JPH0820463B2 - Acceleration sensor unit - Google Patents

Acceleration sensor unit

Info

Publication number
JPH0820463B2
JPH0820463B2 JP62198893A JP19889387A JPH0820463B2 JP H0820463 B2 JPH0820463 B2 JP H0820463B2 JP 62198893 A JP62198893 A JP 62198893A JP 19889387 A JP19889387 A JP 19889387A JP H0820463 B2 JPH0820463 B2 JP H0820463B2
Authority
JP
Japan
Prior art keywords
acceleration sensor
temperature
amplifier circuit
inverting amplifier
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62198893A
Other languages
Japanese (ja)
Other versions
JPS6441865A (en
Inventor
敬治 有賀
則彦 鈴木
孝浩 今村
宏志 前多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62198893A priority Critical patent/JPH0820463B2/en
Publication of JPS6441865A publication Critical patent/JPS6441865A/en
Publication of JPH0820463B2 publication Critical patent/JPH0820463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は、加速度を測定する加速度センサに係り、特
にその出力の温度補償を行う加速度センサユニットに関
し、 通常の温度変動にかかわらず出力変動の少ない安定性
のよい加速度センサユニットの提供を目的とし、 圧電素子と重錘とからなる加速度センサと、該加速度
センサの出力を増幅する反転増幅器回路または非反転増
幅器回路とを同一筐体に設けると共に、前記圧電素子の
温度係数に等しい正の温度係数を有する温度補償用抵抗
素子を前記加速度センサの近傍に熱的に接するように配
設し、該温度補償用抵抗素子を前記反転増幅器回路の入
力抵抗あるいは前記非反転増幅器回路のグランド抵抗と
して用い、前記加速度センサの出力の温度補償を行うよ
うに構成する。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention relates to an acceleration sensor for measuring acceleration, and more particularly to an acceleration sensor unit for temperature compensation of its output. For the purpose of providing a good acceleration sensor unit, an acceleration sensor including a piezoelectric element and a weight and an inverting amplifier circuit or a non-inverting amplifier circuit for amplifying the output of the acceleration sensor are provided in the same housing, and the piezoelectric element is provided. A temperature compensating resistance element having a positive temperature coefficient equal to the temperature coefficient is arranged near the acceleration sensor so as to be in thermal contact therewith, and the temperature compensating resistance element is connected to the input resistance of the inverting amplifier circuit or the non-contact amplifier. It is used as a ground resistance of an inverting amplifier circuit and is configured to perform temperature compensation of the output of the acceleration sensor.

〔産業上の利用分野〕 本発明は、加速度を測定する加速度センサに係り、特
にその出力の温度補償を行う加速度センサユニットに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor that measures acceleration, and more particularly to an acceleration sensor unit that performs temperature compensation of its output.

〔従来の技術〕[Conventional technology]

PZT(ピエゾ)素子等の圧電素子を用いた加速度セン
サは、機械振動の計測用として広く利用されている。一
般に計測用のセンサは高価であり、その特性も安定した
ものが要求される。これに対し、最近では各種装置にセ
ンサを内蔵し、そのセンサ出力を用い各種制御を行うこ
とが試みられており、安価なセンサが要求されるように
なってきた。このような安価なセンサにおいて、特性上
最も問題となるのが温度特性である。
An acceleration sensor using a piezoelectric element such as a PZT (piezo) element is widely used for measuring mechanical vibration. Generally, a measuring sensor is expensive, and its characteristics are required to be stable. On the other hand, recently, it has been attempted to incorporate a sensor in various devices and perform various controls by using the sensor output, and an inexpensive sensor has been demanded. In such an inexpensive sensor, the most problematic characteristic is the temperature characteristic.

第4図は従来の一般的な加速度センサの温度特性を示
す。この特性曲線は横軸に温度(℃)、縦軸に出力の変
動率を%値で示している。図示するように20℃の温度変
化に対して出力変動は5%、すなわち2500ppm程度とな
る場合が多い。
FIG. 4 shows the temperature characteristics of a conventional general acceleration sensor. In this characteristic curve, the horizontal axis represents temperature (° C.), and the vertical axis represents the output fluctuation rate in%. As shown in the figure, the output fluctuation is often 5% with respect to a temperature change of 20 ° C, that is, about 2500 ppm.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

一般にこのセンサの温度係数は圧電素子そのものの温
度係数に依存するものであり、圧電素子を決定するとセ
ンサの温度係数はほぼ自動的に決定してしまい、特に低
価格のセンサの場合設計上の自由度は少ない。
Generally, the temperature coefficient of this sensor depends on the temperature coefficient of the piezoelectric element itself, and the temperature coefficient of the sensor is determined almost automatically when the piezoelectric element is selected. The degree is low.

温度変化により前述のような出力変動を起こすこと
は、装置の制御に用いる場合その安定性,精度の点で不
都合であり、特に加速度センサを用いて磁気ディスク装
置の磁気ヘッドの位置制御を行う場合、最も重要な制御
パラメータが変化してしまうため、うまく制御できない
という問題点を発生する。
It is inconvenient to use the above-mentioned output fluctuation due to temperature change when it is used for controlling the device, in terms of its stability and accuracy. Especially, when the position control of the magnetic head of the magnetic disk device is performed using an acceleration sensor. However, the most important control parameter changes, which causes a problem that control cannot be performed well.

本発明は上記従来の問題点に鑑みてなされたもので、
通常の温度変動にかかわらず出力変動の少ない安定性の
よい加速度センサユニットの提供を目的とする。
The present invention has been made in view of the above conventional problems,
It is an object of the present invention to provide an acceleration sensor unit having a stable output and a small output fluctuation regardless of a normal temperature fluctuation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の加速度センサユニットは第1図の構造図およ
び第2図,第3図の回路図に示すように、圧電素子3と
重錘4とからなる加速度センサ2と、該加速度センサの
出力を増幅する反転増幅器回路6または非反転増幅器回
路7とを同一筐体に設けると共に、前記圧電素子の温度
係数に等しい正の温度係数を有する温度補償用抵抗素子
8を前記加速度センサの近傍に熱的に接するように配設
し、該温度補償用抵抗素子8を前記反転増幅器回路6の
入力抵抗あるいは前記非反転増幅器回路7のグランド抵
抗として用い、前記加速度センサ2の出力の温度補償を
行うように構成している。
As shown in the structural diagram of FIG. 1 and the circuit diagrams of FIGS. 2 and 3, the acceleration sensor unit of the present invention is provided with an acceleration sensor 2 including a piezoelectric element 3 and a weight 4, and an output of the acceleration sensor. An inverting amplifier circuit 6 for amplifying or a non-inverting amplifier circuit 7 is provided in the same housing, and a temperature compensation resistance element 8 having a positive temperature coefficient equal to that of the piezoelectric element is thermally provided near the acceleration sensor. The temperature compensating resistance element 8 is used as an input resistance of the inverting amplifier circuit 6 or a ground resistance of the non-inverting amplifier circuit 7 to perform temperature compensation of the output of the acceleration sensor 2. I am configuring.

〔作用〕[Action]

加速度センサ2と温度補償用抵抗素子8の温度差を少
なくするために同一温度環境位置に配設することにより
温度補償は容易となる。
By arranging the acceleration sensor 2 and the temperature compensating resistance element 8 at the same temperature environment position to reduce the temperature difference, temperature compensation becomes easy.

加速度センサ2を構成する圧電素子の温度係数に等し
い正の温度係数を有する温度補償用抵抗素子8を、前記
反転増幅器回路6の入力抵抗あるいは前記非反転増幅器
回路7のグランド抵抗として用いることにより、加速度
センサ2の固有の温度係数による出力変動は補償され、
その他の回路素子の温度に対する安定性は十分良好なも
のが安価に入手できるので問題はない。
By using the temperature compensation resistance element 8 having a positive temperature coefficient equal to the temperature coefficient of the piezoelectric element forming the acceleration sensor 2 as the input resistance of the inverting amplifier circuit 6 or the ground resistance of the non-inverting amplifier circuit 7, The output fluctuation due to the inherent temperature coefficient of the acceleration sensor 2 is compensated,
There is no problem because other circuit elements having sufficiently good stability with respect to temperature can be obtained at low cost.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。なお、
構成、動作の説明を理解し易くするために全図を通じて
同一部分には同一符号を付してその重複説明を省略す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings. In addition,
In order to make the description of the configuration and operation easier to understand, the same parts are denoted by the same reference numerals throughout the drawings, and the duplicated description thereof will be omitted.

第1図は本発明の加速度センサユニットの一例構造を
示す断面図である。図において、1は上部が開口したハ
ウジング、3と4はそれぞれハウジング1に一体的に固
定された圧電素子と重錘であって高速度センサ2を構成
している。5はプリント板でハウジング1に固定されて
いる。
FIG. 1 is a sectional view showing an example structure of an acceleration sensor unit of the present invention. In the figure, reference numeral 1 is a housing having an open upper portion, and 3 and 4 are piezoelectric elements and weights integrally fixed to the housing 1, respectively, which constitute a high speed sensor 2. A printed board 5 is fixed to the housing 1.

6はハウジング内に臨むプリント板5上に接続配設さ
れた反転増幅回路(非反転増幅回路7に代用可能)であ
る。8は同じくハウジング内に臨むプリント板5上に配
設された温度補償用抵抗素子で、圧電素子3の温度係数
と等しい正の温度係数を有する。
Reference numeral 6 denotes an inverting amplifier circuit (which can be substituted for the non-inverting amplifier circuit 7) connected and arranged on the printed board 5 facing the inside of the housing. Reference numeral 8 is a resistance element for temperature compensation, which is also arranged on the printed board 5 facing the inside of the housing, and has a positive temperature coefficient equal to that of the piezoelectric element 3.

この抵抗素子は図示のようなプリント板により上部開
口部を閉塞されたハウジング1の内部において、加速度
センサ2と接近させて設けていて、両者間の温度差を極
力少なくするように配慮されている。9はこれらの増幅
回路の出力と電源供給回路を外部に接続するためのコネ
クタ、10は圧電素子の出力と増幅回路の入力とを接続す
るリード線を示す。
This resistance element is provided close to the acceleration sensor 2 inside the housing 1 whose upper opening is closed by a printed board as shown in the drawing, and is designed to minimize the temperature difference between them. . Reference numeral 9 indicates a connector for connecting the output of these amplifier circuits and the power supply circuit to the outside, and 10 indicates a lead wire connecting the output of the piezoelectric element and the input of the amplifier circuit.

このように本発明の加速度センサユニットは、圧電素
子3と温度補償用抵抗素子8との温度差が少なくなるよ
うにハウジング内において一体構造としている。通常の
計測用センサでは増幅回路はセンサ部と別置のためこの
ような補償は不可能である。また、一体化したために温
度補償が容易となり、かつノイズの抑制に効果がある。
As described above, the acceleration sensor unit of the present invention has an integral structure in the housing so that the temperature difference between the piezoelectric element 3 and the temperature compensating resistance element 8 is reduced. In a normal measurement sensor, such compensation cannot be performed because the amplifier circuit is provided separately from the sensor unit. In addition, since they are integrated, temperature compensation is facilitated and noise is effectively suppressed.

第2図は本発明の第1実施例の回路図であって、加速
度センサと反転増幅回路との結線図を示す。図におい
て、IC1とIC2とはFET(電界効果型トランジスタ)を用
いたオペアンプで、IC1は初段チャージアンプ(電荷増
幅器)を構成し、IC2は2段目で電圧アンプを構成し、
いずれもRs,Rfを含む抵抗とコンデンサCfを用いて反転
増幅型回路に接続されている。尚、+VCC,−VCCは電源
供給端子(定電圧電源用)、OUTは出力端子で何れもコ
ネクタ9に接続されている。
FIG. 2 is a circuit diagram of the first embodiment of the present invention, showing a connection diagram of the acceleration sensor and the inverting amplifier circuit. In the figure, IC1 and IC2 are operational amplifiers using FET (field effect transistor), IC1 constitutes a first stage charge amplifier (charge amplifier), and IC2 constitutes a voltage amplifier at the second stage,
Both are connected to an inverting amplification type circuit using a resistor including Rs and Rf and a capacitor Cf. Incidentally, + VCC and -VCC are power supply terminals (for constant voltage power supply), and OUT is an output terminal, both of which are connected to the connector 9.

電圧アンプのゲインAnは、An=−Rf/Rsで定まる。し
たがって抵抗Rsの抵抗値を温度に対応して可変とすれば
温度補償増幅器を構成することができる。抵抗Rsは反転
増幅回路の入力抵抗であり、この抵抗Rsとして、加速度
センサ2すなわち圧電素子3の温度係数に等しい正の温
度係数を有する抵抗(例えば多摩電気工業(株)製の薄
膜抵抗温度センサLPシリーズ)を用いることにより加速
度センサの温度特性は補償される。
The gain An of the voltage amplifier is determined by An = -Rf / Rs. Therefore, if the resistance value of the resistor Rs is variable according to the temperature, a temperature compensation amplifier can be constructed. The resistance Rs is an input resistance of the inverting amplifier circuit, and as the resistance Rs, a resistance having a positive temperature coefficient equal to the temperature coefficient of the acceleration sensor 2 or the piezoelectric element 3 (for example, a thin film resistance temperature sensor manufactured by Tama Electric Co., Ltd.) The temperature characteristics of the acceleration sensor are compensated by using the LP series).

第3図は本発明の第2実施例の回路図であって、加速
度センサと非反転増幅回路との結線図を示す。図におい
て、IC3とIC4はFETを用いたオペアンプ、Rf1とRf2は抵
抗、Rs1とRs2はそれぞれグランド抵抗を示す。
FIG. 3 is a circuit diagram of a second embodiment of the present invention, showing a connection diagram of the acceleration sensor and the non-inverting amplifier circuit. In the figure, IC3 and IC4 are operational amplifiers using FETs, Rf1 and Rf2 are resistors, and Rs1 and Rs2 are ground resistors, respectively.

IC3とIC4の各増幅器のゲインをそれぞれAn1,An2とす
ると、An1=1+(Rf1/Rf2)、An2=1+(Rf2/Rs2)で
定まる。したがって抵抗Rsの抵抗値を温度に対応して可
変とすれば温度補償増幅器を構成することができる。
If the gains of the amplifiers of IC3 and IC4 are An1 and An2 respectively, An1 = 1 + (Rf1 / Rf2) and An2 = 1 + (Rf2 / Rs2). Therefore, if the resistance value of the resistor Rs is variable according to the temperature, a temperature compensation amplifier can be constructed.

第2図の場合と同様にRs1またはRs2に温度補償用抵抗
素子を用いることにより同様の効果がある。この式から
明らかなように2段の増幅器の内ゲインの大きい方で温
度補償を行う方が精度は良い。
Similar to the case of FIG. 2, the same effect can be obtained by using a temperature compensating resistance element for Rs1 or Rs2. As is clear from this equation, it is more accurate to perform temperature compensation with the larger gain of the two-stage amplifier.

なお、その他の回路素子の温度安定性を考察すると、
これらの回路のゲインの温度係数はFETオペアンプには
殆ど関係なく、抵抗,コンデンサの温度係数でのみ決ま
る。抵抗,コンデンサの温度係数は100ppm/℃以下のも
のが安価に入手でき、これらは実用上さほど問題になら
ない。
Considering the temperature stability of other circuit elements,
The temperature coefficient of the gain of these circuits has almost nothing to do with the FET operational amplifier, and is determined only by the temperature coefficient of the resistors and capacitors. Resistors and capacitors with a temperature coefficient of 100ppm / ° C or less are available at low cost, and they are not a problem in practice.

誤差要因で最も大きいものは温度補償用抵抗素子の温
度係数であり前述のもので例えば2500ppm±125ppm程度
である。したがって、回路素子としては合計300ppm以内
(0.6%/20℃)に入れることは容易である。
The largest error factor is the temperature coefficient of the temperature compensating resistance element, which is about 2500 ppm ± 125 ppm in the above example. Therefore, it is easy to put it within 300ppm (0.6% / 20 ℃) in total as a circuit element.

残りは圧電素子のばらつき及び圧電素子と温度補償用
抵抗素子の温度差である。これらを総合的に見て、加速
度センサユニットの出力変動率を1%/20℃以内とする
ことは十分可能である。
The remainder is the variation of the piezoelectric element and the temperature difference between the piezoelectric element and the temperature compensating resistance element. Comprehensively considering these, it is quite possible to keep the output fluctuation rate of the acceleration sensor unit within 1% / 20 ° C.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように本発明の加速度センサユニ
ットによれば、温度変化による出力変動率を従来の5%
/20℃を1%/20℃以内と大幅に改善でき、これにより安
定性の良い加速度センサを安価に提供できる。
As described in detail above, according to the acceleration sensor unit of the present invention, the output fluctuation rate due to the temperature change is 5% of the conventional one.
/ 20 ℃ can be greatly improved to within 1% / 20 ℃, which makes it possible to provide a stable acceleration sensor at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の加速度センサユニットの一例構造を示
す断面図、 第2図は本発明の第1実施例の回路図、第3図は本発明
の第2実施例の回路図、 第4図は従来の加速度センサの温度特性を示す。 第1図〜第3図において、2は加速度センサ、3は圧電
素子、4は重錘、6は反転増幅回路、7は非反転増幅回
路、8は温度補償用抵抗素子をそれぞれ示す。
1 is a sectional view showing an example structure of an acceleration sensor unit of the present invention, FIG. 2 is a circuit diagram of a first embodiment of the present invention, FIG. 3 is a circuit diagram of a second embodiment of the present invention, and FIG. The figure shows the temperature characteristics of a conventional acceleration sensor. 1 to 3, 2 is an acceleration sensor, 3 is a piezoelectric element, 4 is a weight, 6 is an inverting amplifier circuit, 7 is a non-inverting amplifier circuit, and 8 is a temperature compensation resistance element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧電素子(3)と重錘(4)とからなる加
速度センサ(2)と、該加速度センサの出力を増幅する
反転増幅器回路(6)または非反転増幅器回路(7)と
を同一筐体に設けると共に、前記圧電素子の温度係数に
等しい正の温度係数を有する温度補償用抵抗素子(8)
を前記加速度センサの近傍に熱的に接するように配設
し、 該温度補償用抵抗素子(8)を前記反転増幅器回路
(6)の入力抵抗あるいは前記非反転増幅器回路(7)
のグランド抵抗として用い、前記加速度センサ(2)の
出力の温度補償を行うようにしたことを特徴とする加速
度センサユニット。
1. An acceleration sensor (2) comprising a piezoelectric element (3) and a weight (4), and an inverting amplifier circuit (6) or a non-inverting amplifier circuit (7) for amplifying the output of the acceleration sensor. A temperature compensating resistance element (8) provided in the same housing and having a positive temperature coefficient equal to that of the piezoelectric element.
Is arranged so as to be in thermal contact with the vicinity of the acceleration sensor, and the temperature compensating resistance element (8) is the input resistance of the inverting amplifier circuit (6) or the non-inverting amplifier circuit (7).
An acceleration sensor unit, which is used as a ground resistance for the temperature compensation of the output of the acceleration sensor (2).
JP62198893A 1987-08-08 1987-08-08 Acceleration sensor unit Expired - Lifetime JPH0820463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62198893A JPH0820463B2 (en) 1987-08-08 1987-08-08 Acceleration sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62198893A JPH0820463B2 (en) 1987-08-08 1987-08-08 Acceleration sensor unit

Publications (2)

Publication Number Publication Date
JPS6441865A JPS6441865A (en) 1989-02-14
JPH0820463B2 true JPH0820463B2 (en) 1996-03-04

Family

ID=16398686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62198893A Expired - Lifetime JPH0820463B2 (en) 1987-08-08 1987-08-08 Acceleration sensor unit

Country Status (1)

Country Link
JP (1) JPH0820463B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083767Y2 (en) * 1992-07-09 1996-01-31 日本ピラー工業株式会社 Shaft seal device
JP3373032B2 (en) * 1994-03-15 2003-02-04 富士通株式会社 Acceleration sensor
JP3956877B2 (en) * 2003-03-18 2007-08-08 株式会社デンソー Sensor temperature correction device and sensor temperature correction method
DE102006037692A1 (en) * 2006-08-11 2008-02-14 Robert Bosch Gmbh circuit module
WO2009119678A1 (en) 2008-03-27 2009-10-01 旭硝子株式会社 Electret and electrostatic induction conversion device
WO2009123022A1 (en) 2008-03-31 2009-10-08 旭硝子株式会社 Acceleration sensor device and sensor network system
JP5381979B2 (en) 2008-04-17 2014-01-08 旭硝子株式会社 Electret, method for manufacturing the same, and electrostatic induction conversion element
JP5527211B2 (en) 2008-09-19 2014-06-18 旭硝子株式会社 Electret, electrostatic induction conversion element, and method for manufacturing electret

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886575A (en) * 1972-02-18 1973-11-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886575A (en) * 1972-02-18 1973-11-15

Also Published As

Publication number Publication date
JPS6441865A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
US4883992A (en) Temperature compensated voltage generator
JPH0820463B2 (en) Acceleration sensor unit
EP0049754B1 (en) High speed temperature controlled electrometer
US3838248A (en) Temperature control device for thermostatic oven
US7380471B2 (en) Micro gust thermal anemometer
JPH0629751A (en) Temperature compensated amplifier
JPH0273104A (en) Temperature compensating circuit for semiconductor sensor
JPH05235254A (en) Monolithic integrated circuit
JPH11317622A (en) Temperature control circuit for crystal oscillator
JPH0238920A (en) Temperature compensated type amplifying circuit
JPS59147214A (en) Physical quantity detecting apparatus
JPH05119856A (en) Semiconductor constant-voltage generating circuit
JPS6122766B2 (en)
JP2021189109A (en) Sensor drive circuit
JPH06120737A (en) Detector circuit
JPH0471363B2 (en)
JP2855974B2 (en) Wind speed sensor
JPH055465Y2 (en)
JPH06109510A (en) Thermal flowmeter
JPH05113421A (en) Circuit for measurement
JPH0533054Y2 (en)
JPH0223704A (en) Temperature compensation circuit
JPS6123793Y2 (en)
JP2730285B2 (en) Recorder damping circuit
JPS61259134A (en) Semiconductive pressure sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 12