TW201036527A - Large-area liquid-cooled heat-dissipation device - Google Patents

Large-area liquid-cooled heat-dissipation device Download PDF

Info

Publication number
TW201036527A
TW201036527A TW098108854A TW98108854A TW201036527A TW 201036527 A TW201036527 A TW 201036527A TW 098108854 A TW098108854 A TW 098108854A TW 98108854 A TW98108854 A TW 98108854A TW 201036527 A TW201036527 A TW 201036527A
Authority
TW
Taiwan
Prior art keywords
heat
liquid
tubes
absorbing
distributor
Prior art date
Application number
TW098108854A
Other languages
Chinese (zh)
Other versions
TWI372596B (en
Inventor
jian-an Zhou
wen-xiong Chen
Jia-Hao Lin
jun-jie Zhu
Original Assignee
Acbel Polytech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acbel Polytech Inc filed Critical Acbel Polytech Inc
Priority to TW098108854A priority Critical patent/TW201036527A/en
Priority to US12/586,324 priority patent/US20100236761A1/en
Publication of TW201036527A publication Critical patent/TW201036527A/en
Application granted granted Critical
Publication of TWI372596B publication Critical patent/TWI372596B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

The present invention relates to a large-area liquid-cooled heat-dissipation device which comprises a heat diffuser, a instilled-liquid distributor, plural heat-absorbing pipes, and a liquid-discharging collector, wherein one heat-absorbing surface of the heat diffuser is for contacting with plural heat sources. The plural heat-absorbing pipes are distributed on the heat-dissipation surface of the heat diffuser, and are connected to the instilled-liquid distributor and the liquid-discharging collector. Also, each heat-absorbing pipe has a channel of coolant, and the cross-sectional areas of the coolant channels in the plural heat-absorbing pipes are different from each other. The heat-absorbing pipe having a larger cross-sectional area of coolant channel is set to correspond to the heat source with a higher temperature. Since the heat-absorbing pipe having a larger cross-sectional area of coolant channel is installed corresponding to the heat source with a higher temperature, the heat-absorbing effect to the heat source with a higher temperature is increased.

Description

201036527 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種大面積液冷式散熱裝置,尤指一種 具針對不同位置之散熱需求而提供不同散熱效果的大面積 - 液冷式散熱裝置。 % * 【先前技術】 目前一般電腦,例如個人電腦、伺服器等,其所要處 Ο 理的運算工作日益繁雜,故晶片及半導體開關等多個電子 元件工作時所產生的廢熱溫度極高,為使該些電子元件降 溫,通常係於電子元件上加裝一風扇或液冷散熱裝置,以 對電子元件進行散熱。 為有效地令多個發熱電子元件散熱,請參閱第十一圖 所示,一種既有應用於伺服器之大面積液冷式散熱裝置包 括一熱擴散板(60)及一具有單一管徑的吸熱管(7〇),其中該 熱擴散板(60)係具有一供與伺服器之電子元件(8〇)直接接 〇 觸的吸熱面(61)及一散熱面(62),而該吸熱管(70)係蜿蜒地 設於該熱擴散板(60)之散熱面(62)上,以平均分布於該熱擴 散板(60)之散熱面(62)上而構成熱接觸,又該吸熱管(7〇)具 有一入口端(71)及一出口端(72),該入口端(71)係供將冷卻 液注入該吸熱管(70)中,藉由冷卻液流經吸熱管(7〇)時,一 併對熱擴散板(60)自電子元件(8〇)吸取的廢熱進行熱交 換,以將堆積於熱擴散板(6〇)上的廢熱帶走,進而達到對電 子元件(80)散熱降溫的效果。 惟上述大面積液冷式散熱裝置具有以下缺點: 3 201036527 1·為令該單一吸熱管(70)可平均分布於該熱擴散板(6〇) 上’以對該熱擴散板(60)之散熱面(62)上各處吸熱,勢必要 設計令該單一吸熱管(7〇)具有多處彎折,方得使該單一吸熱 管(70)藉由蜿蜒地來回延伸,而平均地分布設置於該熱擴散 板(60)上,然而過多的彎折,將造成冷卻液於吸熱管中 傳遞的阻礙,導致該大面積液冷式散熱裝置必須使用較強 力的泵方可令冷卻液順暢地於該吸熱管(7〇)中流動。 Ο Ο 2_為令該單一吸熱管(70)可平均分布於該大面積液冷 式散熱裝置之熱擴散板(60)上,該單一吸熱管(7〇)的長度必 須夠長,方可將該單一吸熱管(70)以多處彎折的設計,蜿蜒 =刀布設置於該熱擴散板(6Q)上,然婉蜒設置必然造成吸熱 管(7〇)的長度較長,如此將造成流經入口端(71)及出口端 (72)的冷卻液之間具有過大的溫差,導致該吸熱管(7〇)上靠 近該單-吸熱管(70)出口端(72)處的熱交換能力與靠近該 單-吸熱管(70)出口端(72)處的熱交換能力有明顯的差 異因此’伺服器主機板在設計時,亦必須針對該大面積 =冷式散熱裝置散熱能力不均的缺點,而調整祠服器主機 :上電子元件(80)的線路佈局,例如發熱溫度較高的電子元 =〇):須設計在對應靠近吸熱管(7〇)入口端處因而 长向了線路佈局的複雜度。 問201036527 VI. Description of the Invention: [Technical Field] The present invention relates to a large-area liquid-cooled heat sink, and more particularly to a large-area-liquid-cooled heat sink having different heat dissipation effects for different positions of heat dissipation . % * [Prior Art] At present, general computer, such as personal computers, servers, etc., are increasingly complicated in computing operations, so the waste heat generated by the operation of multiple electronic components such as chips and semiconductor switches is extremely high. To cool the electronic components, a fan or a liquid cooling heat sink is usually attached to the electronic components to dissipate heat from the electronic components. In order to effectively dissipate heat from a plurality of heat-generating electronic components, as shown in FIG. 11 , a large-area liquid-cooled heat sink device for use in a server includes a heat diffusion plate (60) and a single pipe diameter. a heat absorbing tube (7), wherein the heat diffusion plate (60) has a heat absorbing surface (61) for directly contacting the electronic component (8 〇) of the server and a heat dissipating surface (62), and the heat absorbing surface The tube (70) is disposed on the heat dissipating surface (62) of the heat diffusion plate (60), and is evenly distributed on the heat dissipating surface (62) of the heat diffusion plate (60) to form a thermal contact. The heat absorbing tube (7 〇) has an inlet end (71) and an outlet end (72) for injecting a cooling liquid into the heat absorbing tube (70) through the cooling liquid flowing through the heat absorbing tube ( 7〇), heat exchange of the waste heat absorbed by the heat diffusion plate (60) from the electronic component (8〇) to remove the waste tropical water accumulated on the heat diffusion plate (6〇), thereby achieving the electronic component (80) The effect of cooling and cooling. However, the above-mentioned large-area liquid-cooled heat sink has the following disadvantages: 3 201036527 1 · The single heat absorbing tube (70) can be evenly distributed on the heat diffusion plate (6 〇) to the heat diffusion plate (60) The heat dissipation surface (62) absorbs heat everywhere, and it is necessary to design the single heat absorbing tube (7 〇) to have multiple bends, so that the single heat absorbing tube (70) is evenly distributed by squatting back and forth. Provided on the heat diffusion plate (60), however, too much bending will cause the coolant to pass through the heat absorbing tube, resulting in the large area liquid cooling heat sink must use a stronger pump to make the coolant smooth The ground flows in the heat absorbing tube (7 〇). Ο Ο 2_ is such that the single heat absorbing tube (70) can be evenly distributed on the heat diffusion plate (60) of the large-area liquid-cooled heat sink, and the length of the single heat absorbing tube (7 〇) must be long enough. The single heat absorbing tube (70) is designed to be bent at a plurality of places, and the 蜿蜒=knife cloth is disposed on the heat diffusion plate (6Q), and then the setting of the heat absorbing tube (7 〇) is inevitably caused to be long. An excessive temperature difference between the coolant flowing through the inlet end (71) and the outlet end (72) is caused to cause the heat absorbing tube (7 〇) to be adjacent to the outlet end (72) of the single-heat absorbing tube (70). The heat exchange capability is significantly different from the heat exchange capability near the outlet end (72) of the single-heat absorption tube (70). Therefore, the 'server board must also be designed for the large area = cooling capacity of the cooling device. The disadvantage of unevenness, and adjust the servo host: the circuit layout of the upper electronic component (80), such as the electronic element with higher heating temperature = 〇): must be designed to be close to the entrance end of the heat absorbing tube (7 〇) and thus long Towards the complexity of the line layout. ask

【發明内容】 為解決既有大面積 題,本發明之主要目 ’其可針對不同位置 液冷式散熱裝置之散熱效果不均的 的在提供一種大面積液冷式散熱裝 之散熱需求而提供不同散熱效果。 4 201036527 為達成前述目的所採取之主要技術手段係令前述液冷 式散熱裝置包括: 一熱擴散板’係具有一吸熱面及一散熱面,其中該吸 熱面係供與多個發熱源接觸; ' 一注液分布器,係具有至少一入水口及複數送水口; 複數吸熱管’係分布設於該熱擴散板之散熱面上,且 各吸熱管係具有一入口端及一出口端,其中該複數吸熱管 的入口端係分別與該注液分布器的複數送水口連接,而與 〇 該注液分布器連通,又各吸熱管内係具有一冷卻液通道, 且該複數吸熱管之冷卻液通道的截面積均不相同,具有較 大冷卻液通道截面積之吸熱管係對應溫度較高的發熱源; 一排液收集器’具有至少一出水口及複數進水口,其中該 複數進水口係分別與該複數吸熱管的出口端連接,並透過 該複數吸熱管與該注液分布器連通。 利用上述技術手段,由於本液冷式散熱裝置使用較多 的吸熱管’故各吸熱管可設計以最少的彎管次數,分布設 Ο 於該熱擴散板上,藉此減少冷卻液於吸熱管中傳遞時的祖 礙;此外’再將具有較大截面積冷卻液通道之吸熱管與溫 度較高的發熱源對應設置,可提高對溫度較高發熱源之吸 熱效果,故可由本散熱裝置配合線路佈局,在設計上較有 彈性’並可減少線路佈局的負擔。 【實施方式】 關於本發明之第一實施例,請參閱第一至四圖所示, 係包括一熱擴散板(10)、一注液分布器(20)、複數吸熱管(30) 5 201036527 及一排液收集器(40)。 上述熱擴散板(10)係具有一吸熱面(11)及一散熱面 (12) ’其中該吸熱面(1彳)係供與多個發熱源(5〇)構成熱接 觸’例如伺服器主機板上的電子元件;於本實施例中,該 熱擴散板(10)係為一矩形片狀板體。 請進一步參閱第四圖所示,上述注液分布器(20)係具有 至少一入水口(21)及複數送水口(22);於本實施例中,該注 液分布器(20)係焊接設於該熱擴散板(1〇)之散熱面(彳2)上, 〇 並鄰近該矩形片狀熱擴散板(10)之其中一侧邊,又該注液分 布器(20)係為一中空矩形立方體,其具有一頂壁、一底壁及 複數側壁,其中該頂壁和底壁係相對設置,而該複數側壁 則與該頂壁及底壁垂直地鄰接,又該入水口(2彳)係設於其中 一側壁上,而該送水口(22)係設於其他的側壁上。 上述吸熱管(30)係分布設於該熱擴散板(1〇)之散熱面 (12)上,又各吸熱管(3〇)係具有一入口端(31)及一出口端 (32),其中該複數吸熱管(30)的入口端(31)係分別與該注液 〇 分布器(20)的複數送水口(22)連接,而與該注液分布器(2〇) 連通,又各吸熱管(30)内具有一冷卻液通道,且各吸熱管(3〇) 之冷卻液通道分屬至少兩種不同的截面積,該冷卻液通道 的截面積種類可等於或不等於吸熱管(3〇)的數量,例如: 熱管(30)為兩支時’其冷卻液通道分別為兩種不同的戴面 積’二支吸熱管(30)時,其冷卻液通道可以分屬兩種咬二種 不同的截面積,四支吸熱管(30)時則其冷卻液通道可分別為 二至四種不同的截面積,並可依此類推;其中:具有較大 冷卻液通道截面積之吸熱管(30)係對應溫度較高的發熱原 6 201036527 (50),於本實&例中,該複數吸熱管州係呈環狀迴路且 焊設於該熱擴散板(1。)之散熱面(12)上,且較長的吸熱管 (30)具有較寬的官後’而以吸熱管(3q)管徑的寬窄決定吸熱 管(3〇)之冷卻液通道的截面積大小,又該複數吸熱管(30)i 有不同的長度’且本實施例中該吸熱管(3G)之長度與其内部 冷卻液《的截面積大小成正比,即較長吸熱管⑽)之冷卻 液通道的截面積較大’目而具有較大的冷卻液流量,故具 Ο 有較佳的吸熱效果’將之與溫度較高的發熱源(5〇)對應設置 可充分地對溫度較高的發熱源(5Q)散熱,而冷卻液通道的截 面積較小之吸熱管(30)則因冷卻液流量較小,故與溫度較低 的發熱源(50)對應設置。 上述排液收集器(4 0)係具有至少一出水口( 4彳)及複數 進水口(42),其中該複數進水口(42)係分別與該複數吸熱管 (30)的出口端(32)連接,而透過該複數吸熱管(3〇)與該注液 分布器(20)連通,於本實施例中,該排液收集器(4〇)係焊接 設於該熱擴散板(10)之散熱面(12)上,並與該注液分布器 Ο (20)設於該矩形片狀熱擴散板(1〇)之同一側邊,又該排液收 集器(40)係為一中空矩形立方體,其具有一頂壁一底壁及 複數側壁,其中該頂壁和底壁係相對設置,而該複數側壁 則與該頂壁及底壁垂直地鄰接,又該出水口(41)係設於其中 一側壁上,而該進水口( 4 2)係設於其他的側壁上。 另關於本發明之第二實施例,請參閱第五圖所示,其 與第一實施例大致相同,不同之處在於:該熱擴散板(彳〇) 係包括一下蓋板(101)及一上蓋板(102),其中: 該下蓋板(1 01)的之底面係該熱擴散板(1 〇)的吸熱面 7 201036527 (11) ,而該下蓋板(101)之頂面上係於對應該第一實施例中 之注液分布器(20)、吸熱管(30)及排液收集器(40)的設置位 置處,形成有一下注液分布器欲槽(1〇1a)、複數下吸熱管傲 槽(101b)及一下排液收集器嵌槽(101c); 該上蓋板(102)之頂面係該熱擴散板(1〇)的散熱面 (12) ,而該上蓋板(102)之底面則形成有一上注液分布器嵌 槽(102a)、複數上吸熱管嵌槽(102 b)及一上排液收集器嵌槽 (102c),其中該上注液分布器嵌槽(102a)、上吸熱管嵌槽 〇 (102b)及上排液收集器嵌槽(102C)係對應該下蓋板(1〇1)的 下注液分布器嵌槽(101 a)、下吸熱管嵌槽(101b)及下排液收 集器嵌槽(101c),藉由將上蓋板(102)以其底面蓋設於該下 蓋板(101)的頂面上,而由上、下注液分布器嵌槽 (1〇2a)(1〇la)、上' 下吸熱管嵌槽(102b)(101b)及上、下排 液收集器嵌槽(102c)(101c)構成第一實施例中的注液分布 器(2〇)、吸熱管(30)及排液收集器(40),藉由調整上、下吸 熱管嵌槽(102b)(101b)的深度,即可改變吸熱管中冷卻液通 Ο 道的截面積,故亦可隨需求讓冷卻液通道截面積較大的下 吸熱管嵌槽(1〇1b)對應溫度較高的發熱源(50)處。 又關於本發明之第三實施例,請進一步參閱第六圖所 示’其與第一實施例大致相同,不同之處在於:本第三實 施例並非以吸熱管(30)管徑的寬窄決定吸熱管(30)之冷卻 液通道的截面積大小,而是以不同的管内壁設計達成,於 本實施例中,係使用四條吸熱管(30),其中: 請參閱第七圖所示,最長吸熱管(30)内係具有一平滑内 壁(301); 8 201036527 明參閱第八圖所示,次長吸熱管(30)内係具有一鋸齒内 壁(302广 請參閱第九圖所示’次短吸熱管(30)内係具有一粗糙内 壁(303); 清參閱第十圖所示,最短吸熱管(30)内係設有複數柵網 (304); 如此’亦可讓吸熱管(30)的冷卻液通道截面積大小不 同。 〇 是以’本液冷式散熱裝置具有以下優點: 1·由於本液冷式散熱裝置係使用複數吸熱管(3〇),由該 複數吸熱管(30)共同地分布設於該熱擴散板(1 〇)上,因此可 將每個吸熱管(30)的彎管次數減至最少,如此一來,即可減 少冷卻液於吸熱管(30)中傳遞所造成的壓損,故毋須使用較 強力的泵即可令冷卻液順暢地於該吸熱管(3〇)中流動。 2_由於冷卻液通道截面積較大的吸熱管(30)可讓較多 的冷卻液流過,故根據熱量計算公式g = p么:熱量對 〇 時間微分’ C/>:隨溫度變化的流體比熱;f :流量;p:流 體密度;vr:溫度變化量),冷卻液通道截面積較大的吸熱 管(30)因其内冷卻液流量較大,故其整體吸熱能力較強,適 合用以對溫度較高的發熱源(5〇)進行散熱。 3.雖較長之吸熱管(30)的入口端(31)及出口端(32)處的 冷卻液溫差較大,導致較長之吸熱管(3〇)的出口端(32)處吸 熱效果較差,然由於較長吸熱管(30)之冷卻液通道的载面積 較大’因此可使較多的冷卻液流過,故根據前述熱量計算 公式,較長吸熱管(30)因其内冷卻液流量較大而得於出口端 9 201036527 (32)處維持足夠的吸熱效果。因此,可將各吸熱管⑴從入 口端(31)至出口端(32)的吸熱效果差異減至最小,故本液冷 式散熱裝置可提供穩定且平均的散熱效果。 惟本發明雖已於前述實施例中所揭露,但並不僅限於 刖述實施例中所提及之内容,在不脫離本發明之精神和範 圍内所作之任何變化與修改,均屬於本發明之保護範圍。 综上所述’本發明已具備顯著功效增進,並符合發明 專利要件’爰依法提起申請。SUMMARY OF THE INVENTION In order to solve the problem of large-area liquid-cooled heat sinks, the main purpose of the present invention is to provide a large-area liquid-cooled heat sink with different heat dissipation effects for different positions of the liquid-cooled heat sink. Different heat dissipation effects. 4 201036527 The main technical means for achieving the foregoing objective is that the liquid-cooled heat sink comprises: a heat diffusion plate having a heat absorbing surface and a heat dissipating surface, wherein the heat absorbing surface is in contact with a plurality of heat sources; An infusion distributor has at least one water inlet and a plurality of water supply ports; a plurality of heat absorption tubes are distributed on the heat dissipation surface of the heat diffusion plate, and each of the heat absorption tubes has an inlet end and an outlet end, wherein The inlet ends of the plurality of heat absorption tubes are respectively connected to the plurality of water supply ports of the liquid injection distributor, and are connected to the liquid injection distributor, and each of the heat absorption tubes has a coolant passage, and the coolant of the plurality of heat absorption tubes The cross-sectional area of the channel is different, and the heat-absorbing tube having a larger cross-sectional area of the coolant channel corresponds to a heat source having a higher temperature; the liquid-collecting device has at least one water outlet and a plurality of water inlets, wherein the plurality of water inlets Connected to the outlet end of the plurality of heat absorption tubes, respectively, and communicated with the liquid injection distributor through the plurality of heat absorption tubes. By using the above technical means, since the liquid cooling type heat sink uses a large number of heat absorbing tubes, each heat absorbing tube can be designed with a minimum number of bends, and is distributed on the heat diffusion plate, thereby reducing the coolant in the heat absorbing tube. In addition, the heat transfer tube with a larger cross-sectional area coolant channel is arranged correspondingly to the heat source with higher temperature, which can improve the heat absorption effect of the heat source with higher temperature, so the heat sink can be used with the line. The layout is more flexible in design and can reduce the burden of the line layout. [Embodiment] With regard to the first embodiment of the present invention, please refer to the first to fourth figures, including a heat diffusion plate (10), a liquid injection distributor (20), and a plurality of heat absorption tubes (30) 5 201036527 And a drain collector (40). The heat diffusion plate (10) has a heat absorbing surface (11) and a heat dissipating surface (12). The heat absorbing surface (1) is configured to be in thermal contact with a plurality of heat sources (5 〇), such as a server host. The electronic component on the board; in the embodiment, the heat diffusion plate (10) is a rectangular sheet-like plate body. Further, as shown in the fourth figure, the liquid-injecting distributor (20) has at least one water inlet (21) and a plurality of water supply ports (22); in the embodiment, the liquid-injecting distributor (20) is welded. It is disposed on a heat dissipating surface (彳2) of the heat diffusion plate (1〇), adjacent to one side of the rectangular sheet-shaped heat diffusion plate (10), and the liquid-injecting distributor (20) is a a hollow rectangular cube having a top wall, a bottom wall and a plurality of side walls, wherein the top wall and the bottom wall are oppositely disposed, and the plurality of side walls are vertically adjacent to the top wall and the bottom wall, and the water inlet (2)彳) is provided on one of the side walls, and the water supply port (22) is provided on the other side wall. The heat absorbing tube (30) is disposed on the heat dissipating surface (12) of the heat diffusion plate (1), and each of the heat absorbing tubes (3) has an inlet end (31) and an outlet end (32). The inlet end (31) of the plurality of heat absorption tubes (30) is respectively connected to the plurality of water supply ports (22) of the liquid injection distributor (20), and is connected to the liquid injection distributor (2〇), and each The heat absorbing tube (30) has a coolant passage therein, and the coolant passages of the heat absorbing tubes (3 〇) belong to at least two different cross-sectional areas, and the cross-sectional area of the coolant passages may be equal to or not equal to the heat absorbing tubes ( The number of 3〇), for example: when the heat pipe (30) is two, when the coolant passages are two different wearing areas, respectively, the two heat absorption pipes (30), the coolant passages can be divided into two kinds of bites. Different cross-sectional areas, four heat-absorbing tubes (30), the coolant channels can be two to four different cross-sectional areas, and so on; wherein: the heat pipe with a larger coolant channel cross-sectional area (30) corresponds to a relatively high temperature pyrogen 6 201036527 (50), in the present & example, the plural heat pipe state The annular circuit is soldered to the heat dissipating surface (12) of the heat diffusion plate (1), and the longer heat absorbing tube (30) has a wider width of the front and the width of the tube of the heat absorbing tube (3q) Determining the cross-sectional area of the coolant passage of the heat absorbing tube (3 〇), and the plurality of heat absorbing tubes (30) i have different lengths 'and the length of the heat absorbing tube (3G) and the internal coolant thereof in this embodiment The area is proportional to the size, that is, the longer the cross-sectional area of the coolant channel of the longer heat absorbing tube (10) is larger, and has a larger coolant flow rate, so it has a better heat absorption effect. The source (5 〇) correspondingly can dissipate heat to the heat source (5Q) with a higher temperature, and the heat absorbing tube (30) with a smaller cross-sectional area of the coolant channel has a lower flow rate of the coolant, so the temperature is lower. The heat source (50) corresponds to the setting. The liquid discharge collector (40) has at least one water outlet (4 彳) and a plurality of water inlets (42), wherein the plurality of water inlets (42) are respectively connected with the outlet ends of the plurality of heat absorbing tubes (30) (32) Connected to the liquid-injecting distributor (20) through the plurality of heat-absorbing tubes (3〇). In the present embodiment, the liquid-collecting collector (4〇) is welded to the heat-diffusing sheet (10) The heat dissipating surface (12) is disposed on the same side of the rectangular sheet-shaped heat diffusion plate (1) as the liquid-distributing distributor 20 (20), and the liquid-discharging collector (40) is hollow. a rectangular cube having a top wall, a bottom wall and a plurality of side walls, wherein the top wall and the bottom wall are oppositely disposed, and the plurality of side walls are vertically adjacent to the top wall and the bottom wall, and the water outlet (41) is It is disposed on one of the side walls, and the water inlet (42) is disposed on the other side wall. Referring to the second embodiment of the present invention, please refer to the fifth embodiment, which is substantially the same as the first embodiment, except that the heat diffusion plate (彳〇) includes a lower cover plate (101) and a An upper cover plate (102), wherein: a bottom surface of the lower cover plate (1 01) is a heat absorption surface 7 201036527 (11) of the heat diffusion plate (1 ,), and a top surface of the lower cover plate (101) A placement of a liquid injection distributor (1〇1a) is formed at a position corresponding to the liquid injection distributor (20), the heat absorption tube (30), and the liquid discharge collector (40) in the first embodiment. a plurality of heat absorbing tubes (101b) and a lower drain collector slot (101c); the top surface of the upper cover (102) is a heat dissipating surface (12) of the heat diffusion plate (1), and the The bottom surface of the upper cover plate (102) is formed with an upper liquid distributor distributor groove (102a), a plurality of upper heat absorption tube insertion grooves (102b) and an upper liquid collection collector insertion groove (102c), wherein the liquid injection liquid The distributor slot (102a), the upper heat pipe slot (102b) and the upper drain collector slot (102C) are corresponding to the lower cover (1〇1) of the lower liquid distributor slot (101a) ), under the heat The tube insertion groove (101b) and the lower liquid collection collector groove (101c) are provided by the upper cover plate (102) being covered on the top surface of the lower cover plate (101) by the bottom surface thereof The first embodiment of the injection distributor slot (1〇2a) (1〇la), the upper 'lower heat pipe recess (102b) (101b) and the upper and lower drain collector slots (102c) (101c) constitute the first implementation In the example, the liquid injection distributor (2〇), the heat absorption tube (30) and the liquid discharge collector (40) can change the heat absorption tube by adjusting the depths of the upper and lower heat absorption tube fitting grooves (102b) (101b). The cross-sectional area of the middle coolant passage channel, so that the lower heat-absorbing tube insert groove (1〇1b) having a larger cross-sectional area of the coolant passage can be corresponding to the heat source (50) having a higher temperature. With regard to the third embodiment of the present invention, please refer to the sixth embodiment, which is substantially the same as the first embodiment, except that the third embodiment is not determined by the width of the heat pipe (30). The cross-sectional area of the coolant passage of the heat absorbing tube (30) is achieved by different inner wall design. In this embodiment, four heat absorbing tubes (30) are used, wherein: Please refer to the seventh figure, the longest The heat absorbing tube (30) has a smooth inner wall (301); 8 201036527 As shown in the eighth figure, the second long heat absorbing tube (30) has a sawtooth inner wall (302 is wide as shown in the ninth figure) The heat absorbing tube (30) has a rough inner wall (303); as shown in the tenth figure, the shortest heat absorbing tube (30) is provided with a plurality of grids (304); thus 'allowing the heat absorbing tube (30) The cross-sectional area of the coolant channel is different. 〇 The liquid cooling device has the following advantages: 1. Since the liquid cooling device uses a plurality of heat absorbing tubes (3 〇), the plurality of heat absorbing tubes (30) Co-distributed on the heat diffusion plate (1 〇), so Minimize the number of bends per heat pipe (30), thus reducing the pressure loss caused by the transfer of coolant in the heat absorbing tube (30), so it is not necessary to use a stronger pump to cool The liquid flows smoothly in the heat absorbing tube (3〇). 2_ Since the heat absorbing tube (30) having a large cross-sectional area of the coolant passage allows more coolant to flow, the formula g = p is calculated according to the heat: Heat vs. time differential 'C/>: specific heat of fluid as a function of temperature; f: flow rate; p: fluid density; vr: temperature change amount), the heat absorbing tube (30) having a larger cross-sectional area of the coolant passage is inside The coolant flow rate is large, so its overall heat absorption capacity is strong, which is suitable for heat dissipation of a relatively high temperature heat source (5 〇). 3. Although the temperature difference of the coolant at the inlet end (31) and the outlet end (32) of the longer heat absorbing tube (30) is large, the heat absorption effect at the outlet end (32) of the longer heat absorbing tube (3 〇) is caused. Poor, because the coolant channel of the longer heat absorbing tube (30) has a larger carrying area, so more coolant can flow through, so the longer heat absorbing tube (30) is cooled by the heat according to the aforementioned heat calculation formula. The liquid flow rate is large and sufficient endothermic effect is maintained at the outlet end 9 201036527 (32). Therefore, the difference in heat absorption effect of each heat absorbing tube (1) from the inlet end (31) to the outlet end (32) can be minimized, so that the liquid cooling heat sink can provide a stable and average heat dissipation effect. However, the present invention has been disclosed in the foregoing embodiments, but is not limited to the details of the embodiments, and any changes and modifications made without departing from the spirit and scope of the invention belong to the present invention. protected range. In summary, the present invention has been provided with significant improvement in efficacy and in accordance with the invention patent requirements.

D 【圖式簡單說明】 第一圖:係本發明第一實施例之外觀圖。 第一圖.係本發明第一實施例之部分分解圖。 第三圖··係本發明第一實施例之分解圖。 第四圖:係本發明第一實施例之俯視圖。 第五圖:係本發明第二實施例之分解圖。 第六圖:係本發明第三實施例之外觀圖。 帛ϋ本發明第三實施例中最長吸熱管之剖面圖。 第八圖:係本發明第三實施例中次長吸熱管之剖面圖。 第九圖:係本發明第三實施例中次短吸熱管之剖面圖。 第十圖:係本發明第三實施例中最短吸熱管之剖面圖。 第十-圖:係、既有Α面積液冷式散熱裝置的外觀圖。 【主要元件符號說明】 (1〇1a)下注液分布器嵌槽 (1〇)熱擴散板 (101)下蓋板 201036527 (101b)下吸熱管嵌槽 (101c)下排液收集器嵌槽 (102)上蓋板 (102a)上注液分布器嵌槽 (102b)上吸熱管嵌槽 (102c)上排液收集器嵌槽 (11)吸熱面 (12)散熱面 (20)注液分布器 (21)入水口 (22)送水口 (30)吸熱管 (301)平滑内壁 (302)鋸齒内壁 (303)—粗糙内壁 (304)栅網 (31)入口端 (32)出口端 (40)排液收集器 (41)出水口 (42)進水口 (50)發熱源 (60)熱擴散板 (61)吸熱面 (62)散熱面 (70)吸熱管 (71)入口端 (72)出口端 (80)電子元件 Ο 11D [Simplified Description of the Drawings] The first drawing is an external view of the first embodiment of the present invention. The first figure is a partially exploded view of a first embodiment of the present invention. Fig. 3 is an exploded view of the first embodiment of the present invention. Fourth Figure: is a plan view of a first embodiment of the present invention. Figure 5 is an exploded view of a second embodiment of the present invention. Figure 6 is an external view of a third embodiment of the present invention. A cross-sectional view of the longest heat absorbing tube in the third embodiment of the present invention. Figure 8 is a cross-sectional view showing a secondary long heat absorbing tube in a third embodiment of the present invention. Figure 9 is a cross-sectional view showing a secondary short heat absorbing tube in a third embodiment of the present invention. Figure 10 is a cross-sectional view showing the shortest heat absorbing tube in the third embodiment of the present invention. Tenth-figure: The appearance of a liquid-cooled heat sink with a Α area. [Main component symbol description] (1〇1a) Underfill distributor spreader (1〇) Thermal diffusion plate (101) Lower cover 201036527 (101b) Lower heat pipe groove (101c) Lower drain collector groove (102) Upper cover plate (102a) on the liquid distribution distributor groove (102b) on the heat absorption pipe groove (102c) on the liquid collector collector groove (11) heat absorption surface (12) heat dissipation surface (20) injection liquid distribution (21) water inlet (22) water supply port (30) heat absorption tube (301) smooth inner wall (302) serrated inner wall (303) - rough inner wall (304) grid (31) inlet end (32) outlet end (40) Drain collector (41) water outlet (42) water inlet (50) heat source (60) heat diffusion plate (61) heat absorption surface (62) heat dissipation surface (70) heat absorption tube (71) inlet end (72) outlet end (80) Electronic components Ο 11

Claims (1)

201036527 七、申請專利範圍: 1.一種大面積液冷式散熱裝置,係包括: 一熱擴散板,係具有一吸熱面及一散熱面,其中該吸 熱面係供與多個發熱源接觸; 庄液分布器,具有至少一入水口及複數送水口; 複數吸熱管’係分布設於該熱擴散板之散熱面上,且 各吸熱管係具有一入口端及一出口端,其中該複數吸熱管 的入口端係分別與該注液分布器的複數送水口連接,而與 〇 該注液分布器連通,又各吸熱管内係具有一冷卻液通道, 且各吸熱管之冷卻液通道分屬至少兩種不同的截面積; 排液收集器,具有至少一出水口及複數進水口,其 中該複數進水口係分別與該複數吸熱管的出口端連接’並 透過該複數吸熱管與該注液分布器連通。 2_如申請專利範圍第1項所述大面積液冷式散熱裝 置,係以吸熱管管徑的寬窄決定吸熱管之冷卻液通道的截 面積大小。 Ο 3_如申清專利範圍帛1項所述大面積液冷式散熱裝 置,係以不同吸#管内冑決定吸熱管之冷卻液通道的截面 積大小,其中一吸熱管内係具有一鋸齒内壁。 4. 如申凊專利範圍第1項所述大面積液冷式散熱裝 置’係以不1¾吸熱管内壁決定吸熱管之冷卻液通道的截面 積大小,其中一吸熱管内係具有一粗糙内壁。 5. 如申請專利範圍第3項所述大面積液冷式散熱農 置’其中一吸熱管内係具有一粗糙内壁。 6·如申請專利範圍第彳項所述大面積液冷式散熱裝 12 201036527 置’係以不同吸熱管内壁決定吸熱管之冷卻液通道的截面 積大小’其中一吸熱管内係設有複數柵網。 7·如申請專利範圍第3項所述大面積液冷式散熱裝 置’其中一吸熱管内係設有複數柵網。 8·如申請專利範圍第5項所述大面積液冷式散熱裝 置’其中一吸熱管内係設有複數柵網。 9.如申請專利範圍第彳項所述大面積液冷式散熱裝 置’該熱擴散板係包括一下蓋板及一上蓋板,其中:201036527 VII. Patent application scope: 1. A large-area liquid-cooling heat dissipating device, comprising: a heat diffusion plate having a heat absorbing surface and a heat dissipating surface, wherein the heat absorbing surface is in contact with a plurality of heat sources; The liquid distributor has at least one water inlet and a plurality of water supply ports; the plurality of heat absorption tubes are distributed on the heat dissipation surface of the heat diffusion plate, and each of the heat absorption tubes has an inlet end and an outlet end, wherein the plurality of heat absorption tubes The inlet ends are respectively connected to the plurality of water supply ports of the liquid injection distributor, and are connected to the liquid injection distributor, and each of the heat absorption tubes has a coolant passage, and the coolant passages of the heat absorption tubes belong to at least two. a different cross-sectional area; a drain collector having at least one water outlet and a plurality of water inlets, wherein the plurality of water inlets are respectively connected to the outlet end of the plurality of heat absorption tubes and through the plurality of heat absorption tubes and the liquid injection distributor Connected. 2_ The large-area liquid-cooled heat dissipating device described in the first paragraph of the patent application scope determines the cross-sectional area of the coolant passage of the heat absorbing pipe by the width of the pipe diameter of the heat absorbing pipe. Ο 3_ For example, the large-area liquid-cooled heat-dissipating device described in the scope of patent application 帛1 determines the cross-sectional area of the coolant passage of the heat-absorbing tube by using different suction tubes. One of the heat-absorbing tubes has a sawtooth inner wall. 4. The large-area liquid-cooled heat dissipating device according to item 1 of the patent application scope determines the cross-sectional area of the coolant passage of the heat absorbing tube by the inner wall of the heat absorbing tube, wherein one of the heat absorbing tubes has a rough inner wall. 5. A large-area liquid-cooled heat-dissipating farmhouse as described in claim 3, wherein one of the heat-absorbing tubes has a rough inner wall. 6. The large-area liquid-cooled heat-dissipating device as described in the scope of the patent application No. 12 201036527 is used to determine the cross-sectional area of the coolant passage of the heat-absorbing tube by the inner wall of different heat-absorbing tubes. . 7. A large-area liquid-cooled heat dissipating device as described in claim 3, wherein one of the heat absorbing tubes is provided with a plurality of grids. 8. A large-area liquid-cooled heat dissipating device as described in claim 5, wherein one of the heat absorbing tubes is provided with a plurality of grids. 9. The large-area liquid-cooled heat dissipating device according to the scope of the invention of claim 2, wherein the thermal diffuser comprises a lower cover and an upper cover, wherein: 該下蓋板的之底面係該熱擴散板的吸熱面,而該下蓋 板之頂面上係形成有一下注液分布器嵌槽、複數下吸熱管 後槽及一下排液收集器嵌槽; 該上蓋板係以其底面蓋設於該下蓋板的頂面上,且該 上蓋板之頂面係該熱擴散板的散熱面,而該上蓋板之底面 係形成有一上注液分布器嵌槽、複數上吸熱管嵌槽及一上 槽及上排液收集器嵌槽係對應該下蓋板的下注液分布器嵌 槽、下吸熱管嵌槽及下排液收集器嵌槽,由上、下注液分 布器嵌槽、上、下吸熱管嵌槽及上、下排液收集器嵌槽構 成該注液分布器、該複數吸熱管及該排液收集器,各上、 下吸熱管嵌槽的深度決定吸熱管之冷卻液通道的截面積大 小 〇 13The bottom surface of the lower cover plate is a heat absorption surface of the heat diffusion plate, and the top surface of the lower cover plate is formed with a lower injection liquid distributor groove, a plurality of lower heat absorption tube rear grooves and a lower liquid collection collector groove. The top cover is disposed on the top surface of the lower cover with the bottom surface thereof, and the top surface of the upper cover is the heat dissipation surface of the heat diffusion plate, and the bottom surface of the upper cover is formed with an upper surface The liquid distributor embedding groove, the plurality of upper heat absorption pipe cavities, and the upper trough and the upper drainage liquid collector embedding groove correspond to the lower liquid injection distributor groove, the lower heat absorption pipe inlay and the lower drainage liquid collector of the lower cover The inlay, the upper and lower infusion distributor slot, the upper and lower suction tube inlays, and the upper and lower drain collector slots form the infusion distributor, the plurality of heat absorption tubes and the drainage collector, each The depth of the upper and lower heat pipe recesses determines the cross-sectional area of the coolant channel of the heat pipe 〇13
TW098108854A 2009-03-19 2009-03-19 Large-area liquid-cooled heat-dissipation device TW201036527A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098108854A TW201036527A (en) 2009-03-19 2009-03-19 Large-area liquid-cooled heat-dissipation device
US12/586,324 US20100236761A1 (en) 2009-03-19 2009-09-21 Liquid cooled heat sink for multiple separated heat generating devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098108854A TW201036527A (en) 2009-03-19 2009-03-19 Large-area liquid-cooled heat-dissipation device

Publications (2)

Publication Number Publication Date
TW201036527A true TW201036527A (en) 2010-10-01
TWI372596B TWI372596B (en) 2012-09-11

Family

ID=42736480

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108854A TW201036527A (en) 2009-03-19 2009-03-19 Large-area liquid-cooled heat-dissipation device

Country Status (2)

Country Link
US (1) US20100236761A1 (en)
TW (1) TW201036527A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037872A1 (en) * 2008-10-02 2010-04-08 Ibérica Del Espacio, S.A. Spaceship heat module
CN201449171U (en) * 2009-05-05 2010-05-05 蔡应麟 Tubular energy saver
CN102791113A (en) * 2012-08-16 2012-11-21 广州高澜节能技术股份有限公司 Cooling pipeline system in multi-megawatt converter cabinet
DE102013212724B3 (en) 2013-06-28 2014-12-04 TRUMPF Hüttinger GmbH + Co. KG Cooling device for cooling an electronic component and electronic assembly with a cooling device
TWI624640B (en) * 2017-01-25 2018-05-21 雙鴻科技股份有限公司 Liquid-cooling heat dissipation device

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2064141A (en) * 1934-03-16 1936-12-15 Fedders Mfg Co Inc Method of making refrigerating apparatus
US2271648A (en) * 1937-05-28 1942-02-03 Dole Refrigerating Co Liquid cooling device
US2436389A (en) * 1945-09-04 1948-02-24 Dole Refrigerating Co Refrigerating plate and internal reinforcement therefor
US2487674A (en) * 1947-03-06 1949-11-08 Richard A Rott Cabinet defrosting device
US2538014A (en) * 1947-05-05 1951-01-16 Dole Refrigerating Co Freezer plate
US2638754A (en) * 1949-03-02 1953-05-19 Dole Refrigerating Co Refrigerant plate
US2737027A (en) * 1950-11-04 1956-03-06 Air conditioning structure
US2734344A (en) * 1953-05-01 1956-02-14 lindenblad
US2910094A (en) * 1956-05-31 1959-10-27 Foil Process Corp Tube-providing sheet
US3011323A (en) * 1957-10-23 1961-12-05 Carbonic Dispenser Inc Ice plate
US3001382A (en) * 1958-06-16 1961-09-26 Reflectotherm Inc Radiant cooling systems
FR1313251A (en) * 1961-11-15 1962-12-28 Tube forging process by fast reciprocating machine
US3269459A (en) * 1963-03-12 1966-08-30 Popovitch Dragolyoub Extensive surface heat exchanger
US3424238A (en) * 1967-05-08 1969-01-28 Ritter Pfaudler Corp Glassed heat exchanger construction
US3481393A (en) * 1968-01-15 1969-12-02 Ibm Modular cooling system
US3627488A (en) * 1969-07-07 1971-12-14 Raytheon Co Corrosion- and erosion-resistant material
US4240257A (en) * 1973-02-22 1980-12-23 The Singer Company Heat pipe turbo generator
US3831664A (en) * 1973-11-07 1974-08-27 Boeing Co Heat pipe interfaces
US4274479A (en) * 1978-09-21 1981-06-23 Thermacore, Inc. Sintered grooved wicks
US4268850A (en) * 1979-05-11 1981-05-19 Electric Power Research Institute Forced vaporization heat sink for semiconductor devices
US4291546A (en) * 1979-06-11 1981-09-29 Alco Foodservice Equipment Company Cold plate heat exchanger
US4301771A (en) * 1980-07-02 1981-11-24 Dorr-Oliver Incorporated Fluidized bed heat exchanger with water cooled air distributor and dust hopper
FR2489490A1 (en) * 1980-08-27 1982-03-05 Commissariat Energie Atomique COOLING APPARATUS HAVING RADIANT PANEL AND EVAPORATOR PANEL
US4357907A (en) * 1980-10-27 1982-11-09 Rockwell International Corporation Fluidized bed combustor with improved indirect heat exchanger units
US4565242A (en) * 1981-03-13 1986-01-21 Kubota Ltd. Heat accumulating material enclosing container and heat accumulating apparatus
JPH06101524B2 (en) * 1985-09-18 1994-12-12 株式会社東芝 Cooling element for semiconductor element
US4720981A (en) * 1986-12-23 1988-01-26 American Standard Inc. Cooling of air conditioning control electronics
US4756360A (en) * 1987-03-25 1988-07-12 Riley Stoker Corporation Fluidized bed heat exchanger
US4888961A (en) * 1988-07-11 1989-12-26 Lancer Corporation Cold plate apparatus
US4838346A (en) * 1988-08-29 1989-06-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reusable high-temperature heat pipes and heat pipe panels
US4929414A (en) * 1988-10-24 1990-05-29 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing heat pipe wicks and arteries
US4884168A (en) * 1988-12-14 1989-11-28 Cray Research, Inc. Cooling plate with interboard connector apertures for circuit board assemblies
US4884169A (en) * 1989-01-23 1989-11-28 Technology Enterprises Company Bubble generation in condensation wells for cooling high density integrated circuit chips
US5484015A (en) * 1993-12-03 1996-01-16 Kyees; Melvin Cold plate and method of making same
JPH07225094A (en) * 1994-02-10 1995-08-22 Oomiya Kasei Kk Submerged type heat exchanger
US5647429A (en) * 1994-06-16 1997-07-15 Oktay; Sevgin Coupled, flux transformer heat pipes
AU706388B2 (en) * 1995-09-13 1999-06-17 Manitowoc Foodservice Group, Inc. Apparatus for cooling fluids
US5812372A (en) * 1996-06-07 1998-09-22 International Business Machines Corporation Tube in plate heat sink
US6111749A (en) * 1996-09-25 2000-08-29 International Business Machines Corporation Flexible cold plate having a one-piece coolant conduit and method employing same
FR2773941B1 (en) * 1998-01-19 2000-04-21 Ferraz DI-PHASIC EXCHANGER FOR AT LEAST ONE ELECTRONIC POWER COMPONENT
US6163073A (en) * 1998-04-17 2000-12-19 International Business Machines Corporation Integrated heatsink and heatpipe
AUPP502698A0 (en) * 1998-08-04 1998-08-27 Andale Repetition Engineering Pty. Limited Beverage chiller
US6253836B1 (en) * 1999-05-24 2001-07-03 Compaq Computer Corporation Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus
US6457515B1 (en) * 1999-08-06 2002-10-01 The Ohio State University Two-layered micro channel heat sink, devices and systems incorporating same
US6397944B1 (en) * 2000-01-28 2002-06-04 Lsi Logic Corporation Heat dissipating apparatus and method for electronic components
US6519955B2 (en) * 2000-04-04 2003-02-18 Thermal Form & Function Pumped liquid cooling system using a phase change refrigerant
US7004240B1 (en) * 2002-06-24 2006-02-28 Swales & Associates, Inc. Heat transport system
JP2002062083A (en) * 2000-08-11 2002-02-28 Komatsu Ltd Temperature control equipment
US7134484B2 (en) * 2000-12-07 2006-11-14 International Business Machines Corporation Increased efficiency in liquid and gaseous planar device cooling technology
CA2329408C (en) * 2000-12-21 2007-12-04 Long Manufacturing Ltd. Finned plate heat exchanger
WO2002074032A1 (en) * 2001-03-02 2002-09-19 Sanyo Electric Co., Ltd. Electronic device
KR100402788B1 (en) * 2001-03-09 2003-10-22 한국전자통신연구원 The heat pipe with woven-wire wick and straight wire wick
US6381135B1 (en) * 2001-03-20 2002-04-30 Intel Corporation Loop heat pipe for mobile computers
ES2187280B1 (en) * 2001-06-28 2004-08-16 Lear Automotive (Eeds) Spain, S.L. PRINTED CIRCUIT PLATE WITH ISOLATED METAL SUBSTRATE WITH INTEGRATED REFRIGERATION SYSTEM.
US6536510B2 (en) * 2001-07-10 2003-03-25 Thermal Corp. Thermal bus for cabinets housing high power electronics equipment
EP1276362B1 (en) * 2001-07-13 2006-02-01 Lytron, Inc. Flattened tube cold plate for liquid cooling electrical components
US6711017B2 (en) * 2001-07-17 2004-03-23 Hitachi Kokusai Electric Inc. Cooling apparatus for electronic unit
US20030015316A1 (en) * 2001-07-18 2003-01-23 Kemal Burkay Heat exchange tube having increased heat transfer area
US6828675B2 (en) * 2001-09-26 2004-12-07 Modine Manufacturing Company Modular cooling system and thermal bus for high power electronics cabinets
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
US6679315B2 (en) * 2002-01-14 2004-01-20 Marconi Communications, Inc. Small scale chip cooler assembly
US6942019B2 (en) * 2002-03-25 2005-09-13 Ltx Corporation Apparatus and method for circuit board liquid cooling
US7117930B2 (en) * 2002-06-14 2006-10-10 Thermal Corp. Heat pipe fin stack with extruded base
US6804117B2 (en) * 2002-08-14 2004-10-12 Thermal Corp. Thermal bus for electronics systems
JP3757200B2 (en) * 2002-09-25 2006-03-22 株式会社日立製作所 Electronic equipment with cooling mechanism
US7078803B2 (en) * 2002-09-27 2006-07-18 Isothermal Systems Research, Inc. Integrated circuit heat dissipation system
US7156159B2 (en) * 2003-03-17 2007-01-02 Cooligy, Inc. Multi-level microchannel heat exchangers
AU2003286855A1 (en) * 2002-11-01 2004-06-07 Cooligy, Inc. Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device
US7806168B2 (en) * 2002-11-01 2010-10-05 Cooligy Inc Optimal spreader system, device and method for fluid cooled micro-scaled heat exchange
US6889755B2 (en) * 2003-02-18 2005-05-10 Thermal Corp. Heat pipe having a wick structure containing phase change materials
US6903929B2 (en) * 2003-03-31 2005-06-07 Intel Corporation Two-phase cooling utilizing microchannel heat exchangers and channeled heat sink
CA2425233C (en) * 2003-04-11 2011-11-15 Dana Canada Corporation Surface cooled finned plate heat exchanger
US7320178B2 (en) * 2003-06-20 2008-01-22 Imi Cornelius Inc. Standoff for cold plate and cold plate made with the standoff
US7363962B2 (en) * 2003-08-04 2008-04-29 Cleland Sales Corporation Cold plate for beer dispensing tower
US20050077030A1 (en) * 2003-10-08 2005-04-14 Shwin-Chung Wong Transport line with grooved microchannels for two-phase heat dissipation on devices
US7140420B2 (en) * 2003-11-05 2006-11-28 General Electric Company Thermal management apparatus and uses thereof
TWI240061B (en) * 2004-02-16 2005-09-21 Forward Electronics Co Ltd Method for manufacturing heat collector
JP2005229047A (en) * 2004-02-16 2005-08-25 Hitachi Ltd Cooling system for electronic equipment, and the electronic equipment using same
US20060011336A1 (en) * 2004-04-07 2006-01-19 Viktor Frul Thermal management system and computer arrangement
US7161803B1 (en) * 2004-04-12 2007-01-09 Heady Gregory S Cooling system for an electronic display
US7256999B1 (en) * 2004-04-12 2007-08-14 Frontline Systems Heat collector plate for an electronic display
US6989991B2 (en) * 2004-05-18 2006-01-24 Raytheon Company Thermal management system and method for electronic equipment mounted on coldplates
US7983042B2 (en) * 2004-06-15 2011-07-19 Raytheon Company Thermal management system and method for thin membrane type antennas
US7187549B2 (en) * 2004-06-30 2007-03-06 Teradyne, Inc. Heat exchange apparatus with parallel flow
US7134485B2 (en) * 2004-07-16 2006-11-14 Hsu Hul-Chun Wick structure of heat pipe
JP2006054351A (en) * 2004-08-13 2006-02-23 Fujitsu Ltd Device for cooling semiconductor element
US20060096738A1 (en) * 2004-11-05 2006-05-11 Aavid Thermalloy, Llc Liquid cold plate heat exchanger
US7079393B2 (en) * 2004-11-16 2006-07-18 International Business Machines Corporation Fluidic cooling systems and methods for electronic components
US7493693B2 (en) * 2004-12-28 2009-02-24 Jia-Hao Li Method for fabricating multi-layer wick structure of heat pipe
TWI275765B (en) * 2005-01-28 2007-03-11 Foxconn Tech Co Ltd Wick structure, method of manufacturing the wick structure, and heat pipe
TWI259895B (en) * 2005-03-18 2006-08-11 Foxconn Tech Co Ltd Heat pipe
TWI275766B (en) * 2005-03-18 2007-03-11 Foxconn Tech Co Ltd Heat pipe
JP2006294678A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Radiator and cooling device having the same
US7578337B2 (en) * 2005-04-14 2009-08-25 United States Thermoelectric Consortium Heat dissipating device
JP4539425B2 (en) * 2005-04-28 2010-09-08 日立電線株式会社 Heat pipe heat sink and method for manufacturing the same
US7293601B2 (en) * 2005-06-15 2007-11-13 Top Way Thermal Management Co., Ltd. Thermoduct
TW200700686A (en) * 2005-06-16 2007-01-01 Yuh Cheng Chemical Co Ltd Heat pipe
US7347249B2 (en) * 2005-07-18 2008-03-25 Asia Vital Components Co., Ltd. Fixing device for a radiator
US7673389B2 (en) * 2005-07-19 2010-03-09 International Business Machines Corporation Cold plate apparatus and method of fabrication thereof with a controlled heat transfer characteristic between a metallurgically bonded tube and heat sink for facilitating cooling of an electronics component
US7345287B2 (en) * 2005-09-30 2008-03-18 Applied Materials, Inc. Cooling module for charged particle beam column elements
US7520316B2 (en) * 2005-10-05 2009-04-21 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink with heat pipes
JP4665713B2 (en) * 2005-10-25 2011-04-06 日立電線株式会社 Internal grooved heat transfer tube
US20070151709A1 (en) * 2005-12-30 2007-07-05 Touzov Igor V Heat pipes utilizing load bearing wicks
US20070158050A1 (en) * 2006-01-06 2007-07-12 Julian Norley Microchannel heat sink manufactured from graphite materials
US20070175614A1 (en) * 2006-01-30 2007-08-02 Jaffe Limited Loop heat exchange apparatus
TW200733856A (en) * 2006-02-20 2007-09-01 Sunonwealth Electr Mach Ind Co Composite heat-dissipating module
US7406999B2 (en) * 2006-04-27 2008-08-05 Delphi Technologies, Inc. Capillary-assisted compact thermosiphon
US8051905B2 (en) * 2006-08-15 2011-11-08 General Electric Company Cooling systems employing fluidic jets, methods for their use and methods for cooling
US7624791B2 (en) * 2006-09-08 2009-12-01 Advanced Energy Industries, Inc. Cooling apparatus for electronics
US20080078534A1 (en) * 2006-10-02 2008-04-03 General Electric Company Heat exchanger tube with enhanced heat transfer co-efficient and related method
US7641101B2 (en) * 2006-10-10 2010-01-05 International Business Machines Corporation Method of assembling a cooling system for a multi-component electronics system
US20080093052A1 (en) * 2006-10-20 2008-04-24 Foxconn Technology Co., Ltd. Heat dissipation device with heat pipes
US7564685B2 (en) * 2006-12-29 2009-07-21 Google Inc. Motherboards with integrated cooling
US7694727B2 (en) * 2007-01-23 2010-04-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device with multiple heat pipes
US20080173430A1 (en) * 2007-01-23 2008-07-24 Foxconn Technology Co., Ltd. Heat dissipation device with heat pipes
US7753109B2 (en) * 2007-05-23 2010-07-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device with heat pipes
CN201115256Y (en) * 2007-06-15 2008-09-10 鸿富锦精密工业(深圳)有限公司 Heat radiation device
US7746640B2 (en) * 2007-07-12 2010-06-29 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device with heat pipes
KR100803282B1 (en) * 2007-07-26 2008-02-13 박용수 Heating apparatus using hot water and steam
US7760502B2 (en) * 2007-10-23 2010-07-20 International Business Machines Corporation Cooling system employing a heat exchanger with phase change material, and method of operation thereof
JP4703633B2 (en) * 2007-12-04 2011-06-15 株式会社東芝 Cooling plate structure
GB2460837B (en) * 2008-06-10 2012-03-28 Tarmac Building Products Ltd Changing the temperature of a thermal load
US8297343B2 (en) * 2008-10-15 2012-10-30 Tai-Her Yang Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
TWI389600B (en) * 2008-12-19 2013-03-11 私立中原大學 Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
WO2012020453A1 (en) * 2010-08-10 2012-02-16 Empire Technology Development Llc Improved fluid cooling
US20120067548A1 (en) * 2010-09-20 2012-03-22 Siemens Industry, Inc. Polymeric membrane for heat exchange applications and method of fabrication thereof

Also Published As

Publication number Publication date
TWI372596B (en) 2012-09-11
US20100236761A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
TWI302242B (en) Liquid cooling jacket
CN101859738B (en) Large-area liquid-cooled heat dissipation device
CN107567248A (en) Liquid-cooling heat radiator
TW201036527A (en) Large-area liquid-cooled heat-dissipation device
TW200821801A (en) Case having phase-change heat dissipating device
TWM246988U (en) Water-cooling apparatus for electronic devices
TWM612914U (en) Liquid-cooling heat dissipation structure
US11758689B2 (en) Vapor chamber embedded remote heatsink
TWM291195U (en) Water-cooling heat dissipation system
TW200848994A (en) Heat dissipation device
TWI808656B (en) Liquid cooling device and liquid cooling system having the liquid cooling device
US11924995B2 (en) Water cooling head with sparse and dense fins
TWM628154U (en) Air-liquid dual cooling radiator for memory modules
CN109699164B (en) Plate type heat pipe radiating shell
TW201124691A (en) Heat dissipation device
TW200840464A (en) Water-cooling heat spreader module for a display card
TW200741433A (en) Liquid-cooling heat sink
TWI785409B (en) Easily expanded liquid-cooled heat sink
CN213660387U (en) Circuit board assembly and electronic equipment
TWI294763B (en) Heat dissipation device
TWI276394B (en) Integrated liquid cooling system
CN209914359U (en) Extension plate type heat pipe
TWI343234B (en)
TW200816908A (en) Heat dissipation module
TW202239302A (en) Liquid-cooling heat dissipation structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees