JPH0221172B2 - - Google Patents

Info

Publication number
JPH0221172B2
JPH0221172B2 JP59204350A JP20435084A JPH0221172B2 JP H0221172 B2 JPH0221172 B2 JP H0221172B2 JP 59204350 A JP59204350 A JP 59204350A JP 20435084 A JP20435084 A JP 20435084A JP H0221172 B2 JPH0221172 B2 JP H0221172B2
Authority
JP
Japan
Prior art keywords
temperature
diode
compensation
temperature range
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59204350A
Other languages
Japanese (ja)
Other versions
JPS6181006A (en
Inventor
Tadataka Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP20435084A priority Critical patent/JPS6181006A/en
Publication of JPS6181006A publication Critical patent/JPS6181006A/en
Publication of JPH0221172B2 publication Critical patent/JPH0221172B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は、水晶振動子に直列に接続された温度
補償回路で、高温域の温度補償を施した温度補償
水晶発振回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a temperature compensated crystal oscillator circuit that is connected in series to a crystal resonator and that performs temperature compensation in a high temperature range.

〔従来技術の説明〕[Description of prior art]

従来より水晶振動子が安定な信号源として広く
使用されている。そして多くの水晶振動子は3次
曲線の温度特性を持つATカツトであり、これを
水晶発振器として使用している。この3次曲線の
特性を温度補償するため、感温素子を含むバイア
ス回路を持ち、バリキヤツプ等の可変容量素子を
用いる間接補償回路か、水晶振動子に直列にコン
デンサを接続し、そのコンデンサに直列又は並列
に感温素子を接続する直接補償回路等が使用され
る。
Crystal resonators have been widely used as stable signal sources. Many crystal resonators are AT-cuts that have cubic temperature characteristics, and are used as crystal oscillators. In order to temperature-compensate the characteristics of this cubic curve, either an indirect compensation circuit that has a bias circuit that includes a temperature-sensitive element and a variable capacitance element such as a varicap, or a capacitor connected in series with a crystal resonator, and Alternatively, a direct compensation circuit or the like in which temperature-sensitive elements are connected in parallel is used.

しかしながら、直接補償回路は低温域側では補
償されても、高温域、特に70℃以上では水晶振動
子本体の特性が、温度の上昇とともに変化が大き
くなるため補償が困難であつた。
However, although the direct compensation circuit can compensate in the low temperature range, it is difficult to compensate in the high temperature range, especially in the high temperature range above 70°C, because the characteristics of the crystal resonator body change greatly as the temperature rises.

〔本発明の目的・構成〕[Object and structure of the present invention]

本発明の目的は、前述した欠点を除去し、高温
域においても安定な水晶発振器を提供することに
あり、その主構成は、3次曲線の周波数温度特性
を有する水晶振動子を用い、該水晶振動子と直列
に高温域補償用コンデンサと低温域補償用コンデ
ンサが接続されている温度補償水晶発振回路にお
いて、感温素子を含む制御回路により制御される
ダイオードが、該高温域補償用コンデンサと並列
に接続されている温度補償水晶発振回路である。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a crystal oscillator that is stable even in a high temperature range. In a temperature compensated crystal oscillator circuit in which a capacitor for high temperature range compensation and a capacitor for low temperature range compensation are connected in series with a resonator, a diode controlled by a control circuit including a temperature sensing element is connected in parallel with the capacitor for high temperature range compensation. A temperature compensated crystal oscillator circuit connected to the

〔実施例の説明〕[Explanation of Examples]

第1図は、本発明の実施例を示す回路図であ
る。1は水晶振動子であり、トランジスタTR、
抵抗R1,R2及びR3,R4とコンデンサC
1,C2及びC3,C4からなる発振回路2に接
続されている。なお端子Aはアース、端子Bは出
力、端子Cは電源に接続される。水晶振動子1に
は低温域を補償するための低温域補償回路3が直
列に接続されている。低温域補償回路3には、コ
ンデンサC7に並列に感温素子TH1と抵抗R
6、コンデンサC6が接続されている。なお、
VC及びC7は、周波数を微調整するためのコン
デンサである。また水晶振動子1には高温域の補
償するためのコンデンサC5が直列に接続されて
いる。高温域を補償するコンデンサC5にはダイ
オードDが並列に接続され、高温域補償回路5を
構成している。ダイオードDはサーミスタTH2
と抵抗4からなるバイアス回路4と発振回路のバ
イアス回路である抵抗R3とR4とが接続されて
いるが、各抵抗およびサーミスタの抵抗値によつ
てダイオードDに流れる電流Iが変化する。すな
わち、交点Xと交点Yにおける電位差によりダイ
オードDを流れる電流Iが変化する。その結果ダ
イオードDのインピーダンスが変化し、並列に接
続されたコンデンサC5の見掛け上の容量が変化
する。例えば、温度が上昇するとサーミスタTH
2の抵抗は小さくなり、ダイオードDに流れる電
流は大きくなる。するとダイオードDのインピー
ダンスは小さくなりコンデンサC5の容量が見掛
け上大きくなり、発振周波数を低下させる。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. 1 is a crystal oscillator, transistor TR,
Resistors R1, R2 and R3, R4 and capacitor C
1, C2 and C3, C4. Note that terminal A is connected to ground, terminal B is connected to output, and terminal C is connected to power supply. A low temperature range compensation circuit 3 is connected in series to the crystal resonator 1 to compensate for the low temperature range. The low temperature range compensation circuit 3 includes a temperature sensing element TH1 and a resistor R in parallel with the capacitor C7.
6. Capacitor C6 is connected. In addition,
VC and C7 are capacitors for finely adjusting the frequency. Further, a capacitor C5 is connected in series to the crystal resonator 1 to compensate for high temperature range. A diode D is connected in parallel to a capacitor C5 that compensates for the high temperature range, forming a high temperature range compensation circuit 5. Diode D is thermistor TH2
A bias circuit 4 consisting of a resistor 4 and a bias circuit of the oscillation circuit are connected to resistors R3 and R4, and the current I flowing through the diode D changes depending on the resistance value of each resistor and thermistor. That is, the current I flowing through the diode D changes due to the potential difference between the intersection point X and the intersection point Y. As a result, the impedance of diode D changes, and the apparent capacitance of capacitor C5 connected in parallel changes. For example, as the temperature increases, the thermistor TH
The resistance of diode D becomes smaller, and the current flowing through diode D becomes larger. Then, the impedance of the diode D becomes smaller and the capacitance of the capacitor C5 becomes larger in appearance, lowering the oscillation frequency.

ここでダイオードのインピーダンスと電流の関
係は、 Z=1/k・I2 となる領域を利用する。ここで、Zはダイオード
Dのインピーダンス、kは常数、Iはダイオード
Dに流れる電流である。
Here, the relationship between the impedance of the diode and the current uses the region where Z=1/k·I 2 . Here, Z is the impedance of the diode D, k is a constant, and I is the current flowing through the diode D.

このように高温域の補償用コンデンサに並列に
接続されたダイオードのインピーダンスは、流れ
る電流Iの2乗の割で変化する。従来の回路では
あまり補正を必要としない40〜50℃付近から補償
が効きはじめて、65℃以上では水晶振動子自身の
特性に依存してしまう。これはコンデンサに並列
に接続されるサーミスタの抵抗の変化率の傾斜が
小さいためである。しかし本願発明では50℃以上
でなければ補償の効果が現われないが、本発明の
回路では従来得られない65℃以上での温度補償が
容易になつた。これはコンデンサに並列に接続さ
れたダイオードのインピーダンス変化の傾斜がサ
ーミスタに比べて急峻であるために、水晶振動子
の高温域の周波数上昇に対応出来るからである。
そして80℃においても±2ppm以下にすることが
可能となつた。
In this way, the impedance of the diode connected in parallel to the compensation capacitor in the high temperature range changes at the rate of the square of the flowing current I. In conventional circuits, compensation begins to take effect at temperatures around 40 to 50 degrees Celsius, where it does not require much compensation, and at temperatures above 65 degrees Celsius, it becomes dependent on the characteristics of the crystal oscillator itself. This is because the slope of the rate of change in resistance of the thermistor connected in parallel with the capacitor is small. However, in the present invention, the compensation effect does not appear unless the temperature is 50°C or higher, but the circuit of the present invention facilitates temperature compensation at 65°C or higher, which could not be achieved conventionally. This is because the slope of the impedance change of the diode connected in parallel to the capacitor is steeper than that of the thermistor, so it can cope with the frequency increase in the high temperature range of the crystal resonator.
Even at 80°C, it has become possible to reduce the amount to ±2 ppm or less.

なお、本実施例では補償制御回路としてサーミ
スタTH2を電源とダイオードD間に入れたが、
第2図のようにダイオードDの極性に逆にし、サ
ーミスタTH3をダイオードDとダイオードDと
アース間に接続しても効果は同様である。
In this example, the thermistor TH2 was inserted between the power supply and the diode D as a compensation control circuit, but
The same effect can be obtained even if the polarity of the diode D is reversed and the thermistor TH3 is connected between the diode D and the ground between the diode D and the ground as shown in FIG.

第3図は、水晶振動子自身の特性を点線で、従
来の温度補償水晶発振器の特性を実線で表わした
周波数温度特性を示す。縦軸は周波数変化、横軸
は温度である。ここで、従来の温度補償水晶発振
器は、高温域において水晶振動子自身の特性の影
響で温度補償が効いていない。
FIG. 3 shows frequency-temperature characteristics in which the characteristics of the crystal resonator itself are represented by dotted lines, and the characteristics of a conventional temperature-compensated crystal oscillator are represented by solid lines. The vertical axis is frequency change, and the horizontal axis is temperature. Here, in the conventional temperature compensated crystal oscillator, temperature compensation is not effective in a high temperature range due to the influence of the characteristics of the crystal resonator itself.

第4図は、本発明による温度補償水晶発振器の
周波数温度特性を示す。点線は水晶振動子自身の
特性、実線は本発明による温度補償水晶発振器の
特性である。本発明により従来では得られない広
域の温度補償が可能となつた。
FIG. 4 shows the frequency-temperature characteristics of the temperature compensated crystal oscillator according to the present invention. The dotted line is the characteristic of the crystal resonator itself, and the solid line is the characteristic of the temperature compensated crystal oscillator according to the present invention. The present invention has made it possible to perform temperature compensation over a wide range, which was not possible in the past.

〔本発明の効果〕[Effects of the present invention]

従来、水晶振動子の周波数変化幅の大きくなる
高温域(65〜70℃)までしか温度補償出来なかつ
たが、本発明の高温補償用コンデンサに並列に入
つたダイオードのインピーダンスを感温素子を含
むバイアス回路によつて制御するため、80℃付近
まで補償が可能となつた。このように、広い範囲
の高温域での温度補償が可能になり、しかも従来
の補償方法に比べ部品点数が少なく、調整が簡易
に出来る利点を有する。
Conventionally, it was possible to compensate for the temperature only up to the high temperature range (65 to 70 degrees Celsius) where the frequency variation width of the crystal resonator becomes large, but the impedance of the diode connected in parallel to the high temperature compensation capacitor of the present invention can be compensated for by including the temperature sensing element. Since it is controlled by a bias circuit, it is possible to compensate up to around 80℃. In this way, it is possible to perform temperature compensation over a wide range of high temperatures, and it also has the advantage that the number of parts is small compared to conventional compensation methods, and adjustment can be made easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の温度補償水晶発振器の実施
例を示す回路図であり、第2図は、本発明の他の
実施例を示す回路図である。第3図は、水晶振動
子自身と従来の温度補償水晶発振器の回路による
周波数温度特性を示し、第4図は、本発明による
温度補償水晶発振器による周波数温度特性を示
す。 1……水晶振動子、2……発振回路、3……ダ
イオード、4……バイアス回路、C5……高温補
償用コンデンサ。
FIG. 1 is a circuit diagram showing an embodiment of a temperature compensated crystal oscillator of the present invention, and FIG. 2 is a circuit diagram showing another embodiment of the present invention. FIG. 3 shows the frequency-temperature characteristics of the crystal resonator itself and a conventional temperature-compensated crystal oscillator circuit, and FIG. 4 shows the frequency-temperature characteristics of the temperature-compensated crystal oscillator according to the present invention. 1... Crystal resonator, 2... Oscillation circuit, 3... Diode, 4... Bias circuit, C5... High temperature compensation capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 3次曲線の周波数温度特性を有する水晶振動
子を用い、該水晶振動子と直列に高温域補償用コ
ンデンサと低温域補償用コンデンサが接続されて
いる温度補償水晶発振回路において、感温素子を
含む制御回路により制御されるダイオードが、該
高温域補償用コンデンサと並列に接続されている
ことを特徴とする温度補償水晶発振回路。
1. In a temperature-compensated crystal oscillator circuit that uses a crystal resonator with a cubic frequency-temperature characteristic and has a high-temperature range compensation capacitor and a low-temperature range compensation capacitor connected in series with the crystal resonator, a temperature-sensitive element is used. A temperature-compensated crystal oscillation circuit, characterized in that a diode controlled by a control circuit including the temperature-compensated crystal oscillation circuit is connected in parallel with the high-temperature range compensating capacitor.
JP20435084A 1984-09-28 1984-09-28 Temperature compensating crystal oscillating circuit Granted JPS6181006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20435084A JPS6181006A (en) 1984-09-28 1984-09-28 Temperature compensating crystal oscillating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20435084A JPS6181006A (en) 1984-09-28 1984-09-28 Temperature compensating crystal oscillating circuit

Publications (2)

Publication Number Publication Date
JPS6181006A JPS6181006A (en) 1986-04-24
JPH0221172B2 true JPH0221172B2 (en) 1990-05-14

Family

ID=16489045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20435084A Granted JPS6181006A (en) 1984-09-28 1984-09-28 Temperature compensating crystal oscillating circuit

Country Status (1)

Country Link
JP (1) JPS6181006A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134155A (en) * 2021-04-06 2021-07-20 武汉光燚激光科技有限公司 Skin therapeutic instrument by transdermal diffusion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152766A (en) * 1974-09-06 1976-05-10 Cepe Kurisutaruseigyohatsushinki
JPS5899007A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Temperature compensation piezoelectric oscillation circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152766A (en) * 1974-09-06 1976-05-10 Cepe Kurisutaruseigyohatsushinki
JPS5899007A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Temperature compensation piezoelectric oscillation circuit

Also Published As

Publication number Publication date
JPS6181006A (en) 1986-04-24

Similar Documents

Publication Publication Date Title
US5883550A (en) Crystal oscillator with a temperature-compensating analog circuit
US3503010A (en) Temperature compensating unit for crystal oscillators
US4456892A (en) Temperature compensating circuit for use with crystal oscillators and the like
CA1057828A (en) Temperature compensated surface acoustic wave oscillator
US3525055A (en) Temperature compensated crystal oscillator
US4607237A (en) Temperature-compensated crystal oscillator circuit
JPH0221172B2 (en)
JPS641969B2 (en)
US3457529A (en) Temperature compensation of crystal-controlled circuit
JPS6038904A (en) Temperature compensation type frequency generator
JP2750904B2 (en) Compensation voltage generation circuit for temperature compensated oscillator
JPH0416490Y2 (en)
JPH0321053Y2 (en)
JP2001060828A (en) Temperature compensation oscillator
JPS6230523B2 (en)
JPH0441606Y2 (en)
JPH0411377Y2 (en)
JPH0441605Y2 (en)
JPH0533054Y2 (en)
JPS5934166Y2 (en) crystal oscillation circuit
JPH0540569Y2 (en)
JP2750886B2 (en) Temperature sensitive voltage generating circuit and temperature compensating element using the same
JPS641967B2 (en)
JPS6024704A (en) Temperature compensating oscillator
KR910003750Y1 (en) Temperature compensation circuit for crystal oscillator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term