201011506 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種散熱裝置’特別涉及一種用於對電子 元件進行散熱之散熱裝置。 【先前技術】 諸如電腦中央處理器、北橋晶片、顯卡等高功率電子 元件在運行時會產生大量熱量,該熱量如果不能被有效地 散去,將直接導致溫度急劇上升,而嚴重影響到電子元件 •之正常運行。為此,需要散熱裝置來對該等電子元件進行 散熱。 習知之散熱裝置通常包括一安裝在電子元件上之基 板、置於基板上之複數散熱鰭片及連接該基板與散熱鰭^ 之數根熱管。基板之表面上開設有複數凹槽,散熱鰭片上 開設有複數通孔。每一熱管呈彎曲形並包括一吸熱端及一 放熱端。該吸熱端容置在基板之相應凹槽内,而放熱端則 ❿穿過散熱鰭片上之對應之通孔形成之通道内。由於熱管與 散熱鰭片之接觸面積有限,因此其間之連接強度受到影 響,久而久之可能會導致熱管與散熱鰭片接觸不良而影響 到整個散熱裝置之散熱效果。 另外,上述散熱裝置中需要在基板上開設凹槽,在散 2鰭片上開設通孔,如此不但使製造散熱裝置之製程變得 几長,也使製造散熱裝置之難度增大,還造成原材料之極 大浪費,從而提高整個散熱裝置之製造成本。 【發明内容】 5 201011506 有馨於此,有必要提供一種散熱性能穩定、製造簡單 且成本較低之散熱裝置。 一種散熱裝置,包括二散熱器及置於二散熱器之間之 一熱管’每一散熱器包括一導熱體及由導熱體延伸而出之 複數散熱鰭片,該熱管夾置於二散熱器之導熱體之間,該 二散熱器之導熱體與熱管之形狀相同。 與習知技術相比,上述散熱裝置中由於散熱器之導熱 體與熱管之形狀相同,熱管夾置於二散熱器之導熱體之 參間使传散熱器與熱管之接觸面積較大,可保證其連接強 度,因而具有穩定之散熱效果。另外,因散熱器結構簡單, 使散熱器之製造及整個散熱裝置之組裝也很方便,從而整 個散熱裝置之製造成本較低。 【實施方式】 如圖1和圖2所示,為本發明散熱裝置之一優選實施 例。該散歸置用於對電子元件1G (如cpu)進行散献。 ❿該散熱裝置包括-貼覆在電子元件1G上之基板%、置於基 板7〇上之第-、第二、第三散熱器20、30、4〇及第一、 第二熱管5〇、60。第-熱管50夾置於第-、第二散孰器 Π?間。第二熱管6〇爽置於第二、第三散熱器: 隹本貫施例 -… 个 ^ 一 ^ w ο υ' ( 其内設有毛細結構及工作液體。將第— 設置為扁平熱管其目的在於使第一二& 60 -、第二、第三散熱器20、30、40之第二官5〇、6〇與第 之間為平面接觸,從而 6 201011506 增大第一、墙 30、4〇> P第二熱管5〇、6〇與第一、第二、第三散熱器2〇、 柏回夕姓]之接觸面積。第一熱官5〇與第二熱管60具有 姓椹ΐ構與功能。以下將以第—熱管5G為例具體描述其 ::二第-熱管50整體呈G形,其包括一蒸發段51、與 51 平仃之第一、第二冷凝段54、55、連接蒸發段 、第:令凝段54之一第一中間段52及連接蒸發段Μ 一一 T凝段55之一第二中間段53。蒸發段51、第一、 -中間段22、23及第一、第二冷凝段54、55共面。 ^蒸發段51水平地置於基板7〇之上。第一、第二中間 3刀別從蒸發段51之兩端豎直向上延伸而成。第 ^冷凝段54、55分別從第一、第二中間段22、23 之頂=向内彎折水平相向延伸而成。第二中間段23比第一 中=段22長,使得第二冷凝段%較第一冷凝段54遠離蒸 發段51 ’也即[冷凝段54位於蒸發段51與第二冷凝段 55之間。 • 第、第一、第三散熱器20、30、40均為擠型散熱器, 由具有回導熱係數之金屬(如紹等)一體形成。第一散 ,器20與第二散熱器4〇具有相同之結構。以下將以第一 政熱器20為例具體描述其結構特徵。第一散埶器2〇包括 -導熱體22及由導熱體22延伸而出之複數散熱籍片。 導熱體22與第一、第二熱管5〇、6〇之形狀相同,其 整體也呈G形,惟導熱體22各個部分之寬度比第一、第二 熱管50、60在側視方向上之寬度(最小管徑)大,也即導 熱體22在侧視方向上與第―、第二熱管50、60具有相同 201011506 之構造,導熱體22各個部分之厚度與第一、第二熱管50、 60之最大管徑相當。導熱體22包括一吸熱段221、與吸熱 段221平行之第一、第二放熱段224、225、連接吸熱段221 與第一放熱段224之一第一傳熱段222及連接吸熱段221 與第二放熱段225之一第二傳熱段223。導熱體22之吸熱 段221、第一、第二傳熱段222、223及第一、第二放熱段 224、225分別與第一、第二熱管50、60之蒸發段51、第 一、 第二中間段52、53及第一、第二冷凝段54、55相對 ❹應。吸熱段221、第一、第二傳熱段222、223及第一、第 二放熱段224、225均大致為長方形塊狀。導熱體22之侧 面為一平滑平面用於與第一熱管50 (或第二熱管60)相接 觸。導熱體22之吸熱段221之底面則與基板70相接觸。 由導熱體22延伸而出之散熱鰭片與導熱體22具有相 同之寬度。該等散熱鰭片包括第一鰭片組241、第二鰭片組 242、第三鰭片組243、第四鰭片組244、第五鰭片組245 及第六鰭片組246。其中,第一鰭片組241由導熱體22之 ®吸熱段221之頂面豎直向上延伸而成,第二鰭片組242由 第一放熱段224之底面豎直向下延伸而成,且第二鰭片組 242向下延伸進入到第一鰭片組241中。第三鰭片組243 由第一放熱段224之頂面豎直向上延伸而成,第四鰭片組 244由第二放熱段225之頂面豎直向上延伸而成。第一、第 二、 第三、第四鰭片組241、242、243、244互相平行。第 五、第六鰭片組245、246則分別由第一、第二傳熱段222、 223之外表面向外(也即分別朝向導熱體20之前、後兩端) 201011506 水平延伸而成。第五鰭片組245之延伸方向與第二放熱段 225相同,第六鰭片組246之延伸方向與第一放熱段224 相同。第五、第六鰭片組245、246互相平行且與第一、第 二、第三、第四鰭片組241、242、243、244垂直。 第二散熱器30與第一散熱器20之結構相似,也包括 一呈G形之導熱體32及由該導熱體32延伸而出之複數散 熱鰭片。唯一不同之處在於第二散熱器30之導熱體32及 其散熱鰭片之寬度比第一散熱器20之導熱體22及其散熱 ❿鰭片之小。因此不再對第二散熱器30之結構作詳細說明。 請再參考圖2,該散熱裝置組裝後,第一熱管50夾置 在第一、第二散熱器20、30之導熱體22、32之間,其蒸 發段51與第一、第二散熱器20、30之導熱體22、32之吸 熱段221貼合,其第一、第二中間段52、53與導熱體22、 32之第一、第二傳熱段222、223貼合,其第一、第二冷凝 段54、55與導熱體22、32之第一、第二放熱段224、224 貼合。第二熱管60夾置在第二、第三散熱器30、40之導 熱體32、22之間。第一、第二、第三散熱器20、30、40 之導熱體22、32之吸熱段221與第一、第二熱管50、60 之蒸發段51共同貼置於基板70上,對電子元件10傳遞到 基板70之熱量進行散發。 該散熱裝置中之散熱器與熱管之接觸面積較大,具有 穩定地散熱效果。另外,散熱器製造簡單,整個散熱裝置 之組裝也很方便,使整個散熱裝置之製造成本較低。 可以理解地,上述散熱裝置中之第二散熱器30之寬度 9 201011506 也可以與第一散熱器20之相同。同時散熱器與熱管之數量 也可應電子元件之數量或散熱之需求而改變。如當電子元 件有兩個或多個時,可設置更多之熱管與散熱器,使之間 隔排配組裝在一起。 綜上所述,本發明符合發明專利要件,爰依法提出專 利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾 或變化,皆應涵蓋於以下之申請專利範圍内。 參【圖式簡單說明】 圖1為本發明散熱裝置之一優選實施例之分解圖。 圖2為圖1中散熱裝置之組合圖。 【主要元件符號說明】 電子元件 10 第一散熱器 20 導熱體 22、32 吸熱段 221 第一傳熱段 222 第二傳熱段 223 第一放熱段 224 第二放熱段 225 第一鰭片組 241 第二鰭片組 242 第三鰭片組 243 第四鰭片組 244 第五鰭片組 245 第六鰭片組 246 第二散熱器 30 第三散熱器 40 第一熱管 50 蒸發段 51 第一中間段 52 第二中間段 53 第一冷凝段 54 第二冷凝段 55 201011506 第二熱管 60 基板 70201011506 IX. Description of the Invention: [Technical Field] The present invention relates to a heat dissipating device', and more particularly to a heat dissipating device for dissipating heat from an electronic component. [Prior Art] High-power electronic components such as computer central processing units, north bridge chips, and graphics cards generate a large amount of heat during operation. If this heat cannot be effectively dissipated, it will directly cause a sharp rise in temperature, which will seriously affect electronic components. • Normal operation. To this end, a heat sink is required to dissipate the electronic components. Conventional heat sinks generally include a substrate mounted on an electronic component, a plurality of heat sink fins disposed on the substrate, and a plurality of heat pipes connecting the substrate and the heat sink fins. A plurality of grooves are formed on the surface of the substrate, and a plurality of through holes are formed in the heat dissipation fins. Each heat pipe is curved and includes a heat absorbing end and a heat releasing end. The heat absorbing end is received in a corresponding groove of the substrate, and the heat releasing end passes through a passage formed by a corresponding through hole on the heat dissipation fin. Since the contact area between the heat pipe and the heat sink fin is limited, the connection strength between the heat pipe and the heat sink fin is affected, and the heat pipe and the heat sink fin may be in contact with each other for a long time, which may affect the heat dissipation effect of the entire heat sink. In addition, in the above heat dissipating device, a groove needs to be formed on the substrate, and a through hole is formed in the 2 fins, which not only makes the manufacturing process of the heat dissipating device become a long time, but also increases the difficulty of manufacturing the heat dissipating device, and also causes the raw material to be Great waste, which increases the manufacturing cost of the entire heat sink. SUMMARY OF THE INVENTION 5 201011506 It is necessary to provide a heat sink with stable heat dissipation, simple manufacture and low cost. A heat dissipating device includes a heat sink and a heat pipe disposed between the two heat sinks. Each heat sink includes a heat conductor and a plurality of heat radiating fins extending from the heat conductor. The heat pipe clamp is disposed on the second heat sink. Between the heat conductors, the heat conductors of the two heat sinks have the same shape as the heat pipes. Compared with the prior art, in the above heat dissipating device, since the heat conductor of the heat sink has the same shape as the heat pipe, the heat pipe clamp is placed between the heat conducting bodies of the two heat sinks, so that the contact area between the heat sink and the heat pipe is large, which can ensure Its connection strength, therefore, has a stable heat dissipation effect. In addition, since the heat sink has a simple structure, the manufacture of the heat sink and the assembly of the entire heat sink are also convenient, so that the manufacturing cost of the entire heat sink is low. [Embodiment] As shown in Figs. 1 and 2, a preferred embodiment of a heat sink of the present invention is shown. This dispersion is used to distribute electronic components 1G (such as cpu). The heat sink includes: a substrate % attached to the electronic component 1G, and first, second, and third heat sinks 20, 30, and 4 disposed on the substrate 7 and the first and second heat pipes 5, 60. The first heat pipe 50 is interposed between the first and second diffuser ports. The second heat pipe 6 is placed on the second and third heat sinks: 隹本常例-... ^^^ ο υ (' (with capillary structure and working liquid inside. The first is set as a flat heat pipe The purpose is to make the first two & 60 -, the second and third heat sinks 20, 30, 40 of the second official 5 〇, 6 〇 and the first between the plane contact, thereby increasing the first, wall 30 6 201011506 , 4〇> P contact area of the second heat pipe 5〇, 6〇 with the first, second, third radiator 2〇, 柏回夕姓]. The first thermal officer 5〇 and the second heat pipe 60 have the last name The structure and function will be described in detail below by taking the first heat pipe 5G as an example: the second heat pipe 50 is generally G-shaped, and includes an evaporation section 51, and the first and second condensation sections 54 of 51. 55, connecting the evaporation section, the first intermediate section 52 of the condensation section 54 and the second intermediate section 53 connecting one of the evaporation sections Μ one to the first condensation section 55. The evaporation section 51, the first, the middle section 22 And 23 and the first and second condensation sections 54, 55 are coplanar. The evaporation section 51 is horizontally placed on the substrate 7〇. The first and second intermediate 3 cutters extend vertically upward from both ends of the evaporation section 51. Made The first condensation sections 54, 55 extend from the top of the first and second intermediate sections 22, 23, respectively, to the inwardly bent horizontal direction. The second intermediate section 23 is longer than the first intermediate section 22, so that the second condensation The segment % is farther from the evaporation section 51 ' than the first condensation section 54. That is, the condensation section 54 is located between the evaporation section 51 and the second condensation section 55. • The first, third, and third radiators 20, 30, and 40 are all squeezed. The heat sink is integrally formed of a metal having a thermal conductivity (for example, etc.). The first diffuser 20 and the second heat sink 4 have the same structure. The first heat exchanger 20 will be specifically described below as an example. The first diffuser 2 includes a heat conductor 22 and a plurality of heat sinks extending from the heat conductor 22. The heat conductor 22 has the same shape as the first and second heat pipes 5〇, 6〇, The whole is also G-shaped, but the width of each part of the heat conductor 22 is larger than the width (minimum diameter) of the first and second heat pipes 50, 60 in the side view direction, that is, the heat conductor 22 is in the side view direction. ―, the second heat pipes 50, 60 have the same configuration of 201011506, the thickness of each part of the heat conductor 22 and the first and second heat The maximum diameter of the 50, 60 is equivalent. The heat conductor 22 includes a heat absorption section 221, a first and a second heat release section 224, 225 parallel to the heat absorption section 221, and a first pass of the connection heat absorption section 221 and the first heat release section 224. The heat segment 222 and the second heat transfer portion 223 connecting the heat absorption portion 221 and the second heat release portion 225. The heat absorption portion 221 of the heat conductor 22, the first and second heat transfer portions 222, 223, and the first and second heat release portions 224, 225 correspond to the evaporation section 51, the first and second intermediate sections 52, 53 of the first and second heat pipes 50, 60, and the first and second condensation sections 54, 55, respectively. The heat absorption section 221, the first and second heat transfer sections 222, 223, and the first and second heat release sections 224, 225 are each substantially rectangular. The side of the heat conductor 22 is a smooth plane for contact with the first heat pipe 50 (or the second heat pipe 60). The bottom surface of the heat absorption section 221 of the heat conductor 22 is in contact with the substrate 70. The heat dissipating fins extending from the heat conductor 22 have the same width as the heat conductor 22. The heat dissipation fins include a first fin set 241, a second fin set 242, a third fin set 243, a fourth fin set 244, a fifth fin set 245, and a sixth fin set 246. The first fin group 241 is formed by vertically extending from the top surface of the heat-absorbing portion 221 of the heat conductor 22, and the second fin group 242 is vertically extended downward from the bottom surface of the first heat-dissipating portion 224, and The second fin set 242 extends downward into the first fin set 241. The third fin set 243 is formed by vertically extending from the top surface of the first heat release section 224, and the fourth fin set 244 is vertically upwardly extended from the top surface of the second heat release section 225. The first, second, third, and fourth fin groups 241, 242, 243, and 244 are parallel to each other. The fifth and sixth fin sets 245 and 246 are horizontally extended from the outer surfaces of the first and second heat transfer sections 222 and 223 outwardly (that is, respectively toward the front and rear ends of the heat conductor 20) 201011506. The fifth fin set 245 extends in the same direction as the second heat release section 225, and the sixth fin set 246 extends in the same direction as the first heat release section 224. The fifth and sixth fin sets 245, 246 are parallel to each other and perpendicular to the first, second, third, and fourth fin sets 241, 242, 243, 244. The second heat sink 30 is similar in structure to the first heat sink 20. It also includes a G-shaped heat conductor 32 and a plurality of heat radiating fins extending from the heat conductor 32. The only difference is that the heat conductor 32 of the second heat sink 30 and its heat dissipation fins have a smaller width than the heat conductor 22 of the first heat sink 20 and its heat sink fins. Therefore, the structure of the second heat sink 30 will not be described in detail. Referring to FIG. 2 again, after the heat dissipating device is assembled, the first heat pipe 50 is sandwiched between the heat conductors 22 and 32 of the first and second heat sinks 20 and 30, and the evaporation section 51 and the first and second heat sinks are disposed. The heat absorption sections 221 of the heat conductors 22 and 32 of 20 and 30 are attached, and the first and second intermediate sections 52 and 53 are bonded to the first and second heat transfer sections 222 and 223 of the heat conductors 22 and 32, respectively. 1. The second condensation sections 54, 55 are in contact with the first and second heat release sections 224, 224 of the heat conductors 22, 32. The second heat pipe 60 is interposed between the heat conductors 32, 22 of the second and third heat sinks 30, 40. The heat absorption sections 221 of the heat conductors 22, 32 of the first, second, and third heat sinks 20, 30, 40 are attached to the substrate 70 together with the evaporation sections 51 of the first and second heat pipes 50, 60 to the electronic components. The heat transferred to the substrate 70 is dissipated. The heat sink has a large contact area with the heat pipe and has a stable heat dissipation effect. In addition, the heat sink is simple to manufacture, and the assembly of the entire heat sink is convenient, so that the manufacturing cost of the entire heat sink is low. It can be understood that the width 9 201011506 of the second heat sink 30 in the above heat dissipating device can also be the same as that of the first heat sink 20. At the same time, the number of heat sinks and heat pipes can also vary depending on the number of electronic components or the need for heat dissipation. For example, when there are two or more electronic components, more heat pipes and heat sinks can be provided to assemble the partitions. In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded view of a preferred embodiment of a heat sink according to the present invention. 2 is a combination diagram of the heat sink device of FIG. 1. [Main component symbol description] Electronic component 10 First heat sink 20 Thermal conductor 22, 32 Heat absorption section 221 First heat transfer section 222 Second heat transfer section 223 First heat release section 224 Second heat release section 225 First fin set 241 Second fin set 242 third fin set 243 fourth fin set 244 fifth fin set 245 sixth fin set 246 second heat sink 30 third heat sink 40 first heat pipe 50 evaporation section 51 first middle Section 52 second intermediate section 53 first condensation section 54 second condensation section 55 201011506 second heat pipe 60 substrate 70
φ 11Φ 11