JPH0533054Y2 - - Google Patents

Info

Publication number
JPH0533054Y2
JPH0533054Y2 JP2682088U JP2682088U JPH0533054Y2 JP H0533054 Y2 JPH0533054 Y2 JP H0533054Y2 JP 2682088 U JP2682088 U JP 2682088U JP 2682088 U JP2682088 U JP 2682088U JP H0533054 Y2 JPH0533054 Y2 JP H0533054Y2
Authority
JP
Japan
Prior art keywords
peac
terminal
capacitance
frequency
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2682088U
Other languages
Japanese (ja)
Other versions
JPH01132111U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2682088U priority Critical patent/JPH0533054Y2/ja
Publication of JPH01132111U publication Critical patent/JPH01132111U/ja
Application granted granted Critical
Publication of JPH0533054Y2 publication Critical patent/JPH0533054Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、車載無線機に代表される移動通信装
置に適用される高安定な信号発生器であり、その
内容は水晶振動子を用いた発振器(以下、水晶発
振器と記す)に関するもので、詳しくはその発振
周波数の長期安定特性を得る手段を提供するもの
である。
[Detailed description of the invention] [Industrial application field] The present invention is a highly stable signal generator that is applied to mobile communication devices such as in-vehicle radios, and its content is a signal generator that uses a crystal resonator. It relates to an oscillator (hereinafter referred to as a crystal oscillator), and more specifically, it provides a means for obtaining long-term stable characteristics of its oscillation frequency.

〔従来の技術〕[Conventional technology]

水晶発振器は、周波数安定度が優れているので
多くの分野で基準信号が用いられている。しか
し、車載無線機に代表される移動通信用水晶発振
器には、極めて高い周波数安定度が要求される。
Since crystal oscillators have excellent frequency stability, they are used as reference signals in many fields. However, extremely high frequency stability is required for crystal oscillators for mobile communications, such as those used in in-vehicle radios.

水晶発振器の周波数安定度は、主に周波数確度
(合わせ込み精度)と、周囲温度に対する周波数
安定度とがあり、この両者を整合するためトリマ
コンデンサ等による周波数微調整手段とサーミス
タのような温度によつて特性の変化する電気素子
を組み合わせて、周波数温度特性を補償する手段
とを内蔵していた。そこで、これらの機能を確実
に得るため、機械的に堅牢で安定な構造にする必
要から大形になるという欠点があつた。
The frequency stability of a crystal oscillator mainly consists of frequency accuracy (tuning accuracy) and frequency stability with respect to ambient temperature. Therefore, it had built-in means for compensating for frequency-temperature characteristics by combining electrical elements whose characteristics changed. Therefore, in order to reliably obtain these functions, it is necessary to have a mechanically robust and stable structure, which results in a large size.

その欠点を解決するために、peac素子が発明
され水晶発振器に応用されている。peac素子の
詳細は、公開特許公報・昭57−5369号に開示され
ている。
To solve this drawback, the PEAC element was invented and applied to crystal oscillators. Details of the PEAC element are disclosed in Japanese Patent Publication No. 57-5369.

第2図aは、前記peac素子の等価回路を示す
図で容量端子TCと接地端子TGと、注入端子Ti
よつて構成されこの注入端子Tiと接地端子TG
の電圧に依存する周波数の安定度は第2図bに示
すように大きな変化が起きる。同図の1の直線は
Vsslを基準とした、周波数の偏差をグラフ化した
もので、この直線の傾きが小さいほど安定度の優
れた水晶発振器と言える。
Figure 2a is a diagram showing the equivalent circuit of the PEAC element, which is composed of a capacitance terminal T C , a ground terminal T G , and an injection terminal T i , and the voltage between the injection terminal T i and the ground terminal T G is The dependent frequency stability undergoes a large change as shown in FIG. 2b. Line 1 in the same figure is
This is a graph of the frequency deviation based on V ssl , and the smaller the slope of this straight line, the more stable the crystal oscillator is.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

前述のように、peac素子を応用することによ
つて小形で消費電力が少ない水晶発振器が得られ
た。しかし、その内部空間容量が小さいため熱放
散が少なく、厳しい高温環境に長期間あつては本
来電圧回路により一定であるべきVsslに変動が生
じる。そのため前述したようにpeac素子はVssl
敏感に追従して周波数が変化する。そこで本考案
は、前記peac素子の容量端子TCに固定容量を付
加して周波数の経時変化を小さくするものであ
る。
As mentioned above, by applying the PEAC element, a small crystal oscillator with low power consumption was obtained. However, due to its small internal space capacity, heat dissipation is low, and when exposed to harsh high-temperature environments for long periods of time, V ssl , which should normally be constant due to the voltage circuit, fluctuates. Therefore, as mentioned above, the PEAC element sensitively follows Vssl and changes its frequency. Therefore, the present invention adds a fixed capacitor to the capacitive terminal T C of the PEAC element to reduce the change in frequency over time.

〔課題を解決するための手段〕[Means to solve the problem]

本考案は、前記peac素子の外部に固定容量を
付加して全容量CPを大きくしVsslによる影響を少
なくして周波数の安定化を得るものである。
The present invention adds a fixed capacitor externally to the PEAC element to increase the total capacitance CP , thereby reducing the influence of Vssl and achieving frequency stabilization.

〔作用〕[Effect]

第2図bに示す1の直線は、peac素子のみの
特性であり、2の直線は前記peac素子に並列に
固定容量を取り付けた時の特性である。
The straight line 1 shown in FIG. 2b is the characteristic of only the PEAC element, and the straight line 2 is the characteristic when a fixed capacitor is attached in parallel to the PEAC element.

この場合、合成容量はCP+Cとなる。 In this case, the combined capacitance is C P +C.

ここで、第4図に示すCPは前記peac素子の容
量であり、Cは外付けの固定容量である。
Here, C P shown in FIG. 4 is the capacitance of the PEAC element, and C is an external fixed capacitor.

合成容量 CO=CP+C CPの変化をΔCPとするとコンデンサCがない場
合、ΔCO/CO=ΔCP/CP コンデンサCを並列接続した場合、 ΔC′O/C′O=ΔCP/CP+Cで ΔC′O/C′O<ΔC/Cとなり、前記peac素子に起因
する 周波数の変化は低減される。
Combined capacitance C O = C P +C If the change in C P is ΔC P , when there is no capacitor C, ΔC O /C O = ΔC P /C PWhen capacitors C are connected in parallel, ΔC′ O /C′ O = With ΔC P /C P +C, ΔC′ O /C′ O <ΔC/C, and the change in frequency caused by the peac element is reduced.

〔実施例〕〔Example〕

第1図は、本考案の水晶発振回路を示したもの
で、1,2はインバータ、3はレベルシフタ、4
はバツフア、5は定電圧回路、6は帰還抵抗で以
上の構成要素は集積化されてICとして組みこま
れている。7は水晶振動子で、その一端を8なる
peac素子の容量端子TCに接続している。この
peac素子に並列に固定容量9が接続されている。
前記peac素子と固定容量には、VDDとVssl間の電
圧の約1/2がバイアス電圧VBとして印加されてい
る。
Figure 1 shows the crystal oscillation circuit of the present invention, where 1 and 2 are inverters, 3 is a level shifter, and 4 is an inverter.
5 is a buffer, 5 is a constant voltage circuit, 6 is a feedback resistor, and the above components are integrated and incorporated as an IC. 7 is a crystal oscillator, one end of which is 8
Connected to the capacitance terminal T C of the PEAC element. this
A fixed capacitor 9 is connected in parallel to the PEAC element.
Approximately 1/2 of the voltage between V DD and V ssl is applied as a bias voltage V B to the PEAC element and the fixed capacitor.

本考案の有効な実施例として、温度補償回路に
応用した例を第3図に示す。この動作は第3図に
おいて、16は負の温度係数を有するサーミスタ
で、15は前記サーミスタの抵抗温度特性を緩和
するための抵抗であり、14,17は前記サーミ
スタと前記抵抗15と共に、前記バイアス電圧
VBを適正に定めるための抵抗であり、RXは前記
サーミスタと前記抵抗15,17による合成抵抗
値である。これにより、周囲温度が増加すると、
前記サーミスタ16の抵抗値が低下し、合成抵抗
値RXは低下する。この時、電源電圧VDDを基準に
したバイアス電圧VBは、周囲温度の増加ととも
に増大し、この結果、前記peac素子の全容量CP
は低下し、発振周波数は増加する。従つて水晶振
動子の周波数温度特性は補償される。
As an effective embodiment of the present invention, an example in which the present invention is applied to a temperature compensation circuit is shown in FIG. This operation is explained in FIG. 3, where 16 is a thermistor having a negative temperature coefficient, 15 is a resistor for relaxing the resistance-temperature characteristics of the thermistor, and 14 and 17 are the thermistor and the resistor 15, as well as the bias voltage. Voltage
It is a resistor for properly determining V B , and R X is a combined resistance value of the thermistor and the resistors 15 and 17. This causes, as the ambient temperature increases,
The resistance value of the thermistor 16 decreases, and the combined resistance value R.sub.X decreases. At this time, the bias voltage V B based on the power supply voltage V DD increases as the ambient temperature increases, and as a result, the total capacitance C P of the peac element increases.
decreases and the oscillation frequency increases. Therefore, the frequency-temperature characteristics of the crystal resonator are compensated.

これらの動作において、前記peac素子8のバ
イアス電圧VBは、電源電圧VDDが変化しても前記
定電圧回路5からVsslとして供給される。この
Vsslは短期間にあつては変化しない。しかし、前
述のように長い間動作していると半導体要素の劣
化により変化し、前述したようにpeac素子の容
量が変化し発振周波数が変化する。このため、前
記peac素子に並列に固定容量9を並列につなぎ
peac素子容量の変化の寄与率を低くする。これ
により、周波数の長期に亙る安定特性は改善され
る。
In these operations, the bias voltage V B of the PEAC element 8 is supplied as V ssl from the constant voltage circuit 5 even if the power supply voltage V DD changes. this
V ssl does not change over a short period of time. However, as mentioned above, when operating for a long time, changes occur due to deterioration of the semiconductor elements, and as mentioned above, the capacitance of the PEAC element changes and the oscillation frequency changes. For this reason, a fixed capacitor 9 is connected in parallel to the PEAC element.
Reduce the contribution rate of changes in PEAC element capacitance. This improves the long-term frequency stability.

〔考案の効果〕[Effect of idea]

以上、述べてきたように本考案による電極可変
容量素子peacを定電圧回路の出力電圧Vsslで駆動
する水晶発振回路において、素子の劣化による電
源電圧VDDの変化に対し、わずかな素子の追加に
よつて容易に周波数の長期安定化が実現でき、高
信頼性の高精度水晶発振器を実現する効果を有す
るものである。
As described above, in the crystal oscillator circuit that drives the electrode variable capacitance element PEAC according to the present invention with the output voltage V ssl of the constant voltage circuit, it is necessary to add a small amount of elements in response to changes in the power supply voltage V DD due to element deterioration. This makes it possible to easily stabilize the frequency over a long period of time, and has the effect of realizing a highly reliable, high-precision crystal oscillator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による水晶発振器の回路図、第
2図aはpeac素子の等価回路図、第2図bは
peac素子の容量/周波数特性図、第3図は本考
案の温度補償回路図、第4図は合成容量の等価図
である。 1,2……インバータ、5……定電圧回路、6
……帰還抵抗、7……水晶振動子、8……peac
素子、9……固定容量、16……サーミスタ。
Figure 1 is a circuit diagram of a crystal oscillator according to the present invention, Figure 2a is an equivalent circuit diagram of a PEAC element, and Figure 2b is an equivalent circuit diagram of a PEAC element.
A capacitance/frequency characteristic diagram of the PEAC element, FIG. 3 is a temperature compensation circuit diagram of the present invention, and FIG. 4 is an equivalent diagram of the combined capacitance. 1, 2... Inverter, 5... Constant voltage circuit, 6
...Feedback resistor, 7...Crystal oscillator, 8...peac
Element, 9... fixed capacitance, 16... thermistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 注入端子、容量端子、接地端子を有するフロー
テイング電極可変容量素子(peac素子)を用い
て前記容量端子に水晶振動子を交流的に接続して
いる発振回路で、この発振回路は定電圧回路から
電源を供給されるものにおいて、前記容量端子と
並列に別個の固定容量を接続することを特徴とす
る水晶発振器。
This oscillation circuit uses a floating electrode variable capacitance element (PEAC element) having an injection terminal, a capacitance terminal, and a ground terminal, and connects a crystal resonator to the capacitance terminal in an alternating current manner. A crystal oscillator supplied with power, characterized in that a separate fixed capacitor is connected in parallel with the capacitor terminal.
JP2682088U 1988-02-29 1988-02-29 Expired - Lifetime JPH0533054Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682088U JPH0533054Y2 (en) 1988-02-29 1988-02-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682088U JPH0533054Y2 (en) 1988-02-29 1988-02-29

Publications (2)

Publication Number Publication Date
JPH01132111U JPH01132111U (en) 1989-09-07
JPH0533054Y2 true JPH0533054Y2 (en) 1993-08-24

Family

ID=31248790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682088U Expired - Lifetime JPH0533054Y2 (en) 1988-02-29 1988-02-29

Country Status (1)

Country Link
JP (1) JPH0533054Y2 (en)

Also Published As

Publication number Publication date
JPH01132111U (en) 1989-09-07

Similar Documents

Publication Publication Date Title
US4223524A (en) Quartz oscillation circuit for electronic timepieces
JPH09191214A (en) Oscillator
JPS5895408A (en) Improved temperature compensating circuit
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP5040798B2 (en) Piezoelectric oscillator
JPH0533054Y2 (en)
JP2002135051A (en) Piezoelectric oscillator
EP0917764A2 (en) Oscillator frequency-drift compensation
JP2750904B2 (en) Compensation voltage generation circuit for temperature compensated oscillator
JP2001060828A (en) Temperature compensation oscillator
JP2004356872A (en) Temperature-compensated piezoelectric oscillator
JPH1056330A (en) Voltage controlled piezoelectric oscillator
CN210609085U (en) Microcontroller for temperature compensation quartz crystal oscillator
JP3239776B2 (en) Temperature compensated piezoelectric oscillator
JP2004266820A (en) Piezoelectric oscillation circuit
JPH0321053Y2 (en)
JP2832378B2 (en) Piezoelectric oscillator
JPH1197932A (en) Crystal oscillator
JP3234397B2 (en) Manufacturing method of piezoelectric oscillator
JPS6115607B2 (en)
JPH0540569Y2 (en)
JPH0964641A (en) Temperature compensated crystal oscillation device
JPS5936444B2 (en) crystal oscillation circuit
JPH06224635A (en) Temperature compensated crystal oscillator