對於其他照射領域也同 樣。 即,第9圖之例子可如以下概括。 .二次元空間光調變器106包含有排列成二次元陣列狀 且分別至少可驅動成第1與第2傾斜角(即,分別與導通狀態 與斷開狀態對應的傾斜角)之第丨個數(=]^><^個)的微小鏡。 ❹ •具有作為控制機構功能之空間調變控制部126指定二 次兀空間光調變器106之空間調變圖案9〇〇,係使第丨個數之 微小鏡之各個微小鏡與導通狀態與斷開狀態對應的圖案。 又’本發明並非限於上述實施樣態的發明,而可作各 式各樣地變形。以下記述其若干例子。 用以構成FPD基板之電路之物質之積層的方式依據實 施樣態而為各式各樣。第2圖之剖面圖為具體例之一,也有 54 201013817 將與第2圖不同之物質積層於玻璃基板201上以製造FPD基 板的情形。如此的情形也與上述實施樣態同樣也能實現依 據對應已積層之物質的配方而照射適切的雷射束。 又,於上述實施樣態中成為雷射修復之對象的製品不 限定於FPD基板。對於作為FPD基板以外的雷射修復對象, 例如LSI(Large Scale Intedration)晶片(chip)或印刷配線基板 等製品也能適用上述實施樣態。 又,第1圖所示之各光學元件的配置僅為一例。例如, 可瞭解藉著改變雷射單元105之配置而能節省鏡113。除此 之外也可作各式各樣的變更。 又,於第6圖之步驟S104中,影像處理部丨27依據已辨 識之缺陷506的位置與範圍也能辨識攝像影像5〇〇之缺陷 5〇6的亮度。影像處理部127也可依據缺陷5〇6之亮度而辨識 缺陷506的種類,並依據缺陷5〇6的種類而判斷是否要修 正。當影像處理部127判斷不要修正的情形下,可省略以下 的步驟S105〜S107。 又,如第7圖〜第9圖所例示,如何具體地產生如何的 各空間調變圖案所構成之空間調變圖案郡的情況,依據實 施樣態而為各式各樣。典型上如第7圖〜第9圖所示,各空 間調變圖案為以下(a)〜⑷之其中—者,惟,也可為此等以 外的圖案。 (a) 表示一個以上照射領域之令之一個的空間調變圖 案 (b) 表示以上述(a)之空間調變圖案表示之一個照射領 55 201013817 域與該照射領域之附近之領域之和的空間調變圖案 ⑷表示一個以上照射領域之中之複數之和的空間調 變圖案 (d)表示以上述(C)之空間調 變圖案表不之複數照射領 域與該複數照射領域之附近之領域之和的空間調變圖案 又’用以依據各別的照射條件對各照射領域照射雷射 束之控制方法不限於第7圖〜第9圖所例示的方法。例如,❹ Similarly, in the spatial modulation pattern 9〇〇 and the second range, there are also black pixels in a state in which the on-state of the emission state 807 is displayed. The white (four) image is the pixel-to-display disconnect ratio, and the second condition corresponding to the field 807 of the number of pixels of the table of the irradiation condition _~ the number of the sub-pixels is the so-called "improved by the second irradiation collar 75: _" 75Η3:1 indicates that it is a white pixel in the range corresponding to the third illumination field 8〇8. This is the third condition corresponding to the first field _ for the so-called “conference” The most numerical value is used to display the irradiation conditions. In other words, the ratio of the number of pixels of the white and the number of pixels of the black corresponding to the spatial modulation pattern 9 (10) and the third illumination field 808 is as shown in the equation (14). 100 : (100 - 1 〇〇) = 1 : 〇 (14) Conversely, in the range corresponding to the spatial modulation pattern 900 and the fourth illumination area 8〇9, only the black pixels in the off state are displayed. This is the fourth condition corresponding to the fourth irradiation field 809, which is represented by the minimum value used for displaying the irradiation condition by the so-called "〇". In other words, the ratio of the number of white pixels to the number of black pixels in the range corresponding to the spatial modulation pattern 9 〇〇 and the fourth illumination area 809 is as shown in the equation (15). 0 : (100 — 〇)= 〇: 1 (I;) According to the spatial modulation pattern group consisting only of the spatial modulation pattern 9〇〇 201013817 The illumination of the laser beam is especially in correspondence with a micro mirror. In the case where the area on the surface of the FPD substrate ιοί of the irradiated laser beam is very small, it is suitable for the reason that in this case, the laser beam is irradiated with the space modulation according to the spatial modulation pattern 9〇〇. When the average is within one irradiation area, the laser beam is irradiated to each of the irradiation fields by the irradiation conditions corresponding to the condition images of the irradiation condition image shown in FIG. For example, the value of the so-called "100" indicating the strongest irradiation condition indicates the second condition with a value of a ratio of 50%, and the case of (formula) irradiates the laser beam with 5G% of the second irradiation field 806. Therefore, if the area on the surface of the FPD substrate 1G1 corresponding to the micro-mirror beam and the ray-short beam is very small, it can be regarded as "the most intense illumination when the average first irradiation field is within 8 〇6. The intensity of 5〇% of the condition uniformly illuminates the laser beam." The same is true for other areas of illumination. That is, the example of Fig. 9 can be summarized as follows. The second-element spatial light modulator 106 includes a second one that is arranged in a quadratic array shape and can be driven at least to the first and second tilt angles (that is, the tilt angles corresponding to the on state and the off state, respectively). A tiny mirror of the number (=]^><^).空间 The spatial modulation control unit 126 having the function as a control unit specifies the spatial modulation pattern 9〇〇 of the secondary pupil spatial light modulator 106, and the micro mirrors and the conduction state of the second number of micromirrors are The pattern corresponding to the disconnected state. Further, the present invention is not limited to the above-described embodiment, and can be variously modified. Several examples are described below. The manner in which the layers of the materials constituting the circuit of the FPD substrate are laminated is various depending on the embodiment. The cross-sectional view of Fig. 2 is one of the specific examples, and there are also cases in which a material different from that of Fig. 2 is laminated on the glass substrate 201 to manufacture an FPD substrate. In this case as well, as in the above-described embodiment, it is also possible to illuminate a suitable laser beam in accordance with the formulation of the material corresponding to the layer. Further, the product to be subjected to laser repair in the above embodiment is not limited to the FPD substrate. The above-described embodiment can be applied to a laser repair target other than the FPD substrate, for example, an LSI (Large Scale Intedration) chip or a printed wiring board. Moreover, the arrangement of each optical element shown in FIG. 1 is only an example. For example, it can be appreciated that the mirror 113 can be saved by changing the configuration of the laser unit 105. In addition to this, various changes can be made. Further, in step S104 of Fig. 6, the image processing unit 丨27 can recognize the brightness of the defect 5〇6 of the captured image 5〇〇 based on the position and range of the recognized defect 506. The image processing unit 127 can also recognize the type of the defect 506 based on the brightness of the defect 5〇6, and determine whether or not to correct it based on the type of the defect 5〇6. When the image processing unit 127 determines that correction is not necessary, the following steps S105 to S107 may be omitted. Further, as exemplified in Figs. 7 to 9 , how to specifically generate the spatially modulated pattern ridges formed by the spatial modulation patterns is various in accordance with the embodiment. Typically, as shown in Figs. 7 to 9 , each of the spatial modulation patterns is one of the following (a) to (4), but a pattern other than this may be used. (a) A spatial modulation pattern (b) indicating one of the orders of one or more illumination areas indicates the sum of an area of the illumination collar 55 201013817 represented by the spatial modulation pattern of (a) above and the vicinity of the illumination area. The spatial modulation pattern (4) indicates a spatial modulation pattern (d) indicating a sum of plural numbers in one or more illumination fields, and indicates a field in which the complex illumination field and the vicinity of the complex illumination region are represented by the spatial modulation pattern of (C) above. The spatial modulation pattern of the sum is further 'the method for controlling the irradiation of the laser beam for each of the irradiation fields in accordance with the respective irradiation conditions is not limited to the method illustrated in FIGS. 7 to 9. E.g,

也可依據空間調變圖案的切換而改變輸出功率與照射時間 之雙方。 I 馨 或是,雷射光源109連續振盪且於實現二次元空間光調 變器106之DMD,微小鏡之驅動速度非常快(即,能以較雷 射束之照射時間T〇非常短的時間驅動微小鏡)時,以下的控 制也可能。 即’雷射控制部125控制雷射光源109以涵蓋照射時間 Τ〇射出一定輸出功率之CW雷射束。與此並行,空間調變控 制部126藉著例如PWM(Pulse Width Modulation)驅動各微 小鏡,使導通狀態之時間占有照射時間TG之比率(即,工作 參 比(duty cycle))與照射條件影像400之亮度成比例。主控制 部122對雷射控制部125與空間調變控制部丨26賦與命令以 進行上述的控制。 又,例如照射條件之強度以每一單位面積所照射之能 量之總量來表示時,最後對各照射領域照射已依據照射條 件之每一單位面積之能量即可。爰此,例如也可輸出功率 之切換的時序與空間調變圖案之切換的時序不一定要一 56 201013817 致0 又作J如照射條件以〇至1〇〇之整數表示時,與以「〇」 或「100」表示之照射條件對應的積層領域不—/定必要存 在。即’也可全部的積層領域與中間的照射條件對應。當 然’表示騎條件之數值的範圍可為非上述實施樣態的0〜 100,可任意地預先決定。 例如,也可藉著配合雷射單元105之規格而適切地預先 決定表示照射條件之數值的範圍,絲式⑴〜⑴)之乘算 而不必要將pmax等常數儲存於配方儲存部123。例如,可將〇 至pmax之範圍的數值作為照射條件影像4〇〇之亮度來設定的 情形下,表示職條件之數值制以缺雷料㈣5之輸 出功率的值。羡此’不需要式⑴〜⑺的計算。對於其他式 也同樣。 又,上述實施樣態依據實際拍攝參考FPD基板101所獲 得之參考影像300而產生照射條件影像400。但是,也可依 據FPD基板101之設計資料來產生照射條件影像4〇〇以取代 參考衫像300。設s十資料之具體例為光飯刻用之遮罩圖案 (mask pattern)之CAD(Computer Aided Design)資料。使用 CAD資料時,也有必要進行實際積層之物質的形狀與遮罩 圖案之形狀的微小差的修正等。 又,上述實施樣態依據來自於操作者的輸入而設定照 射條件,惟,也可依據相對於積層於各層之物質之特定波 長之雷射束的反射率、雷射耐性、熱作用(吸收率、熱傳導 率)等物理特性,與積層於各層之物質之層厚度等的設計資 57 201013817 料,自動設定條件領域,對各條件領域算出照射條件而自 動地製成配方。 【圖式簡單說明3 第1圖係本發明之一實施樣態之雷射修復裝置的構成 圖。 第2圖係FPD基板之剖面圖的例子。 第3圖係參考圖像的例子。 第4圖係照射條件影像的例子。 ❿ 第5圖係映照缺陷之攝像影像的例子。 第6圖係說明關於一片FPD基板之雷射修復裝置之動 作的流程圖。 第7圖顯示空間調變圖案群之第1例。 第8圖顯示空間調變圖案群之第2例。 第9圖顯示空間調變圖案群之第3例。 【主要元件符號說明】 100.. .雷射修復裝置 101.. .FPD 基板 102.. .顯示器 103.. .缺陷檢查裝置It is also possible to change both the output power and the illumination time depending on the switching of the spatial modulation pattern. I singly, the laser source 109 continuously oscillates and realizes the DMD of the quadratic spatial light modulator 106. The driving speed of the micro mirror is very fast (that is, the irradiation time T 〇 can be very short) When driving a micro mirror, the following controls are also possible. That is, the laser control unit 125 controls the laser light source 109 to emit a CW laser beam of a certain output power in order to cover the irradiation time. In parallel with this, the spatial modulation control unit 126 drives each of the micromirrors by, for example, PWM (Pulse Width Modulation), and the ratio of the conduction state to the irradiation time TG (that is, the duty cycle) and the irradiation condition image. The brightness of 400 is proportional. The main control unit 122 assigns a command to the laser control unit 125 and the spatial modulation control unit 丨26 to perform the above control. Further, for example, when the intensity of the irradiation condition is expressed by the total amount of energy irradiated per unit area, the energy of each unit area of the irradiation condition may be irradiated to each of the irradiation areas. For example, the timing of the switching between the output power switching and the spatial modulation pattern does not have to be a 56. 201013817, and 0 is also used as an illumination condition to represent an integer of 1〇〇, and Or the area of the layer corresponding to the irradiation condition indicated by "100" is not necessary. That is, it is also possible that all of the laminated fields correspond to the intermediate irradiation conditions. Of course, the range indicating the riding condition value may be 0 to 100 which is not the above-described embodiment, and may be arbitrarily determined in advance. For example, by multiplying the range of values indicating the irradiation conditions, the multiplication of the filaments (1) to (1) can be appropriately determined by the specification of the laser unit 105, and it is not necessary to store a constant such as pmax in the recipe storage unit 123. For example, in the case where the value in the range of 〇 to pmax can be set as the brightness of the irradiation condition image 4〇〇, the value indicating the service condition is the value of the output power of the missing material (4) 5. ’This does not require the calculation of equations (1) to (7). The same applies to other formulas. Moreover, the above-described embodiment produces the illumination condition image 400 based on the reference image 300 obtained by actually capturing the reference FPD substrate 101. However, the illumination condition image 4 can also be generated in accordance with the design data of the FPD substrate 101 to replace the reference shirt image 300. A specific example of the s ten data is the CAD (Computer Aided Design) data of the mask pattern used for the light meal. When using CAD data, it is necessary to correct the shape of the substance actually laminated and the slight difference in the shape of the mask pattern. Further, the above-described embodiment sets the irradiation conditions in accordance with the input from the operator, but may also depend on the reflectance, laser resistance, and thermal action (absorption rate) of the laser beam with respect to a specific wavelength of the substance laminated in each layer. The physical properties such as the thermal conductivity and the layer thickness of the material layered in each layer are automatically set in the condition field, and the irradiation conditions are calculated for each condition field, and the formulation is automatically prepared. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a laser repairing apparatus in an embodiment of the present invention. Fig. 2 is an example of a cross-sectional view of an FPD substrate. Figure 3 is an example of a reference image. Fig. 4 is an example of an image of an irradiation condition. ❿ Figure 5 is an example of a camera image that maps defects. Figure 6 is a flow chart showing the operation of the laser repairing apparatus for a piece of FPD substrate. Fig. 7 shows a first example of a spatial modulation pattern group. Fig. 8 shows a second example of the spatial modulation pattern group. Fig. 9 shows a third example of the spatial modulation pattern group. [Main component symbol description] 100.. . Laser repair device 101.. .FPD substrate 102.. Display 103.. . Defect inspection device

104.. .PC 105.. .雷射單元 106.. .二次元空間光調變器 107.. .載台 108.. .攝像部 109.. .雷射光源 110.. .耦合單元 111.. .光纖 112…投影單元 113 、 114".鏡 115、120、121...成像透鏡 116…束分離器 117…半鏡 118.. .接物透鏡104.. .PC 105.. . Laser unit 106.. . Two-element spatial light modulator 107.. Station 108.. Camera unit 109.. Laser light source 110.. Coupling unit 111. .optical fiber 112...projection unit 113, 114" mirror 115, 120, 121... imaging lens 116... beam splitter 117... half mirror 118..

58 20101381758 201013817

❹ 119.··照明光源 122···主控制部 123.··配方儲存部 124…載台控制部 125…雷射控制部 126…空間調變控制部 127…影像處理部 200.. .FPD 基板 201…玻璃基板 202.. .間極 203、207…絕緣膜 204…非晶質矽 205.. .源極 206.. .汲極 208〜209...接觸孔119 119.·· illuminating light source 122··· main control unit 123.· recipe storage unit 124...stage control unit 125...laser control unit 126...space modulation control unit 127...image processing unit 200..FPLD Substrate 201...glass substrate 202.. interpole 203, 207... insulating film 204... amorphous 矽205.. source 206.. . 汲 208 209 209... contact hole

210 〜211...ITO 300…參考影像 301a、301c、501a、501c...閘 極匯流排線 301b、501b...CS匯流排線 302a〜302c、502a〜502c...源 極/汲極配線 303a〜303b、503a〜503b··.接 觸孔210 to 211...ITO 300...reference images 301a, 301c, 501a, 501c... gate bus bars 301b, 501b...CS bus bars 302a to 302c, 502a to 502c... source/汲Polar wirings 303a to 303b, 503a to 503b··. contact holes

304a〜304d、504a〜 504d...TFT 305a〜305d、505a〜505d…透 明電極 400.·.照射條件影像 401 a〜401 b…第1條件領域 402a〜402c…第2條件領域 403a〜403c…第3條件領域 404a〜404h…第4條件領域 500...攝像影像 506、801…缺陷 600、 700…空間調變圖案群 601、 604、607、701、704、707、 900···空間調變圖案 602、 605、608、702、705、708... 導通領域 603、 606、609、703、706、709... 斷開領域 800…重疊概念圖 802〜805…第1〜第4條件領域 806〜809…第1〜第4照射領域 59304a to 304d, 504a to 504d, TFTs 305a to 305d, 505a to 505d, transparent electrode 400, irradiation condition image 401 a to 401 b... first condition field 402a to 402c... second condition field 403a to 403c... The third condition field 404a to 404h... the fourth condition field 500: the captured image 506, 801... the defect 600, 700... the spatial modulation pattern group 601, 604, 607, 701, 704, 707, 900... spatial adjustment Variable patterns 602, 605, 608, 702, 705, 708... Turn-on fields 603, 606, 609, 703, 706, 709... Break field 800... Overlap concept maps 802 to 805... 1st to 4th conditions Fields 806 to 809... 1st to 4th illumination fields 59

Claims (1)

201013817 七、申請專利範圍: 1. 一種雷射修復(laser repair)裝置,係對製品表面的缺陷 照射雷射束(laser beam)以修正前述缺陷者,而該製品係 將用以形成電路之一種類以上物質積層一層以上於基 板表面而製造者,其特徵在於包含有: 射出機構,係射出前述雷射束者; 二次元空間光調變機構,係依照業經指定之空間調 變圖案而空間調變由前述射出機構射出之前述雷射束 並照射於前述製品表面上者; 儲存機構,係儲存照射條件資訊者,該照射條件資 訊係使對前述基板表面上之複數積層領域之各積層領 域,與依據該積層領域上積層一層以上之前述一種類以 上物質之照射條件對應; 辨識機構,係辨識前述缺陷的範圍者; 區分機構,係根據已儲存於前述儲存機構之前述照 射條件資訊,並依據與前述複數積層領域之其中何者重 疊,將前述辨識機構已辨識之前述缺陷的前述範圍區分 成一個以上的照射領域者;及 控制機構,係針對前述區分機構已區分之前述一個 以上照射領域之各照射領域,一面對前述二次元空間調 變機構依序指定一個以上空間調變圖案一面控制前述 射出機構,而以對應與該照射領域重疊之前述積層領域 之前述照射條件,對該照射領域照射前述雷射束。 2. 如申請專利範圍第1項之雷射修復裝置,其中前述照射 60 201013817 條件 > 成作為影像來表現,且於前述影像中前述複數積 層項域之各積層領域的亮度設定成依據與該積層領域 對應之前述照射條件的值。 3_如申請專利範圍第2項之雷射修復裝置,其中前述照射 條件表示用以照射於每一單位面積之能量,且於前述複 數積層領域之各積層領域設定與前述能量成比例之值 作為前述亮度。 4. 如申請專利範圍第1項之雷射修復裝置,其中前述照射 條件表示用以照射於每一單位面積之能量。 5. 如申請專利範圍第1項之雷射修復裝置,其中前述雷射 束係脈波雷射束,且前述控制機構一面對前述二次元空 間調變機構順序指定複數空間調變圖案一面控制前述 射出機構’以於前述一個以上照射領域之各照射領域, 用相當於與該照射領域對應之前述照射條件的脈波數 照射前述脈波雷射束。 6. 如申請專利範圍第丨項之雷射修復裝置,其中前述控制 機構一面對前述二次元空間調變機構順序指定複數空 間調變圖案一面控制前述射出機構,以於前述一個以上 照射領域之各照射領域用相當於與該照射領域對應之 前述照射條件的時間照射前述雷射束。 7. 如申請專利範圍第1項之雷射修復裝置,其中前述控制 機構一面控制前述射出機構依序切換輸出功率並射出 前述雷射束’ 一面對前述二次元空間調變機構依序指定 複數空間調變圖案’以使前述一個以上照射領域之各照 61 201013817 射領域中照射於每一單位面積之能量相當於與該照射 領域對應之前述照射條件。 8. 如申請專利範圍第7項之雷射修復裝置,其中前述控制 機構進行控制,以使前述二次元空間調變機構依據依序 指定之前述複數空間調變圖案來切換空間調整方式的 時序,與前述射出機構切換前述輸出功率的時序同步。 9. 如申請專利範圍第1項之雷射修復裝置,其中前述二次 元空間光調變機構包含有排列成二次元陣列狀且分別 至少可驅動成第1與第2傾斜角之第1個數的微小鏡, 前述控制機構指定前述二次元空間光調變機構之 前述一個以上空間調變圖案之各空間調變圖案,係使前 述第1個數之微小鏡之各個微小鏡與前述第1或前述第2 傾斜角對應的圖案, 前述控制機構對前述二次元空間光調變機構指定 一使前述第1或前述第2傾斜角與第2個數之微小鏡之各 個微小鏡對應的空間調變圖案,以於前述一個以上照射 領域之各照射領域,在前述第1個數之微小鏡中與該照 射領域對應之前述第2個數之前述微小鏡中,分別驅動 成前述第1與前述第2傾斜角之前述微小鏡之個數的比 成為相當於與該照射領域對應之前述照射條件的值。 10. 如申請專利範圍第1項之雷射修復裝置,其中前述控制 機構對前述二次元空間光調變機構依序指定之前述一 個以上空間調變圖案之各空間調變圖案為以下圖案: 第1空間調變圖案,係表示前述一個以上照射領域 62 201013817 之其中一個; 第2空間調變圖案,係表示前述第1空間調變圖案所 表示之一個前述照射領域與該照射領域附近之領域之 和; 第3空間調變圖案,係表示前述一個以上照射領域 中複數個之和;或 第4空間調變圖案,係表示前述第3空間調變圖案所 表示之複數個前述照射領域與該複數個照射領域附近 之領域之和。 11. 一種雷射修復方法,係對製品表面的缺陷照射雷射束以 修正前述缺陷者,而該製品係將用以形成電路之一種類 以上物質積層一層以上於基板表面而製造者,其特徵在 於包含以下步驟: 讀取照射條件資訊,該照射條件資訊係使前述基板 表面上之複數積層領域之各積層領域,與依據已於該積 層領域上積層一層以上之前述一種類以上物質之照射 條件對應者; 辨識前述缺陷的範圍; 根據已讀取之前述照射條件資訊,並依據與前述複 數積層領域之其中何者重疊,將已辨識之前述缺陷的前 述範圍區分成一個以上的照射領域;及 一面射出前述雷射束一面依序切換用以空間調變 之一個以上空間調變圖案,藉此針對前述一個以上照射 領域之各照射領域,以順序不同的方式空間調變已射出 63 201013817 之前述雷射束並照射前述製品表面,而以對應與該照射 領域重疊之前述積層領域之前述照射條件,對該照射領 域照射前述雷射束。 64201013817 VII. Patent application scope: 1. A laser repair device that illuminates a defect on the surface of a product to correct the aforementioned defects, and the product is used to form one of the circuits. Any one or more of the above materials are laminated on the surface of the substrate, and include: an emission mechanism that emits the laser beam; and a secondary element spatial light modulation mechanism that is spatially adjusted according to a specified spatial modulation pattern. Transforming the laser beam emitted by the injection mechanism and irradiating the surface of the product; the storage mechanism is for storing the illumination condition information, and the illumination condition information is for each laminated field of the plurality of laminated fields on the surface of the substrate, Corresponding to the irradiation conditions of the above-mentioned one or more substances accumulated in the laminated field; the identification mechanism identifies the range of the defects; the distinguishing mechanism is based on the information of the aforementioned irradiation conditions stored in the storage mechanism, and is based on Which of the above multiple layers is overlapped, the aforementioned identification mechanism has The foregoing range of the aforementioned defects is divided into one or more areas of illumination; and the control means is for each of the illumination fields of the one or more illumination areas that have been distinguished by the foregoing division mechanism, facing the aforementioned two-dimensional spatial modulation mechanism sequentially The irradiation means is controlled while the one or more spatial modulation patterns are designated, and the laser beam is irradiated to the irradiation area in accordance with the irradiation conditions of the laminated field overlapping the irradiation area. 2. The laser repairing apparatus according to claim 1, wherein the illumination 60 201013817 condition is expressed as an image, and the brightness of each of the plurality of laminated fields in the image is set in accordance with the image The layered area corresponds to the value of the aforementioned irradiation condition. [3] The laser repairing device of claim 2, wherein the irradiation condition indicates energy for illuminating each unit area, and a value proportional to the energy is set in each laminated field of the plurality of laminated fields as The aforementioned brightness. 4. The laser repairing apparatus of claim 1, wherein the aforementioned irradiation condition indicates energy for illuminating each unit area. 5. The laser repairing apparatus according to claim 1, wherein the laser beam is a laser beam, and the control mechanism sequentially controls a plurality of spatial modulation patterns in the face of the second-dimensional spatial modulation mechanism. The injection mechanism illuminates the pulsed laser beam with a pulse wave number corresponding to the irradiation condition corresponding to the irradiation area in each of the irradiation areas of the one or more irradiation fields. 6. The laser repairing apparatus according to claim 2, wherein the control unit controls the injection mechanism to face the one or more illumination fields while sequentially designating a plurality of spatial modulation patterns facing the second-dimensional spatial modulation mechanism. Each of the irradiation fields irradiates the laser beam with a time corresponding to the irradiation condition corresponding to the irradiation area. 7. The laser repairing apparatus according to claim 1, wherein the control unit controls the injection mechanism to sequentially switch the output power and emit the laser beam in the same direction, and the plurality of spatial modulation mechanisms are sequentially designated to be plural. The spatial modulation pattern 'is such that the energy of each unit area irradiated in each of the one or more illumination fields is equivalent to the aforementioned illumination condition corresponding to the illumination area. 8. The laser repairing device of claim 7, wherein the control mechanism controls the second-dimensional spatial modulation mechanism to switch the timing of the spatial adjustment mode according to the plurality of spatial modulation patterns sequentially designated, The timing of synchronizing the output power with the aforementioned injection mechanism is synchronized. 9. The laser repairing apparatus according to claim 1, wherein the second-element spatial light modulation mechanism includes a first number arranged in a quadratic array shape and capable of driving at least a first and a second tilt angle The micro-mirror, wherein the control means specifies each of the spatial modulation patterns of the one or more spatial modulation patterns of the second-element spatial light modulation means, and the respective micro-mirrors of the first number of micro-mirrors and the first or In the pattern corresponding to the second inclination angle, the control means specifies, in the second-element spatial light modulation means, a spatial modulation corresponding to each of the first or the second inclination angle and the second micro-mirror a pattern in which the first and the first of the first plurality of micromirrors corresponding to the irradiation target are driven in each of the irradiation fields of the one or more irradiation fields The ratio of the number of the aforementioned micromirrors of the inclination angle is a value corresponding to the irradiation condition corresponding to the irradiation region. 10. The laser repairing apparatus according to claim 1, wherein the spatial modulation pattern of the one or more spatial modulation patterns sequentially designated by the control unit to the two-dimensional spatial light modulation mechanism is the following pattern: A spatial modulation pattern is one of the one or more illumination areas 62 201013817; and the second spatial modulation pattern is a region of the illumination area indicated by the first spatial modulation pattern and the vicinity of the illumination area. And a third spatial modulation pattern indicating a plurality of sums in the one or more irradiation fields; or a fourth spatial modulation pattern indicating a plurality of the illumination fields and the plural represented by the third spatial modulation pattern The sum of the fields near the field of illumination. 11. A laser repairing method for illuminating a laser beam with a defect on a surface of a product to correct the defect, and the article is to be used to form one or more layers of the circuit to form a layer or more on the surface of the substrate. The method includes the following steps: reading the irradiation condition information, wherein the laminated condition field of the plurality of laminated layers on the surface of the substrate and the irradiation condition of the one or more substances according to the layered one or more layers in the laminated field Corresponding to; identifying the range of the aforementioned defects; and classifying the aforementioned range of the identified defects into more than one illumination field according to the previously read illumination condition information and according to which of the plurality of stacked layers is overlapped; And emitting one or more spatial modulation patterns for spatial modulation on the one side of the laser beam, thereby spatially modulating and emitting the aforementioned lightning of 63 201013817 for each illumination field of the one or more illumination fields in a different order Beaming and illuminating the surface of the aforementioned article to correspond to the photo Field of the overlap of the field of irradiation conditions laminate, the irradiation field irradiated with the laser beam to the collar. 64
TW098127716A 2008-09-12 2009-08-18 Laser repairing device and laser repairing method TW201013817A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234247A JP5331421B2 (en) 2008-09-12 2008-09-12 Laser repair device and laser repair method

Publications (1)

Publication Number Publication Date
TW201013817A true TW201013817A (en) 2010-04-01

Family

ID=42020818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127716A TW201013817A (en) 2008-09-12 2009-08-18 Laser repairing device and laser repairing method

Country Status (4)

Country Link
JP (1) JP5331421B2 (en)
KR (1) KR20100031465A (en)
CN (1) CN101673666B (en)
TW (1) TW201013817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659227B (en) * 2017-06-20 2019-05-11 Academia Sinica Microscope-based system and method for image-guided microscopic illumination

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495875B2 (en) * 2010-03-18 2014-05-21 オリンパス株式会社 Laser processing method and laser processing apparatus
CN101862900B (en) * 2010-05-28 2012-10-10 北京数码大方科技有限公司 Welding method and welding device
CN102064466A (en) * 2010-12-07 2011-05-18 深圳市大族激光科技股份有限公司 High-power laser power supply control system and method
JP5853331B2 (en) * 2011-03-11 2016-02-09 株式会社ブイ・テクノロジー Laser irradiation apparatus and method for correcting bright spot of liquid crystal display panel using the same
CN102183877A (en) * 2011-03-24 2011-09-14 深南电路有限公司 Method for repairing printed wiring board and ultraviolet (UV) repairing machine
FR2977182B1 (en) * 2011-07-01 2013-07-12 Commissariat Energie Atomique PROCESS FOR PRODUCING AN OPTICAL COMPONENT FOR REMOVING SURFACE DEFECTS
CN103165521B (en) * 2011-12-13 2015-06-03 上海华虹宏力半导体制造有限公司 Method for repairing chip through laser
CN102615422A (en) * 2012-03-29 2012-08-01 彩虹(佛山)平板显示有限公司 Laser repair method of organic electroluminescence display light emitting defect
JP2013226588A (en) * 2012-04-26 2013-11-07 Olympus Corp Repairing apparatus and repairing method
TWI653692B (en) * 2013-09-26 2019-03-11 蔡宜興 Degumming method for quadrilateral planar leadless package wafer
CN103700560A (en) * 2013-12-26 2014-04-02 四川虹欧显示器件有限公司 Method for repairing bright spot defect of PDP (Plasma Display Panel) display screen by using laser light
KR101716369B1 (en) * 2015-10-19 2017-03-27 주식회사 이오테크닉스 Auto inspection apparatus and method of laser processing apparatus
CN109434279A (en) * 2017-09-04 2019-03-08 Hb技术有限公司 With the laser system of motor encoder signal information
CN110632749A (en) * 2018-06-25 2019-12-31 中央研究院 Microscope system and method for image-guided microscopy
JP7105639B2 (en) * 2018-07-05 2022-07-25 浜松ホトニクス株式会社 Laser processing equipment
KR102077935B1 (en) * 2018-08-14 2020-02-14 주식회사 코윈디에스티 Method of laser repair and test for display panel and apparatus suit for the same
KR102173976B1 (en) * 2018-09-10 2020-11-04 주식회사 코윈디에스티 Method and apparatus for repairing light leakage defects
KR102655323B1 (en) * 2018-10-24 2024-04-08 삼성디스플레이 주식회사 Apparatus and method for repairing mask
CN109848545B (en) * 2019-01-08 2021-06-22 北京科迈启元科技有限公司 Laser processing method integrating object abnormal region identification and thermal action
JP2020148804A (en) * 2019-03-11 2020-09-17 株式会社ブイ・テクノロジー Laser repair method and laser repair device
JP7178710B2 (en) * 2019-07-11 2022-11-28 株式会社ブイ・テクノロジー LASER MODIFICATION METHOD, LASER MODIFICATION DEVICE
JP7218256B2 (en) * 2019-08-01 2023-02-06 東レエンジニアリング株式会社 Chip removing method and laser processing device
CN110842367A (en) * 2019-10-09 2020-02-28 大族激光科技产业集团股份有限公司 Device and method for repairing micro LED by laser
CN113634877A (en) * 2020-04-27 2021-11-12 大族激光科技产业集团股份有限公司 Laser processing device and method
CN111816797A (en) * 2020-06-16 2020-10-23 江苏亚威艾欧斯激光科技有限公司 Laser repairing device for display substrate
CN112099251A (en) * 2020-09-16 2020-12-18 中山大学 Liquid crystal panel repairing system adopting deep ultraviolet laser
CN112975134A (en) * 2021-02-09 2021-06-18 中国科学院上海光学精密机械研究所 Method for reducing metal pollutant generation induced by laser irradiation
CN116652390B (en) * 2023-07-28 2023-10-20 中国人民解放军空军工程大学 In-situ repair laser removal polishing method and device for aviation composite material structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027832B1 (en) * 2003-05-09 2011-04-07 올림푸스 가부시키가이샤 Pattern defect repair system and pattern defect repair method
CN100395586C (en) * 2003-05-09 2008-06-18 奥林巴斯株式会社 Defect correction device and defect correction method
JP4947933B2 (en) * 2005-07-26 2012-06-06 オリンパス株式会社 Laser repair device
JP4879619B2 (en) * 2006-03-20 2012-02-22 オリンパス株式会社 Laser processing equipment
JP4940941B2 (en) * 2006-12-25 2012-05-30 ソニー株式会社 Defect correction apparatus and defect correction method
JP5114943B2 (en) * 2006-12-25 2013-01-09 ソニー株式会社 Defect correction apparatus and defect correction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659227B (en) * 2017-06-20 2019-05-11 Academia Sinica Microscope-based system and method for image-guided microscopic illumination
US11265449B2 (en) 2017-06-20 2022-03-01 Academia Sinica Microscope-based system and method for image-guided microscopic illumination
US11789251B2 (en) 2017-06-20 2023-10-17 Academia Sinica Microscope-based system and method for image-guided microscopic illumination

Also Published As

Publication number Publication date
JP2010064120A (en) 2010-03-25
JP5331421B2 (en) 2013-10-30
CN101673666B (en) 2012-11-07
KR20100031465A (en) 2010-03-22
CN101673666A (en) 2010-03-17

Similar Documents

Publication Publication Date Title
TW201013817A (en) Laser repairing device and laser repairing method
US8828891B2 (en) Laser processing method
US8755107B2 (en) Laser processing system
TWI327757B (en) System and method for frit sealing glass packages
TWI357994B (en) Method and apparatus for repairing a liquid crysta
KR101368167B1 (en) Repair device and repair method
TW200916248A (en) Adjusting apparatus, laser processing apparatus, adjusting method and adjusting program
TW201235140A (en) Adjustment apparatus, laser machining apparatus, and adjustment method
CN101745743A (en) Laser repair apparatus, laser repair method, and information processing apparatus
KR20130045186A (en) Repair apparatus and repair method
JP2011025316A (en) Defect correction device
TW200827821A (en) Apparatus and method for blacking liquid crystal using laser
TWI354142B (en)
TW200911432A (en) Laser processing device
JP5697188B2 (en) Exposure apparatus and exposure method
CN105014245B (en) Laser processing apparatus and method
JP2015219521A (en) Observer and laser processing apparatus comprising the same
JP2008068284A (en) Apparatus and method for correcting defect, and method for manufacturing pattern substrate
JP6327735B2 (en) Bright spot defect removal method and apparatus for liquid crystal display panel
JP2008134160A (en) Inspection device, inspection method, program and recording medium
JP2006023270A (en) Display bare-glass inspection device and method
TW201134590A (en) Laser processing method and laser processing device
KR20150062380A (en) Inspection method for flat panel
KR100685145B1 (en) Apparatus for repairing colorfilter
TW201214515A (en) System and method for manufacturing three dimensional integrated circuit