TW201003074A - Acceleration sensor device and sensor network system - Google Patents

Acceleration sensor device and sensor network system Download PDF

Info

Publication number
TW201003074A
TW201003074A TW098110412A TW98110412A TW201003074A TW 201003074 A TW201003074 A TW 201003074A TW 098110412 A TW098110412 A TW 098110412A TW 98110412 A TW98110412 A TW 98110412A TW 201003074 A TW201003074 A TW 201003074A
Authority
TW
Taiwan
Prior art keywords
acceleration
vibration
acceleration sensor
voltage
abnormal
Prior art date
Application number
TW098110412A
Other languages
Chinese (zh)
Other versions
TWI453416B (en
Inventor
Yoshiki Hamatani
Yoshitomi Morizawa
Tetsuya Yanoshita
Koji Ikawa
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of TW201003074A publication Critical patent/TW201003074A/en
Application granted granted Critical
Publication of TWI453416B publication Critical patent/TWI453416B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Provided are an acceleration sensor having a configuration in which the consumption of power to be consumed can be reduced and the sensor itself can be miniaturized without using any piezoelectric sensor or piezoelectric bimorph and a sensor network system. An acceleration sensor device configured from a conductor and an electret which moves relatively to the conductor and provided with the acceleration sensor which is an electrostatic induction-type conversion device for converting electric energy into kinetic energy comprises an acceleration detection section for detecting a signal in accordance with acceleration from the AC voltage outputted by the acceleration sensor, a rectification section for rectifying the AC voltage, and a power supply circuit which includes a battery for operating circuits in the device and charges the battery with a rectified DC voltage as electric energy.

Description

201003074 六、發明說明: ί:發明戶斤屬之技術領域3 發明領域 本發明係有關於一種使用靜電感應型加速度感測器之 加速度感測器裝置及使用該加速度感測器裝置之感測器網 路系統,該靜電感應型加速度感測器係進行動能與電能之 轉換的靜電感應型元件’且具有相對導體相對變位之駐極 體者。 I[先前技冬好;3 發明背景 習知,檢測加速度之加速度感測器,係將搭載有缺碼 之壓電元件安裝於金屬製箱體底部,利用由外部施加之加 速度使砝碼產生慣性力。藉此,利用砝碼之慣性力對壓電 — 元件賦予應力,並根據壓電元件因該賦予之應力所發生之 電壓值,將電壓值換算為加速度來測量加速度(請參考例 如專利文獻1)。 又,也已製造出多軸加速度感測器(請參考例如專利 文獻2 ),係將上述加速度感測器之搭載有砝碼之壓電元 件,分別配置成與欲檢測之加速度方向直行,使其可檢測 出三次元方向x、y、z所有方向之加速度。 上述加速度感測器係使用所謂壓電雙壓電晶片,該壓 電雙壓電晶片係將已使兩面附著具有導電性之金屬膜金屬 化的矩形壓電陶瓷板,在各自之平面相對向的情形下,直 接或透過金屬板加以貼合者。 201003074 將該壓電雙壓電晶片之長度方向端部的其中一端固定 一框架等,並使另一端成自由端。 在該狀態下,對壓電雙壓電晶片之厚度方向(與作為 壓電陶瓷板之主面的平面垂直之方向)施加加速度時,壓 電雙壓電晶片會撓曲,於壓電雙壓電晶片兩侧之電極產生 對應該撓曲量之電壓。接著,根據該電壓之電壓值大小, 檢測已施加於壓電雙壓電晶片之加速度。 製造搭載於電路基板之加速度感測器,使朝上述壓電 雙壓電晶片之主面方向垂直相交的2方向安裝之構成(請參 考例如專利文獻3)、或單一壓電雙壓電晶片等感測器元件 朝向任意方向。藉組合複數個前述加速度感測器,可檢測 各種方向之加速度(請參考例如專利文獻4)。 再者,藉施加之加速度,使用與對向電極之位置相對 地變化之慣性質量板,根據對應該慣性質量板之位置變化 (即對向電極與慣性質量板間之靜電容量變化),檢測已施 加於慣性質量板之加速度(請參考例如專利文獻5)。 另一方面,近年來所謂無線感測器網路已受到注目, 其係利用無線通訊技術將分散配置於複數場所之感測器相 互連接者。 上述無線網路系統中,感測器節點已藉無線而網路 化,該感測器節點係組合有將各感測器檢測之物理量轉換 為電性訊號之感測器電路、及具有資料儲存或診斷功能、 傳送接收功能之無線電路。 利用該無線網路提供的拓撲或網路控制功能、安全功 201003074 月匕可幸工易地建構極大規模且廣範圍的感測系統。 定二:無線網路系統可利用於大規模化學工礙之設 預測等。橋或水"^構糾之縣、或山騎方之 ’’’、、泉❼1111網路係利用其便利性、擴紐、對於s 架設網路之場所的架設容易性等無線之特質。、難Μ 電源故因!對=各感測=點’無法由外部以有線供給 '、 4又各感測杰節點必須内藏電池來作Α 4 部電路等功能動作之電力源。 為使内 —也2從用途來考量,感測器節點之設置場所多為交換 t困難之處’因此電池之長效化為一課題。 、 故’低消耗電力化的其中—手段,係彻無線 =來進行通訊時序之控制(請參考例如非專心 又,其它低消耗電力化之方法有利用感測器電/ i 感叫或對無線通訊之時序等進行彈性《間歇動作^ (請參考例如專利文獻6)。 a制等 專利文獻1:曰本專利特開昭料―4!865號公報 專利文獻2:日本專利實開平! —U2468號公報 專利文獻3 :日本專利特開平3-^6375號公報 專利文獻4:曰本專利特開平⑽一^川2號公報 專利文獻5 :曰本專利特開2〇〇7一 Μ3。s號公報 專利文獻6 :日本專利特開2〇〇8 一 284"號公報 非專利文獻1:「二匕、年夕又感測器網路〇実現匕向叶τ 5 201003074 最終報告」之第3章「二匕'年夕只感測器網路❼将来匕3 >」, http://www.soumu.go_jp/s-news/2004/040806—4一b2.html,總 務省、平成16年7月( 2008年3月6日存取) I:發明内容】 發明揭示 發明欲解決之課題 惟,為了確實且迅速地檢測異常震動,必須將檢測該 異常震動所施加之加速度的感測器經常維持在動作狀態。 故,上述無線感測器網路之各感測器節點的内部電路會因 經常消耗之電力量而使用内藏之電池電力。該電力消耗係 控制為了延長感測器節點所内藏之電池壽命的低消耗電力 化。 又,上述加速度感測器本身,由於使用了壓電感測器、 壓電雙壓電晶片之感測器為了將加速度作為慣性力加以檢 測,因此需要砝碼,而有無法將感測器小型化之缺點。 再者,使用上述慣性質量板之感測器時,必須預先對 慣性質量板及對向電極間施加電位^因此會導致感測器構 造複雜。 有鑑於此,本發明之目的在於提供一種加速度感測器 及感測器網路系統,係可使消耗之消耗電力降低,且在不 使用上述壓電感測器、壓電雙壓電晶片的情形下,使感測 器本身小型化者。 用以解決課題之手段 本發明之加速度感測器裝置,係具有加速度感測器 201003074 者’該加速度感測器(例如實施形態之加速度感測器1)由 導體(例如實施形態之電極12、13)與相對該導體運動之 駐極體(例如實施形態之駐極體11)構成,為一可轉換電 能與動能之靜電感應型轉換元件,且該加速度感測器裴置 包含有:加速度檢測部(例如實施形態之比較器5及檢测部 7 )’係由前述加速度感測器輸出之交流電壓來檢測對應加 速度之訊號者;整流部(例如本實施形態之整流部2),係 將前述交流電壓加以整流者;及,電源電路,係具有使裝 置内之電路動作的電池(例如本實施形態之電源部3),並 可將經整流之直流電壓作為電能而對前述電池充電者。 本發明之加速度感測器裝置具有 (例如實施形態之比㈣5),該異常震動檢測電路將前述 加速度檢測部預設之臨界值電壓,與由前述加速度感測器 輸出且經整流之電壓的電璧值加以比較後,於超過前述臨 界值電壓時,輸出一通知異常之異常訊號。201003074 VI. Description of the invention: ί: Technical field of inventions 3 FIELD OF THE INVENTION The present invention relates to an acceleration sensor device using an electrostatic induction type acceleration sensor and a sensor network using the same In the road system, the electrostatic induction type acceleration sensor is an electrostatic induction type element that performs conversion of kinetic energy and electric energy and has an electret relative to the relative displacement of the conductor. I [Previous technology winter; 3 BACKGROUND OF THE INVENTION It is known that an acceleration sensor for detecting acceleration is to mount a piezoelectric element equipped with a missing code on the bottom of a metal case, and to generate an inertia by using an externally applied acceleration. force. In this way, the piezoelectric element is stressed by the inertial force of the weight, and the acceleration is measured by converting the voltage value into an acceleration based on the voltage value generated by the piezoelectric element due to the stress applied thereto (refer to, for example, Patent Document 1). . Further, a multi-axis acceleration sensor (see, for example, Patent Document 2) has been manufactured, and the piezoelectric elements on which the weight sensors are mounted are arranged to be aligned with the acceleration direction to be detected. It can detect the acceleration in all directions of the three-dimensional direction x, y, z. The above-described acceleration sensor uses a so-called piezoelectric bimorph, which is a rectangular piezoelectric ceramic plate in which a metal film having conductivity on both sides is adhered, and is opposed to each other in a plane. In this case, the person who fits directly or through a metal plate. 201003074 One end of the end portion of the piezoelectric bimorph in the longitudinal direction is fixed to a frame or the like, and the other end is a free end. In this state, when an acceleration is applied to the thickness direction of the piezoelectric bimorph (the direction perpendicular to the plane which is the principal surface of the piezoelectric ceramic plate), the piezoelectric bimorph bends, and the piezoelectric double pressure is applied. The electrodes on either side of the wafer produce a voltage corresponding to the amount of deflection. Next, the acceleration applied to the piezoelectric bimorph is detected based on the magnitude of the voltage of the voltage. An acceleration sensor mounted on a circuit board is mounted in a direction in which the principal surface of the piezoelectric bimorph is perpendicularly intersected in two directions (see, for example, Patent Document 3), or a single piezoelectric bimorph. The sensor elements are oriented in any direction. By combining a plurality of the aforementioned acceleration sensors, acceleration in various directions can be detected (refer to, for example, Patent Document 4). Furthermore, by the applied acceleration, the inertial mass plate that changes relative to the position of the counter electrode is used to detect the change in the position of the corresponding inertial mass plate (ie, the change in electrostatic capacitance between the counter electrode and the inertial mass plate). The acceleration applied to the inertial mass plate (refer to, for example, Patent Document 5). On the other hand, in recent years, the so-called wireless sensor network has been attracting attention, and it is a wireless communication technology that uses sensors integrated in a plurality of places to connect with each other. In the above wireless network system, the sensor node has been wirelessly networked, and the sensor node is combined with a sensor circuit for converting the physical quantity detected by each sensor into an electrical signal, and has data storage. Or a diagnostic function, a wireless circuit that transmits and receives functions. Utilizing the topology or network control functions and security functions provided by the wireless network 201003074 can successfully build a very large and wide range of sensing systems. Ding 2: Wireless network systems can be used for forecasting large-scale chemical work. Bridge or water "^Construction of the county, or the mountain rider's ‘’’, and the Izumi 1111 network are wireless features such as convenience, expansion, and ease of erection of the s network. It is difficult to make power supply cause! Pair = each sensing = point 'cannot be supplied by cable from the outside', 4 and each sensory node must have a built-in battery for power operation such as 4 circuits. In order to make the inner-to-two consideration from the use, the installation place of the sensor node is often difficult to exchange t. Therefore, the long-term effect of the battery is a problem. Therefore, the means of 'low power consumption' is based on wireless = to control the communication timing (please refer to, for example, non-attentive, other methods of low power consumption have to use sensor power / i feel or wireless The timing of communication, etc., is flexible. "Intermittent operation ^ (refer to, for example, Patent Document 6). Patent Document 1: Patent Document 1: Patent Publication No. 4: 865 Patent Document 2: Japanese Patent Real Open! - U2468 Patent Document 3: Japanese Patent Laid-Open No. Hei 3-^6375 Patent Document 4: Japanese Patent Laid-Open Patent Publication No. Hei No. 2 No. 2 Patent Publication No. 5: Patent Application No. 2〇〇7Μ3.s STATEMENT Patent Document 6: Japanese Patent Laid-Open No. 2-8-284" Bulletin Non-Patent Document 1: Chapter 2 of "Second, New Year's Eve, Sensor Network, Presenting to the Leaf τ 5 201003074 Final Report" "Two 匕's only the sensor network will be 匕3 >", http://www.soumu.go_jp/s-news/2004/040806-4 a b2.html, Ministry of Internal Affairs and Communications, Heisei 16 July (accessed on March 6, 2008) I: Inventive content] The invention reveals the problem to be solved by the invention. And the abnormal vibration is detected quickly, and the sensor for detecting the acceleration applied by the abnormal vibration must be maintained in an active state. Therefore, the internal circuits of the sensor nodes of the wireless sensor network are often consumed. The built-in battery power is used for the amount of power. This power consumption controls the low power consumption in order to extend the battery life built in the sensor node. Moreover, the above-mentioned acceleration sensor itself uses a piezoelectric inductor, In order to detect acceleration as an inertial force, a piezoelectric bimorph sensor requires a weight, and has a disadvantage that the sensor cannot be miniaturized. Further, when the sensor of the inertial mass plate is used, It is necessary to apply a potential between the inertial mass plate and the counter electrode in advance, which may result in a complicated sensor structure. In view of the above, it is an object of the present invention to provide an acceleration sensor and a sensor network system that can consume The power consumption is reduced, and the sensor itself is miniaturized without using the above-described piezoelectric inductor or piezoelectric bimorph. The subject of the present invention is an acceleration sensor device having an acceleration sensor 201003074. The acceleration sensor (for example, the acceleration sensor 1 of the embodiment) is composed of a conductor (for example, the electrodes 12, 13 of the embodiment). The electret that moves relative to the conductor (for example, the electret 11 of the embodiment) is an electrostatic induction type conversion element that converts electrical energy and kinetic energy, and the acceleration sensor device includes: an acceleration detecting unit (for example, implementation) The comparator 5 and the detecting unit 7)' detect the signal corresponding to the acceleration by the AC voltage outputted by the acceleration sensor, and the rectifying unit (for example, the rectifying unit 2 of the embodiment) applies the AC voltage. The power supply circuit has a battery (for example, the power supply unit 3 of the present embodiment) that operates the circuit in the device, and can charge the battery by using the rectified DC voltage as electric energy. The acceleration sensor device of the present invention has (for example, the ratio (4) 5 of the embodiment), the abnormal vibration detecting circuit sets the threshold voltage preset by the acceleration detecting portion and the voltage of the rectified voltage output by the acceleration sensor. After the threshold value is compared, when the threshold voltage is exceeded, an abnormal signal for notifying the abnormality is output.

本發明之加速度感測器裝置更具有一記錄電路,士卜 錄電路係前述加速度檢測部以異常震動作為觸發,根= ^異常震減測電路輸出之㈣異常訊號而啟動’開^ 錄對應前述加速度之訊號,並於職之㈣ ^ 本發明之加速度感測器裝置更呈 不。ύ綠。 ^ 5己錄電路,i a 錄電路係前述加速度檢測部以異常震動作 5 ^己 述異常震動檢測電路輸出之前述異常訊號^ ,根據前 錄對應前遂加速度之訊號,|,前述異常^啟動’開始記 測異常震動之結束,並輸出異常震:7檢測電路檢 ’且根據前 201003074 述異常震動結束訊號停止記錄對應前述加速度之訊號。 本發明之加速度檢測器裝置更具有判定部,該判定部 針對前述異常震動是否為應記錄之震動,將由頻率與對應 頻率之頻譜強度構成的預設之參考震動圖形,和由對應前 述加速度之訊號的頻率與對應頻率之頻譜強度構成之對象 震動圖形加以比較後,根據該比較結果判斷是否記錄對應 前述加速度之訊號。 本發明之加速度檢測器裝置,其中前述判定部具有一 設定範圍,該設定範圍係由前述參考震動圖形之各頻率與 頻率之頻譜強度求得,且依各頻率具有頻譜強度之上限值 及下限值者,又,前述判定部根據前述對象震動圖形之各 頻率的頻譜強度是否包含於前述設定範圍之比較結果,判 定是否記錄對應前述加速度之訊號。 本發明之加速度檢測器裝置中,前述判定部係於預設 之各時間寬度進行傅立葉轉換,該傅立葉轉換係求取與前 述加速度對應之震動的頻率與對應該頻率之頻譜強度者。 本發明之加速度檢測器裝置中,前述加速度檢測部將 與由異常訊號開始到異常結束為止之前述加速度對應的震 動之電壓值記憶於内部,而前述判定部則依每一前述時間 寬度,依序依對應前述時間寬度之各時刻範圍來讀取與前 述加速度對應之震動的電壓之電壓值,並進行傅立葉轉換 來生成對象震動圖形。 本發明之加速度檢測器装置中,預設於前述判定部之 設定範圍係由參考震動圖形生成,該參考震動圖形係起因 201003074 於已在預設期間取得之環境中之外部干擾震動。 本發明之加速度檢測器裝置中,前述異常震動檢測電 路檢測異常震動之結束,並輸出異常震動結束訊號,而前 述記錄電路則根據前述異常震動結束訊號,停止記錄與前 述加速度對應之訊號。 本發明之加速度檢測器裝置中,前述加速度感測器之 前述駐極體之材料由有機材料構成。 本發明之加速度檢測器裝置中,前述加速度感測器之 前述駐極體之材料至少包含1種環烯烴聚合物。 本發明之加速度檢測器裝置中,前述加速度感測器之 前述駐極體之材料由敦系聚合物構成。 本發明之加速度檢測器裝置中,前述加速度感測器之 前述駐極體之材料由主鏈具有含氟脂肪族環構造的聚合物 構成。 本發明之加速度檢測器裝置中,前述記錄電路更具有 檢測前述加速度之數值的數值檢測用加速度感測器。 本發明之加速度檢測器裝置中,前述數值檢測用加速 度感測器較前述加速度感測器之精確度高。 本發明之無線感測器網路,係具有複數感測器節點及 收集該檢測器節點所檢測出之資料的資料收集伺服器; 且,至少包含上述其中1個加速度感測器裝置組入無線通訊 功能之感測器節點。 本發明之大範圍異常震動記錄系統,係使用上述無線 感測器網路,將前述感測器節點作為上述其中1個加速度感 201003074 測器裝置,記錄複數地點之異常震動者。 發明之效果 如以上所說明,依據本發明,藉使用具有與導體相對 運動之駐極體的加速度感測器(為一可轉換電能與動能之 靜電感應型轉換元件),可用單純之構造來實現各種方向之 加速度檢測。 又,依據本發明,利用由上述加速度感測器輸出且對 應施加之加速度輸出的電訊號來檢測該加速度,並藉該電 訊號進行發電後,將獲得之電能充電於電池並活用為本身 各電路之驅動電力,藉此可較習知延長電池壽命。 又,依據本發明,由於只有在以駐極體所構成之加速 度感測器檢測出異常震動時,即只有在必須檢測加速度值 時,啟動記錄電路,因此可在不追加會影響電池壽命之電 路方塊的情形下,進行檢測消耗電池電力之加速度數值的 記錄電路及控制内部電路之控制部(CPU等)的間歇動作 控制,而可經常維持感測狀態而較電池之習知例實現長效 化。 圖式簡單說明 第1圖係顯示本發明第1實施形態之加速度感測器裝置 的構成例之方塊圖。 第2圖係說明本發明第1及第2實施形態之加速度感測 器1構造,由側面觀看加速度感測器1之概念圖。 第3圖係顯示第1圖之整流部2的電路構成例之概念圖。 第4圖係顯示第1圖之轉換電路4的電路構成例之概念 10 201003074 圖 第5圖係顯示加速度感測器1輪出 形圖。 之輪出電壓波形的波 圖。 第6圖係顯示轉換電路4輪出之輪出電壓波形的波形 例之流程圖。 第7圖係顯示比較器5輸出之輪出電壓«的㈣圖。 弟8圖係顯不第1施形態之加迷度感測器裝置的動作 器裝置 第9圖係顯示本發明第2實施形態之加速度感測 的構成例之方塊圖。 圖 圖。 第10圖係顯示第9®之_電路9的電路構成例之概念 第11圖係顯示限制電路9輸出之輸出電壓波形的波形 第12圖係顯示比較器5輸出之輸出電壓波形的波形圖。 第13圖係顯示控制部6之常態震動及異常震動各期間 的消耗電力控制所產生之消耗電力狀態的波形圖。 第14圖係顯不第9圖實施形態之加速度感測器裝置的 變形例之方塊圖。 第15圖係說明第14圖之加速度感測器裝置的動作之概 念圖。 第16圖係顯示第14圖所示之加速度感測器裝置的動作 例之流程圖。 第17圖係顯示藉第1及第2實施形態之加速度感測器裝 201003074 置來測量2次元震動之加速度感測器配置的概念圖。 第18圖係顯示藉第1及第2實施形態之加速度感測器裝 置來測量2次元震動之加速度感測器配置的概念圖。 第19圖係顯示藉第1及第2實施形態之加速度感測器裝 置來測量3次元震動之加速度感測器配置的概念圖。 第20圖係顯示使用了第1及第2實施形態之加速度感測 器裝置的無線感測器網路系統之概念圖。 I:實施方式3 較佳實施例之詳細說明 第1實施形態 以下,參考圖式來說明本發明第1實施形態之加速度感 測器裝置。第1圖係顯示同實施形態之加速度感測器裝置構 成例的方塊圖。 該圖中,本實施形態之加速度感測器裝置具有加速度 感測器1、整流部2、電源部3、轉換電路4、比較器5、控制 部6、檢測部7及記錄部8。在此,由電源部3對各部供給動 作電源Vdd。 第2圖係由側面觀看加速度感測器1之概念圖。上述加 速度感測器1為將動能轉換為電能之靜電感應型轉換元 件,導電體之電極板12及13配置成分別與板平面平行且分 開呈相對向。又,該相對向之空間中,板狀駐極體11同樣 地配置成與電極板12及13各自之板平面平行。 在此,電極板12及13的其中一者係固定於未圖示之平 行運動機構,以使與駐極體11相對向之至少一電極板(即 12 201003074 電極板12或13的其中一者)可朝箭頭R方向(電極板之平面 部相對駐極體11之平面部平行移動之方向)相對於駐極體 11而相對地運動。此時,駐極體11亦可固定於其中一電極 板。 第2圖中,舉例言之,駐極體11係以下部平面lib固定 於電極板12之上部平面12a,並配置成上部平面11a與電極 板13之下部平面13b相對向。在此,電極板12及13係透過電 阻14連接。 該電阻為14表示連接於加速度感測器1之次段以後的 負載電阻。 又,駐極體11係對絕緣材料注入電荷(第2圖中為負電 荷)而形成。對駐極體11注入電荷,可使用諸如液體接觸、 電暈放電、電子束、背光閘流管等眾所皆知的方法。 藉上述構成,可使電極板13相對駐極體11朝箭頭R方向 相對地運動。在此,乃構造成電極板13與駐極體11相對向 之面可分別平行移動。且,藉利用該相對運動注入於駐極 體11之電荷(第2圖為負電荷),對於電極板13,與注入於 駐極體11之電荷極性相反的電荷(第2圖為正電荷)會受到 靜電感應。結果,和電極板13與駐極體11之相對運動距離 成比例之電流會流到電阻14。藉電阻14流通電流,在電阻 14之端子間,會因該電阻14的電阻值與流通之電流的電流 值產生電壓。藉此,本實施形態之加速度感測器可作為靜 電感應型轉換元件之sansa,而可將對應加速度平行移動之 動能轉換為電能之電壓值,並將該電壓值作為檢測結果加 13 201003074 以輸出。 接著,如第3圖所示,第丨圖之整流部2由二極體 D4構成之二極體橋接器、設於該二極體橋接器之輸出端子 T5與T6間之平滑用電容器Ch所構成。 整流部2之輸入端子T3及T4分別連接於加速度感測器t 之輸出端子ΤΙ、T2。 ° 藉此,整流部2將由加速度感測器丨輸入之與相對駐極 體11之電極板13之相對運動距離對應,即與施加於電極板 3之加速度對應之交流電壓加以整流,且平滑化為直流電 壓後,輸出至電源部3。 回到第1圖,電源部3於内部具有電池(二次電池),對 轉換電路4、比較器5、控制部6、檢測部7及記錄部8供給各 電路消耗之驅動電力。又,電源部3具有充電電路,將由整 机部2供給之直流電壓轉換為適於對電池之充電的電壓 作為電能對上述電池充電。故,加速度感測以之駐極 敌U可將判定為正常之加速度所產生的交流電壓之電壓值 加以調整,以作為可獲得足以對—般電池充電之直流電壓 的敖值而輸出。 爪 如第4圖所示,轉換電路4依電阻R1 (電阻值η)及 (電阻值1*2)將由整流部2輸人之直流電壓的電壓%分界, 將分壓電壓Vs設為, 土The acceleration sensor device of the present invention further has a recording circuit, wherein the acceleration detection unit uses the abnormal vibration as a trigger, and the root=^ abnormal vibration reduction circuit outputs the (four) abnormal signal to activate the 'opening record corresponding to the foregoing The signal of acceleration, and the service (4) ^ The acceleration sensor device of the present invention is more not. Green. ^ 5 recorded circuit, ia recording circuit is the above-mentioned abnormal signal ^ which is output by the abnormal vibration detecting circuit by the above-mentioned acceleration detecting unit. According to the pre-recorded corresponding front acceleration signal, |, the aforementioned abnormal ^ start ' Start recording the end of the abnormal vibration and output an abnormal vibration: 7 detection circuit check ' and stop recording the signal corresponding to the acceleration according to the abnormal vibration end signal of 201003074. The acceleration detector device of the present invention further includes a determination unit that determines whether the abnormal vibration is a vibration to be recorded, a predetermined reference vibration pattern composed of a frequency and a spectral intensity of the corresponding frequency, and a signal corresponding to the acceleration The frequency is compared with the target vibration pattern formed by the spectral intensity of the corresponding frequency, and based on the comparison result, it is determined whether or not the signal corresponding to the acceleration is recorded. In the acceleration detector device of the present invention, the determining unit has a setting range which is obtained by the spectral intensity of each frequency and frequency of the reference vibration pattern, and has a spectral intensity upper limit and a lower frequency according to each frequency. In addition, the determination unit determines whether or not to record a signal corresponding to the acceleration based on whether or not the spectral intensity of each frequency of the target vibration pattern is included in the comparison range. In the acceleration detector device of the present invention, the determination unit performs Fourier transform on a predetermined time width, and the Fourier transform determines the frequency of the vibration corresponding to the acceleration and the spectral intensity of the corresponding frequency. In the acceleration detector device of the present invention, the acceleration detecting unit memorizes a voltage value of a shock corresponding to the acceleration from the start of the abnormal signal to the abnormal end, and the determining unit sequentially follows each of the time widths. The voltage value of the voltage of the vibration corresponding to the acceleration is read in accordance with each time range corresponding to the aforementioned time width, and Fourier transform is performed to generate a target vibration pattern. In the acceleration detector device of the present invention, the setting range preset by the determining unit is generated by a reference vibration pattern which is caused by external disturbance vibration in the environment which has been acquired in the preset period by 201003074. In the acceleration detector device of the present invention, the abnormal vibration detecting circuit detects the end of the abnormal vibration and outputs an abnormal vibration end signal, and the recording circuit stops recording the signal corresponding to the acceleration according to the abnormal vibration end signal. In the acceleration detector device of the present invention, the material of the electret of the acceleration sensor is made of an organic material. In the acceleration detector device of the present invention, the material of the electret of the acceleration sensor includes at least one cycloolefin polymer. In the acceleration detector device of the present invention, the material of the electret of the acceleration sensor is made of a terpene polymer. In the acceleration detector device of the present invention, the material of the electret of the acceleration sensor is composed of a polymer having a fluorine-containing aliphatic ring structure in its main chain. In the acceleration detector device of the present invention, the recording circuit further includes a value detecting acceleration sensor that detects the value of the acceleration. In the acceleration detector device of the present invention, the numerical value detecting acceleration sensor is higher in accuracy than the acceleration sensor. The wireless sensor network of the present invention has a plurality of sensor nodes and a data collection server that collects data detected by the detector node; and at least one of the acceleration sensor devices is incorporated into the wireless device. Sensor node for communication functions. In the wide-range abnormal vibration recording system of the present invention, the sensor node is used as one of the above-described ones of the acceleration sensor 201003074, and the abnormal vibration of the plurality of locations is recorded. Advantageous Effects of Invention As described above, according to the present invention, by using an acceleration sensor having an electret relative to a conductor (an electrostatic induction type conversion element capable of converting electric energy and kinetic energy), various configurations can be realized. Acceleration detection of direction. Moreover, according to the present invention, the acceleration is outputted by the electrical signal outputted by the acceleration sensor and corresponding to the applied acceleration, and after the electric power is generated by the electrical signal, the obtained electric energy is charged to the battery and utilized as its own circuit. The driving power can be used to extend battery life. Moreover, according to the present invention, since the abnormality vibration is detected only by the acceleration sensor formed of the electret, that is, only when the acceleration value must be detected, the recording circuit is activated, so that the circuit which affects the battery life can be added. In the case of the block, the recording circuit for detecting the acceleration value of the battery power and the intermittent operation control of the control unit (CPU or the like) for controlling the internal circuit are used, and the sensing state can be constantly maintained to achieve a longer-lasting effect than the conventional example of the battery. . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a configuration example of an acceleration sensor device according to a first embodiment of the present invention. Fig. 2 is a conceptual view showing the structure of the acceleration sensor 1 according to the first and second embodiments of the present invention, and the acceleration sensor 1 is viewed from the side. Fig. 3 is a conceptual diagram showing an example of the circuit configuration of the rectifying unit 2 of Fig. 1. Fig. 4 is a view showing a circuit configuration example of the conversion circuit 4 of Fig. 1 10 201003074 Fig. 5 shows a one-wheel output diagram of the acceleration sensor. The wave pattern of the voltage waveform of the wheel. Fig. 6 is a flow chart showing an example of a waveform of a wheel voltage waveform which is rotated by the conversion circuit 4. Fig. 7 is a (fourth) diagram showing the output voltage « of the output of the comparator 5. Illustrated Fig. 9 is a block diagram showing an example of the configuration of the acceleration sensing according to the second embodiment of the present invention. Figure. Fig. 10 is a view showing a circuit configuration example of the circuit 9 of the ninth aspect. Fig. 11 is a waveform showing an output voltage waveform output from the limiting circuit 9. Fig. 12 is a waveform diagram showing an output voltage waveform output from the comparator 5. Fig. 13 is a waveform chart showing the state of power consumption by the power consumption control during the normal vibration and the abnormal vibration of the control unit 6. Fig. 14 is a block diagram showing a modification of the acceleration sensor device of the embodiment of Fig. 9. Fig. 15 is a conceptual view showing the operation of the acceleration sensor device of Fig. 14. Fig. 16 is a flow chart showing an example of the operation of the acceleration sensor device shown in Fig. 14. Fig. 17 is a conceptual diagram showing an arrangement of an acceleration sensor for measuring a 2-dimensional vibration by the acceleration sensor device 201003074 of the first and second embodiments. Fig. 18 is a conceptual diagram showing an arrangement of an acceleration sensor for measuring a 2-dimensional vibration by the acceleration sensor device of the first and second embodiments. Fig. 19 is a conceptual diagram showing an arrangement of an acceleration sensor for measuring a 3-dimensional vibration by the acceleration sensor device of the first and second embodiments. Fig. 20 is a conceptual diagram showing a wireless sensor network system using the acceleration sensor devices of the first and second embodiments. I. EMBODIMENT 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment Hereinafter, an acceleration sensor device according to a first embodiment of the present invention will be described with reference to the drawings. Fig. 1 is a block diagram showing an example of the configuration of an acceleration sensor device of the same embodiment. In the figure, the acceleration sensor device of the present embodiment includes an acceleration sensor 1, a rectifying unit 2, a power supply unit 3, a conversion circuit 4, a comparator 5, a control unit 6, a detecting unit 7, and a recording unit 8. Here, the power supply unit 3 supplies the operation power supply Vdd to each unit. Fig. 2 is a conceptual view of the acceleration sensor 1 viewed from the side. The acceleration sensor 1 is an electrostatic induction type conversion element that converts kinetic energy into electrical energy, and the electrode plates 12 and 13 of the conductor are arranged parallel to the plane of the plate and opposed to each other. Further, in the opposing space, the plate-like electret 11 is similarly arranged in parallel with the plate planes of the electrode plates 12 and 13, respectively. Here, one of the electrode plates 12 and 13 is fixed to a parallel motion mechanism (not shown) so that at least one electrode plate opposite to the electret 11 (ie, 12 201003074 one of the electrode plates 12 or 13) It is relatively movable with respect to the electret 11 in the direction of the arrow R (the direction in which the plane portion of the electrode plate moves in parallel with respect to the plane portion of the electret 11). At this time, the electret 11 can also be fixed to one of the electrode plates. In Fig. 2, for example, the electret 11 is fixed to the upper flat surface 12a of the electrode plate 12 by the lower plane lib, and is disposed such that the upper flat surface 11a faces the lower flat surface 13b of the electrode plate 13. Here, the electrode plates 12 and 13 are connected via a resistor 14. The resistance of 14 represents the load resistance after the second stage of the acceleration sensor 1. Further, the electret 11 is formed by injecting an electric charge (a negative charge in Fig. 2) into the insulating material. To inject electric charge into the electret 11, a well-known method such as liquid contact, corona discharge, electron beam, and backlight thyristor can be used. With the above configuration, the electrode plate 13 can be relatively moved in the direction of the arrow R with respect to the electret 11. Here, it is constructed such that the faces of the electrode plates 13 opposed to the electrets 11 can be moved in parallel, respectively. Further, by the electric charge injected into the electret 11 by the relative motion (the negative electric charge in FIG. 2), the electric charge to the electrode plate 13 is opposite to the electric charge injected into the electret 11 (Fig. 2 is a positive electric charge). Will be affected by static electricity. As a result, a current proportional to the relative movement distance of the electrode plate 13 and the electret 11 flows to the resistor 14. A current flows through the resistor 14, and a voltage is generated between the terminals of the resistor 14 due to the resistance value of the resistor 14 and the current value of the current flowing. Thereby, the acceleration sensor of the present embodiment can be used as a sansa of the static induction type conversion element, and the kinetic energy corresponding to the parallel movement of the acceleration can be converted into the voltage value of the electric energy, and the voltage value can be output as a detection result by adding 13 201003074. Next, as shown in FIG. 3, the rectifier unit 2 of the second diagram is a diode bridge composed of a diode D4, and a smoothing capacitor Ch provided between the output terminals T5 and T6 of the diode bridge. Composition. The input terminals T3 and T4 of the rectifying unit 2 are respectively connected to the output terminals ΤΙ and T2 of the acceleration sensor t. Thereby, the rectifying unit 2 corresponds to the relative movement distance input from the acceleration sensor 与 to the electrode plate 13 of the opposite electret 11, that is, the AC voltage corresponding to the acceleration applied to the electrode plate 3 is rectified, and smoothed. After being a DC voltage, it is output to the power supply unit 3. Referring back to Fig. 1, the power supply unit 3 has a battery (secondary battery) therein, and supplies the drive power consumed by each circuit to the converter circuit 4, the comparator 5, the control unit 6, the detecting unit 7, and the recording unit 8. Further, the power supply unit 3 has a charging circuit for converting the DC voltage supplied from the entire unit 2 into a voltage suitable for charging the battery, and charging the battery as electric energy. Therefore, the acceleration sensing can be adjusted by the electret U to adjust the voltage value of the AC voltage generated by the normal acceleration to be output as a threshold value sufficient to obtain a DC voltage for charging the battery. Claw As shown in Fig. 4, the conversion circuit 4 divides the voltage % of the DC voltage input from the rectifying unit 2 by the resistance R1 (resistance value η) and (resistance value 1*2), and sets the divided voltage Vs to

Vs = Vax {r2/ (rl + r2)} 阻並利用由運算放大器〇ρι構成之電壓隨動器電路,進行 阻杬轉換並輸出。又,電阻R1及R2相對加速度感測器丨之 14 201003074 輸出阻抗而設定為高電阻,可將加速度感測器1所產生的交 ;1堅作為高電壓輸出,因此用於充電之電能可有效率地 供给至電源電路3。 比較器5比較由轉換電路4輸入之分壓電壓¥8與預設之 6又又電壓Vt (臨界值)。該比較結果中,比較器5在分壓電 壓Vs為設定電壓%以下時,將異常訊號以「^」位準 〜之加速度)輸出,而當分壓電壓Vs超過設定電壓vt時, f ; 將異常訊號以「Η」位準(異常範圍之加速度)輸出。上述 :定電壓Vt係利用可變電阻之分壓電路等所構成的設定電 壓4成電路(未圖示)來變更視為異常之加速度大小時, 可對應轉換電路4之分壓比調整而任意變更。 - 當由比較器5輸出之異常訊號自「L」位準改變為「η」 位準時’即’檢測出異常加速度(例如因異常速度之變化 、乂的展動而對電極板施加之加速度)時,控制部6使檢 測#7及記錄部8啟動。另一方面,異常訊號由「h」位準改 ‘、、、 L」位準時,即,檢測出正常加速度時,控制部6輸 出。己錄結束訊號,使檢測部7及記錄部8停止。 或者,可構造成當異常訊號由「L」位準改變為「η」 4準並使各電路呈驅動狀態後,在經過預設之測定時間 ,彳^制°卩6輪出記錄結束訊號’使檢測部7及記錄部8停止。Vs = Vax {r2/ (rl + r2)} The voltage follower circuit composed of the operational amplifier 〇ρι is used for resistance conversion and output. Moreover, the resistors R1 and R2 are set to a high resistance with respect to the output impedance of the acceleration sensor 2010 14 201003074, and the intersection generated by the acceleration sensor 1 can be used as a high voltage output, so that the electric energy for charging can be It is efficiently supplied to the power supply circuit 3. The comparator 5 compares the divided voltage ¥8 input from the conversion circuit 4 with the preset voltage and Vt (critical value). In the comparison result, the comparator 5 outputs the abnormal signal at an acceleration of "^" level when the divided voltage Vs is equal to or less than the set voltage, and when the divided voltage Vs exceeds the set voltage vt, f; The abnormal signal is output at the "Η" level (acceleration of the abnormal range). When the constant voltage Vt is changed by the set voltage 4 formed by a voltage dividing circuit such as a varistor circuit (not shown) to change the magnitude of the acceleration which is regarded as abnormal, the voltage dividing ratio of the converter circuit 4 can be adjusted. Feel free to change. - When the abnormal signal output from the comparator 5 is changed from the "L" level to the "η" level, that is, 'abnormal acceleration is detected (for example, the acceleration applied to the electrode plate due to the change in the abnormal speed and the spread of the cymbal) At this time, the control unit 6 activates the detection #7 and the recording unit 8. On the other hand, when the abnormal signal is changed from the "h" position to the ‘, , L position, that is, when the normal acceleration is detected, the control unit 6 outputs. The end signal is recorded, and the detecting unit 7 and the recording unit 8 are stopped. Alternatively, it may be configured such that when the abnormal signal is changed from the "L" level to the "η" level and the circuits are driven, after a predetermined measurement time, the recording end signal is 卩^制6 The detecting unit 7 and the recording unit 8 are stopped.

在此’控制部6使用MPU等,將上述異常訊號輸入IRQ (中斷請求)端子。又,控制部6可構造成當本身也是異常 乂以「L」位準輪入時,呈停止狀態而不消耗上述電池之 電力 ( (輸入内部1RQ端子時啟動mp u之功能以外為停止狀 15 201003074 態),而當呈「Η」位準時則啟動。當對上述IRQ端子輸入 「H」位準之訊號時開始中斷處理,即控制部6呈啟動狀態。 檢測部7由A/D轉換器構成,可將類比值之分壓電壓 Vs的電壓值轉換為數位值,並將轉換結果之數位資料輸出 至記錄部8。 又,檢測部7構造成在由控制部6輸入啟動控制之訊號 前,不進行來自電源部3之電力供給。換言之,檢測部7通 常呈以切換機構切斷對A/D轉換器之電力供給的狀態,當 輸入啟動控制之訊號時,連接切換機構並進行電力供給。 另一方面,檢測部7當輸入記錄結束訊號時,使該切換機構 呈切斷狀態,停止對A/D轉換器之電力供給。 記錄部8與上述檢測部7同樣地,構造成以切換機構切 斷或連接對内部電路供給電力之路徑,以控制内部電路之 驅動。又,記錄部8具有以非依電性記憶體構成之記憶部, 當啟動時,由檢測部7將輸入時間系列之數位資料連同時間 資訊依序寫入上述附記發生記憶體,以記錄加速度資料。 換言之,記錄部8通常呈以切換機構切斷對内部電路之 電力供給的狀態。又,記錄部8當輸入啟動控制之訊號時, 連接切斷機構並進行電力供給。另一方面,記錄部8當輸入 記錄結束訊號時,使該切換機構呈切斷狀態,停止對A/D 轉換器之電力供給。 上述檢測部7及記錄部8中,使各切換機構動作之控制 電路係呈驅動狀態。 如上所述,依據本實施形態,可將駐極體11所形成之 16 201003074 加速度感測器1檢測出的異常震動作為觸發,啟動已停土之 檢測部7及記錄部8。另—方面,依據本實施形態,若異常 震動結束’可停止已啟動之檢測部7及記錄部8。故,依據 本實施形態’可只在需要取得加速度資料之期_動檢測 部7及記錄部8,並比較以—定間隔進行之間歇動作,而< 更減少檢測部7及記錄部8之動作時間比例,進行電他之長 效化。控制部6可使用A/^轉換器為内藏有足以記錄異常 訊號之記憶容量的記憶體之Mpu,藉此可進行電路簡化。 接著,以第5圖、第6圖、第7圖及第8圖說明第丄實施形 態之加速度感㈣器裝置動作。第5圖顯示與加速度感測器所 施加之加速度對應輸出的交流電壓,橫軸表示時刻,縱軸 表示加速度感測器1輸出之電壓值。第6圖顯示整流部2輸出 之直流電壓,杈軸顯不時刻,縱軸顯示直流電壓之電壓值。 第7圖顯不比較|§5之輸出(異常訊號),橫軸顯示時刻,,縱 軸顯不輸出電壓之電壓值。第8圖係顯示本實施形態之加速 度感測器裝置動作例的流程圖。 在自然地施加之震動(第5圖之常態震動範圍)中,也 會由加速度感測器1輪出足以發電之電壓。 第5圖所不的常態震動之時刻範圍中,由於由轉換電路 4輸出之分壓電壓Vs不超過常態震動時預設的設定電壓vt (臣品界值)’因此如第7圖所示,比較器5將異常訊號輸出一 表示常態震動而非異常之「L」位準(步驟S1)。 故,由於控制部6不進行本身的啟動,因此檢測部7及 記錄部8會維持停止狀態,呈控制電力雜之狀態。 17 201003074 為里ίϊ動如第7圖所示,比較器5針對異常訊號判斷是否 …:動而施加了較常態震動大的加速度(步職)。 換二=::::常震動,_, 幻。因此,如第= 频會超過預設之設定電壓 異常震較器5將異常訊號輸出-表示 將展動而施加了較常態震動大的加速度之 將處理前進至步驟S3。 」位旱亚 輸出= = :」位準’控制部6進行本身之啟動, 步驟S4)。 動檢測部7及記錄部8 (步驟83及 入之部7將由轉換電路4輸入且已將由整流部2輪 換,並二I:電壓心分壓之分壓電壓心進行A/D轉 —、工轉換之數位資料輸出至記錄部8。 之由錄部8將輸人之數位M按各日㈣記憶於内部 。己丨思體等構成之記憶部(步驟S5)。 j此,控制部8判斷由比㈣5輸人UfmM % S L」位準(步驟S6)。 動改雄著如第5圖所7^,比較器5根據震動模式由異常震 艾為常態震動,且轉換電路4輸出之分壓電壓化低於設 壓Vt,如第7圖所示,使異常訊號由異常震動之常態的 」位準改變為表示常態震動而非異常之「L」位準。 位準故’控制部6根據異常訊號由「H」位準改變為「L」 ,輸出記錄結束訊號並使檢測部7及記錄部8呈停止狀 -(步驟S?及歩驟S8),且本身也呈休眠狀態,呈已控制電 18 201003074 力消耗之狀態。 另一方面,控制部6在異常訊號變為「H j位準時,將 處理回到步驟S5。 又,控制部6計數異常訊號變為「Η」位準後,即本身 啟動後之時間。且,亦可使控制部6在經過該計數結果設定 之測定時間後,輸出記錄結束訊號,使檢測部7及記錄部8 停止。Here, the control unit 6 inputs the abnormal signal to the IRQ (interrupt request) terminal using an MPU or the like. Further, the control unit 6 can be configured to be in a stopped state without consuming the power of the battery when it is also abnormally "in the "L" position ((When the internal 1RQ terminal is input, the function of starting mp u is stopped) 201003074 state), and when it is in the "Η" level, it is started. When the signal of "H" level is input to the above IRQ terminal, the interrupt processing is started, that is, the control unit 6 is in the startup state. The detecting portion 7 is activated by the A/D converter. In the configuration, the voltage value of the analog voltage divided voltage Vs can be converted into a digital value, and the digital data of the conversion result can be output to the recording unit 8. Further, the detecting unit 7 is configured to input the signal for starting the control before the control unit 6 inputs the signal. The power supply from the power supply unit 3 is not performed. In other words, the detection unit 7 normally cuts off the power supply to the A/D converter by the switching mechanism, and when the signal for starting the control is input, the switching mechanism is connected and power supply is performed. On the other hand, when the recording end signal is input, the detecting unit 7 turns off the switching mechanism and stops the supply of power to the A/D converter. The recording unit 8 is configured to be similar to the detecting unit 7 described above. The switching mechanism cuts off or connects a path for supplying electric power to the internal circuit to control driving of the internal circuit. Further, the recording unit 8 has a memory portion constituted by a non-electrical memory, and when activated, the input portion is input by the detecting portion 7. The serial digital data and the time information are sequentially written into the above-mentioned attached memory to record the acceleration data. In other words, the recording unit 8 normally cuts off the power supply to the internal circuit by the switching mechanism. When the control signal is activated, the disconnecting mechanism is connected to supply power. On the other hand, when the recording end signal is input, the recording unit 8 turns off the switching mechanism and stops the supply of power to the A/D converter. In the detecting unit 7 and the recording unit 8, the control circuit for operating each switching mechanism is in a driving state. As described above, according to the present embodiment, the 16 201003074 acceleration sensor 1 formed by the electret 11 can be detected. The abnormal vibration is used as a trigger to activate the detection unit 7 and the recording unit 8 that have been stopped. On the other hand, according to the present embodiment, if the abnormal vibration ends, the stop can be stopped. The detection unit 7 and the recording unit 8 that have been activated are not described. Therefore, according to the present embodiment, the movement detection unit 7 and the recording unit 8 can be compared only when the acceleration data needs to be acquired, and the intermittent operation at a predetermined interval can be compared. < The ratio of the operation time of the detecting unit 7 and the recording unit 8 is further reduced, and the electric power is further extended. The control unit 6 can use the A/^ converter as a memory of a memory having a memory capacity sufficient for recording an abnormal signal. Therefore, the circuit simplification can be performed. Next, the operation of the acceleration sensor (fourth device) of the second embodiment will be described with reference to Fig. 5, Fig. 6, Fig. 7, and Fig. 8. Fig. 5 shows the application with the acceleration sensor. The acceleration corresponds to the output AC voltage, the horizontal axis represents the time, and the vertical axis represents the voltage value output by the acceleration sensor 1. Fig. 6 shows the DC voltage output from the rectifying unit 2, the 杈 axis shows the time, and the vertical axis shows the DC voltage. Voltage value. Figure 7 shows the comparison | § 5 output (abnormal signal), the horizontal axis shows the time, and the vertical axis shows the voltage value of the output voltage. Fig. 8 is a flow chart showing an operation example of the acceleration sensor device of the embodiment. In the naturally applied vibration (the normal vibration range of Fig. 5), the acceleration sensor 1 also rotates a voltage sufficient for power generation. In the time range of the normal vibration not shown in FIG. 5, since the divided voltage Vs outputted from the conversion circuit 4 does not exceed the preset set voltage vt (converted value) in the normal vibration, it is as shown in FIG. The comparator 5 outputs the abnormal signal to a "L" level indicating a normal vibration instead of an abnormality (step S1). Therefore, since the control unit 6 does not start its own operation, the detecting unit 7 and the recording unit 8 are maintained in a stopped state, and the control power is mixed. 17 201003074 For the ϊ ϊ 如 as shown in Figure 7, the comparator 5 judges whether the abnormal signal is... Change two =:::: often vibrate, _, illusion. Therefore, if the first frequency exceeds the preset set voltage, the abnormal oscillator 5 outputs the abnormal signal - indicating that the acceleration which is larger than the normal vibration is applied and the processing proceeds to step S3. The position of the position of the position of the position of the position of the position control unit 6 is controlled by the control unit 6 (step S4). The motion detecting unit 7 and the recording unit 8 (step 83 and the incoming portion 7 are input by the conversion circuit 4 and have been rotated by the rectifying unit 2, and the voltage I/O of the voltage division of the voltage I is converted to A/D). The converted digital data is output to the recording unit 8. The recording unit 8 stores the digit M of the input person in the internal memory (fourth) for the memory unit (step S5). The control unit 8 determines From the ratio of (4) 5 input UfmM % SL" (step S6). The dynamic change is as shown in Fig. 5, the comparator 5 is vibrated by the abnormal vibration according to the vibration mode, and the divided voltage of the output of the conversion circuit 4 If the voltage is lower than the set voltage Vt, as shown in Fig. 7, the abnormal signal is changed from the normal state of the abnormal vibration to the "L" level indicating the normal vibration rather than the abnormality. The signal is changed from "H" level to "L", the recording end signal is output, and the detecting unit 7 and the recording unit 8 are stopped (steps S and S8), and the sleep state itself is controlled. Electricity 18 201003074 The state of the force consumption. On the other hand, the control unit 6 will be at the time when the abnormal signal becomes "H j level" Returning to step S5, the control unit 6 counts the time after the abnormality signal becomes the "Η" level, that is, the time after the activation of the abnormality signal. Further, the control unit 6 may output the record after the measurement time set by the counting result. The signal is terminated, and the detecting unit 7 and the recording unit 8 are stopped.

&lt;第2實施形態&gt; 以下’參考圖式說明本發明第2實施形態之加速度感測 器裝置。第9圖係顯示同實施形態之加速度感測器裝置構成 例的方塊圖。 5亥圖中’本實施形態之加速度感測器裝置具有加速度 感則器1 土机部2、電源部3、比較器5、控制部6、檢測部 7、兄錄部8及限制電路9。第9圖巾,對與第1實施形態相同 =構成標示同—標號,並省略說明。以下,就與第1實施形 恶不同之構成及動作進行說明。X,比較器5及限制電路9 為了内4運算放大器電路之動作,係以電 作電壓vdd與—vdd。 動 =電路9將由加速度❹⑶輸出之技電壓va分壓 、相檢魏_,並作為正簡脈波輪出至比較器 電壓路如Γ圖所示,上述限制電路9由分壓電路、 电 半波整流電路及箝位電路構成。 上述分壓電路由電阻9〇1 (電阻值撕)、電阻902 (電 19 201003074 電壓va分 阻值r902)構成,將由加速度感測器工輸入之交流 壓’並生成分壓電壓vs。 --ναχ {Γ902Χ (r9〇l+r9〇2)} 設定電阻說Γ相對於加速度感測器1之輪出阻抗 ',、同電阻,將父流電壓va精確地分壓。又, 902相對於加速度感測器1之輸出阻抗設定為高電p : 速度感測器1所產生之電能有效率地供給至電源電路3。σ 電壓限制電路由二極體904及9〇5構成,將上述交流電 壓值限制於二極體之順方向電壓降下 範圍内。 ?田沒 …半波整流電路由運算放大器906、二極體贿、9〇8、電 容器917及電阻9〇3(電阻值r9〇3)、9〇9(電阻值r9〇9)、91〇、 916構成’交流電壓VS受半波整流時,電阻916及t容器917 會同時作為低通濾波H動作,去除不必要之雜訊,轉換為 /、有r909/r903放大率之脈波形狀的直流電壓Va,並輸出。 箝位電路由電阻9n、915、運算放大器912及齊納二極 體913 914構成,將上述直流電壓Va以電阻值911及915所 设疋之放大率放大,並在與齊納二極體913、914之崩潰電 壓對應之最大值及最小值範圍内’將放大之直流電壓Va,之 電壓值箝制而作為電麼Vb後,輸出至比較器5。 又’檢測部7與第1實施形態之檢測部7為相同構成,但 追加了一功能’即將來自加速度感測器1之交流電壓va分壓 後’並將經分壓之交流電壓vs轉換為直流電壓後,進行A/ D轉換。又’該檢測部7在其它構成及動作上,與第1實施形 20 .201003074 態之檢測部7相同。 接著’以第5圖、第6圖、第11圖、第12圖及第13圖古兒 明第2實施形態之加速度感測器裝置動作。第u圖顯示 電路9之輸出,橫軸顯示時刻,縱軸顯示輸出電壓之電壓 值。第圖顯示比較器5之輪出(異常訊號),橫轴領 刻,縱軸顯示輸出電壓之電_。第13圖顯示加速度 器裝置全體之消耗電力,橫軸顯示時刻,縱軸顯示 力之電力值。 在自㈣施加之震動(第5圖之常態震動範圍)中,也 由加速度感測器1輸出足以發電之電壓。 第5圖所示之常態震動之時刻範圍中,由限制電路9輸 出之經半波整流的脈波形狀之直流電壓Vb不會超過常能= 動時預設之設定電壓vt(臨界值),因此如第12圖所示y比 較器5將異常訊號作為表示常態震動而非異常之「L」位準 並輪出。 ’ 故,由於控制部6不進行本身之啟動,因此檢測部7及 記錄部8也會維持停止狀態,如第13圖所示,呈已控制加速 度感測器裝置之電力消耗的狀態。 接者於日守刻tl中,當到達第5圖所示之異常震動狀態 的範圍時,由限制電路9輪出之經半波整流的脈波形狀之直 流電壓赠超過預設之設定電壓vt(臨界值),因此比較器 5將異常訊號作為表示異常震動而施加了較常態震動大的 加速度之「H」位準並輪出。 當因異常訊號變成「H」位準而控制部6進行本身之啟 21 201003074 動後,輸出一啟私伙也丨 接著个Γ ,來啟動檢測料記錄部8。 接者松碉部7將由轉換 入之直流電壓之電壓與的路:入且已將由整流部2輸 後,將經轉換 &lt;數 、刀1電愚Vs進打A/D轉換 〈數位貝枓輪出至記錄部8。 部之=7部8依各時刻使輪入之數位資料記憶於由内 憶體等構成之記憶部。此時,如第η圖所 不加速度感測器裝置之 力消耗量。 ^耗電力會增加至運作狀態之電 接著’控制部6在已由 $ 展動改變為異常訊號時(即 比季乂态5所輸出之異常 n士、 &amp; ± 韦0孔竣由「L」位準改變為「H」位準 t ),自日ΤΓ刻t丨開始計數時η , 預設之測定相。計數之時間是否超過 接著’在時刻t2中,4 ’控制部6在計數之時間超過預設之 測疋日守間時,輸出結東 ^ tL琥,使檢測部7及記錄部8之動作 V止’且自身亦呈休眠壯拈 ^ &amp;狀態’而呈控制了電力消耗之狀態。 藉此’如弟13圖所示,可收^ Γ降低加速度感測器裝置之電力消 耗量。 又’比較器5在逝卜 、上述叶數之測定時間無關的情形下, 根據辰動核式由輸入之第5圖所示之異常震動改變為常態 震動使限制电路9輪出之經半波整流的脈波形狀之直流電 壓vb低於設定電壓vUXT,藉此如第12圖所示,使里常訊 號由異常震動狀態之「H」位準改變為表示常態震動而#異 常之「L」位準。 &lt;相對第1及第2實施形態之追加功能〉 22 201003074 如上所述,第1及第2實施形態之加速度感測器裝置 中,比較器5將與加速度感測器1所施予之加速度對應而輸 出之電壓值(經轉換電路4分壓為實際上可比較之電壓 值),與預設為臨界值之設定電壓Vt加以比較,當加速度感 測器1輸出之電壓值超過設定電壓Vt時,輸出異常訊號。 接著,控制部6由停止狀態變為啟動狀態,開始由電源 部3對檢測部7及記錄部8供給電源。藉此,檢測部7將與來 自加速度感測器1之加速度對應之電壓值轉換為數位值並 輸出至記錄部8。記錄部8將輸入之數位資料(包含記錄了 異常震動之日期資訊)對應已輸入該數位資料之時刻而記 憶於内部之記憶部。該數位資料之記錄處理在加速度感測 器1輸出之電壓值低於設定電壓Vt以下時,控制部6會由啟 動狀態改變為停止狀態並結束。 惟,由於異常震動之性質會因使用環境而異,無法明 確判斷施加於加速度感測器1之加速度是異常震動所產生 者、在正常狀態下突發性施加之震動、因周圍環境引起的 外部干擾之震動、或是因設有加速度感測器1之裝置的正常 震動(常態震動)所產生者,因此可能會記錄例如不必要 之外部干擾等震動之資料。換言之,若加速度感測器1輸出 之瞬時值只因電壓值而判定施加於加速度感測器1之加速 度為異常,在將引起該加速度之震動判定是否為異常震動 之精確度上有時會較低。 故,如第14圖所示,可設置一判定部20,當加速度感 測器1輸出之電壓值超過設定電壓Vt時,可判斷因此時之震 23 201003074 動引起的加逮度感測 里當雷私 u 、器1所輸出的交流電壓之震動是否為 呉吊辰動,或是雖然 ^ 、我動之強度超過臨界值但並非異常之 晨勁(存在於外部環户 Λβ9π γ 、兄之震動’將於後述)。藉設置該判定 邛20,可只記錄 料ν 據預設震動圖形以外之震動的數位資 枓。又,相反地,亦 &amp;彳次 ^ 構造成只記錄依據預設震動圖形的 数位貝枓。苐14圖係 一 罢v L a , 、弟9圖所示之第2實施形態構成例設 置了上述判定部2〇。對_ ,a π. 運订與弟9圖相同動作之構成標以同 一“虎’以下說明不同4作。 帛14圖的仏剛部7與第2實施形態之第9圖的檢測 ^為相同構成’如第,所示,_加速度感測^之交 ^電壓Va分壓後作為已分壓之交流電壓%,連接於由運算 ,大_構成之電壓隨動器電路,且具有A/D轉換之功 為了使這些功此有欵,係對檢測部7供給動作 電源Vdd&lt;Second Embodiment&gt; Hereinafter, an acceleration sensor device according to a second embodiment of the present invention will be described with reference to the drawings. Fig. 9 is a block diagram showing an example of the configuration of an acceleration sensor device of the same embodiment. In the fifth embodiment, the acceleration sensor device of the present embodiment includes an acceleration sensor 1 earth unit 2, a power supply unit 3, a comparator 5, a control unit 6, a detecting unit 7, a brother recording unit 8, and a limiting circuit 9. The ninth figure is the same as that of the first embodiment. Hereinafter, the configuration and operation different from the first embodiment will be described. X, comparator 5 and limiting circuit 9 are operating voltages vdd and -vdd for the operation of the inner 4 operational amplifier circuit. The motion=circuit 9 divides the technical voltage va outputted by the acceleration ❹(3), and detects the phase _, and outputs it as a positive sigma pulse to the comparator voltage path as shown in the figure. The limiting circuit 9 is divided by a voltage dividing circuit and an electric circuit. A half-wave rectifier circuit and a clamp circuit are formed. The above-mentioned divided piezoelectric routing resistor 9〇1 (resistive value tearing) and resistor 902 (electricity 19 201003074 voltage va divided resistance r902) constitute an alternating current voltage ' input by the acceleration sensor and generates a divided voltage vs. --ναχ {Γ902Χ (r9〇l+r9〇2)} Set the resistance Γ relative to the acceleration sensor 1's wheel-out impedance ', and the same resistance, the parental voltage va is accurately divided. Further, the output impedance of the 902 with respect to the acceleration sensor 1 is set to high power p: The electric energy generated by the speed sensor 1 is efficiently supplied to the power supply circuit 3. The σ voltage limiting circuit is composed of diodes 904 and 〇5, and limits the AC voltage to a range in the forward voltage drop of the diode. ? Tian did not... The half-wave rectifier circuit consists of operational amplifier 906, diode bribe, 9〇8, capacitor 917 and resistor 9〇3 (resistance value r9〇3), 9〇9 (resistance value r9〇9), 91〇, 916 constitutes 'AC voltage VS is half-wave rectified, resistor 916 and t-container 917 will simultaneously operate as low-pass filter H, remove unnecessary noise, and convert to /, DC with r909/r903 amplification pulse shape Voltage Va and output. The clamp circuit is composed of resistors 9n and 915, an operational amplifier 912, and a Zener diode 913 914. The DC voltage Va is amplified by the amplification factor set by the resistance values 911 and 915, and is coupled to the Zener diode 913. In the range of the maximum value and the minimum value corresponding to the breakdown voltage of 914, the voltage value of the amplified DC voltage Va is clamped to the voltage Vb, and then output to the comparator 5. Further, the detecting unit 7 has the same configuration as that of the detecting unit 7 of the first embodiment, but adds a function 'After dividing the AC voltage va from the acceleration sensor 1' and converts the divided AC voltage vs. After the DC voltage, A/D conversion is performed. Further, the detecting unit 7 is the same as the detecting unit 7 of the first embodiment 20 201003074 in other configurations and operations. Next, the acceleration sensor device of the second embodiment of Fig. 5, Fig. 6, Fig. 11, Fig. 12, and Fig. 13 is operated. Figure u shows the output of circuit 9, with the horizontal axis showing the time and the vertical axis showing the voltage value of the output voltage. The figure shows the wheeling of the comparator 5 (abnormal signal), the horizontal axis is engraved, and the vertical axis shows the output voltage. Fig. 13 shows the power consumption of the entire accelerometer device. The horizontal axis shows the time and the vertical axis shows the power value of the force. In the vibration applied from (4) (the normal vibration range of Fig. 5), the acceleration sensor 1 also outputs a voltage sufficient for power generation. In the time range of the normal vibration shown in FIG. 5, the DC voltage Vb of the half-wave rectified pulse wave shape outputted by the limiting circuit 9 does not exceed the preset voltage vt (critical value) preset by the normal energy = moving time, Therefore, as shown in Fig. 12, the y comparator 5 takes the abnormal signal as the "L" level indicating the normal vibration rather than the abnormality and rotates. Therefore, since the control unit 6 does not start its own operation, the detecting unit 7 and the recording unit 8 are also maintained in a stopped state, and as shown in Fig. 13, the power consumption of the acceleration sensor device is controlled. When the receiver reaches the range of the abnormal vibration state shown in FIG. 5, the DC voltage of the half-wave rectified pulse wave shape which is rotated by the limiting circuit 9 is over the preset set voltage vt. (Threshold value), therefore, the comparator 5 uses the abnormal signal as the "H" level indicating the abnormal vibration and the acceleration which is larger than the normal vibration and rotates. When the abnormality signal becomes the "H" level, the control unit 6 performs the activation of itself. After the 2010 2010074 movement, the output of the private group is also started, and the detection material recording unit 8 is activated. The pick-up portion 7 will be converted into the voltage of the DC voltage and the path: the input will be converted by the rectifying unit 2, and the converted &lt;number, knife 1 electric fool Vs will be converted into A/D conversion <digital bei It is taken up to the recording unit 8. The part = 7 part 8 records the digital data of the round in each memory at the memory part which consists of internal memory. At this time, the force consumption of the acceleration sensor device is not as shown in the nth figure. ^The power consumption will increase to the operating state. Then the control unit 6 changes the abnormal signal to the output signal (that is, the abnormality of the output of the 乂 、 、 、 & & & & & & ± ± ± ± ± ± ± The level changes to the "H" level t), and η is counted from the start of the day, and the preset phase is measured. Whether or not the counting time exceeds the following time, in the time t2, the 4' control unit 6 outputs the knot when the counting time exceeds the preset measuring day, and causes the detecting unit 7 and the recording unit 8 to operate. It is controlled by the state of 'sleeping' and 'state' and controls the state of power consumption. By this, as shown in Fig. 13, the power consumption of the acceleration sensor device can be reduced. Further, in the case where the comparator 5 is inconsequential and the measurement time of the above-described number of leaves is irrelevant, the half-wave of the limit circuit 9 is rotated by the abnormal vibration shown in Fig. 5 of the input to the normal vibration. The rectified pulse wave shape DC voltage vb is lower than the set voltage vUXT, thereby changing the "H" level of the abnormal vibration state to the normal vibration and the "abnormal" "L" as shown in FIG. Level. &lt;Additional Functions to the First and Second Embodiments> 22 201003074 As described above, in the acceleration sensor device according to the first and second embodiments, the comparator 5 and the acceleration applied by the acceleration sensor 1 Corresponding output voltage value (divided by the conversion circuit 4 into a practically comparable voltage value), compared with a preset voltage Vt preset to a threshold value, when the voltage value output by the acceleration sensor 1 exceeds the set voltage Vt When an abnormal signal is output. Then, the control unit 6 is changed from the stopped state to the activated state, and the power supply unit 3 starts supplying power to the detecting unit 7 and the recording unit 8. Thereby, the detecting unit 7 converts the voltage value corresponding to the acceleration from the acceleration sensor 1 into a digital value and outputs it to the recording unit 8. The recording unit 8 records the input digital data (including the date information on which the abnormal vibration is recorded) in the internal memory unit in accordance with the time at which the digital data has been input. In the recording processing of the digital data, when the voltage value output from the acceleration sensor 1 is lower than the set voltage Vt, the control unit 6 changes from the startup state to the stop state and ends. However, since the nature of the abnormal vibration varies depending on the use environment, it cannot be clearly determined that the acceleration applied to the acceleration sensor 1 is caused by abnormal vibration, the sudden application of vibration under normal conditions, and the external environment caused by the surrounding environment. The vibration of the disturbance or the normal vibration (normal vibration) of the device provided with the acceleration sensor 1 may record data such as unnecessary external disturbances. In other words, if the instantaneous value of the output of the acceleration sensor 1 is only determined by the voltage value, the acceleration applied to the acceleration sensor 1 is abnormal, and sometimes the accuracy of the vibration that causes the acceleration to be abnormal vibration is sometimes higher. low. Therefore, as shown in FIG. 14, a determining unit 20 can be provided. When the voltage value outputted by the acceleration sensor 1 exceeds the set voltage Vt, it can be judged that the shock sensing caused by the vibration of the time 23 201003074 Whether the vibration of the AC voltage output by Lei and u and the device 1 is a hoisting movement, or although the intensity of the vibration of the ^ and I exceeds the critical value, it is not an abnormal morning force (existing in the external ring Λβ9π γ, the vibration of the brother 'will be described later. By setting this decision 邛20, only the digital information of the vibration other than the preset vibration pattern can be recorded. Also, conversely, &amp; ^ ^ ^ is constructed to record only the number of 枓 依据 according to the preset vibration pattern. In the second embodiment configuration example shown in the figure of Fig. 14, the determination unit 2 is provided. The composition of the same operation of _ , a π. and the ninth figure is the same as the description of the same "tiger". The 仏 14 diagram of the 仏 14 diagram is the same as the detection of the ninth diagram of the second embodiment. The composition is as shown in the figure, as shown in the figure, the voltage of the ac acceleration sensing voltage Va is divided as the divided AC voltage %, connected to the voltage follower circuit composed of the operation, large _, and has A/D In order to make these efforts, the detection unit 7 supplies the operating power supply Vdd.

Vdd接著’以下現明與判定部進行之震動圖形一致 或類似之判定處理。如上所述,使用經傅立葉轉換之震動 圖1 ’判斷疋否將已轉換加速度感測器!所檢測出之異常震 動的數位資料記錄於記綠部8。 舉例言之,在監視異常震動之地點環境中,針對必須 解析震動原因之對象震動圖形,如第丨5圖所示,存在外部 干擾之外部干擾震動圖形時,根據外部干擾震動圖形超過 比較器5之6品界值,第2實施形態中,控制部6會啟動而將檢 測部7及記錄部8啟動’並記錄於記錄部8。在外部干擾震動 圖形非常多的地點’當檢測出對象震動圖形時,必須在之 後抽出記錄之數位資料何時會受對象震動圖形影響。 24 201003074 又,根據記錄對應大量外部干擾震動圖形之數位資 料,將會濫用記錄部8之記憶容量,而使用用於記錄的消耗 電力。 舉例言之,以工場内使用之馬達的異常震動(因安裝 模具之鬆脫或旋轉轴之歪斜等原因)為對象震動而檢測 時,若因周圍裝置之震動引起之外部干擾震動多時,必須 使其不記錄因周圍裝置之震動引起之外部干擾震動的數位 資料。 通常檢測對象震動之馬達的異常狀態之特有震動與設 置馬達之周圍環境所引起的外部干擾(包含突發性施加之 震動)的特有震動會各自不同。因此,設置加速度感測器1 後,立刻以加速度感測器1預先檢測出周圍環境所引起之外 部干擾的特有震動,並對常態特有震動之常態震動圖形與 外部干擾之外部干擾震動圖形進行傅立葉轉換。藉此,生 成一顯示包含外部干擾之特有震動的頻率與每一頻率之頻 譜強度之範圍的参考震動圖形。且,在該參考震動圖形中, 求取由各頻率之頻譜強度上限值及下限值構成的設定範圍 (第15圖之外部干擾震動引起的頻率與頻率之頻譜強度構 成的正常區域),並將該設定範圍預先記憶於判定部20内之 記憶部。 接著,在實際檢測過程中,判定部20將比較器5視為異 常震動之震動的數位資料進行傅立葉轉換,生成對象震動 圖形。 生成對象震動圖形後,判定部20判定對象震動圖形之 25 201003074 各頻率的頻譜強度是否包含在内部所記憶之設定範圍内。 該判定中,當參考震動圖形所預設之上述設定範圍 内,包含對象震動圖形之各頻率的頻譜強度時,判定部20 會判定為一致或類似之圖形。 另一方面,當參考震動圖形所預設之設定範圍内,不 包含對象震動圖形之上述頻譜強度時,判定部20會判定並 非一致或類似之震動圖形。 又,上述判定中,可構造成判定部20檢測參考震動圖 形與對象震動圖形之形狀類似性。 換言之,可在對象震動圖形、各外部干擾之頻率與頻 率之頻譜強度的參考震動圖形(此時,頻率與其頻率之各 外部干擾的頻譜強度之平均值構成的圖形)中,求取每一 相同頻率之頻譜強度的差分,當該差分之合計進入預設之 範圍時則判斷為類似。 如上所述,判定部20與檢測部7相同地,當由控制部6 輸入啟動控制之訊號時,會連接切換機構由電源部3接受電 力供給而呈啟動狀態,當由控制部6輸入停止控制之訊號 時,則使切換機構處於切斷狀態而呈不接受來自電源部3之 電力供給的狀態(即停止狀態)。 接著,判定部20將比較已將判定對象之數位資料進行 傅立葉轉換之對象震動圖形的設定範圍(由各頻率之頻譜 強度上限值及下限值構成),記憶於本身内部之記憶部。 又,判定部20讀取暫時記憶於檢測部7之暫時記憶電路 的震動之數位資料,對該讀取之數位資料進行傅立葉轉換 26 201003074 後,生成由頻率與該各頻率之頻譜強度構成的對象震動圖 形。 接著,判定部20比較上述對象震動圖形是否包含於設 定範圍内,當一致或類似時,對控制部6輸出結束訊號(第 15圖之時間領域A),以使各部呈停止狀態。 另一方面,判定部20比較上述對象震動圖形是否包含 於設定範圍内,當不一致或類似時,將檢測部7之暫時記憶 電路所暫時記憶之震動的數位資料,輸出一對記錄部8輸出 之寫入訊號,並啟動記錄部8來進行寫入處理(記錄)(第 15圖之時間領域B),以使對應該比較震動圖形之數位資料 記錄於記錄部8。 接著,以第14圖及第16圖說明已加入上述判定部20之 加速度感測器裝置之動作。第16圖係顯示已加入判定部20 加速度感測器裝置之動作例的流程圖。 在自然地施加之震動(第5圖之常態震動範圍)中,也 由加速度感測器1輸出足以發電之電壓。 第5圖所示之常態震動的時刻範圍中,由於限制電路9 輸出之分壓電壓Vs不超過常態震動時預設之設定電壓Vt (臨界值),因此比較器5將第12圖所示之異常訊號輸出表 示常態震動而非異常之「L」位準(步驟S1)。 故,由於控制部6不進行本身之啟動,因此檢測部7及 記錄部8也會維持停止狀態,呈已控制電力消耗之狀態。 接著,比較器5對第12圖所示之異常訊號判斷是否為異 常震動而施加了較常態震動大的加速度(步驟S2)。 27 201003074 接著,當到達第5圖所示之異常震動狀態之範圍時,限 制電路9輸出之分壓電壓Vs會超過預設之設定電壓Vt。故, 比較器5將第12圖所示之異常訊號輸出一表示異常震動而 施加了較常態震動大的加速度之「H」位準,並將處理前進 至步驟S3。 根據異常訊號變為「H」位準,控制部6進行本身之啟 動,並輸出啟動控制之訊號來啟動檢測部7及判定部20 (步 驟S3、步驟S14)。 接著,當檢測部7呈啟動狀態後,將加速度感測器1輸 入之交流電壓的分壓va進行A/D轉換,並對判定部20輸出 判定委託訊號,且輸出經A/D轉換之數位資料。 當由檢測部7輸入判定委託訊號時,判定部20將已輸入 之數位資料暫時記憶於内部之暫時記憶部,並以預設之時 間寬度單位讀取後,將該時間寬度之數位資料所示的波形 進行傅立葉轉換,生成顯示頻率與該頻率之頻譜強度之對 應的對象震動圖形,並記憶於本身内部之記憶部。該時間 寬度係設定為記憶於記錄部8之對象震動週期的η倍,為足 以取得頻率與頻率之頻譜強度的時間長度。 接著,判定部20比較已預先記憶於内部之設定範圍與 所生成之對象震動圖形(步驟S15),當一致或類似時,由 於不需取得數位資料,因此會對控制部6輸出結束訊號。 藉此,控制部6將改變為停止狀態之控制訊號輸出至檢 測部7,使檢測部7呈停止狀態(步驟S18)。 又,控制部6將改變為停止狀態之控制訊號輸出至判定 28 201003074 部20,使判定部20呈停止狀態(步驟S19)。 π,控制部6將改變為停止狀態之控制訊號輪出至^ L記錄部8呈停止狀態(步驟S20),祐胳♦ 己錄 又 部8,使記錄 步驟 態 另一方面 心工汛5虎輪出至記錄 S ’使記錄部8呈停止狀態(步驟S20 ),並將處理吁、、 驟S1,且本身也呈休眠狀態,而呈已控制希〃進至 &quot;%乃消耗之狀 〇 . 另一方面,判定部20在並非一致或類似 由於必猪 記憶數位資料,因此會輸出一控制訊號,該控 d 、 工市Ί 虎γ系jj琴 包含已暫時記憶於内部之對象震動圖形的時刻範圍’、、 訊號,連同已記憶於檢測内部之時刻範圍— 之控制 部8者。 輸出至記錄 藉此,檢測部7對記錄部8輸出寫入訊號, 々α己綠部8呈 啟動狀態(步驟S16),並將對應上述時刻範 〜 ^ 位資料輸出至記錄部8。 双 根據輸入寫入訊號,記錄部8將輪入之眭如# 之枓到軏圍的數位 資料記憶於内部之記憶部(步驟S17),Β木奴, )且當數位資料之# 憶結束時,將處理前進至步驟S15。 藉此,判定部2 0針對已輸出至檢測部7之時刻範圍 檢測部8讀取下個時間寬度之時刻範圍的數位資料後,'’由 傅立葉轉換來生成對象震動圖形,並根據是否包含於$订 範圍内來判定是否一致或類似(步驟Sl5)。 、'^定 藉上述處理,由料需將與大量外部干擾震動 應之數位資料記錄於記憶部8,Μ要㈣ 續 形,因此可有效地使用記錄部8之記憶容量,並卩久 141 部干擾震動圖形之時間,藉此可使消耗電流降低。 外 29 201003074 又,將加速度感測器1設置於檢測對象時,可使判定部 20在正常動作之一定期間(例如,1週至1個月間),進行起 因於常態下的震動及外部干擾引起之震動的參考震動圖形 之取得處理(訓練期間),並作為數位資料記憶於記憶部。 接著,判定部20將於一定期間後記憶於記憶部之複數 震動引起的數位資料進行傅立葉轉換後,求取獲得之頻率 與頻率之頻譜強度。求得頻譜強度後,判定部20針對獲得 之上述頻譜強度,進行各頻率之頻譜強度的平均值、偏差、 最大值及最小值等的算出處理、或與由初始設定之上限值 及下限值所構成的設定範圍進行比較。藉此,可精確地獲 得在常態下的震動及設置場所特有而非異常之震動頻率的 頻譜強度。換言之,判定部20在新獲得之上限值及下限值 的設定範圍與初始狀態不同時,對新獲得之上限值及下限 值考量偏差來進行初始設定範圍之修正,並作為新的設定 範圍設定於内部。 再者,例如當環境改變時等,可重新設置訓練期間, 使判定部20在檢測出經設定之訓練期間週期(内部計時器) 時,抽出起因於常態下之震動及外部干擾引起之震動的參 考震動圖形,並藉上述預處理設定由各頻率之頻譜強度的 上限值及下限值構成的設定範圍後,記憶於内部記憶部。 又,上述構成中,係構造成當比較器5之異常訊號為「Η」 位準時,將經轉換之數位資料暫時記憶於檢測部8,但亦可 構造成,在時間寬度之時刻範圍内對如下所示輸入之數位 資料依序取樣後,判定是否依該取樣之時刻範圍的各數位 30 201003074 貢料進行記錄。 故,判定部20藉比較上述取樣之時刻範圍的對象震動 圖形與設定範圍,判定是否將該時刻範圍之數位資料記憶 於記錄部8。 該比較處理及比較處理後之動作與上述第16圖所說明 之步驟S15以後的各步驟之處理相同。此時,判定期間之數 位資料雖不記憶,但異常震動變為「H」位準後,會只以上 述時間寬度進行判定,因此可使檢測部7、記錄部8及判定 部20所消耗之電力進一步降低。 上述判定部20之附加,對於第2實施形態而言,亦可與 第1實施形態同樣地進行。 &lt;第1及第2實施形態之其它形態&gt; 如上所述,本發明之加速度感測器具有因震動產生之 發電及異常震動之感測等2個功能。 惟,這2個功能之最佳化未必可兩者兼顧。舉例言之, 利用平時之常態震動(作為異常震動檢測出之強度以下的 震動)進行發電,並利用發電之電能一面對電池充電一面 檢測震動(加速度)之改變,當檢測出異常時之震動時, 會記錄該異常震動之加速度。 常態震動與異常震動具有不同振幅或頻譜,必須提高 異常震動之加速度測量或記錄精確度來使駐極體之震動機 構最佳化。惟,有時震動所產生的交流電壓之電壓值會變 小,常態震動之發電效率會降低。 上述情況會分為2個過程,即發電及異常震動之檢測, 31 201003074 以及檢測出異常震動後之異常震動的加速度之檢測,關於 分為這2個過程之技術思想在第1及第2實施形態中為共通 之概念’而對各過程她最適當的加速度感測器。 第1過程係加速度感測器丨一面進行發電,一面只檢測 異常震動之程序,可將加速度❹⑶之駐極仙與導體^ 之相對運動調整為重視發電效率之機構(微調)。 第2過程係在檢測出異常震動後,進行異常震動之震動 的加速度測3: ’並記賴量結果之程序,且_後述之理 由不需發電功能。故,對加速度感測器而言,為了測量作 為測量對象之檢測範圍的加迷度,係、設定作為測量對象之 異常震動的加速度及對應該加速度之輸出電壓,並非以發 電電壓為主,^要進行重視加速度之測量料度的最佳化 即可。 ^換5之,並非將對應發電的大交流電壓以高阻抗之電 &amp;加以分壓而使精確度降低,而是使用將可不分壓直接測 、之電壓值對應加速度產生的加速度感測器。結果,藉第2 ° &amp;之加速度感測态,可控制雜訊重疊等誤差,而可精確 ^*剛量異常震動之加速度。 作換言之,當除了進行發電功能及異常震動檢測之加速 痄感碉器外,並設置可正確測量異常震動之加速度的加速 度感蜊器時,由於相較於處於常態震動之期間,異常震動 /月間極為短暫’因此不需進行該異常狀態之發電。故, 量該異常震動之加速度的加連度感測器不具有發電 月匕藉只於異常震動時使该加速度感測器動作,亦可使 32 201003074 電池消耗變得非常少。 在此,在檢測出異常震動後的第2過程中,實際測量辱 常震動之加速度的加速度感測器’可由使用了已設定加迷 度及與該加速度對應之電壓的駐極體之加速度感測器構 成。又,加速度感測器可為由半導體應變計型、伺服型、 壓電體型等駐極體以外者構成的一般所用之加速度感挪 器。 換言之’本發明之加速度感測器裝置中,除了進行發 電及異常震動之檢測的加速度感測器1外,使用測量異常震 動之加速度的加速度感測器時,控制部6在第丨過程之動作 中,將第2過程所用的加速度感測器(設於檢測部7)由電 池截斷,藉加速度感測器1超過預定臨界值而檢測異常震動 並輪出異常訊號’使第2過程啟動。 該第2過程中,藉設於檢測部7之上述其它加速度感測 器,進行加速度之高精確度測量與記錄。 接著,控制部6當檢測出回到低於預定臨界值之常態震 動的加速度(根據來自加速度感測器i之檢測資訊)或檢剛 出已經過航時間時,藉載斷其它加速度感測器之加速度 測量的電源使其停止,且本身亦改變為休眠狀離。 。如上所述,本發明之第1及第2實施形態的加速度感測 ㈣置包含設置了進行異常訊號測量之其它加速度感測器 的情況,可極力限制電路規模較大且消耗電流也較大的、 t制4 6力σ速度感列器之進行加速度測量的檢測部7及記 錄測量結果的錢•㈣路方塊之動作日㈣,並維持加速 33 201003074 度測量與記錄功能之性能。 &lt;本發明第1及第2實施形態之加速度感測器1的配置 例&gt; 接著’第17圖顯示例如第1及第2實施形態之加速度感 '則益1 a及1 b的配置例。加速度感測器1 a及1 b分別配置成對 應方向a及與方向3垂直相交之方向b的各震動方向。換言 之,加速度感測器la中,導體13相對駐極體u相對移動之 方向係平行於方向a之軸上。又,加速度感測器比中,導體 13相對駐極體11相對移動之方向係平行於方向b之軸上。上 述相對移動表示相對向配置之駐極體丨丨與導體13之面係在 平行之狀態下相對運動,亦即進行平行移動。 如上所述,藉配置於垂直相交的2個方向a (x軸方向)、 方向b (y軸方向),可檢測2個方向的加速度。 又,上述加速度感測器1&amp;及比中,駐極體11係配置於2 個導體12與13間,且駐極體u固定於導體12。雖已說明該 駐極體11相對於相對向之導體13而相對地平行移動之構 成’但亦可反過來構造成駐極體u固定於導體13,而相對 於相對向之導體12相對地平行移動。在此,若將駐極體U 配置成可相對於相對向之其中—導體而相對地平行移動, 則加速度感測器配置成縱向或橫向皆可。(在此,縱向及横 =係指,駐極如與導體13相對地平行移動之方向若與測 量對象之震動的加速度方向平行,則只要是在平行於該方 向之平面上,不管如何配置皆可。) 又,如第18圖所示,顯示例如第1及第2實施形態之加 34 201003074 速度感測器1 c及1 d的配置例。加速度感測器1 c及1 d分別配 置成對應方向c及與方向c垂直相交之方向d的各震動方 向。換言之,加速度感測器lc中,導體13相對於駐極體11 相對移動之方向係平行於方向c之軸上。又,加速度感測器 Id中,導體13相對於駐極體11相對移動之方向係平行於方 向d之軸上。 如上所述,藉配置於垂直相交的2個方向c ( X軸方向)、 方向d ( z軸方向),可檢測2個方向的加速度。 又,上述加速度感測器lc及Id中,駐極體11配置於2個 導體12及13間,駐極體11固定於導體12。以上已說明相對 於相對向之導體13相對地平行移動之構成。惟,其它構成 亦可反過來構造成駐極體11固定於導體13,並相對於相對 向之導體12相對地平行移動。在此,若將駐極體11配置成 可相對於相對向之其中一導體而相對地平行移動,則加速 度感測器配置成縱向或橫向皆可。 又,如第19圖所示,顯示例如第1及第2實施形態之加 速度感測器1 g、1 f及1 e的配置例。加速度感測器1 g、1 f及1 e 分別配置成對應方向g、與該方向g垂直相交之方向f、與方 向g、方向f开^成之平面垂直相交的方向e之各震動方向。換 言之,加速度感測器lg中,導體13相對於駐極體11相對移 動之方向係平行於方向g之軸上。又,加速度感測器1 f中, 導體13相對於駐極體11相對移動之方向係平行於方向f之 軸上。又,加速度感測器le中,導體13相對於駐極體11相 對移動之方向係平行於方向e之軸上。 35 201003074 如上所述,藉配置於垂直相交的3個方向§(χ轴方向)、 方向f(y軸方向)、方向e(z軸方向),可檢測3個方向的加 速度。 又’上述加速度感測叫、If及le中,已說明駐極體 11配置於2個導體12及13間,駐極體11固定於導體12,相對 於相對向之導體㈣相對地平行移動之構成。*,亦可反 過來構造成駐極體11蚊於導加,並彳目對則目對向之導 體12相對地平行移動。 舉例言之’藉配置於垂直相交之南北、東西、上下之 各方向,可掌握地面之三次元動作,便可作為地震計使用。 地震之搖動振巾|會從級至㈣期大振幅等。換言之, 微小地震係從振幅駿·*震動數為數十Hz,而大地震則 振幅為數m、週期為數十秒,藉變更使駐極體及相對向之導 體相對地平行移動之機構’便可對應各種震動數。在此, 若將駐極體11配置成可相對於相對向之其中—導體而相對 地平行移動,則加逮度感測器配置成縱向或橫向皆可。 又,第17圖、第18圖及第19圖之加速度感測器分別構 成加速度感測器裝置。換言之,相對於加速度感測器la、 lb、le、Id、le' If、lg,構成第丨圖或第9圖之加速度感測 器裝置。 &lt;用於本發明第丨及第2實施形態之駐極體之說明&gt; 接著,說明用於加速度感測器1之駐極體。 本實施形態中’形成駐極體11之材料有各種樹脂。 樹脂之具体例有氟系聚合物、環烯烴聚合物、聚乙稀 36 201003074 或聚丙烯等聚烯烴類、乙烯•醋酸乙烯酯共聚合物、乙烯. (曱基)丙烯酸共聚合物、乙烯•衣康酸共聚合物、乙烯. 順丁烯二酸酐共聚合物、乙烯•乙烯醇共聚合物等乙烯共 聚合物類、聚丙烯腈、聚酯、聚醯胺、聚碳酸酯、聚苯乙 烯、丙烯酸一苯乙烯共聚合物(AS)系樹脂、丙烯酸一丁 二烯一苯乙烯共聚合物(ABS)系樹脂、聚胺基曱酸酯樹 脂、聚氣乙烯、聚苯醚、聚縮醛、聚颯、聚酮、聚醯亞胺、 纖維素酯等。 使用與上述不飽和羧酸之共聚合物時,可使用經鹼土 類金屬離子所中和者。驗土類金屬離子以鎂、釣等為佳。 環烯烴聚合物為包含主鏈具有脂肪族環構造之重複單 元的環稀烴,有例如降冰片稀類與烯烴之加成共聚合物、 降冰片烯類之開環複分解聚合物之加氫聚合物、亞烷基降 冰片稀之跨環聚合物、降冰片稀類之加成聚合物、環戊二 稀之1,2 —及1,4 一加成聚合物之加氫聚合物、環己二稀之 1,2 —及1,4 一加成聚合物之加氫聚合物、共辆二稀之環化聚 合物等。 氟系聚合物有例如聚四氟乙烯(PTFE)、改質聚四氟 乙烯(改質PTFE)、聚亞乙烯基氟化物(PVDF)、亞乙烯 基氟化物一三氟乙烯共聚合物(VDF —TrFE)、亞乙烯基氟 化物一四氟乙稀共聚合物、四氟乙稀共聚合物一六氟丙稀 共聚合物(FEP)、四氟乙烯一乙烯共聚合物(ETFE)、聚 四氟乙烯一丙烯共聚合物、四氟乙烯一全氟(烷基乙烯基 醚)共聚合物(PFA)、聚三氟氣乙烯(PCTFE),三氟乙烯 37 201003074 乙w日均聚物、二氟乙烯乙酸§旨—乙烯性不飽和化合物共 聚合物等,這些可單獨❹或組合2種以上使用。 氟系聚合物以具有含氟脂肪族環構造之聚合物為佳。 具有含I脂肪族環構造之聚合物,以將具有2個以上的聚合 性雙鍵的含氟單體加以環化聚合而獲得的,主鏈具有含氟 脂肪族環構造之聚合物為佳。 主鏈具有含氟脂肪族環構造係指,構成脂肪族環之碳 原=的1個以上為構成主鏈之碳鏈中㈣原子,且構成脂肪 ί之厌原子的至部份具有氟原子或含氟原子基釋結 之構造。又,含氟脂肪族環構造可包含1個以上難氧原子。 〃具有含氟脂肪族環構造之聚合物的具體例,有例如全 氟“2 —二甲基-1,3-二噚唑)、全氟⑴―二十坐)、 全氟(4-曱氧基—二_唾)等全氟〇,3—二十坐) 類、全氧(2-亞甲基—4—甲基—u —二十東)' 全氣(2 亞甲基一4 丙基一u —二噚嗦)等全氟(2一亞甲基 1’3 一4)類等、具有含氟脂肪族環構造之單體的均聚 物以及具有含脂肪族環構造之單體與其它含敦單體之共 聚合物。在此,其它含氟單體有四氟乙烯、三氟氣乙烯:、 六氟丙烯、氟化亞乙烯基等全氟烯烴類、全氟(甲基乙烯 基&amp;I)專全氟(烧基乙烯基喊)類等。 、將具有2個以上之聚合性雙鍵的含氣單體加以環化聚 獲得的,主鏈具有含氟脂職環構造之聚合物有例如日本 專利公報第特_63 - 23811 1號或第特_63 —238ιΐ5號 等。換言之’有例如全氟(烯丙基乙烯基醚)或全氟 38 201003074 烯基乙烯基醚)等具有2個以上聚合性雙鍵之含氟單體的環 化聚合物、或具有2個以上聚合性雙鍵之含氟單體與四氟乙 烯等之自由基可聚合單體的共聚合物。或者,亦可為將全 氟(2,2—二曱基一 1,3—二哼唑)等具有含氟脂肪族環構造 之單體與全氟(烯丙基乙烯基醚)或全氟(丁烯基乙烯基 醚)等具有2個以上之聚合性雙鍵的含氟單體共聚合而獲得 之聚合物。 具有含氟脂肪族環構造之聚合物以主鏈具有含氟脂肪 族環構造之聚合物為佳,而以機械特性等面來看,形成聚 合物之單體單元中具有含氟脂肪族環構造之單體單元,以 含有20莫耳單元以上為佳。 上述主鏈具有含氟脂肪族環構造之聚合物以CYTOP (原文為甘彳卜,登錄商標,旭硝子公司製造)為佳, 本發明可使用這類公知的含氟聚合物。 上述聚合物可含有適當的帶電調節劑或適當的帶電調 節劑之混合物。帶電調節劑有例如三苯曱烧及其衍生物、 銨化合物、高分子銨化合物、亞銨化合物、芳基硫化合物、 鉻偶氮錯合物、二烯丙基銨化合物等。 使用上述具有含氟脂肪族環構造之聚合物並以旋塗法 等方法來形成駐極體11時,可使駐極體11之厚度為ΙΟμιη以 上。 又,將本實施形態之靜電感應型轉換元件作為發電機 使用時,最大發電輸出Pmax係以下式表示。Vdd then proceeds to the following determination process in accordance with the vibration pattern performed by the determination unit or the like. As described above, use the Fourier-transformed vibration Figure 1 ' to determine if the converted acceleration sensor will be converted! The digital data of the detected abnormal vibration is recorded in the green section 8. For example, in the environment where the abnormal vibration is monitored, the object vibration pattern for which the vibration cause must be resolved, as shown in FIG. 5, when there is an external disturbance vibration pattern of external interference, the vibration pattern exceeds the comparator 5 according to the external disturbance. In the second embodiment, the control unit 6 is activated, and the detection unit 7 and the recording unit 8 are activated and recorded in the recording unit 8. In the place where the external disturbance vibration pattern is very large, when the object vibration pattern is detected, it is necessary to extract the recorded digital data afterwards when it is affected by the object vibration pattern. 24 201003074 Further, according to the digital data recording a large number of external disturbance vibration patterns, the memory capacity of the recording unit 8 is abused, and the power consumption for recording is used. For example, when the abnormal vibration of the motor used in the workshop (due to the looseness of the mounting mold or the skew of the rotating shaft) is detected for the object vibration, if the external disturbance caused by the vibration of the surrounding device vibrates for a long time, it is necessary to It does not record digital data of external disturbances caused by vibration of surrounding devices. The characteristic vibration of the abnormal state of the motor that normally detects the vibration of the object is different from the characteristic vibration of the external disturbance (including the sudden application of the vibration) caused by the environment surrounding the motor. Therefore, after the acceleration sensor 1 is set, the acceleration sensor 1 is used to detect the characteristic vibration of the external disturbance caused by the surrounding environment, and the normal vibration pattern of the normal vibration and the external disturbance vibration pattern of the external disturbance are performed. Conversion. Thereby, a reference vibration pattern showing a range including the frequency of the characteristic vibration of the external disturbance and the spectrum intensity of each frequency is generated. Further, in the reference vibration pattern, a set range composed of the upper limit value and the lower limit value of the spectral intensity of each frequency is obtained (the normal region composed of the frequency intensity of the frequency and the frequency caused by the external disturbance vibration in Fig. 15), This setting range is stored in advance in the memory unit in the determination unit 20. Next, in the actual detection process, the determination unit 20 performs Fourier transform on the digital data which the comparator 5 considers as the vibration of the abnormal vibration, and generates the object vibration pattern. After the object vibration pattern is generated, the determination unit 20 determines whether or not the spectral intensity of each frequency of the target vibration pattern is included in the internally set value range. In this determination, when the spectral intensity of each frequency of the object vibration pattern is included in the above-described setting range preset by the reference vibration pattern, the determination unit 20 determines that the pattern is identical or similar. On the other hand, when the spectral intensity of the object vibration pattern is not included in the setting range preset by the reference vibration pattern, the judging section 20 judges the vibration pattern which is not uniform or similar. Further, in the above determination, the determination unit 20 can be configured to detect the shape similarity between the reference vibration pattern and the object vibration pattern. In other words, each of the same can be obtained in the reference vibration pattern of the object vibration pattern, the frequency of each external disturbance, and the spectral intensity of the frequency (in this case, the average of the spectral intensity of each external interference of the frequency and its frequency) The difference in the spectral intensity of the frequency is judged to be similar when the total of the differences enters the preset range. As described above, the determination unit 20, similarly to the detection unit 7, when the control unit 6 inputs the signal for starting the control, the connection switching mechanism receives the power supply from the power supply unit 3 and is in the activated state, and the control unit 6 inputs the stop control. In the case of the signal, the switching mechanism is turned off, and the power supply from the power supply unit 3 is not received (that is, the stopped state). Next, the determination unit 20 compares the setting range (consisting of the spectral intensity upper limit value and the lower limit value of each frequency) of the target vibration pattern in which the digital data of the determination target has been subjected to Fourier transform, and stores it in the memory unit itself. Further, the determination unit 20 reads the digital data of the vibration temporarily stored in the temporary memory circuit of the detecting unit 7, and performs Fourier transform 26 201003074 on the read digital data to generate an object composed of the frequency and the spectral intensity of each frequency. Shake the graph. Next, the determination unit 20 compares whether or not the target vibration pattern is included in the set range, and outputs a end signal (time field A in Fig. 15) to the control unit 6 when they are identical or similar, so that the respective units are in a stopped state. On the other hand, the determination unit 20 compares whether or not the target vibration pattern is included in the setting range, and when it is inconsistent or similar, outputs the digital data of the vibration temporarily stored in the temporary memory circuit of the detecting unit 7 to the output of the pair of recording units 8. The signal is written, and the recording unit 8 is activated to perform writing processing (recording) (time field B of Fig. 15) so that the digital data corresponding to the comparative vibration pattern is recorded in the recording unit 8. Next, the operation of the acceleration sensor device added to the determination unit 20 will be described with reference to Figs. 14 and 16. Fig. 16 is a flow chart showing an operation example of the acceleration sensor device added to the determination unit 20. In the naturally applied vibration (the normal vibration range of Fig. 5), the acceleration sensor 1 also outputs a voltage sufficient for power generation. In the time range of the normal vibration shown in FIG. 5, since the divided voltage Vs output from the limiting circuit 9 does not exceed the preset set voltage Vt (critical value) at the time of normal vibration, the comparator 5 will be shown in FIG. The abnormal signal output indicates the normal vibration rather than the abnormal "L" level (step S1). Therefore, since the control unit 6 does not start its own operation, the detecting unit 7 and the recording unit 8 are also maintained in a stopped state, and the power consumption is controlled. Next, the comparator 5 judges whether or not the abnormal signal shown in Fig. 12 is an abnormal vibration and applies an acceleration which is larger than the normal vibration (step S2). 27 201003074 Next, when the range of the abnormal vibration state shown in Fig. 5 is reached, the divided voltage Vs output from the limiting circuit 9 exceeds the preset set voltage Vt. Therefore, the comparator 5 outputs an abnormal signal shown in Fig. 12 to indicate an abnormal vibration and applies an "H" level of acceleration which is larger than the normal vibration, and advances the processing to step S3. When the abnormality signal changes to the "H" level, the control unit 6 starts its own operation and outputs a signal for starting the control to activate the detecting unit 7 and the determining unit 20 (steps S3 and S14). Next, when the detecting unit 7 is in the activated state, the partial pressure va of the AC voltage input from the acceleration sensor 1 is A/D-converted, and the determination unit 20 outputs a determination request signal, and outputs the A/D converted digit. data. When the determination request signal is input from the detecting unit 7, the determining unit 20 temporarily stores the input digital data in the internal temporary memory unit, and reads it in a predetermined time width unit, and displays the digital data of the time width. The waveform is Fourier transformed to generate a target vibration pattern corresponding to the spectral intensity of the frequency and stored in the internal memory portion. The time width is set to be n times the period of the object vibration period stored in the recording unit 8, and is a time length sufficient to obtain the spectral intensity of the frequency and the frequency. Next, the determination unit 20 compares the set range stored in advance with the generated target vibration pattern (step S15). When it is identical or similar, since the digital data is not required to be acquired, the control unit 6 outputs an end signal. Thereby, the control unit 6 outputs a control signal changed to the stop state to the detecting unit 7, and causes the detecting unit 7 to be in a stopped state (step S18). Further, the control unit 6 outputs a control signal changed to the stop state to the determination unit 28 201003074, and causes the determination unit 20 to be in a stopped state (step S19). π, the control unit 6 rotates the control signal that has been changed to the stop state to the recording unit 8 to be in a stopped state (step S20), and the user has recorded the part 8 so that the recording step state is on the other hand. Turning to the record S' causes the recording unit 8 to be in a stopped state (step S20), and the processing is called, S1, and itself is in a dormant state, and is controlled to enter the state of "% is consumed" On the other hand, the determining unit 20 outputs a control signal because it does not match or similarly because the pig must memorize the digital data, and the control d, the factory Ί γ γ j j j j j j j j j j j j j j j j j j j j j j j The control unit 8 of the time range ', the signal, and the time range that has been memorized in the detection. Output to the recording, the detecting unit 7 outputs an input signal to the recording unit 8, and the 己α green unit 8 is in an activated state (step S16), and outputs the time corresponding to the time range to the recording unit 8. According to the input write signal, the recording unit 8 memorizes the digital data of the round-up such as ## to the internal memory (step S17), Β木奴, and when the digital data is over, The process proceeds to step S15. As a result, the determination unit 20 reads the digital data of the time range of the next time width from the time range detecting unit 8 that has been output to the detecting unit 7, and then generates a target vibration pattern by Fourier transform, and based on whether or not it is included in Within the range of $, it is determined whether it is identical or similar (step S15). '^The above-mentioned processing is required to record the digital data corresponding to a large amount of external disturbance vibrations in the memory unit 8, and (4) continue to be used, so that the memory capacity of the recording unit 8 can be effectively used, and 141 parts are long-lasting. The time during which the vibration pattern is disturbed, thereby reducing the current consumption. When the acceleration sensor 1 is installed in the detection target, the determination unit 20 can cause the vibration and external disturbance caused by the normal state during a certain period of normal operation (for example, one week to one month). The vibration of the reference vibration pattern is processed (during training) and stored as digital data in the memory. Next, the determination unit 20 performs Fourier transform on the digital data caused by the complex vibration stored in the memory unit after a certain period of time, and obtains the obtained spectral intensity of the frequency and frequency. After obtaining the spectral intensity, the determination unit 20 performs calculation processing such as the average value, the deviation, the maximum value, and the minimum value of the spectral intensity of each frequency with respect to the obtained spectral intensity, or the initial setting upper limit and lower limit. The set range of values is compared. Thereby, it is possible to accurately obtain the vibration intensity in the normal state and the spectral intensity of the vibration frequency which is unique to the installation site, not abnormal. In other words, when the setting range of the newly obtained upper limit value and lower limit value is different from the initial state, the determination unit 20 corrects the initial setting range by newly obtaining the upper limit value and the lower limit value, and as a new The setting range is set internally. Further, for example, when the environment is changed, the training period may be reset, and the determination unit 20 may extract the vibration caused by the vibration under the normal state and the external disturbance when detecting the set training period period (internal timer). The vibration pattern is referenced, and the setting range composed of the upper limit value and the lower limit value of the spectral intensity of each frequency is set by the above preprocessing, and then stored in the internal memory unit. Further, in the above configuration, when the abnormal signal of the comparator 5 is at the "Η" level, the converted digital data is temporarily memorized in the detecting portion 8, but may be configured to be within a time width range After the digital data input as shown below is sampled in sequence, it is determined whether or not the digits of the 30 201003074 tribute are recorded according to the time range of the sampling. Therefore, the determination unit 20 determines whether or not the digital data of the time range is stored in the recording unit 8 by comparing the target vibration pattern of the sampling time range with the setting range. The operation after the comparison processing and the comparison processing is the same as the processing of each step after step S15 described in Fig. 16 described above. At this time, although the digital data in the determination period is not memorized, the abnormal vibration is changed to the "H" level, and the determination is made only by the time width. Therefore, the detection unit 7, the recording unit 8, and the determination unit 20 can consume the data. Electricity is further reduced. The addition of the determination unit 20 described above can be performed in the same manner as in the first embodiment. &lt;Other Aspects of First and Second Embodiments&gt; As described above, the acceleration sensor of the present invention has two functions such as power generation due to vibration and sensing of abnormal vibration. However, the optimization of these two functions may not be both. For example, the normal vibration (usually the vibration below the intensity detected by the abnormal vibration) is used to generate electricity, and the power generated by the power is used to detect the vibration (acceleration) when the battery is charged, and the vibration is detected when the abnormality is detected. The acceleration of the abnormal vibration is recorded. Normal vibration and abnormal vibration have different amplitudes or spectra, and acceleration measurement or recording accuracy of abnormal vibration must be improved to optimize the vibrating mechanism of the electret. However, sometimes the voltage value of the AC voltage generated by the vibration is reduced, and the power generation efficiency of the normal vibration is lowered. The above situation will be divided into two processes, namely, detection of power generation and abnormal vibration, 31 201003074 and detection of acceleration of abnormal vibration after detecting abnormal vibration, and the technical ideas divided into these two processes are implemented in the first and second embodiments. The form is a common concept' and the most appropriate acceleration sensor for each process. In the first process, the accelerometer is configured to generate power while detecting the abnormal vibration, and the relative motion of the accelerometer (3) and the conductor can be adjusted to a mechanism (fine tuning) that emphasizes power generation efficiency. In the second process, after the abnormal vibration is detected, the acceleration measurement of the vibration of the abnormal vibration is performed 3: ’ and the procedure of the result is recorded, and the reason described later is that the power generation function is not required. Therefore, in order to measure the additivity of the detection range as the measurement target, the acceleration sensor is set to set the acceleration of the abnormal vibration as the measurement target and the output voltage corresponding to the acceleration, and is not based on the power generation voltage. It is necessary to optimize the measurement of the acceleration. ^Change to 5, instead of dividing the large AC voltage corresponding to power generation with high-impedance power &amp; to reduce the accuracy, but to use the acceleration sensor that can be directly measured without voltage, the voltage value corresponding to the acceleration . As a result, by the 2 ° &amp; acceleration sensing state, errors such as noise overlap can be controlled, and the acceleration of the abnormal vibration can be accurately corrected. In other words, when an acceleration sensor that can accurately measure the acceleration of an abnormal vibration is provided in addition to the acceleration sensor for generating the power generation function and the abnormal vibration detection, the abnormal vibration/month is compared with during the normal vibration period. Extremely short 'There is no need to generate electricity in this abnormal state. Therefore, the add-on sensor that measures the acceleration of the abnormal vibration does not have the power generation. The acceleration sensor is operated only when the abnormal vibration is generated, and the battery consumption of the 32 201003074 can be made very small. Here, in the second process after the abnormal vibration is detected, the acceleration sensor that actually measures the acceleration of the humiliating vibration can be compensated by the electret using the set ambiguity and the voltage corresponding to the acceleration. The detector is composed. Further, the acceleration sensor may be a general-purpose acceleration sensor that is composed of an electret other than a semiconductor strain gauge type, a servo type, or a piezoelectric type. In other words, in the acceleration sensor device of the present invention, in addition to the acceleration sensor 1 that performs detection of power generation and abnormal vibration, when the acceleration sensor that measures the acceleration of the abnormal vibration is used, the control unit 6 operates in the third process. The acceleration sensor (provided in the detecting unit 7) used in the second process is cut off by the battery, and the abnormal sensor is detected by the acceleration sensor 1 exceeding a predetermined threshold value, and the abnormal signal is turned on to activate the second process. In the second process, the above-described other acceleration sensors provided in the detecting unit 7 perform high-accuracy measurement and recording of acceleration. Next, when the control unit 6 detects an acceleration returning to a normal vibration lower than a predetermined threshold (according to the detection information from the acceleration sensor i) or detects the elapsed time, the other acceleration sensor is loaded. The accelerometer's power supply stops it and changes itself to dormant. . As described above, the acceleration sensing (fourth) of the first and second embodiments of the present invention includes a case where another acceleration sensor for performing abnormal signal measurement is provided, and it is possible to limit the circuit scale and consume a large current as much as possible. The detection unit 7 that performs the acceleration measurement of the 4-6 force σ speed sensor and the operation day (4) of the money (4) way block for recording the measurement result, and maintains the performance of the acceleration and measurement function of the acceleration of 2010 201074. &lt;Arrangement Example of Acceleration Sensor 1 of First and Second Embodiments of the Invention&gt; Next, Fig. 17 shows an example of arrangement of benefits 1a and 1b, for example, acceleration feelings of the first and second embodiments. . The acceleration sensors 1a and 1b are respectively arranged in respective vibration directions corresponding to the direction a and the direction b perpendicular to the direction 3. In other words, in the acceleration sensor la, the direction in which the conductor 13 moves relative to the electret u is parallel to the axis of the direction a. Further, in the acceleration sensor ratio, the direction in which the conductor 13 relatively moves relative to the electret 11 is parallel to the axis b. The relative movement indicates that the oppositely disposed electrets and the surface of the conductor 13 are relatively moved in parallel, i.e., parallel movement. As described above, by arranging in two directions a (x-axis direction) and direction b (y-axis direction) perpendicularly intersecting each other, acceleration in two directions can be detected. Further, in the acceleration sensor 1&amp; and the ratio, the electret 11 is disposed between the two conductors 12 and 13, and the electret u is fixed to the conductor 12. Although the configuration in which the electret 11 relatively moves in parallel with respect to the conductor 13 is described, it can be reversed that the electret u is fixed to the conductor 13 and is relatively parallel with respect to the opposite conductor 12. mobile. Here, if the electret U is disposed to be relatively parallel to move relative to the conductor, the acceleration sensor is configured to be either longitudinal or lateral. (In this case, the longitudinal direction and the horizontal direction mean that if the direction in which the electret moves parallel to the conductor 13 is parallel to the acceleration direction of the vibration of the measuring object, it is arranged in a plane parallel to the direction, no matter how it is arranged. In addition, as shown in Fig. 18, for example, the arrangement examples of the speed sensors 1c and 1d of the first and second embodiments are shown. The acceleration sensors 1 c and 1 d are respectively arranged in respective vibration directions corresponding to the direction c and the direction d perpendicular to the direction c. In other words, in the acceleration sensor lc, the direction in which the conductor 13 relatively moves with respect to the electret 11 is parallel to the axis of the direction c. Further, in the acceleration sensor Id, the direction in which the conductor 13 relatively moves with respect to the electret 11 is parallel to the axis of the direction d. As described above, the acceleration in the two directions can be detected by being arranged in two directions c (X-axis direction) and direction d (Z-axis direction) perpendicularly intersecting each other. Further, in the acceleration sensors lc and Id, the electret 11 is disposed between the two conductors 12 and 13, and the electret 11 is fixed to the conductor 12. The configuration in which the conductors 13 are relatively moved in parallel with respect to each other has been described above. However, other configurations may be reversed so that the electret 11 is fixed to the conductor 13 and relatively parallel to the opposite conductor 12. Here, if the electret 11 is disposed to be relatively parallel to move relative to one of the conductors, the acceleration sensor is configured to be either longitudinal or lateral. Further, as shown in Fig. 19, for example, the arrangement examples of the acceleration sensors 1 g, 1 f and 1 e of the first and second embodiments are displayed. The acceleration sensors 1 g, 1 f and 1 e are respectively arranged in a direction corresponding to the direction g, a direction f perpendicularly intersecting the direction g, and a direction e perpendicular to a direction in which the direction g and the direction f are perpendicular to each other. In other words, in the acceleration sensor lg, the direction in which the conductor 13 moves relative to the electret 11 is parallel to the axis g of the direction g. Further, in the acceleration sensor 1 f, the direction in which the conductor 13 relatively moves with respect to the electret 11 is parallel to the axis of the direction f. Further, in the acceleration sensor le, the direction in which the conductor 13 moves relative to the electret 11 is parallel to the axis of the direction e. 35 201003074 As described above, the acceleration in three directions can be detected by arranging the three directions § (the x-axis direction), the direction f (y-axis direction), and the direction e (z-axis direction) in the vertical direction. Further, in the above-described acceleration sensing, If and le, it has been explained that the electret 11 is disposed between the two conductors 12 and 13, and the electret 11 is fixed to the conductor 12 and relatively moved in parallel with respect to the opposite conductor (four). Composition. *, it can also be constructed in the form of an electret 11 mosquito, and the opposite direction of the guide 12 is relatively parallel. For example, by arranging in the north-south, east-west, and up-and-down directions of vertical intersection, you can grasp the three-dimensional action of the ground and use it as a seismometer. The shaking of the earthquake will be from the level to the (four) period of large amplitude. In other words, the microseismic system has a magnitude of tens of Hz from the amplitude of the Jun*, and the amplitude of the large earthquake is several m, and the period is several tens of seconds. By changing the mechanism that the electret and the opposite conductor move relatively in parallel, Can correspond to a variety of vibration numbers. Here, if the electrets 11 are arranged to be relatively parallel to move relative to each other, the arrest sensor is configured to be either longitudinal or lateral. Further, the acceleration sensors of Figs. 17, 18, and 19 respectively constitute an acceleration sensor device. In other words, the acceleration sensor device of the first or the ninth diagram is constructed with respect to the acceleration sensors la, lb, le, Id, le' If, lg. &lt;Description of Electrets Used in the Second and Second Embodiments of the Present Invention&gt; Next, an electret for the acceleration sensor 1 will be described. In the present embodiment, the material for forming the electret 11 is various kinds of resins. Specific examples of the resin include a fluorine-based polymer, a cycloolefin polymer, a polyethylene 36, 201003074, or a polyolefin such as polypropylene, an ethylene-vinyl acetate copolymer, an ethylene (meth)acrylic acid copolymer, and ethylene. Itaconic acid copolymer, ethylene, maleic anhydride copolymer, ethylene copolymer such as ethylene vinyl alcohol copolymer, polyacrylonitrile, polyester, polyamide, polycarbonate, polystyrene Acrylic-styrene copolymer (AS) resin, acrylic acid-butadiene-styrene copolymer (ABS) resin, polyamine phthalate resin, polystyrene, polyphenylene ether, polyacetal , polyfluorene, polyketone, polyimine, cellulose ester, and the like. When a copolymer with the above unsaturated carboxylic acid is used, a neutralized by an alkaline earth metal ion can be used. The metal ions for soil testing are preferably magnesium or fishing. The cycloolefin polymer is a cycloaliphatic hydrocarbon comprising a repeating unit having an aliphatic ring structure in its main chain, and is, for example, a hydropolymerization of a ring-opening metathesis polymer of a norbornene and an olefin, and a ring-opening metathesis polymer of a norbornene. Hydrogenated polymer of alkylene norbornane thin cross-ring polymer, addition polymer of norbornene rarex, cyclopentadienyl 1,2, and 1,4-addition polymer A dilute 1, 2 - and 1, 4 - a hydrogenated polymer of an addition polymer, a total of a dilute cyclized polymer, and the like. The fluorine-based polymer is, for example, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), polyvinylidene fluoride (PVDF), vinylidene fluoride-trifluoroethylene copolymer (VDF). —TrFE), vinylidene fluoride-tetrafluoroethylene copolymer, tetrafluoroethylene copolymer hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), poly Tetrafluoroethylene-propylene copolymer, tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer (PFA), polytrifluoroethylene (PCTFE), trifluoroethylene 37 201003074 The difluoroethylene acetate § is an ethylenically unsaturated compound copolymer or the like, and these may be used alone or in combination of two or more. The fluorine-based polymer is preferably a polymer having a fluorine-containing aliphatic ring structure. The polymer having an I-containing aliphatic ring structure is obtained by cyclization polymerization of a fluorine-containing monomer having two or more polymerizable double bonds, and a polymer having a fluorine-containing aliphatic ring structure in the main chain is preferred. The main chain having a fluorine-containing aliphatic ring structure means that one or more of the carbon atoms constituting the aliphatic ring are (four) atoms in the carbon chain constituting the main chain, and the anaerobic portion constituting the fat ί has a fluorine atom or Fluorine atom-based release structure. Further, the fluorine-containing aliphatic ring structure may contain one or more anaerobic atoms. Specific examples of the polymer having a fluorine-containing aliphatic ring structure include, for example, perfluoro "2-dimethyl-1,3-dicarbazole", perfluoro(1)-twenty-seat, and perfluoro(4-anthracene). Oxy-di-salt and other perfluoroanthracene, 3-20 sitting), all-oxygen (2-methylene-4-yl-u-twendong)' full gas (2 methylene-4) a homopolymer of a monomer having a fluorine-containing aliphatic ring structure, such as a perfluoro(2-methylene 1'3 -4) type such as propyl-u-di- fluorene, and a single having a structure containing an aliphatic ring The co-polymer of the body and other containing monomers. Here, other fluorine-containing monomers are tetrafluoroethylene, trifluoroethylene: hexafluoropropylene, fluorinated vinylene, etc. perfluoroolefins, perfluoro(A) a vinyl group &amp;I)-specific perfluoro(alkylated vinyl group), etc., obtained by cyclization of a gas-containing monomer having two or more polymerizable double bonds, and a main chain having a fluorine-containing fat The polymer of the ring structure is, for example, Japanese Patent Publication No. _63-23811 1 or No. _63-238 ΐ 5, etc. In other words, there is, for example, perfluoro(allyl vinyl ether) or perfluoro 38 201003074 alkenylethylene. Ether A cyclized polymer of a fluorine-containing monomer having two or more polymerizable double bonds, or a copolymer of a fluorine-containing monomer having two or more polymerizable double bonds and a radical polymerizable monomer such as tetrafluoroethylene. Alternatively, it may be a monomer having a fluorine-containing aliphatic ring structure such as perfluoro(2,2-dimercapto-1,3-dicarbazole) and perfluoro(allyl vinyl ether) or perfluoro. A polymer obtained by copolymerizing a fluorine-containing monomer having two or more polymerizable double bonds, such as (butenyl vinyl ether). A polymer having a fluorine-containing aliphatic ring structure has a fluorine-containing aliphatic ring in its main chain. The polymer of the structure is preferable, and the monomer unit having a fluorine-containing aliphatic ring structure in the monomer unit forming the polymer is preferably contained in a unit containing 20 mol or more. The polymer of the fluorinated aliphatic ring structure is preferably CYTOP (originally known as Ganzi, registered trademark, manufactured by Asahi Glass Co., Ltd.), and the present invention can use such a known fluorine-containing polymer. The above polymer may contain appropriate charge adjustment. a mixture of agents or suitable charge regulators. Examples of the agent include triphenylsulfonium and its derivatives, ammonium compounds, high molecular weight ammonium compounds, iminium compounds, aryl sulfur compounds, chromium azo complexes, diallyl ammonium compounds, etc. When the electret 11 is formed by a method such as a spin coating method, the thickness of the electret 11 is ΙΟμηη or more. When the electrostatic induction conversion element of the embodiment is used as a generator, The maximum power generation output Pmax is expressed by the following equation.

Pmax= [σ2·η· Α·2πί]/[(εε0/d)»((eg// d)+l)] 39 201003074 在此,σ為駐極灿之表面電荷密度 極體11之數量),Α為電極又..、、蛋數(即駐 巧电極板13之面積,f為導體 動之震動數’ d為駐極體U之厚度,g為駐極體心電滅 13之距離,ε為相對電容率。 /、罨極板 由上述式可知,駐極則之厚度d越大,發電 大。習知用於駐極體之材料中,就可加工^咖以下之細 片狀者而言,駐極體11之紙可為數〜1〇_左右,使 用上述具有含氟脂肪族環構造之聚合物時,如上所述,弓主 極體之厚度d可為_喊上,因此適合作為駐極體 料。 又,上述具有含氟脂肪族環構造之聚合物的CYT⑽登 錄商標)之絕緣破壞強度為llkV/〇i_,較習知使用之 材料的观⑽(登錄商標^之絕緣破㈣度 (Umm高。若可提高絕緣破壞強度,便可增加對駐極體^ 之電荷注人量,在將駐極體U料❹丨㈣可提高感測器 之靈敏度。 如此,駐極體U之高發電能力對提高加速度感測器之 靈敏度很纽,且㈣料料加迷度感廳之周邊電路 之輔助電源來活用。藉駐極體u與電極板13之相對運動, 感應電荷會改Μ ’產生非常高的交#H纽該交流電 壓之大小取決於施加在駐極體丨丨之加速度,因此會將這一 部份藉電阻R1及R2 (分&amp;電阻)分壓取出,作為輸出至檢 測部7之感測器訊號。 另-方面,為了提高轉換電路4之輸入阻抗,係提高電 40 201003074 阻R1及R2之電阻值,且增大由運算放大器〇pl構成的電壓 隨動器之輸入阻抗,藉此,由駐極體n構成的加逮度感測 器1所發電之電力幾乎不會被消耗。 故,可將加速度感測器1發電之交流電壓透過整流部2 用於電池(二次電池)之充電。在此,電池可為鋰離子二 人尾/也錄氣笔池專化學一次電池,或是電偶層電容器等 電源用電谷器。再者,亦可併用化學二次電池與電源用電 容器。 &lt;本發明第1及第2實施形態之加速度感測器裝置之應 用&gt; 根據設置第1及第2實施形態之加速度感測器裝置的場 所或應用程式’有時機械性震動會經常地施加於感測器。 例如,當用於檢測馬達之異常等時。藉通常運作時的馬達 震動(常態震動)進行發電,並用該發電所獲得的電能來 進仃電池充電,另一方面,因軸變形或產生負載變動而馬 達發生異常震動時,亦可用於檢測。 在此,只要將加速度感測器裝置之各電路消耗電力控 制成較使用駐極體之加速度感測器丨產生的發電電力低,便 不需没置電池,可實現裝置之小型化及低價化。 又,藉使用駐極體之加速度感測器丨,即使在無法期待 超過速度感㈣裝置之各電路消耗電力之發電電力時,利 用作為對電池充電之輔助電源的魏,相較於由習知電池 供給電源而動作之感難裝置,仍具有使電池長效化之效 果。 41 201003074 舉例言之,如第20圖所示,有一無線感測器網路系統, 係對加速度感測器裝置設置以無線進行資料傳送接收之無 線傳送接收機來作為感測器節點,並透過中繼節點形成複 數感測器網,透過閘道器對位於網際網路上之伺服器傳送 異常震動之資料。在此,伺服器將由各感測器節點接收之 異常震動的發生時刻及異常震動之大小對應各感測器節點 之配置位置(或感測器之識別號碼)記錄於資料庫,進行 大範圍之地震檢測或檢測複數對象物(例如上述馬達等) 之狀態。 若考慮上述應用於無線感測器網路之,第1及第2實施 形態之加速度感測器裝置應用,可預測因無線傳送接收或 裝置内之各電路的規模增大,在測量震動之期間成為峰值 之消耗電力會變得相當大。 惟,藉將加速度感測器之發電作為輔助電源功能活 用,可期待延長電池之壽命。 在此,通訊協定或微電腦之控制程式、感測或通訊之 頻率、時序等所有系統動作條件當然要進行最佳化,以活 用該輔助電源功能來延長電池壽命。 而,可將用以實現第1圖、第9圖之加速度感測器裝置 之控制部6及記錄部8 (除了記錄資料之記憶體外的功能)、 第14圖之控制部6、記錄部8 (除了記錄資料之記憶體外的 功能)及判定部2 0之功能的程式記錄於電腦可讀取之記錄 媒體,使電腦系統讀取並執行已記錄於該記錄媒體之程 式,藉此進行加速度感測器之動作控制處理。而,在此所 42 201003074 稱之「電腦系統」包含os或周邊機器等硬體。又,「電腦系 統」包含具有主頁提供環境(或顯示環境)之WWW系統。 又,「電腦可讀取之記錄媒體」係指軟性磁碟、光磁碟、 ROM、CD —ROM等可攜式媒體、内藏於電腦系統之硬碟 等記憶裝置。再者,「電腦可讀取之記錄媒體」係指如透過 網際網路等網路或電話線路等通訊線路傳送程式時的伺服 器或作為用戶端之電腦系統内部的依電性記憶體(RAM) 般,包含可在一定時間保持程式者。 又,前述程式可由已將該程式儲存於記憶裝置等之電 腦系統,透過傳送媒體,或藉傳送媒體中之傳送波傳送至 其它電腦系統。在此,傳送程式之「傳送媒體」係指如網 際網路等網路(通訊網)或電話線路等通訊線路(通訊線) 般,具有傳送資訊之功能的媒體。又,前述程式可為用以 實現前述功能之一部份者。再者,可利用與已將前述功能 記錄於電腦系統之程式之組合(即所謂的差分檔案(差分 程式))來實現。 以上,已參考圖式詳述本發明之實施形態,但具體構 成並未受限於本實施形態,亦包含不悖離本發明要旨之範 圍的設計等。 産業上之利用可能性 本發明之加速度感測器裝置可作為地震計使用。又, 使用該裝置之感測器網路系統可用於大規模化學工廠之設 備監控、道路、橋、水壩等構造物之保全、或山崖坍方之 預測等。 43 201003074 而,將已於2008年3月31曰申請之日本專利申請案第 2008 —093278號之說明書、申請專利範圍、圖式及摘要之 全内容引用至此,作為本發明說明書之揭示並予以採用。 【圖式簡單說明3 第1圖係顯示本發明第1實施形態之加速度感測器裝置 的構成例之方塊圖。 第2圖係說明本發明第1及第2實施形態之加速度感測 器1構造,由側面觀看加速度感測器1之概念圖。 第3圖係顯示第1圖之整流部2的電路構成例之概念圖。 第4圖係顯示第1圖之轉換電路4的電路構成例之概念 圖。 第5圖係顯示加速度感測器1輸出之輸出電壓波形的波 形圖。 第6圖係顯示轉換電路4輸出之輸出電壓波形的波形 圖。 第7圖係顯示比較器5輸出之輸出電壓波形的波形圖。 第8圖係顯示第1實施形態之加速度感測器裝置的動作 例之流程圖。 第9圖係顯示本發明第2實施形態之加速度感測器裝置 的構成例之方塊圖。 第10圖係顯示第9圖之限制電路9的電路構成例之概念 圖。 第11圖係顯示限制電路9輸出之輸出電壓波形的波形 圖。 44 201003074 第12圖係顯示比較器5輸出之輸出電壓波形的波形圖。 第13圖係顯示控制部6之常態震動及異常震動各期間 的消耗電力控制所產生之消耗電力狀態的波形圖。 第14圖係顯示第9圖實施形態之加速度感測器裝置的 變形例之方塊圖。 第15圖係說明第丨4圖之加速度感測器裝置的動作之概 念圖。 第16圖係顯示第14圖所示之加速度感測器裝置的動作 例之流程圖。 第17圖係顯示藉第丨及第2實施形態之加速度感測器裝 置來測量2次元震動之加速度感測器配置的概念圖。 第18圖係顯示藉第丨及第2實施形態之加速度感測器裝 置來測量2次元震動之加速度感測器配置的概念圖。 第19圖係顯示藉第丨及第2實施形態之加速度感測器裝 置來測量3次元震動之加速度感測器配置的概念圖。 第20圖係顯示使用了第!及第2實施形態之加速度感測 器裝置的無線感測器網路系統之概念圖。 【主要元件符號說明】 1、la〜If·..加速度感測器 7...檢測部 2·..整流部 8...記錄部 3··.電源部 9...限制電路 4...轉換電路 11...駐極體 5··.比較器 11a...上部平面 6...控制部 lib...下部平面 45 201003074 12、13.··電極板 D3、 12a...上部平面 913 13b...下部平面 917. 14 ' Rl ' R2'901 ' 902'903... T1、 電阻 T3、 20...判定部 T5、 909、910、911、915、916…電 Ch·· 阻 Vs·· 906、912、OP1·.·運算放大器 Vt··. 904、905、907、908、D卜 D2、 D4...二極體 、914...齊納二極體 ..電容器 T2...輸出端子 T4...輸入端子 T6...輸出端子 .平滑用電容器 .分壓電壓 ,設定電壓 46Pmax=[σ2·η· Α·2πί]/[(εε0/d)»((eg// d)+l)] 39 201003074 Here, σ is the number of the surface charge density polar bodies 11 of the electret) , Α is the electrode and .., the number of eggs (that is, the area of the electrode plate 13, f is the number of vibrations of the conductor' d is the thickness of the electret U, and g is the distance of the electret body 13 ε is the relative permittivity. /, The 罨 plate is known from the above formula, and the larger the thickness d of the electret is, the larger the power generation is. In the material used for the electret, it is possible to process the fine sheet below the coffee. The paper of the electret 11 may be about ~1 〇 _, and when the polymer having a fluorinated aliphatic ring structure is used, as described above, the thickness d of the bow main body may be _ shouting, It is suitable as an electret material. In addition, the dielectric breakdown strength of the CYT (10) registered trademark of the above-mentioned polymer having a fluorine-containing aliphatic ring structure is llkV/〇i_, which is higher than the conventionally used material (10) (registered trademark ^ insulation) Broken (four) degrees (Umm high. If the insulation damage strength can be increased, the charge injection amount of the electret body can be increased, and the electret U ❹丨 (4) can improve the sensitivity of the sensor. In this way, the high power generation capability of the electret U is very sensitive to the sensitivity of the acceleration sensor, and (4) the material is added to the auxiliary power supply of the peripheral circuit of the hall of the sensory hall. The electret pole u and the electrode plate 13 are utilized. Relative motion, the induced charge will change Μ 'Generate a very high intersection #H Newton The magnitude of the AC voltage depends on the acceleration applied to the electret, so this part will be taken over the resistors R1 and R2 (point & The resistor is taken out as a sensor signal outputted to the detecting unit 7. On the other hand, in order to increase the input impedance of the converting circuit 4, the resistance value of the resistors R1 and R2 is increased, and the operation value is increased by the operational amplifier. The input impedance of the voltage follower constituted by 〇pl, whereby the power generated by the acceleration sensor 1 composed of the electret n is hardly consumed. Therefore, the acceleration sensor 1 can generate electricity. The AC voltage is used for charging the battery (secondary battery) through the rectifying unit 2. Here, the battery can be a lithium ion two-tail/also a gas cylinder dedicated chemical primary battery, or a power supply layer such as a galvanic capacitor. In addition, you can also use chemistry two. The secondary battery and the power supply capacitor. <Application of the acceleration sensor device according to the first and second embodiments of the present invention> The location or application program of the acceleration sensor device according to the first and second embodiments is provided. The mechanical vibration is often applied to the sensor. For example, when it is used to detect an abnormality of the motor, etc., it is generated by motor vibration (normal vibration) during normal operation, and the electric energy obtained by the power generation is used to enter the battery. Charging, on the other hand, when the motor is abnormally vibrated due to shaft deformation or load fluctuation, it can also be used for detection. Here, the power consumption of each circuit of the acceleration sensor device is controlled to be higher than that of the electret. The power generated by the detector 低 is low, so that there is no need to install a battery, and the device can be miniaturized and reduced in cost. Moreover, by using the electret acceleration sensor 丨, even when it is impossible to expect the power generated by the respective circuits of the speed sense (4) device to generate electric power, the use of Wei as an auxiliary power source for charging the battery is compared with the conventional one. The sensory device that operates by supplying power to the battery still has the effect of making the battery longer. 41 201003074 For example, as shown in FIG. 20, there is a wireless sensor network system, which is a wireless transmitter receiver that wirelessly transmits and receives data to the acceleration sensor device as a sensor node, and transmits The relay node forms a complex sensor network that transmits abnormal data to the server located on the Internet through the gateway. Here, the server records the occurrence time of the abnormal vibration received by each sensor node and the magnitude of the abnormal vibration corresponding to the configuration position of each sensor node (or the identification number of the sensor) in the database, and performs a wide range. The state of the seismic detection or detection of a plurality of objects (for example, the above-described motor). Considering the above-described application of the acceleration sensor device of the first and second embodiments in consideration of the above-described application to the wireless sensor network, it is possible to predict the increase in the scale of each circuit in the wireless transmission and reception or during the measurement of the vibration. The power consumption that becomes the peak will become quite large. However, by using the power generation of the acceleration sensor as an auxiliary power source function, it is expected to extend the life of the battery. Here, all system operating conditions such as the communication protocol or microcomputer control program, frequency or timing of sensing or communication are of course optimized to utilize the auxiliary power function to extend battery life. Further, the control unit 6 and the recording unit 8 for realizing the acceleration sensor device of FIGS. 1 and 9 (in addition to the function of recording the data outside the memory), the control unit 6 of the FIG. 14 and the recording unit 8 can be used. The program (in addition to the function of recording the data outside the memory) and the function of the determining unit 20 are recorded on a computer-readable recording medium, so that the computer system reads and executes the program recorded on the recording medium, thereby accelerating the sense of acceleration. The action control processing of the detector. However, the "computer system" referred to herein as 2010 201074 includes hardware such as os or peripheral equipment. Further, the "computer system" includes a WWW system having a homepage providing environment (or display environment). Further, "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a hard disk embedded in a computer system. In addition, "computer-readable recording medium" refers to a server that transmits a program via a communication line such as the Internet or a telephone line, or an internal memory (RAM) as a computer system of the user side. ), including those who can keep the program for a certain period of time. Further, the program can be transmitted to another computer system by the computer system that has stored the program in a memory device or the like through the transmission medium or by the transmission wave in the transmission medium. Here, the "transmission medium" of the transmission program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. Further, the aforementioned program may be part of the above-described functions. Furthermore, it can be realized by a combination of a program that has recorded the aforementioned functions in a computer system (so-called differential file (differential program)). The embodiments of the present invention have been described in detail above with reference to the drawings, but the specific configuration is not limited to the embodiment, and includes designs and the like that do not depart from the gist of the present invention. Industrial Applicability The acceleration sensor device of the present invention can be used as a seismometer. In addition, the sensor network system using the device can be used for equipment monitoring of large-scale chemical plants, preservation of structures such as roads, bridges, and dams, or prediction of cliffs. And the entire contents of the specification, the drawings, and the abstract of the Japanese Patent Application No. 2008-093278, filed on March 31, 2008, the disclosure of . BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration example of an acceleration sensor device according to a first embodiment of the present invention. Fig. 2 is a conceptual view showing the structure of the acceleration sensor 1 according to the first and second embodiments of the present invention, and the acceleration sensor 1 is viewed from the side. Fig. 3 is a conceptual diagram showing an example of the circuit configuration of the rectifying unit 2 of Fig. 1. Fig. 4 is a conceptual diagram showing an example of the circuit configuration of the conversion circuit 4 of Fig. 1. Fig. 5 is a waveform diagram showing the output voltage waveform of the output of the acceleration sensor 1. Fig. 6 is a waveform diagram showing an output voltage waveform output from the conversion circuit 4. Fig. 7 is a waveform diagram showing an output voltage waveform output from the comparator 5. Fig. 8 is a flow chart showing an example of the operation of the acceleration sensor device of the first embodiment. Fig. 9 is a block diagram showing a configuration example of an acceleration sensor device according to a second embodiment of the present invention. Fig. 10 is a conceptual diagram showing an example of the circuit configuration of the limiting circuit 9 of Fig. 9. Fig. 11 is a waveform diagram showing an output voltage waveform output from the limiting circuit 9. 44 201003074 Fig. 12 is a waveform diagram showing the output voltage waveform of the output of the comparator 5. Fig. 13 is a waveform chart showing the state of power consumption by the power consumption control during the normal vibration and the abnormal vibration of the control unit 6. Fig. 14 is a block diagram showing a modification of the acceleration sensor device of the embodiment of Fig. 9. Fig. 15 is a conceptual view showing the operation of the acceleration sensor device of Fig. 4. Fig. 16 is a flow chart showing an example of the operation of the acceleration sensor device shown in Fig. 14. Fig. 17 is a conceptual diagram showing an arrangement of an acceleration sensor for measuring a 2-dimensional vibration by the acceleration sensor device of the second embodiment and the second embodiment. Fig. 18 is a conceptual diagram showing an arrangement of an acceleration sensor for measuring a 2-dimensional vibration by the acceleration sensor device of the second embodiment and the second embodiment. Fig. 19 is a conceptual diagram showing the configuration of an acceleration sensor for measuring a 3-dimensional vibration by the acceleration sensor device of the second embodiment and the second embodiment. Figure 20 shows the use of the first! A conceptual diagram of a wireless sensor network system of the acceleration sensor device of the second embodiment. [Description of main component symbols] 1. La~If·.. Acceleration sensor 7: Detection unit 2: Rectifier unit 8: Recording unit 3... Power supply unit 9: Limiting circuit 4. .. conversion circuit 11... electret 5··. comparator 11a... upper plane 6... control unit lib... lower plane 45 201003074 12, 13.··electrode plates D3, 12a.. Upper plane 913 13b... Lower plane 917. 14 ' Rl ' R2 '901 ' 902' 903... T1, resistors T3, 20...determination sections T5, 909, 910, 911, 915, 916... Ch··Resistance Vs·· 906, 912, OP1···Operational amplifier Vt··. 904, 905, 907, 908, D Bu D2, D4... diode, 914... Zener diode ..capacitor T2...output terminal T4...input terminal T6...output terminal. smoothing capacitor. divided voltage, set voltage 46

Claims (1)

201003074 七、申請專利範圍·· L一種加速度感刻器裝L係具有加速度感測器者,該加 速度感測器由導體與相對該導體相對運動之駐極體構成, 為-可轉換電能與動能之靜電感應型轉換元件,且該加速 度感測器裝置包含有: 加速度檢測部,係由前试 田月j迮加速度感測器輸出之交流電 壓來檢測對應加速度之訊號者; 整流部’係將前述交流電麼加以整流者;及 ^源電路’係具有使裝置内之電路動作的電池,並可 將别述整流部輸出的經整流 …丨L之電壓作為電能而對前述電池 充電者。 異常震動檢測測器装置,其更具有- 電壓與前述經整流之=:=::將預設之臨界值 ^,壓㈣後— 一記錄之加ί錢測器裝置,其中更具有 作為觸發,_^+、㈣加速錢測糾異常震動 號而啟動,開==異常震動檢測電路輪出之前述異常訊 時間點結束錄對應前述加速度之-號,並於預設之 之加速度感測器裝置,其更具有- ::::::常震動―之前述異心 Μ ^應前述加速度之汛號,且,前述異常 47 201003074 震動檢測電路檢測異常震動之結束,並輸出異常震動結束 訊號,且根據前述異常震動結束訊號停止記錄對應前述加 速度之訊號。 5. 如申請專利範圍第3或4項之加速度檢測器裝置,其更具 有判定部,該判定部針對前述異常震動是否為應記錄之震 動,將由頻率與對應頻率之頻譜強度構成的預設之參考震 動圖形,和由對應前述加速度之訊號的頻率與對應頻率之 頻譜強度構成之對象震動圖形加以比較後,根據該比較結 果判斷是否記錄對應前述加速度之訊號。 6. 如申請專利範圍第5項之加速度檢測器裝置,其中前述判 定部具有一設定範圍,該設定範圍係由前述參考震動圖形 之各頻率與頻率之頻譜強度求得,並依各頻率具有頻譜強 度之上限值及下限值者,且前述判定部根據前述對象震動 圖形之各頻率的頻譜強度是否包含於前述設定範圍之比較 結果,判斷是否記錄對應前述加速度之訊號。 7. 如申請專利範圍第5項之加速度檢測器裝置,其中前述判 定部於預設之各時間寬度進行傅立葉轉換,該傅立葉轉換 係求取與前述加速度對應之震動的頻率與對應該頻率之頻 譜強度者。 8. 如申請專利範圍第7項之加速度檢測器裝置,其中前述檢 測部將與由異常訊號到異常結束為止之前述加速度對應的 震動之電壓值記憶於内部,而前述判定部則依每一前述時 間寬度,依序依對應前述時間寬度之各時刻範圍來讀取與 前述加速度對應之震動的電壓之電壓值,並進行傅立葉轉 48 201003074 換來生成對象震動圖形。 9. 如申請專利範圍第5至8項中任一項之加速度檢測器裝 置,其中預設於前述判定部之設定範圍係由參考震動圖形 生成,該參考震動圖形係起因於已在預設期間取得之環境 中之外部干擾震動。 10. 如申請專利範圍第1至9項中任一項之加速度檢測器裝 置,其中前述加速度感測器之前述駐極體之材料由有機材 料構成。 11. 如申請專利範圍第1至9項中任一項之加速度檢測器裝 置,其中前述加速度感測器之前述駐極體之材料至少包含1 種環稀烴聚合物。 12 ·如申請專利範圍第1至9項中任一項之加速度檢測器裝 置,其中前述加速度感測器之前述駐極體之材料由氟系聚 合物構成。 13. 如申請專利範圍第1至10項中任一項之加速度檢測器裝 置,其中前述加速度感測器之前述駐極體之材料由主鏈具 有含氟脂肪族環構造的聚合物構成。 14. 如申請專利範圍第3至13項中任一項之加速度檢測器裝 置,其中前述記錄電路更具有檢測前述加速度之數值的數 值檢測用加速度感測器。 15. 如申請專利範圍第14項之加速度檢測器裝置,其中前述 數值檢測用加速度感測器較前述加速度感測器之精確度 高。 16. —種無線感測器網路,係具有複數感測器節點及收集該 49 201003074 檢測器節點所檢測出之資料的資料收集伺服器; 且,至少包含1個已於申請專利範圍第1至15項中任一 項之前述加速度感測器裝置裝入無線通訊功能之感測器節 點。 17. —種大範圍異常震動記錄系統,係使用申請專利範圍第 16項之無線感測器網路,將前述感測器節點作為申請專利 範圍第3至15項中任一項之前述加速度感測器裝置,記錄複 數地點之異常震動者。 50201003074 VII. Patent application scope · L An accelerometer is equipped with an acceleration sensor. The acceleration sensor is composed of a conductor and an electret relative to the conductor, and is - convertible electric energy and kinetic energy. The electrostatic induction type conversion component, and the acceleration sensor device includes: an acceleration detecting unit that detects a signal corresponding to the acceleration by an alternating voltage outputted by a front tester; the rectifying unit The alternating current circuit is provided with a battery for operating the circuit in the device, and the voltage of the rectified device 丨L outputted by the rectifying unit is used as electric energy to charge the battery. The abnormal vibration detecting device has more - voltage and the above rectified =:=:: the preset threshold value ^, after pressing (four) - a recorded plus gamma detector device, which has more as a trigger, _^+, (4) Accelerate the money measurement and correct the abnormal vibration number and start, open == the abnormal vibration detection circuit rotates the aforementioned abnormal signal time point to end the corresponding acceleration of the - sign, and the preset acceleration sensor device , which has - :::::: constant vibration - the aforementioned heterocentric Μ ^ should be the apostrophe of the aforementioned acceleration, and the abnormality 47 201003074 The vibration detecting circuit detects the end of the abnormal vibration, and outputs an abnormal vibration end signal, and according to The abnormal vibration end signal stops recording the signal corresponding to the acceleration. 5. The acceleration detector device of claim 3, wherein the determination unit further comprises a determination unit for determining whether the abnormal vibration is a vibration to be recorded, and presetting the frequency and the spectral intensity of the corresponding frequency. The reference vibration pattern is compared with the target vibration pattern formed by the frequency of the signal corresponding to the acceleration and the spectral intensity of the corresponding frequency, and based on the comparison result, it is determined whether or not the signal corresponding to the acceleration is recorded. 6. The acceleration detector device of claim 5, wherein the determining unit has a setting range obtained by spectral intensity of each frequency and frequency of the reference vibration pattern, and having a spectrum according to each frequency The intensity upper limit value and the lower limit value are determined by the determination unit whether or not the signal corresponding to the acceleration is recorded based on whether or not the spectral intensity of each frequency of the target vibration pattern is included in the set range. 7. The acceleration detector device of claim 5, wherein the determining unit performs a Fourier transform on a predetermined time width, wherein the Fourier transform determines a frequency of the vibration corresponding to the acceleration and a spectrum corresponding to the frequency. Intensity. 8. The acceleration detector device of claim 7, wherein the detecting unit memorizes a voltage value of a shock corresponding to the acceleration from an abnormal signal to an abnormal end, and the determining unit is each The time width sequentially reads the voltage value of the voltage corresponding to the acceleration corresponding to the time range corresponding to the time width, and performs Fourier transform 48 201003074 to generate the object vibration pattern. 9. The acceleration detector device of any one of clauses 5 to 8, wherein the setting range preset by the determining portion is generated by a reference vibration pattern which is caused by a preset period External disturbance vibration in the environment obtained. 10. The acceleration detector device of any one of claims 1 to 9, wherein the material of the electret of the acceleration sensor is made of an organic material. 11. The acceleration detector device of any one of claims 1 to 9, wherein the material of the electret of the acceleration sensor comprises at least one cycloaliphatic polymer. The acceleration detector device according to any one of claims 1 to 9, wherein the material of the electret of the acceleration sensor is composed of a fluorine-based polymer. 13. The acceleration detector device of any one of claims 1 to 10, wherein the material of the electret of the acceleration sensor is composed of a polymer having a fluoroaliphatic ring structure in its main chain. 14. The acceleration detector device of any one of claims 3 to 13, wherein the recording circuit further has a value detecting acceleration sensor for detecting a value of the acceleration. 15. The acceleration detector device of claim 14, wherein the aforementioned value detecting acceleration sensor is higher in accuracy than the aforementioned acceleration sensor. 16. A wireless sensor network comprising a plurality of sensor nodes and a data collection server for collecting data detected by the 49 201003074 detector node; and comprising at least one of the patented scopes The aforementioned acceleration sensor device of any one of the 15 items is incorporated in a sensor node of a wireless communication function. 17. A wide range of abnormal vibration recording system, which uses the wireless sensor network of claim 16 and uses the aforementioned sensor node as the aforementioned acceleration feeling in any one of claims 3 to 15. The detector device records the abnormal vibration of the plurality of locations. 50
TW098110412A 2008-03-31 2009-03-30 Acceleration sensor device and sensor network system TWI453416B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093278 2008-03-31

Publications (2)

Publication Number Publication Date
TW201003074A true TW201003074A (en) 2010-01-16
TWI453416B TWI453416B (en) 2014-09-21

Family

ID=41135400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098110412A TWI453416B (en) 2008-03-31 2009-03-30 Acceleration sensor device and sensor network system

Country Status (7)

Country Link
US (1) US8763461B2 (en)
EP (1) EP2278342B1 (en)
JP (1) JP5541155B2 (en)
KR (1) KR101467017B1 (en)
CN (1) CN101981456B (en)
TW (1) TWI453416B (en)
WO (1) WO2009123022A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514102B (en) * 2012-07-24 2015-12-21 Green Solution Tech Co Ltd Feedback detection circuit
TWI565930B (en) * 2011-06-24 2017-01-11 路梅戴尼科技公司 Inertial sensor and methods of forming and using the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221002A (en) * 2010-03-25 2011-11-04 Sanyo Electric Co Ltd Vibration detection device, air pressure detection terminal and acceleration detection system
JP5554136B2 (en) * 2010-04-30 2014-07-23 株式会社東芝 Monitoring system and monitoring method
DE102010030826A1 (en) * 2010-07-01 2012-01-05 Robert Bosch Gmbh Method and circuit arrangement for diagnosing a load path in a vehicle
JP6103182B2 (en) * 2011-10-03 2017-03-29 セイコーエプソン株式会社 POWER GENERATION DEVICE, ELECTRONIC DEVICE, MOBILE DEVICE, AND POWER GENERATION DEVICE CONTROL METHOD
JP2013122380A (en) * 2011-12-09 2013-06-20 Seiko Instruments Inc Acceleration signal processor
JP5862310B2 (en) * 2012-01-10 2016-02-16 オムロン株式会社 Vibration sensor, external environment detection device
WO2013171798A1 (en) * 2012-05-17 2013-11-21 富士通株式会社 Gateways and earthquake detection method
JP5904540B2 (en) * 2012-05-30 2016-04-13 オムロン株式会社 Electret type vibration detection system, external vibration information generation method, external vibration information generation method, external vibration information generation program, external vibration transfer function information generation program
JP6249203B2 (en) * 2013-05-17 2017-12-20 パナソニックIpマネジメント株式会社 Power generation vibration sensor, tire and electric device using the same
CN103487600B (en) * 2013-09-04 2015-12-09 杭州中瑞思创科技股份有限公司 Wireless acceleration sensor device
US9427115B2 (en) * 2013-12-05 2016-08-30 RJE International, Inc. Bathtub monitors
CN103605155B (en) * 2013-12-05 2016-04-06 石家庄经济学院 High precision wireless MANET seismic acquisition unit
CN106415203A (en) * 2014-06-26 2017-02-15 路梅戴尼科技公司 Systems and methods for extracting system parameters from nonlinear periodic signals from sensors
KR102248741B1 (en) * 2015-01-29 2021-05-07 삼성전자주식회사 Display appaeatus and control method thereof
EP3298414A1 (en) 2015-05-20 2018-03-28 Lumedyne Technologies Incorporated Extracting inertial information from nonlinear periodic signals
US10379137B2 (en) * 2015-12-15 2019-08-13 Panasonic Corporation Accelerometer sense path self-test
JP2017181307A (en) * 2016-03-30 2017-10-05 住友重機械工業株式会社 Failure diagnostic device of gear motor
CN107735659B (en) * 2016-06-09 2021-03-23 三角力量管理株式会社 Force sensor
US10234477B2 (en) 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer
JP6496298B2 (en) * 2016-11-28 2019-04-03 ファナック株式会社 Portable operation panel with vibration function and vibration detection function
JP7103085B2 (en) * 2017-12-15 2022-07-20 Tdk株式会社 State detector
CN109596860B (en) * 2018-11-05 2020-12-08 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Accelerometer fault diagnosis method, device, circuit and computer equipment
JP2020134391A (en) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 Sensor module, sensor system and abnormality determination method of inertia sensor
JP7083999B2 (en) * 2019-06-24 2022-06-14 国立大学法人 東京大学 Energy harvesting equipment
TWI705264B (en) * 2019-12-24 2020-09-21 台灣新光保全股份有限公司 Post-earthquake model establishing system
CN114945607B (en) * 2020-01-08 2023-09-26 大金工业株式会社 Electret material and electrostatic dielectric conversion element
JP7473428B2 (en) 2020-09-04 2024-04-23 大和ハウス工業株式会社 Seismic waveform interpolation method and system
JP2023006641A (en) * 2021-06-30 2023-01-18 株式会社鷺宮製作所 Monitoring system and monitoring method

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702493A (en) 1967-05-15 1972-11-14 Thermo Electron Corp Method of making an electret
US3967027A (en) 1969-12-19 1976-06-29 Kureha Kagaku Kogyo Kabushiki Kaisha Stable electret retaining a high surface potential and method of making the same
JPS4861126A (en) 1971-12-02 1973-08-27
FR2397120A1 (en) 1977-07-04 1979-02-02 Lewiner Jacques IMPROVEMENTS IN ELECTROMECHANICAL TRANSDUCERS
US4291245A (en) 1979-09-04 1981-09-22 Union Carbide Corporation Electrets
US4441038A (en) 1980-06-30 1984-04-03 Tokyo Shibaura Denki Kabushiki Kaisha Electret device
GB2079056B (en) 1980-06-30 1985-04-17 Tokyo Shibaura Electric Co Electret device
US4443711A (en) 1980-06-30 1984-04-17 Tokyo Shibaura Denki Kabushiki Kaisha Electret device
US4442324A (en) 1982-06-24 1984-04-10 Tibbetts Industries, Inc. Encapsulated backplate for electret transducers
US4642504A (en) * 1983-04-08 1987-02-10 Sarcos, Inc. Electric field machine
US4513049A (en) 1983-04-26 1985-04-23 Mitsui Petrochemical Industries, Ltd. Electret article
DE3643203A1 (en) * 1986-12-18 1988-06-30 Grundig Emv Device for detecting vibrations in transportation systems
JPS63238115A (en) 1987-03-27 1988-10-04 Asahi Glass Co Ltd Production of fluorine-containing copolymer having cyclic structure
JPS63238111A (en) 1987-03-27 1988-10-04 Asahi Glass Co Ltd Production of fluorine-containing polymer having cyclic structure
JPH0820463B2 (en) 1987-08-08 1996-03-04 富士通株式会社 Acceleration sensor unit
JPH01112468U (en) 1988-01-23 1989-07-28
US5161233A (en) 1988-05-17 1992-11-03 Dai Nippon Printing Co., Ltd. Method for recording and reproducing information, apparatus therefor and recording medium
US5731116A (en) 1989-05-17 1998-03-24 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5439768A (en) * 1988-05-17 1995-08-08 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
JPH06104952B2 (en) 1988-05-24 1994-12-21 東レ株式会社 Electret fiber and manufacturing method thereof
FR2632737B1 (en) 1988-06-10 1992-12-24 Thomson Csf METHOD FOR OBTAINING A NON-LINEAR ELECTROOPTICAL EFFECT GENERATOR, STRUCTURE OBTAINED AND APPLICATIONS
US5130600A (en) * 1989-06-02 1992-07-14 Mitsubishi Petrochemical Co., Ltd. Acceleration sensor
US5203941A (en) 1989-10-19 1993-04-20 Avery Dennison Corporation Process for manufacturing plastic siding panels with outdoor weatherable embossed surfaces
JP2732413B2 (en) 1989-11-15 1998-03-30 松下電器産業株式会社 Acceleration sensor
CA2037942A1 (en) 1990-03-12 1991-09-13 Satoshi Matsuura Process for producing an electret, a film electret, and an electret filter
DE69111699T2 (en) 1990-06-01 1996-04-18 Asahi Glass Co Ltd Fluoropolymer coating composition and article coated therewith.
JP3053657B2 (en) 1991-02-06 2000-06-19 旭硝子株式会社 Perfluoro copolymer, its production method, its composition and its membrane
JP3048395B2 (en) * 1991-03-11 2000-06-05 株式会社東芝 Monitoring equipment for rotating machinery
DE69404736T2 (en) 1993-03-09 1998-01-08 Hoechst Celanese Corp Polymer electrets with improved charge stability
EP0741585A1 (en) 1994-01-21 1996-11-13 Brown University Research Foundation Biocompatible implants
US5528219A (en) * 1994-04-28 1996-06-18 Konrad Doppelmayr & Sohn Ropeway safety monitoring system
JPH0841260A (en) 1994-05-25 1996-02-13 Mitsui Petrochem Ind Ltd Electret
JPH0815302A (en) 1994-06-27 1996-01-19 Taiyo Yuden Co Ltd Acceleration sensor
JPH08155230A (en) 1994-12-06 1996-06-18 Nitto Denko Corp Electret filter and its preparation
US5610455A (en) 1995-06-29 1997-03-11 Minnesota Mining And Manufacturing Company Electret containing syndiotactic vinyl aromatic polymer
JPH0971003A (en) 1995-06-30 1997-03-18 Minolta Co Ltd Charging device for image forming device
JP2000508860A (en) 1996-04-18 2000-07-11 カリフォルニア インスティチュート オブ テクノロジー Thin film electret microphone
CA2293719C (en) * 1997-06-13 2008-08-12 Ticona Gmbh Electrets
US6221987B1 (en) 1998-04-17 2001-04-24 Asahi Glass Company Ltd. Method for producing a fluorine-containing polymer
US6559238B1 (en) 1998-06-29 2003-05-06 E. I. Du Pont De Nemours And Company Thermally cross-linked fluoropolymer
US6573205B1 (en) 1999-01-30 2003-06-03 Kimberly-Clark Worldwide, Inc. Stable electret polymeric articles
JP3765215B2 (en) * 1999-11-30 2006-04-12 オムロン株式会社 Information processing apparatus and method, and recording medium
AU2002243224A1 (en) 2000-11-16 2002-06-24 The Trustees Of The Stevens Institute Of Technology Large aperture vibration and acoustic sensor
EP1256592B1 (en) 2001-05-07 2007-07-11 Solvay Solexis S.p.A. Amorphous perfluorinated copolymers
JP2003013359A (en) 2001-06-29 2003-01-15 Toray Ind Inc Method for electret processed article production
US6870939B2 (en) 2001-11-28 2005-03-22 Industrial Technology Research Institute SMT-type structure of the silicon-based electret condenser microphone
JP2004059763A (en) 2002-07-30 2004-02-26 Asahi Glass Co Ltd Method for producing fluorine-containing polymer
JP2004128361A (en) 2002-10-04 2004-04-22 Daikin Ind Ltd Charging member, charging member manufacturing method and manufacturing method of electret microphone assembly
US20040158294A1 (en) * 2003-02-12 2004-08-12 Medtronic, Inc. Self-powered implantable element
JP3984185B2 (en) * 2003-03-28 2007-10-03 財団法人鉄道総合技術研究所 Structure monitoring device and monitoring system
US6833687B2 (en) 2003-04-18 2004-12-21 Agilent Technologies, Inc. Electromechanical power converter
JP2005056191A (en) * 2003-08-05 2005-03-03 Oputeiko:Kk System for monitoring abnormality
TWI257402B (en) 2003-11-14 2006-07-01 Ind Tech Res Inst Electret material and composite thereof
JP2005337736A (en) * 2004-05-24 2005-12-08 Ubukata Industries Co Ltd Apparatus for recording impact during transportation
JP4670050B2 (en) * 2004-11-26 2011-04-13 国立大学法人 東京大学 Electret and electrostatic induction type conversion element
US7449811B2 (en) 2004-11-26 2008-11-11 The University Of Tokyo Electrostatic induction conversion device
US7466240B2 (en) * 2005-01-25 2008-12-16 The Retents Of The University Of California Wireless sensing node powered by energy conversion from sensed system
CN1651876A (en) * 2005-02-26 2005-08-10 重庆大学 Self-supplying energy micro-vibration sensor
JP2006253847A (en) * 2005-03-09 2006-09-21 Fujitsu Ten Ltd Status recording apparatus
JP4934801B2 (en) * 2005-05-26 2012-05-23 国立大学法人山口大学 Non-powered accelerometer with vibration generator
US20070096974A1 (en) * 2005-10-14 2007-05-03 Siemens Vdo Automotive Corporation Blending of sensors to produce alternate sensor characteristics
JP2007251529A (en) * 2006-03-15 2007-09-27 Mitsubishi Materials Corp Data collection system and data collection method
JP4669491B2 (en) * 2006-03-28 2011-04-13 日本航空電子工業株式会社 Tuning fork type vibration gyro
JP4871642B2 (en) 2006-05-19 2012-02-08 国立大学法人 東京大学 Electrostatic induction type conversion element
JP2007333618A (en) 2006-06-16 2007-12-27 Univ Kansai Acceleration sensor
JP5086570B2 (en) * 2006-06-27 2012-11-28 株式会社日立製作所 Abnormality diagnosis system and abnormality diagnosis method in fuel cell power generation system, fuel cell power generation system and operation method thereof
JP2008016919A (en) 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd Sound response device
JP4558007B2 (en) * 2006-07-14 2010-10-06 三洋電機株式会社 Static induction generator
JP2008028499A (en) 2006-07-19 2008-02-07 Hitachi Ltd Remote monitoring communication system
US7525205B2 (en) * 2006-07-28 2009-04-28 Sanyo Electric Co., Ltd. Electric power generator
WO2008026407A1 (en) * 2006-08-31 2008-03-06 Sanyo Electric Co., Ltd. Electrostatic operation device
US7956497B2 (en) * 2006-09-29 2011-06-07 Sanyo Electric Co., Ltd. Electret device and electrostatic induction conversion apparatus comprising the same
JP4390796B2 (en) * 2006-10-30 2009-12-24 三洋電機株式会社 Electret element and electrostatic operation device
JP5081832B2 (en) * 2006-10-30 2012-11-28 三洋電機株式会社 Electrostatic operation device
US8164231B2 (en) 2006-11-10 2012-04-24 Sanyo Electric Co., Ltd. Electret device comprising electret film formed on main surface of substrate and electrostatic operating apparatus
US7732974B1 (en) * 2006-11-15 2010-06-08 Justin Boland Electrostatic power generator cell and method of manufacture
US8212450B2 (en) 2006-11-28 2012-07-03 Sanyo Electric Co., Ltd. Generator including an electret member
JP2008167231A (en) 2006-12-28 2008-07-17 Sanyo Electric Co Ltd Device for generating electrostatic inductive power
JP4921325B2 (en) 2007-03-22 2012-04-25 国立大学法人 東京大学 Electret, electrostatic induction conversion element including the same, and method for manufacturing electret
KR20100014816A (en) 2007-04-20 2010-02-11 아사히 가라스 가부시키가이샤 Fluorine-containing polymer thin film and method for producing the same
JP5597822B2 (en) * 2007-07-06 2014-10-01 国立大学法人東北大学 Vibration power generator
US7879446B2 (en) 2007-07-12 2011-02-01 Industrial Technology Research Institute Fluorinated cyclic olefin electret film
US7978639B2 (en) * 2007-08-30 2011-07-12 Intermec Ip Corp. Systems, methods and devices for collecting data from wireless sensor nodes
JP5033561B2 (en) * 2007-09-26 2012-09-26 三洋電機株式会社 Electrostatic generator
WO2009104699A1 (en) 2008-02-22 2009-08-27 旭硝子株式会社 Electret and electrostatic induction conversion device
US8776367B2 (en) 2008-03-10 2014-07-15 National Taiwan University Method of manufacturing an electret film
CN101977763A (en) 2008-03-27 2011-02-16 旭硝子株式会社 Electret and electrostatic induction conversion device
EP2266795B1 (en) * 2008-04-17 2015-07-01 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
WO2010032759A1 (en) * 2008-09-19 2010-03-25 旭硝子株式会社 Electret and electrostatic induction conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565930B (en) * 2011-06-24 2017-01-11 路梅戴尼科技公司 Inertial sensor and methods of forming and using the same
TWI514102B (en) * 2012-07-24 2015-12-21 Green Solution Tech Co Ltd Feedback detection circuit

Also Published As

Publication number Publication date
CN101981456B (en) 2013-11-06
TWI453416B (en) 2014-09-21
KR101467017B1 (en) 2014-12-01
CN101981456A (en) 2011-02-23
WO2009123022A1 (en) 2009-10-08
JP5541155B2 (en) 2014-07-09
EP2278342A4 (en) 2012-11-14
JPWO2009123022A1 (en) 2011-07-28
US20110016973A1 (en) 2011-01-27
US8763461B2 (en) 2014-07-01
EP2278342B1 (en) 2014-11-12
EP2278342A1 (en) 2011-01-26
KR20100131451A (en) 2010-12-15

Similar Documents

Publication Publication Date Title
TW201003074A (en) Acceleration sensor device and sensor network system
Yu et al. A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer
Chen et al. A flexible PMN‐PT ribbon‐based piezoelectric‐pyroelectric hybrid generator for human‐activity energy harvesting and monitoring
Tsutsumino et al. Seismic power generator using high-performance polymer electret
Gong et al. A monocharged electret nanogenerator‐based self‐powered device for pressure and tactile sensor applications
CN107003171A (en) Horizon sensor and method
JP2011091996A (en) Electrostatic induction conversion device
CN212206342U (en) Friction power generation sensor for monitoring vibration of marine riser
Wu et al. Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor
US10615726B2 (en) Power generation system
US10909819B2 (en) Haptic actuator controller
CN107703187B (en) Gas sensor
CN111486940A (en) Self-powered sensor for monitoring vibration of marine riser
Ben Dali et al. Ferroelectret energy harvesting with 3D‐printed air‐spaced cantilever design
US7825547B2 (en) Electret device and electrostatic operating apparatus
US9321080B2 (en) Electromechanical transducer and method for detecting sensitivity variation of electromechanical transducer
US6785111B1 (en) Electric charge detector
JP2004251823A (en) Oscillating type level sensor
JP2011185828A (en) Acceleration sensor
Tang et al. A smart energy-harvester with the action of electric-power generating triggered by pre-set vibration threshold
Arbie et al. Piezoelectric Configuration for Generating Electricity Using Waves Power
Li et al. A force-balanced negative feedback method for MEMS based electrochemical seismic sensor
TW201215887A (en) Inertia sensing device and using method thereof
Mudda et al. Fiesole: Energy Harvesting using Piezoelectric Sensors
Sun et al. Self-powered Vibration Detector for the Intelligent Vibration Control System Based on Triboelectric Nanogenerator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees