JPH0321053Y2 - - Google Patents

Info

Publication number
JPH0321053Y2
JPH0321053Y2 JP1984007648U JP764884U JPH0321053Y2 JP H0321053 Y2 JPH0321053 Y2 JP H0321053Y2 JP 1984007648 U JP1984007648 U JP 1984007648U JP 764884 U JP764884 U JP 764884U JP H0321053 Y2 JPH0321053 Y2 JP H0321053Y2
Authority
JP
Japan
Prior art keywords
temperature
frequency
temperature range
crystal
crystal resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984007648U
Other languages
Japanese (ja)
Other versions
JPS60121312U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP764884U priority Critical patent/JPS60121312U/en
Publication of JPS60121312U publication Critical patent/JPS60121312U/en
Application granted granted Critical
Publication of JPH0321053Y2 publication Critical patent/JPH0321053Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【考案の詳細な説明】 本考案は温度補償型高安定水晶発振回路の改良
に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement of a temperature-compensated highly stable crystal oscillation circuit.

(従来技術とその問題点) 第1図および第2図は従来の実施例である。第
1図は直接補償型高安定水晶発振回路例、第2図
は間接補償型高安定水晶発振回路例である。第1
図において1は水晶振動子、2はコンデンサ、3
は周波数微調用可変コンデンサ、4,5はトラン
ジスタ9のバイアス抵抗、6,7は発振回路を構
成するコンデンサ、8はエミツタ抵抗、10はバ
イパスコンデンサ、11ま電源端子、12は出力
端子、13は温度補償用バイパスコンデンサ、1
4は低温補償用のサーミスタである。室温から高
温領域においてはサーミスタ14の抵抗値は低
く、温度補償用バイパスコンデンサ13、サーミ
スタ14で構成される並列インピーダンスはサー
ミスタ14の抵抗値が支配的である。一方低温領
域においては、サーミスタ14の抵抗値は高く、
並列インピーダンスはバイパスコンデンサ13の
容量値とサーミスタ14の抵抗値で決定される。
(Prior art and its problems) FIGS. 1 and 2 show conventional embodiments. FIG. 1 shows an example of a direct compensation type high stability crystal oscillation circuit, and FIG. 2 shows an example of an indirect compensation type high stability crystal oscillation circuit. 1st
In the figure, 1 is a crystal resonator, 2 is a capacitor, and 3
is a variable capacitor for frequency fine adjustment, 4 and 5 are bias resistors of transistor 9, 6 and 7 are capacitors forming an oscillation circuit, 8 is an emitter resistor, 10 is a bypass capacitor, 11 is a power supply terminal, 12 is an output terminal, and 13 is a Bypass capacitor for temperature compensation, 1
4 is a thermistor for low temperature compensation. In the range from room temperature to high temperature, the resistance value of the thermistor 14 is low, and the resistance value of the thermistor 14 is dominant in the parallel impedance constituted by the temperature compensation bypass capacitor 13 and thermistor 14. On the other hand, in the low temperature region, the resistance value of the thermistor 14 is high;
The parallel impedance is determined by the capacitance value of the bypass capacitor 13 and the resistance value of the thermistor 14.

水晶振動子1の負荷である並列インピーダンス
13,14を前記のように温度補償をすることに
より、第4図のaで示す発振周波数特性となる。
図において横軸は温度、縦軸は周波数安定度を示
す。第1図の温度補償方法では、バイパスコンデ
ンサ13、サーミスタ14の素子のバラツキによ
り、安定な周波数温度特性が得られず、周囲温度
が−2℃〜+60℃において周波数安定度は±(2
〜3)×10-6が限界である。又水晶振動子1は、
周波数安定度を周囲温度全域にわたつて保証する
必要があり、非常に高価であつた。
By temperature-compensating the parallel impedances 13 and 14, which are the loads of the crystal resonator 1, as described above, the oscillation frequency characteristics shown by a in FIG. 4 are obtained.
In the figure, the horizontal axis shows temperature and the vertical axis shows frequency stability. In the temperature compensation method shown in Fig. 1, stable frequency temperature characteristics cannot be obtained due to variations in the elements of the bypass capacitor 13 and thermistor 14, and the frequency stability is ±(2
~3)×10 -6 is the limit. Also, the crystal oscillator 1 is
Frequency stability had to be guaranteed over the entire ambient temperature range and was very expensive.

第2図において、15,16は高抵抗の直流電
圧供給抵抗、17,18は可変容量ダイオード2
0のバイアス電圧供給抵抗、19はサーミスタで
ある。可変容量ダイオード20は水晶振動子1の
負荷容量となつており、温度により可変容量ダイ
オード20の容量値を可変して周波数の温度特性
を補償している。可変容量ダイオード20のバイ
アス電圧はサーミスタ19の温度補償によつて決
定され、低温領域で低く、高温領域でわずかに高
くなる、いわゆる正の傾斜をもつ。この温度補償
されたバイアス電圧により可変容量ダイオード2
0の容量値は低温領域で大きく、高温領域でわず
かに小さくなり、したがつて水晶振動子1の発振
周波数は低温領域で低く、高温領域でわずかに上
る。この温度補償による周波数特性を第4図のb
で示す。第2図の温度補償方法では、素子19,
20のバラツキが大きいため、安定な周波数温度
特性が容易に得られない。そこで素子19,20
の感度及び素子の温度特性と水晶振動子1の温度
特性を非常にきめこまかく分類して各々組合わせ
て回路を実現している。周囲温度が−30゜〜+60
℃において周波数安定度は±2×10-6程度はえら
れるが、生産の歩留りが悪く非常に高価である。
In Figure 2, 15 and 16 are high resistance DC voltage supply resistors, and 17 and 18 are variable capacitance diodes 2.
0 is a bias voltage supply resistor, and 19 is a thermistor. The variable capacitance diode 20 serves as a load capacitor for the crystal resonator 1, and the capacitance value of the variable capacitance diode 20 is varied depending on the temperature to compensate for the temperature characteristics of the frequency. The bias voltage of the variable capacitance diode 20 is determined by temperature compensation of the thermistor 19, and has a so-called positive slope, being low in a low temperature region and slightly high in a high temperature region. This temperature compensated bias voltage causes the variable capacitance diode 2 to
The capacitance value of 0 is large in the low temperature range and slightly small in the high temperature range, so the oscillation frequency of the crystal resonator 1 is low in the low temperature range and slightly increases in the high temperature range. The frequency characteristics due to this temperature compensation are shown in Fig. 4b.
Indicated by In the temperature compensation method shown in FIG.
20 is large, making it difficult to obtain stable frequency-temperature characteristics. Therefore, elements 19 and 20
The sensitivity and temperature characteristics of the element and the temperature characteristics of the crystal resonator 1 are classified very precisely and are combined to realize a circuit. Ambient temperature is -30° to +60°
Although the frequency stability is about ±2×10 -6 at ℃, the production yield is poor and it is very expensive.

(目的) 本考案はこれらの欠点を除去するため、ポジス
タの発熱効果を利用した簡易オーブンにより水晶
振動子をあたため、該水晶振動子を高温域で作用
せしめ、かつ水晶発振回路の発振用トランジスタ
のバイアス抵抗の一部をポジスタで構成し、該バ
イアス抵抗を前記水晶振動子の抵抗負荷としても
作用せしめ室温〜高温域で温度補償し、かつ前記
水晶振動子の容量負荷をコンデンサで低温域を温
度補償し、前記水晶振動子の高温域での発振周波
数温度特性との組合わせで、広い温度範囲にわた
つて非常に安価で発振周波数安定度の極めて良好
な特性をえるものである。
(Purpose) In order to eliminate these drawbacks, the present invention warms the crystal resonator with a simple oven that utilizes the heat generation effect of the POSISTOR, allows the crystal resonator to operate in a high temperature range, and improves the oscillation transistor of the crystal oscillation circuit. A part of the bias resistor is composed of a posistor, and the bias resistor also acts as a resistive load for the crystal oscillator to compensate for the temperature in the room temperature to high temperature range, and the capacitive load of the crystal oscillator is replaced by a capacitor to compensate for the temperature in the low temperature range. By combining this compensation with the temperature characteristics of the oscillation frequency in the high temperature range of the crystal resonator, it is possible to obtain extremely good characteristics of oscillation frequency stability over a wide temperature range at a very low cost.

(実施例) 以下この考案の実施例を第3図により説明す
る。第1図、第2図と同一番号は同一機能を示
す。第3図において21はポジスタで丸い点線部
22はオーブンを示す。23,24は抵抗、25
はポジスタで、23,24,25の合成抵抗値は
第1図のバイアス抵抗5に相等し、水晶振動子1
の負荷でもある。22のオーブンを付加したとき
ポジスタ21の発熱効果により水晶振動子1の温
度は、例えば周囲温度が−30℃〜+60℃におい
て、+30℃〜+70℃の範囲に圧縮される。水晶振
動子1としてATカツトの振動子を使用すると周
波数の温度特性はオーブン22がないときは、よ
く知られている3次曲線となるが、オーブン22
を付加すると温度範囲が圧縮され、2次曲線の範
囲で使用することになる。今23,24,25で
構成される抵抗を温度補償しない場合、即ち第2
図の抵抗5を使用すると、オーブン22付の周波
数温度特性は第5図の点線で示す2次曲線cとな
る。c図からもわかるように指定の温度範囲で、
規定の周波数安定度に設計することは極めて困難
である。そこで先ずコンデンサ2及び可変コンデ
ンサ3で低温域を温度補償する。
(Example) An example of this invention will be described below with reference to FIG. The same numbers as in FIGS. 1 and 2 indicate the same functions. In FIG. 3, reference numeral 21 indicates a posistar, and a round dotted line section 22 indicates an oven. 23, 24 are resistances, 25
is a posistor, and the combined resistance value of 23, 24, and 25 is equivalent to the bias resistor 5 in Figure 1, and the crystal oscillator 1
It is also a load. When the oven 22 is added, the temperature of the crystal resonator 1 is compressed to a range of +30°C to +70°C when the ambient temperature is -30°C to +60°C due to the heat generation effect of the POSISTOR 21. When an AT-cut resonator is used as the crystal resonator 1, the temperature characteristic of the frequency becomes the well-known cubic curve when the oven 22 is not used.
By adding , the temperature range is compressed and it is used within the range of the quadratic curve. If the resistance composed of 23, 24, and 25 is not temperature compensated, that is, the second
When the resistor 5 shown in the figure is used, the frequency-temperature characteristic of the oven 22 becomes a quadratic curve c shown by the dotted line in FIG. As can be seen from figure c, within the specified temperature range,
It is extremely difficult to design to a specified frequency stability. Therefore, first, the capacitor 2 and the variable capacitor 3 are used to compensate for the temperature in the low temperature range.

即ちコンデンサ2,3として、負の温度係数を
有する素子を使用すると、低温域で容量値は増加
し、発振周波数は低くなる。一方高温域では容量
値は減少し発振周波数は増加する。この様子を第
5図のdに示す。次に第2図の抵抗5を第3図で
示す23,24,25の抵抗に置きかえる。ポジ
スタ25を使用することにより、23,24,2
5の合成抵抗値は低温域〜常温域においては(2
3の抵抗値)+(ポジスタの抵抗値)に等しく、高
温域においては(23の抵抗値)+(24のポジス
タの抵抗値と25の抵抗の合成抵抗値)に等しく
なる。即ち前記合成抵抗値は低温〜常温域におい
てはほぼ一定値となり、高温域では合成抵抗値は
大きくなる。4の抵抗及び5の抵抗(又は23,
24,25の合成抵抗)はトランジスタ9のバイ
アス抵抗でもある一方、水晶振動子1の負荷であ
る。この負荷により1の水晶振動子の発振周波数
が変化することを利用したものである。高温域に
おいては水晶振動子1からトランジスタ9側をみ
た負荷は前述のように増加し、発振周波数は低く
なる。又低温〜常温域においては前記負荷はほと
んど変化せず、発振周波数の変化はほとんどな
い。今前記2,3のコンデンサ(可変コンデン
サ)を、前述の温度補償を実施せず、22のオー
ブン実装と、5の抵抗の温度補償即ち23,2
4,25の抵抗による温度補償をした場合の周波
数温度特性は第5図のeで示される。
That is, when elements having negative temperature coefficients are used as the capacitors 2 and 3, the capacitance value increases in a low temperature range and the oscillation frequency decreases. On the other hand, in a high temperature range, the capacitance value decreases and the oscillation frequency increases. This situation is shown in d of FIG. Next, the resistor 5 in FIG. 2 is replaced with resistors 23, 24, and 25 shown in FIG. By using the POSISTOR 25, 23, 24, 2
The combined resistance value of 5 is (2
In the high temperature range, it becomes equal to (the resistance value of 23) + (the combined resistance value of the resistance value of the POSISTOR 24 and the resistance 25). That is, the combined resistance value is a substantially constant value in the low temperature to normal temperature range, and increases in the high temperature range. 4 resistance and 5 resistance (or 23,
The combined resistance of 24 and 25) is also the bias resistance of the transistor 9 and is the load of the crystal resonator 1. This method takes advantage of the fact that the oscillation frequency of one crystal resonator changes depending on this load. In a high temperature range, the load seen from the crystal resonator 1 to the transistor 9 side increases as described above, and the oscillation frequency decreases. Further, in the low temperature to normal temperature range, the load hardly changes and the oscillation frequency hardly changes. Now, the capacitors 2 and 3 (variable capacitors) are oven mounted without performing the temperature compensation described above, and the temperature compensation of the resistors 5 and 23, 2
The frequency-temperature characteristic when temperature compensation is performed using resistors 4 and 25 is shown by e in FIG.

次に第3図に示すように、本考案の22のオー
ブン実装と、2,3のコンデンサの温度補償回路
と23,24,25の温度補償回路を付加する
と、第5図のdとeで示す特性を合成した周波数
温度特性が得られる。第6図のfは第3図の本考
案による実施例による発振周波数温度特性例を示
す。指定の温度範囲内で規定の発振周波数温度特
性を満足することができる。例えば周囲温度−
30゜〜+70℃において±2×10-6の周波数安定度
を非常に安価で、容易に実現できる。
Next, as shown in Fig. 3, if we add 22 oven mountings of the present invention, 2 and 3 capacitor temperature compensation circuits, and 23, 24, and 25 temperature compensation circuits, d and e in Fig. 5. A frequency-temperature characteristic is obtained by combining the characteristics shown in FIG. FIG. 6 f shows an example of the oscillation frequency temperature characteristic according to the embodiment of the present invention shown in FIG. The specified oscillation frequency temperature characteristics can be satisfied within the specified temperature range. For example, ambient temperature -
Frequency stability of ±2×10 -6 at 30° to +70°C can be easily achieved at a very low cost.

(効果) この考案による直接型温度補償高安定発振回路
は、広い温度範囲にわたつて極めて高安定な発振
周波数を、非常に安価にかつ簡単な回路構成で実
現でき、従来に比べ小形でかつ発振周波数安定度
が例えば−30゜〜+70℃にわたつて±2×10-6
度のものが容易にできる。
(Effects) The direct temperature-compensated high-stability oscillation circuit devised by this invention can achieve an extremely stable oscillation frequency over a wide temperature range at a very low cost and with a simple circuit configuration, and is more compact and capable of oscillation than conventional ones. For example, a frequency stability of about ±2×10 −6 over −30° to +70° C. can be easily achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例、第2図は従来の実施
例、第3図は本考案の実施例、第4図は従来の実
施例による周波数安定度特性例、第5図は本考案
の実施例による周波数安定度実施例、第6図は本
考案による周波数安定度実施例。 1:水晶振動子、2,6,7,10,13はコ
ンデンサ、3:可変コンデンサ、4,5,8,1
5,16,17,18,23,24:抵抗、9:
トランジスタ、11:電源端子、12:出力端
子、14,19:サーミスタ、20:可変容量ダ
イオード、21,25:ポジスタ、22:オーブ
ン。
Fig. 1 is a conventional embodiment, Fig. 2 is a conventional embodiment, Fig. 3 is an embodiment of the present invention, Fig. 4 is an example of frequency stability characteristics according to the conventional embodiment, and Fig. 5 is a conventional embodiment. Example of frequency stability according to the embodiment, FIG. 6 is an example of frequency stability according to the present invention. 1: Crystal resonator, 2, 6, 7, 10, 13 are capacitors, 3: Variable capacitor, 4, 5, 8, 1
5, 16, 17, 18, 23, 24: resistance, 9:
Transistor, 11: Power supply terminal, 12: Output terminal, 14, 19: Thermistor, 20: Variable capacitance diode, 21, 25: Posistor, 22: Oven.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 温度補償型水晶発振回路において、ポジスタ2
1よりなる簡易オーブン22を水晶振動子のケー
スに装着し、前記水晶発振回路の発振用トランジ
スタ9のバイアス抵抗の一部を別に設けたポジス
タ25で構成し、かつ前記水晶振動子の負荷容量
を負の温度係数を有するコンデンサで構成したこ
とを特徴とする温度補償型水晶発振回路。
In a temperature compensated crystal oscillator circuit, POSISTOR 2
1 is attached to the case of a crystal resonator, a part of the bias resistance of the oscillation transistor 9 of the crystal oscillation circuit is constituted by a separately provided POSISTOR 25, and the load capacitance of the crystal resonator is A temperature-compensated crystal oscillator circuit characterized by being configured with a capacitor having a negative temperature coefficient.
JP764884U 1984-01-25 1984-01-25 Temperature compensated crystal oscillator circuit Granted JPS60121312U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP764884U JPS60121312U (en) 1984-01-25 1984-01-25 Temperature compensated crystal oscillator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP764884U JPS60121312U (en) 1984-01-25 1984-01-25 Temperature compensated crystal oscillator circuit

Publications (2)

Publication Number Publication Date
JPS60121312U JPS60121312U (en) 1985-08-16
JPH0321053Y2 true JPH0321053Y2 (en) 1991-05-08

Family

ID=30486193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP764884U Granted JPS60121312U (en) 1984-01-25 1984-01-25 Temperature compensated crystal oscillator circuit

Country Status (1)

Country Link
JP (1) JPS60121312U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218372B2 (en) * 2009-10-23 2013-06-26 株式会社大真空 Piezoelectric oscillator and frequency control method of piezoelectric oscillator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990045U (en) * 1972-11-22 1974-08-05

Also Published As

Publication number Publication date
JPS60121312U (en) 1985-08-16

Similar Documents

Publication Publication Date Title
JPH02180410A (en) Temperature compensating multi-frequency oscillator
US4270102A (en) Integrated circuit FM local oscillator with AFC control and temperature compensation
US4456892A (en) Temperature compensating circuit for use with crystal oscillators and the like
JPH0321053Y2 (en)
US3641461A (en) Temperature compensated crystal oscillator
US3525055A (en) Temperature compensated crystal oscillator
JPS641969B2 (en)
JPS6230523B2 (en)
JPH0441606Y2 (en)
JPH0416490Y2 (en)
JP2002135051A (en) Piezoelectric oscillator
JP2917154B2 (en) Temperature compensated crystal oscillator
JPH0533054Y2 (en)
JP2545568B2 (en) Piezoelectric oscillator
JPH0411377Y2 (en)
JPH051128Y2 (en)
JPH0221172B2 (en)
JPS5934166Y2 (en) crystal oscillation circuit
JPS5843282Y2 (en) Ondohoshiyoosuishiyoohatsushinki
JPS6227564B2 (en)
KR910003750Y1 (en) Temperature compensation circuit for crystal oscillator
JPS5832322Y2 (en) crystal oscillation circuit
JPH0716414U (en) Temperature compensated crystal oscillator circuit
JP2605188Y2 (en) Voltage controlled crystal oscillator
JPS6157616U (en)