WO2013171798A1 - Gateways and earthquake detection method - Google Patents

Gateways and earthquake detection method Download PDF

Info

Publication number
WO2013171798A1
WO2013171798A1 PCT/JP2012/003253 JP2012003253W WO2013171798A1 WO 2013171798 A1 WO2013171798 A1 WO 2013171798A1 JP 2012003253 W JP2012003253 W JP 2012003253W WO 2013171798 A1 WO2013171798 A1 WO 2013171798A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake
gateway
information
area
nodes
Prior art date
Application number
PCT/JP2012/003253
Other languages
French (fr)
Japanese (ja)
Inventor
伊豆 哲也
由美 酒見
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/003253 priority Critical patent/WO2013171798A1/en
Priority to JP2014515354A priority patent/JP5949909B2/en
Publication of WO2013171798A1 publication Critical patent/WO2013171798A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • G01V1/01

Definitions

  • the technology disclosed in this specification relates to a technology in which a gateway detects an earthquake.
  • each base station transmits information related to the occurrence of the earthquake to each terminal.
  • the network system is a system including a plurality of terminals and a plurality of base stations.
  • a base station installed for each area receives an earthquake alarm from an earthquake alarm device, and distributes information related to an earthquake to terminals existing under each base station (for example, Patent Document 1).
  • An ad hoc network is a type of self-configuring network that is linked by wireless communication.
  • the ad hoc network includes a plurality of nodes having a wireless communication function, a gateway, and a management server.
  • Each node in the ad hoc network transmits and receives packets by multi-hop communication.
  • Multi-hop communication is a technology that enables communication even between nodes that are not within the communication range of each other, via another node that is within the communication range of each node.
  • a meter-reading system that collects the power consumption of each home via the ad hoc network by incorporating a node capable of wireless communication into the power meter of each home.
  • a packet including the power consumption amount of each home detected by each power meter is transferred from each node included in each home power meter to the management server of the power company via the gateway.
  • an ad hoc network it is required to appropriately control each node by transmitting some information to each node when an earthquake occurs. For example, depending on the occurrence of an earthquake, it is necessary to cancel a predetermined state of each node or to transition each node to a predetermined state.
  • the management server notifies the gateway of the occurrence of an earthquake when receiving an earthquake alarm from an external device. Then, it is conceivable that the gateway that has received the notification performs control on the managed node.
  • the node cannot be controlled by the gateway.
  • each node is provided with an acceleration sensor, and each gateway performs statistical processing on shake information from each node, and each gateway detects the occurrence of an earthquake.
  • a plurality of gateways manage different ad hoc networks.
  • a plurality of nodes included in each ad hoc network form an ad hoc network area in which at least some areas are different from each other.
  • Each ad hoc network area is set regardless of requirements related to earthquakes such as ground strength, and naturally, is set regardless of earthquake occurrence areas that are difficult to predict.
  • the gateway aims to increase the accuracy of the determination when determining whether or not an earthquake has occurred in the area under the management of the gateway by statistically processing information related to vibration from the managed node.
  • a gateway that manages a plurality of nodes existing in an area, and vibration information relating to vibrations detected in the at least some nodes from at least some of the plurality of nodes.
  • a control unit that determines the presence or absence of an earthquake in the area based on the vibration information, and a transmission unit that transmits earthquake information including a result of determination by the control unit to another gateway device, Have
  • a gateway for managing a plurality of nodes existing in an area, the vibration relating to the vibration detected in the at least some nodes from at least some of the plurality of nodes.
  • a control unit that determines the presence or absence of an earthquake in the area; and a transmission unit that transmits control information when an earthquake occurs to the at least some nodes that transmitted the vibration information when there is an earthquake in the area;
  • the gateway can share the determination result of the occurrence of the earthquake with other gateways. Furthermore, in the shared gateway, the occurrence of an earthquake can be determined with higher accuracy by determining the occurrence of the earthquake in consideration of the earthquake information.
  • FIG. 1 is an explanatory diagram of an example of the ad hoc network system according to the embodiment.
  • FIG. 2 is a functional block diagram of the node N.
  • FIG. 3 is a diagram illustrating a data configuration example of the control packet.
  • FIG. 4 is a diagram illustrating a data configuration example of the vibration data packet.
  • FIG. 5 is a functional block diagram of the gateway GW.
  • FIG. 6 is a diagram illustrating a data configuration example of the sharing destination table.
  • FIG. 7 is a process flowchart executed by the node N.
  • FIG. 8 is a process flowchart executed by the gateway GW.
  • FIG. 9 is another flowchart of processing executed by the gateway GW.
  • FIG. 10 is a hardware configuration example of the node N.
  • FIG. 11 is a hardware configuration example of the gateway GW.
  • FIG. 1 is an explanatory diagram of an example of the ad hoc network system according to the embodiment.
  • the ad hoc network system in the present embodiment includes a plurality of nodes N, a plurality of gateways GW, and a management server S. First, an ad hoc network and packet transfer in the ad hoc network will be described with reference to FIG.
  • the ad hoc network system includes a management server S, gateways GW1, GW2, and GW3, and nodes NA to NT.
  • the ad hoc network system may include a gateway and a node other than those shown in the figure.
  • the management server S and the gateways GW1, GW2, and GW3 are connected via a normal network 200 such as the Internet, LAN, or WAN. Further, the gateway communicates with a node under management via an ad hoc network.
  • the gateway GW1 is connected to the nodes NA to NH via the ad hoc network 100.
  • the gateway GW2 communicates with the nodes NI to NP via the ad hoc network 101.
  • the gateway GW3 communicates with the nodes NQ to NT via the ad hoc network 102.
  • the gateway GW will be described using the gateway GW1.
  • the gateway GW1 is a relay device that connects the ad hoc network 100 and the normal network 200.
  • the gateway GW1 can transmit and receive both the protocol format information of the ad hoc network 100 and the protocol format information of the normal network 200.
  • the gateway GW1 performs communication transfer by converting the protocol of information between the ad hoc network 100 and the normal network 200. For example, a packet transmitted from each node NA to NH in the ad hoc network 100 to the management server S is protocol-converted by the gateway GW1. Thereafter, the gateway GW1 transfers the packet to the normal network 200, whereby the management server S receives necessary information.
  • information transmitted from the management server S to each of the nodes NA to NH is subjected to protocol conversion by the gateway GW1 and transferred as a packet from the gateway GW1 to each node in the ad hoc network 100.
  • nodes N are provided in the ad hoc network 100.
  • nodes NA to NH are shown as representatives.
  • a plurality of nodes are provided in each ad hoc network.
  • nodes NI to NP and nodes NQ to NT are shown as representatives.
  • the node N will be described using the nodes NA to NH in the ad hoc network 100. Furthermore, when it is not necessary to distinguish each node, it demonstrates as the node N.
  • Each node N is a device capable of multi-hop communication with other nodes that can communicate within a predetermined communication range.
  • nodes that can directly communicate with the gateway GW1 are assumed to be nodes NA and ND.
  • Each node NA-NH generates a routing table individually.
  • Each node NA to NH generates a routing table by communicating a hello packet with surrounding nodes.
  • the hello packet is a packet for sharing the presence of the own device and a communication key, and is a packet broadcast from one node to another node.
  • the routing table is generated using a conventional method.
  • each node When each node generates a routing table, for example, even when a certain node becomes unable to communicate and cannot transfer a packet, another transfer path can be set.
  • a node close to the gateway GW1 is called an upstream node.
  • the node NB and the node NE are also upstream nodes.
  • each node NA to NH transmits the detected data to the gateway GW1 according to the routed route.
  • each node NA to NH encrypts payload data in a packet using an encryption key for security. Encryption ensures packet confidentiality.
  • each node NA to NH may generate a message authentication code (MAC) and add it to each packet.
  • MAC message authentication code
  • verifying the MAC value the integrity of the data is verified, and the validity of the node that generated the MAC is verified.
  • a key for generating the MAC is used.
  • the calculated MAC values are the same for the same data content with the same MAC key. In other words, the MAC values calculated with different MAC keys and the MAC values calculated for different data contents are not the same. Therefore, by verifying the MAC value in the process of multi-hop communication, the node N and the gateway GW1 can detect a packet with incomplete data or a packet generated by a node that may be illegal.
  • the encryption key and the MAC generation key are stored in the storage areas of the nodes NA to NH.
  • each of the nodes NA to NH further includes an acceleration sensor that detects vibration, thereby detecting vibration in the own device. Then, the gateway GW1 collects vibration information detected at each of the nodes NA to NH. The vibration information is information related to vibration transmitted from each node. Based on the vibration information, the gateway GW1 determines the occurrence of an earthquake in the area of the ad hoc network 100.
  • the gateway GW1 determines that an earthquake has occurred, the gateway GW1 performs the control necessary for the occurrence of the earthquake on each of the nodes NA to NH. That is, the gateway GW1 transmits control information to the nodes NA to NH when an earthquake occurs.
  • the control information is information for causing each node to perform control during an earthquake.
  • the determination result is shared with other gateways.
  • the other gateway is a gateway that manages an ad hoc network area around the gateway GW1.
  • the gateway GW2 that manages the area adjacent to the gateway GW1 receives the determination result sharing from the gateway GW1.
  • the other gateway GW2 can perform necessary control on the nodes NI to NP when an earthquake occurs.
  • Each node N stores information such as an encryption key and a MAC generation key in its own storage area in order to establish secure communication by encryption or MAC verification.
  • each node N holds secret information in a storage area that should not be leaked to a third party.
  • a malicious third party illegally obtains secret information by stealing a node, anti-theft measures are required. Therefore, when vibration is detected by the acceleration sensor, each node N may determine that there is a possibility of theft and perform control for preventing leakage of secret information. For example, each node N activates a timer when vibration is detected, and erases secret information after a predetermined time has elapsed.
  • the gateway GW detects the occurrence of an earthquake, by controlling each node N when the earthquake occurs, each node N stops the timer and prevents secret information from being erased. Can do.
  • the ad hoc network system of the present embodiment is applied to a meter reading system that collects the amount of power used in each home.
  • personal information such as the amount of electricity used is stored in the storage area in addition to the encryption key and the key for generating the MAC.
  • processing for preventing leakage of confidential information including personal information is started, and when the vibration is caused by an earthquake, the processing can be canceled.
  • one gateway GW1 is provided in the ad hoc network 100, but a plurality of gateways may be provided in one ad hoc network 100.
  • this ad hoc network system can also be used to investigate the environment, for example, by providing each node with a sensor function that detects temperature, humidity, light intensity, etc. is there.
  • the gateway GW1 communicates with a plurality of nodes NA to NH to determine whether there is an earthquake in the area of the ad hoc network 100. Furthermore, the gateway GW1 determines the presence / absence of an earthquake in the area of the ad hoc network 100 using the determination result in another gateway. If the gateway GW1 determines that an earthquake has occurred, the gateway GW1 performs some control on the nodes NA to NH.
  • FIG. 2 is a functional block diagram of the node N.
  • each of the nodes NA to NT will be described as a node N
  • each of the gateways GW1 to GW3 will be described as a gateway GW.
  • the node N includes a communication unit 11, a detection unit 12, a control unit 13, an acquisition unit 14, and a storage unit 15.
  • the communication unit 11 is a processing unit that communicates with other devices. For example, the communication unit 11 exchanges packets with other nodes N. In addition, the communication unit 11 in some nodes N communicates with the gateway GW.
  • the packet flowing through the ad hoc network includes a broadcast packet and a unicast packet.
  • the broadcast packet includes, for example, a control packet generated by the gateway GW and a hello packet.
  • the control packet may be unicast to a specific node.
  • the unicast packet includes, for example, a data packet including detection data detected at each node.
  • the data packet further includes a vibration data packet including detection data by the acceleration sensor and a normal data packet including detection data by a sensor other than the acceleration sensor.
  • the vibration data packet is a kind of the vibration information.
  • the detection unit 12 is a processing unit that detects the vibration of the node N. For example, the detection unit 12 receives an output from an acceleration sensor included in the node N and detects vibration. Note that information indicating that vibration has been detected may be output to the control unit 13 only when the output from the acceleration sensor is equal to or greater than a predetermined value.
  • the control unit 13 is a processing unit that receives the output from the detection unit 12 to generate vibration information and controls the state of the node N. For example, the control part 13 performs control at the time of an earthquake, when the control packet which the gateway produced
  • the control at the time of an earthquake will be described on the assumption that the state of the node is control for canceling a warning state against theft. That is, when the detection unit 12 detects vibration, the control unit 13 shifts to a warning state against theft. Thereafter, when a control packet is received, the alert state is released.
  • the alert state is a state in which, for example, the elapsed time from vibration detection is monitored and secret information is deleted after a predetermined time has elapsed.
  • Another example is a state where security for access to the storage device is set higher than the normal state.
  • each node since each node stores secret information, there is a possibility that secret information may be leaked when the node is stolen. Therefore, when vibration is detected, it is effective to transition from the normal state to the alert state in consideration of the possibility of theft. However, it is not preferable that the alert state is continued when the detected vibration is not a vibration due to theft. For example, if secret information is erased, subsequent communication cannot be performed. Therefore, it is effective to release the alert state based on the control packet.
  • the acquisition unit 14 acquires detection data from a sensor or device included in the node N or an external sensor or device. Then, the acquisition unit 14 stores the detection data in the storage unit 15.
  • the storage unit 15 is a storage device that stores detection data. Furthermore, the storage unit 15 is a storage device that stores information about security such as an encryption key.
  • FIG. 3 is a diagram illustrating a data configuration example of the control packet.
  • the control packet is a kind of control information.
  • the control packet 3 is a packet for controlling a node when an earthquake occurs.
  • a header information storage unit 31 and a payload data storage unit 32 are allocated to the control packet 3.
  • the header information storage unit 31 stores header information.
  • the header information includes a destination address, a local source address, a global source address, and a packet type.
  • the destination address is a special address dedicated to broadcasting.
  • the destination address is an address “255.255.255.255” prepared in advance.
  • Each node receives a packet transmitted to an address set individually, but also receives a packet transmitted to the special address. That is, a packet in which a special address is set is received by all nodes that are in a range where communication with the device that transmitted the packet is possible.
  • the local transmission source address is information related to the address of a device that transmits a packet in one communication forming a multi-hop communication.
  • the local transmission source address is rewritten to the address of the main device to be transmitted each time a packet is transmitted once during multi-hop communication.
  • the global source address is information related to the address of the device that generated the packet. That is, the global transmission source address is information related to the address of the device that is the starting point in multihop communication. In the case of the control packet 3, it is information relating to the address of the gateway that generated the control packet 3.
  • the packet type is information indicating the type of the packet. For example, in the case of the control packet 3, “0” is set. Therefore, by referring to the packet type, the node N that has received the packet can grasp the type of the received packet.
  • the received control packet 3 is transferred to another node N. That is, the control packet is transferred through the network as a target of multihop communication.
  • the packet type “1” is set in the hello packet broadcasted in the same manner as the control packet.
  • the node N receives a packet in which a special address is set as a destination address and the packet type is “1”, the received hello packet is not transferred to another node N. That is, the hello packet is excluded from the target of multi-hop communication, and the packet transfer converges at a certain node N.
  • the payload data storage unit 32 stores payload data.
  • the payload data is, for example, information indicating the content of control in the node or information obtained by encrypting header information. Further, when the control when receiving the control packet in advance is designated by each node, the payload data may be, for example, only information obtained by encrypting header information.
  • FIG. 4 is a diagram showing a data configuration example of the vibration data packet.
  • the vibration data packet 4 is a packet for notifying the gateway GW of the vibration detected at the node N.
  • the vibration data packet 4 is assigned a header information storage unit 41 and a payload data storage unit 42, respectively.
  • the header information storage unit 41 stores header information.
  • the header information includes a local transmission source address, a local transmission destination address, a global transmission source address, a global transmission destination address, and a packet type.
  • the local source address, global source address, and packet type are the same information as the control packet 3. However, in the case of a vibration data packet, “2” is set as the packet type.
  • the global transmission source address is set to the address of the node that generated the vibration data packet.
  • the local transmission destination address is information relating to the address of a device that is a transmission destination of a packet in one communication forming a multi-hop communication.
  • the global destination address is information regarding the address of the device that finally receives the packet. That is, the global transmission destination address is information regarding the address of the gateway GW that is the end point when the vibration data packet 4 is subjected to multi-hop communication.
  • the payload data storage unit 42 stores payload data.
  • the payload data is information including the acceleration value detected by the acceleration sensor, the detection time, and the like.
  • the normal data packet has the same data configuration as the vibration data packet. However, detection data by other sensors is set in the payload data. When each node performs MAC verification, the normal data packet further includes a MAC value calculated by the MAC key.
  • control packet 3 may be transmitted only to the node that transmitted the vibration data packet.
  • header information including a global transmission destination address and a local transmission destination address is set in the control packet.
  • FIG. 5 is a functional block diagram of the gateway GW.
  • the gateway GW includes a communication unit 21, a control unit 22, and a storage unit 23.
  • the communication unit 21 communicates directly or indirectly with other devices. For example, the communication unit 21 transmits a control packet to a node capable of ad hoc communication. The communication unit 21 receives a vibration packet from each node N. Furthermore, the communication unit 21 transmits earthquake information to another gateway GW or receives earthquake information from another gateway.
  • the communication unit 21 functions as a reception unit when receiving information, and functions as a transmission unit when transmitting information.
  • the communication unit 21 may include a plurality of communication units according to different communication protocols.
  • the earthquake information is information including a determination result of the presence or absence of an earthquake in the gateway GW.
  • the other gateway GW is, for example, a gateway GW that manages an area that is geographically adjacent to the own gateway GW among areas of a plurality of ad hoc networks.
  • the control unit 22 is a processing unit that generates a control packet.
  • the controller 22 determines the presence or absence of an earthquake based on the vibration packet. Moreover, the control part 22 produces
  • the storage unit 23 stores a shared destination table 6 related to gateways that share earthquake information.
  • FIG. 6 is a diagram illustrating a data configuration example of the sharing destination table 6.
  • the share destination table 6 stores a share destination GW, a share destination address, and area information in association with each other.
  • the shared GW is information for identifying a shared gateway that transmits earthquake information.
  • the sharing destination GW is set in advance by the management server S for each gateway. Note that the administrator of the management server S sets the sharing destination GW based on the positional relationship between the areas of the ad hoc network managed by each gateway.
  • the shared address is information on the address of the shared GW.
  • the area information is information related to the area of the ad hoc network managed by the sharing destination GW. For example, an address and geographical range information are stored as area information.
  • Information stored in the sharing destination table 6 is received from the management server S and stored in the storage unit 23.
  • FIG. 7 is a process flowchart executed by the node N. Independently of the process illustrated in FIG. 7, the node N transmits a normal data packet including detection data acquired by the acquisition unit 14 from various sensors to the ad hoc network.
  • the normal data packet transfer process is the same as the conventional method.
  • the detection unit 12 receives the acceleration detected by the acceleration sensor from the acceleration sensor (OP.1). The detecting unit 12 determines whether or not the received acceleration is equal to or greater than a threshold (OP.2). If it is equal to or greater than the threshold, it is determined that vibration equal to or greater than the threshold has occurred in node N. The process proceeds to 3 (OP. 2 Yes). On the other hand, if the acceleration is less than the threshold (OP. 2 NO), the node N performs the process in OP. Return to 1.
  • the communication unit 11 transmits vibration information to the gateway GW under the control of the control unit 13 (OP.3). Furthermore, when vibration is detected, the control unit 13 activates a timer. In addition, the control unit 13 generates vibration information. Specifically, as shown in FIG. 4, various addresses are stored in the header information storage unit, and “2” is set as the packet type. The control unit 13 refers to the routing table and sets a local transmission destination address for transmitting the vibration data packet toward the gateway GW. Further, the control unit 13 stores information on the vibration detected by the detection unit 12 in the payload data storage unit.
  • control unit 13 determines whether the communication unit 11 has received control information (OP.4). There are cases where control information is received from the gateway GW and cases where it is received from another node N. When the control information is received (OP.4 YES), the control unit 13 performs predetermined control when an earthquake occurs (OP.6).
  • the predetermined control may be control set in advance in the node N or may be control specified in the control information.
  • the control unit 13 determines whether or not a predetermined time has elapsed (OP.5). When the predetermined time has not elapsed (OP. 5 NO), the control unit 13 determines that OP. Return processing to 4. If the predetermined time has elapsed (YES in OP.5), the process is terminated.
  • each node N in the present embodiment can execute predetermined control when an earthquake occurs based on reception of control information.
  • the control unit 13 when performing the control to release the warning state as the predetermined control when an earthquake occurs, first, the OP. 2, when detecting an acceleration equal to or higher than the threshold, the control unit 13 performs a process of causing the node N to transition to the alert state. When the communication unit 11 receives control information within a predetermined time, the control unit 13 cancels the alert state.
  • each node N temporarily transitions to the alert state, but can cancel the alert state if the vibration is caused by an earthquake.
  • the alert state can be maintained. Therefore, the alert state for preventing leakage of secret information can be maintained against the vibration in the case of not being an earthquake.
  • FIG. 8 is a process flowchart executed by the gateway GW. Independently of the process shown in FIG. 8, the gateway GW performs a process of receiving a normal data packet from each node N and transferring it to the management server S.
  • the normal data packet transfer process is the same as the conventional method.
  • the control unit 22 in the gateway GW determines whether or not the communication unit 21 has received vibration information (OP.10). When vibration information is received (OP.10 YES), the control unit 22 performs statistical processing on the received vibration information (OP.11). Each time the communication unit 21 receives vibration information, the received vibration information is stored in the memory.
  • the control unit 22 counts the number of vibration information received. Further, when the position information of each node is included in the vibration information, the control unit 22 may generate a distribution of the nodes that generated the vibration information according to the position information. When the vibration information includes information related to the magnitude of vibration, the control unit 22 may generate a distribution of nodes that generated the vibration information according to the magnitude of vibration.
  • the earthquake determination condition is a condition for determining the presence or absence of an earthquake by being compared with the result of statistical processing.
  • the earthquake determination condition is an integer indicating the lower limit value of the vibration information reception number or the lower limit value of the ratio to the total number of nodes.
  • the earthquake determination condition is a distribution pattern.
  • the earthquake determination condition will be described as “50% or more with respect to the total number of nodes”.
  • control unit 22 When the earthquake determination condition is satisfied (YES in OP.12), the control unit 22 generates control information, and the communication unit 21 transmits the control information to each node N (OP.13).
  • the control information may be broadcast to all nodes or unicast to a specific node.
  • the control unit 22 determines that the earthquake determination condition (the number of receptions is 50% or more with respect to the total number of nodes) is satisfied. Then, the control unit 22 generates control information to be transmitted to each node N.
  • the control packet shown in FIG. 3 is generated as control information.
  • the control unit 22 sets various addresses in the header information storage unit and sets “0” in the packet type. Furthermore, the control unit 22 stores information in the payload data storage unit as necessary.
  • the communication unit 21 transmits the earthquake information to the sharing destination GW (OP.14). That is, the gateway GW shares the earthquake determination result with the surrounding gateway GW.
  • the earthquake information is transmitted only when it is determined that an earthquake has occurred. However, the earthquake information may be transmitted regardless of the determination result. Then, the gateway GW ends a series of processes.
  • control unit 22 when the control unit 22 has not received the vibration information (OP. 10 NO), or when it is determined that the earthquake determination condition is not satisfied (OP. 12 NO), the control unit 22 performs other communication with the communication unit 21. It is determined whether the earthquake information from the gateway GW has been received (OP.15).
  • the communication unit 21 of the own device Will be received from another gateway GW.
  • the communication unit 21 receives the earthquake information.
  • the control unit 22 When the earthquake information is received (OP.15 YES), the control unit 22 generates the control information and the communication unit 21 transmits the control information to each node (OP.16). Then, the gateway GW ends the process. On the other hand, when the earthquake information is not received (OP.15 NO), the gateway ends the process as it is.
  • the gateway can detect that an earthquake has occurred in an adjacent ad hoc network area. Therefore, even when the occurrence of an earthquake cannot be detected by vibration information from a node in the ad hoc network managed by the gateway, the gateway can perform control at the time of the earthquake.
  • each gateway can detect an earthquake when it is not possible to accurately detect the presence or absence of an earthquake only by the occurrence of vibration at a node in each ad hoc network area. For example, it is assumed that an earthquake that gives a vibration of the level detected by the detection unit 12 of the node N occurs in the area 1000 of FIG.
  • the gateway GW1 that manages the area of the ad hoc network 100 can detect the occurrence of the earthquake, but the gateway GW2 that manages the area of the ad hoc network 101 cannot detect the occurrence of the earthquake. Therefore, when the gateway GW1 shares the earthquake information with the gateway GW2, it is possible to control the nodes NI to NP included in the ad hoc network 101.
  • the gateway GW can share the determination result of the occurrence of the earthquake with other gateways. Furthermore, the shared gateway can determine the occurrence of an earthquake by taking earthquake information into account. Therefore, the presence or absence of an earthquake can be determined with higher accuracy.
  • the gateway GW may perform the earthquake determination process with the process flow shown in FIG.
  • FIG. 9 is another flowchart executed by the gateway.
  • FIG. 9 is another flowchart executed by the gateway.
  • the control unit 22 determines whether the result of the statistical process satisfies the first earthquake determination condition (OP.17). When the first earthquake judgment condition is satisfied (OP.17 YES), OP. Proceed to step 13. On the other hand, when the first earthquake determination condition is not satisfied (OP.17 NO), the control unit 22 determines whether earthquake information is received from another gateway GW (OP.15).
  • the gateway ends the process.
  • the control unit 22 determines whether the result of the statistical processing satisfies the second earthquake determination condition (OP.18). ). When the second earthquake determination condition is satisfied (OP.18 YES), the control unit 22 determines that the OP. 16 is executed.
  • the first earthquake determination condition is a stricter condition than the second earthquake determination condition.
  • the first earthquake determination condition is “50% or more of all nodes”, whereas the second earthquake determination condition is “10% or more of all nodes”.
  • the gateway GW determines whether there is an earthquake based on the reception status of the earthquake information and the second earthquake determination condition. can do.
  • the presence or absence of an earthquake may be determined based on the content of the earthquake information. For example, when the gateway GW detects an earthquake, the gateway GW sets information indicating the difference between the earthquake determination condition and the statistical result in the earthquake information. Then, the gateway GW transmits the earthquake information to the sharing destination GW. The gateway GW that has received the earthquake information determines that an earthquake has occurred in the area of the ad hoc network managed by the gateway GW when the difference is equal to or greater than the threshold and the second earthquake determination condition is satisfied.
  • FIG. 10 is a hardware configuration example of the node N.
  • the node N includes a CPU (CENTRAL PROCESSING UNIT) 301, a RAM (RANDOM ACCESS MEMORY) 302, a flash memory 303, an interface (I / F) 304, an encryption circuit 305, a sensor 306, and a bus 307. I have.
  • the CPU 301 to the sensor 306 are connected by a bus 307, respectively.
  • the CPU 301 governs overall control of node N.
  • the CPU 301 functions as the detection unit 12, the control unit 13, the acquisition unit 14, and the like by executing a program expanded in the RAM 302.
  • the RAM 302 is used as a work area for the CPU 301.
  • the flash memory 303 stores key information such as a program, information detected by a sensor, and an encryption key.
  • the flash memory 303 is an example of the storage unit 15.
  • the I / F 304 transmits and receives packets by multi-hop communication.
  • the I / F 304 is an example of the communication unit 11.
  • the program includes, for example, a program for executing each process in the communication apparatus shown in the flowchart.
  • the encryption circuit 305 is a circuit that encrypts data using an encryption key when encrypting the data. For example, when the packet is encrypted and transferred, the encryption circuit 305 functions. When encryption is executed by software, the encryption circuit 305 is not necessary by storing a program corresponding to the encryption circuit 305 in the flash memory 303.
  • the sensor 306 detects data unique to the sensor 306. For example, data suitable for the measurement target is detected, such as temperature, humidity, water level, precipitation, air volume, volume, power consumption, time, time, and acceleration.
  • the node N may have the same configuration as a general-purpose computer.
  • the computer functioning as the node N is a CPU (CENTRAL PROCESSING UNIT), ROM (READ ONLY MEMORY), RAM (RANDOM ACCESS MEMORY), communication device, HDD (HARD DISK DRIVE), input device, display device, medium reading device.
  • a computer having the above may be used.
  • Each unit is connected to each other via a bus.
  • FIG. 11 is a hardware configuration example of the gateway GW.
  • the gateway GW includes a CPU (CENTRAL PROCESSING UNIT) 401, a ROM (READ ONLY MEMORY) 402, a RAM (RANDOM ACCESS MEMORY) 403, a communication device 404, an HDD (HARD DISK DRIVE) 405, an input device 406, a display device 407, a medium reading device.
  • a device 408 is included, and each unit is connected to each other via a bus 409. Data can be transmitted and received between them under the control of the CPU 401. Note that the gateway GW does not have to have all the configurations shown in FIG.
  • the earthquake detection program for executing each process of the gateway GW shown in the flowchart is recorded on a computer-readable recording medium.
  • the computer-readable recording medium include a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory.
  • the magnetic recording device include an HDD, a flexible disk (FD), and a magnetic tape (MT).
  • Optical discs include DVD (DIGITAL VERSATILE DISC), DVD-RAM, CD-ROM (COMPACT DISC-READ ONLY MEMORY), CD-R (RECORABLE) / RW (REWRITABLE), and the like.
  • Magneto-optical recording media include MO (MAGNETO-OPTICAL DISK). When this program is distributed, for example, a portable recording medium such as a DVD or CD-ROM in which the program is recorded may be sold.
  • the medium reading device 409 reads the program from the recording medium on which the program is recorded.
  • the CPU 401 stores the read program in the HDD 405, the ROM 402, or the RAM 403.
  • the CPU 401 is a central processing unit that controls operation of the entire gateway GW.
  • the communication device 404 receives signals from the node N, the management server S, etc. via the network, and passes the contents of the signals to the CPU 401.
  • the communication device 404 is an example of the communication unit 21. Further, the communication device 404 transmits a signal to the node N or the like in response to an instruction from the CPU 401.
  • the HDD 405 stores a program that causes a computer to execute each process shown in the flowchart.
  • the CPU 401 reads out the program from the HDD 405 and executes it to function as the control unit 22 shown in FIG.
  • the program may be stored in the ROM 402 or the RAM 403 that can be accessed by the CPU 401.
  • information is stored in the HDD 405 under the control of the CPU 401. Similar to the program, information may be stored in the ROM 402 or RAM 403 accessible to the CPU 401. That is, the data table described as being stored in the storage unit 23 is stored in a storage device such as the HDD 405, the ROM 402, or the RAM 403.
  • the input device 406 receives data input under the control of the CPU 401.
  • the display device 407 displays each information.

Abstract

[Problem] The purpose of this gateway is to improve determination accuracy when determining whether an earthquake has occurred within an area managed by the gateway by way of statistically processing vibration-related information from managed nodes when. [Solution] This gateway manages a plurality of nodes present in an area and has: a receiving unit that receives from at least some of the plurality of nodes vibration information about vibrations detected by the at least some of the plurality of nodes, and that receives from another gateway device earthquake information about whether an earthquake has occurred in another area managed by the other gateway device; a control unit that references the earthquake information for another area and determines whether there is an earthquake in the area; and a transmitting unit that, when an earthquake occurs in the area, transmits control information for when an earthquake occurs to the at least some of the nodes that transmitted the vibration information.

Description

ゲートウェイおよび地震検知方法Gateway and earthquake detection method
 本明細書に開示する技術は、ゲートウェイが地震を検知する技術に関する。 The technology disclosed in this specification relates to a technology in which a gateway detects an earthquake.
ネットワークシステムにおいて、地震が発生した場合に、地震の発生に関する情報を、各基地局が、各端末へ送信する技術がある。当該ネットワークシステムは、複数の端末および複数の基地局を含むシステムである。例えば、エリア毎に設置された基地局が、地震警報装置からの地震警報を受信するとともに、各基地局の配下に存在する端末に地震に関する情報を配信する(例えば、特許文献1)。 In a network system, when an earthquake occurs, there is a technique in which each base station transmits information related to the occurrence of the earthquake to each terminal. The network system is a system including a plurality of terminals and a plurality of base stations. For example, a base station installed for each area receives an earthquake alarm from an earthquake alarm device, and distributes information related to an earthquake to terminals existing under each base station (for example, Patent Document 1).
 また、地震の発生を検知する技術として、検針メータが有する加速度センサが揺れ情報を検知すると、周囲の検針メータに揺れ情報を送信し、各検針メータは受信した揺れ情報を統計処理することによって、地震の発生を判定する技術がある(例えば、特許文献2)。 In addition, as a technology to detect the occurrence of earthquakes, when the acceleration sensor of the meter-reading meter detects shaking information, it sends shaking information to the surrounding meter-reading meters, and each metering meter statistically processes the received shaking information, There is a technique for determining the occurrence of an earthquake (for example, Patent Document 2).
 ここで、ネットワークシステムの一種として、アドホックネットワークシステムがある。アドホックネットワークとは、無線通信によってリンクする自己構成型のネットワークの一種である。アドホックネットワークは、無線通信機能を有する複数のノード、ゲートウェイ、管理サーバを含む。アドホックネットワーク内の各ノードは、マルチホップ通信によりパケットを送受信する。マルチホップ通信は、互いの通信圏内に存在しないノード同士であっても、各ノードの通信圏内に存在する別のノードを介して通信を可能にする技術である。 Here, there is an ad hoc network system as a kind of network system. An ad hoc network is a type of self-configuring network that is linked by wireless communication. The ad hoc network includes a plurality of nodes having a wireless communication function, a gateway, and a management server. Each node in the ad hoc network transmits and receives packets by multi-hop communication. Multi-hop communication is a technology that enables communication even between nodes that are not within the communication range of each other, via another node that is within the communication range of each node.
 例えば、アドホックネットワークを利用したシステムとして、各家庭の電力メータに無線通信可能なノードを組み込むことにより、アドホックネットワーク経由で各家庭の消費電力量などを収集する検針システムがある。検針システムでは、各電力メータが検出した各家庭の消費電力量を含むパケットは、各家庭の電力メータが備える各ノードから、ゲートウェイを介して、電力会社の管理サーバまで転送される。 For example, as a system using an ad hoc network, there is a meter-reading system that collects the power consumption of each home via the ad hoc network by incorporating a node capable of wireless communication into the power meter of each home. In the meter-reading system, a packet including the power consumption amount of each home detected by each power meter is transferred from each node included in each home power meter to the management server of the power company via the gateway.
特開2005-309993号公報JP 2005-309993 A 特開2008-139269号公報JP 2008-139269 A
 アドホックネットワークにおいて、地震発生時に、何らかの情報を各ノードへ送信することで、各ノードを適切に制御することが求められる。例えば、地震の発生に応じて、各ノードの所定の状態を解除したり、または各ノードを所定の状態に遷移させたりする必要がある。 In an ad hoc network, it is required to appropriately control each node by transmitting some information to each node when an earthquake occurs. For example, depending on the occurrence of an earthquake, it is necessary to cancel a predetermined state of each node or to transition each node to a predetermined state.
 したがって、アドホックネットワークシステムに、特許文献1の技術を適用することで、管理サーバは、地震警報を外部の装置から受信した場合に、ゲートウェイに対して、地震の発生を通知する。そして、通知を受けたゲートウェイが、管理下のノードに対して、制御を実施することが考えられる。 Therefore, by applying the technology of Patent Document 1 to the ad hoc network system, the management server notifies the gateway of the occurrence of an earthquake when receiving an earthquake alarm from an external device. Then, it is conceivable that the gateway that has received the notification performs control on the managed node.
 しかし、管理サーバと外部の装置との通信に問題が発生した場合や、地震により管理サーバが機能しなくなった場合等においては、ゲートウェイによるノードの制御ができなくなる。 However, if a problem occurs in communication between the management server and an external device, or if the management server fails due to an earthquake, the node cannot be controlled by the gateway.
 そこで、例えば、特許文献2のような技術をアドホックネットワークシステムに応用することで、各ノードにおける加速度センサの検出結果に基づいて、地震の発生を検知することができる。例えば、各ノードに加速度センサを備え、各ノードからの揺れ情報を各ゲートウェイで統計処理を行い、各ゲートウェイが地震発生を検知することが考えられる。 Therefore, for example, by applying a technique such as Patent Document 2 to an ad hoc network system, the occurrence of an earthquake can be detected based on the detection result of the acceleration sensor at each node. For example, it is conceivable that each node is provided with an acceleration sensor, and each gateway performs statistical processing on shake information from each node, and each gateway detects the occurrence of an earthquake.
 ここで、アドホックネットワークシステムでは、複数のゲートウェイは互いに異なるアドホックネットワークを管理する。そして、各アドホックネットワークに含まれる複数のノードは、少なくとも一部のエリアが互いに異なるアドホックネットワークエリアを形成する。そして、各アドホックネットワークエリアは、地盤強度等の地震と関連する要件とは無関係に設定されるとともに、当然、予測困難な地震発生エリアとも無関係に設定される。 Here, in the ad hoc network system, a plurality of gateways manage different ad hoc networks. A plurality of nodes included in each ad hoc network form an ad hoc network area in which at least some areas are different from each other. Each ad hoc network area is set regardless of requirements related to earthquakes such as ground strength, and naturally, is set regardless of earthquake occurrence areas that are difficult to predict.
 したがって、特許文献2の技術を応用した場合では、各アドホックネットワークエリアを管理するゲートウェイが地震の発生がなかったと判定した場合でも、実際には、エリア内で地震が発生している場合がある。例えば、地盤の強弱や、場所ごとの震度の違いによって、アドホックネットワークエリア内の一部のエリアが大きく揺れ、他のエリアでは揺れが小さい場合などである。このように、揺れを検知するノードと、検知しないノードとがある場合などに、各ゲートウェイは、各アドホックネットワークエリアにおける地震発生を正確に検知できない。 Therefore, when the technology of Patent Document 2 is applied, even when the gateway that manages each ad hoc network area determines that no earthquake has occurred, there may actually be an earthquake within the area. For example, there is a case where some areas in the ad hoc network area are greatly shaken and the shake is small in other areas due to the strength of the ground or the difference in seismic intensity at each place. Thus, when there are nodes that detect shaking and nodes that do not detect, each gateway cannot accurately detect the occurrence of an earthquake in each ad hoc network area.
 そこで、本発明では、ゲートウェイは、管理下のノードからの振動に関わる情報を統計処理する事によって、ゲートウェイ管理下のエリアにおける地震発生の有無を判定する場合に、判定の精度を高めることを目的とする。 Therefore, in the present invention, the gateway aims to increase the accuracy of the determination when determining whether or not an earthquake has occurred in the area under the management of the gateway by statistically processing information related to vibration from the managed node. And
 本発明の一観点によれば、エリアに存在する複数のノードを管理するゲートウェイであって、前記複数のノードの少なくとも一部のノードから、該少なくとも一部のノードにおいて検出された振動に関する振動情報を受信する受信部と、前記振動情報に基づいて、前記エリアにおける地震の有無を判定する制御部と、前記制御部による判定の結果を含む地震情報を、他のゲートウェイ装置へ送信する送信部とを有する。 According to an aspect of the present invention, there is provided a gateway that manages a plurality of nodes existing in an area, and vibration information relating to vibrations detected in the at least some nodes from at least some of the plurality of nodes. A control unit that determines the presence or absence of an earthquake in the area based on the vibration information, and a transmission unit that transmits earthquake information including a result of determination by the control unit to another gateway device, Have
 本発明の他の観点によれば、エリアに存在する複数のノードを管理するゲートウェイであって、前記複数のノードの少なくとも一部のノードから、該少なくとも一部のノードにおいて検出された振動に関する振動情報を受信するとともに、他のゲートウェイ装置から、該他のゲートウェイ装置が管理する他のエリアにおける地震発生の有無に関する地震情報を受信する受信部と、前記他のエリアにおける前記地震情報を参照し、前記エリアにおける地震の有無を判定する制御部と、前記エリアにおいて地震があった場合には、前記振動情報を送信した前記少なくとも一部のノードに、地震発生時の制御情報を送信する送信部とを有する。 According to another aspect of the present invention, there is provided a gateway for managing a plurality of nodes existing in an area, the vibration relating to the vibration detected in the at least some nodes from at least some of the plurality of nodes. Receiving information and receiving from the other gateway device earthquake information regarding the occurrence of an earthquake in another area managed by the other gateway device, and referring to the earthquake information in the other area, A control unit that determines the presence or absence of an earthquake in the area; and a transmission unit that transmits control information when an earthquake occurs to the at least some nodes that transmitted the vibration information when there is an earthquake in the area; Have
 本発明の一観点によれば、ゲートウェイは、地震発生の判定結果を他のゲートウェイと共有することができる。さらに、共有されたゲートウェイでは、地震情報を加味して、地震の発生を判定することで、より精度よく地震の有無を判定することができる。 According to one aspect of the present invention, the gateway can share the determination result of the occurrence of the earthquake with other gateways. Furthermore, in the shared gateway, the occurrence of an earthquake can be determined with higher accuracy by determining the occurrence of the earthquake in consideration of the earthquake information.
図1は、実施の形態にかかるアドホックネットワークシステムの一実施例を示す説明図である。FIG. 1 is an explanatory diagram of an example of the ad hoc network system according to the embodiment. 図2は、ノードNの機能ブロック図である。FIG. 2 is a functional block diagram of the node N. 図3は、制御パケットのデータ構成例を示す図である。FIG. 3 is a diagram illustrating a data configuration example of the control packet. 図4は、振動データパケットのデータ構成例を示す図である。FIG. 4 is a diagram illustrating a data configuration example of the vibration data packet. 図5は、ゲートウェイGWの機能ブロック図である。FIG. 5 is a functional block diagram of the gateway GW. 図6は、共有先テーブルのデータ構成例を示す図である。FIG. 6 is a diagram illustrating a data configuration example of the sharing destination table. 図7は、ノードNにより実行される処理フローチャートである。FIG. 7 is a process flowchart executed by the node N. 図8は、ゲートウェイGWにより実行される処理フローチャートである。FIG. 8 is a process flowchart executed by the gateway GW. 図9は、ゲートウェイGWにより実行される他の処理フローチャートである。FIG. 9 is another flowchart of processing executed by the gateway GW. 図10は、ノードNのハードウェア構成例である。FIG. 10 is a hardware configuration example of the node N. 図11は、ゲートウェイGWのハードウェア構成例である。FIG. 11 is a hardware configuration example of the gateway GW.
 以下に添付図面を参照して、本実施例に係るゲートウェイ、ゲートウェイの地震検知方法、ゲートウェイの地震検知プログラム、アドホックネットワークシステムの実施の形態を詳細に説明する。
(実施例1)
 図1は、実施の形態にかかるアドホックネットワークシステムの一実施例を示す説明図である。本実施形態におけるアドホックネットワークシステムは、複数のノードNと、複数のゲートウェイGWと、管理サーバSとを含む。まず、図1を用いて、アドホックネットワークおよび、アドホックネットワークにおけるパケット転送について、説明する。
Exemplary embodiments of a gateway, a gateway earthquake detection method, a gateway earthquake detection program, and an ad hoc network system according to the present embodiment will be described below in detail with reference to the accompanying drawings.
Example 1
FIG. 1 is an explanatory diagram of an example of the ad hoc network system according to the embodiment. The ad hoc network system in the present embodiment includes a plurality of nodes N, a plurality of gateways GW, and a management server S. First, an ad hoc network and packet transfer in the ad hoc network will be described with reference to FIG.
 アドホックネットワークシステムは、管理サーバSと、ゲートウェイGW1,GW2,GW3と、ノードNA~NTとを含む。なお、アドホックネットワークシステムは、図に示す以外にも、ゲートウェイおよびノードを含んでもよい。 The ad hoc network system includes a management server S, gateways GW1, GW2, and GW3, and nodes NA to NT. The ad hoc network system may include a gateway and a node other than those shown in the figure.
 管理サーバSとゲートウェイGW1,GW2,GW3とはインターネット、LAN、WANなどの通常ネットワーク200を介して接続されている。また、ゲートウェイは、管理下にあるノードと、アドホックネットワークを介して通信する。図1の例では、ゲートウェイGW1は、ノードNA~NHと、アドホックネットワーク100を介して接続される。ゲートウェイGW2は、ノードNI~NPと、アドホックネットワーク101を介して通信する。ゲートウェイGW3は、ノードNQ~NTと、アドホックネットワーク102を介して通信する。以下、ゲートウェイGWについて、ゲートウェイGW1を用いて説明を行う。 The management server S and the gateways GW1, GW2, and GW3 are connected via a normal network 200 such as the Internet, LAN, or WAN. Further, the gateway communicates with a node under management via an ad hoc network. In the example of FIG. 1, the gateway GW1 is connected to the nodes NA to NH via the ad hoc network 100. The gateway GW2 communicates with the nodes NI to NP via the ad hoc network 101. The gateway GW3 communicates with the nodes NQ to NT via the ad hoc network 102. Hereinafter, the gateway GW will be described using the gateway GW1.
 ゲートウェイGW1は、アドホックネットワーク100と通常ネットワーク200とを接続する中継機器である。ゲートウェイGW1は、アドホックネットワーク100のプロトコルの形式の情報と通常ネットワーク200のプロトコルの形式の情報の両方を送受信可能である。 The gateway GW1 is a relay device that connects the ad hoc network 100 and the normal network 200. The gateway GW1 can transmit and receive both the protocol format information of the ad hoc network 100 and the protocol format information of the normal network 200.
 また、ゲートウェイGW1は、アドホックネットワーク100と通常ネットワーク200との間で情報をプロトコル変換することにより、通信の転送を行う。例えば、アドホックネットワーク100内の各ノードNA~NHから管理サーバS宛に送信されたパケットは、ゲートウェイGW1にてプロトコル変換される。その後、ゲートウェイGW1が、当該パケットを、通常ネットワーク200に転送することで、管理サーバSは必要な情報を受信する。 In addition, the gateway GW1 performs communication transfer by converting the protocol of information between the ad hoc network 100 and the normal network 200. For example, a packet transmitted from each node NA to NH in the ad hoc network 100 to the management server S is protocol-converted by the gateway GW1. Thereafter, the gateway GW1 transfers the packet to the normal network 200, whereby the management server S receives necessary information.
 また、管理サーバSから、それぞれのノードNA~NH宛てに送信された情報は、ゲートウェイGW1にてプロトコル変換され、ゲートウェイGW1からアドホックネットワーク100内の各ノードにパケットとして転送される。 Further, information transmitted from the management server S to each of the nodes NA to NH is subjected to protocol conversion by the gateway GW1 and transferred as a packet from the gateway GW1 to each node in the ad hoc network 100.
 アドホックネットワーク100内には、複数のノードNが設けられている。図1では、代表としてノードNA~NHを示している。アドホックネットワーク101および102も同様に、各アドホックネットワーク内には複数のノードが設けられている。図1では、代表としてノードNI~NPおよびノードNQ~NTが示される。なお、以下では、ノードNについて、アドホックネットワーク100内のノードNA~NHを用いて説明を行う。さらに、各ノードを区別する必要がない場合は、ノードNとして説明を行う。 In the ad hoc network 100, a plurality of nodes N are provided. In FIG. 1, nodes NA to NH are shown as representatives. Similarly, in the ad hoc networks 101 and 102, a plurality of nodes are provided in each ad hoc network. In FIG. 1, nodes NI to NP and nodes NQ to NT are shown as representatives. In the following, the node N will be described using the nodes NA to NH in the ad hoc network 100. Furthermore, when it is not necessary to distinguish each node, it demonstrates as the node N. FIG.
 各ノードNは、所定の通信圏内で通信可能な他ノードとマルチホップ通信が可能な装置である。アドホックネットワーク100では、すべてのノードNA~NHが直接ゲートウェイGW1と通信できる必要はなく、他のノードを経由する事で、各ノードNA~NHは、ゲートウェイGW1と通信する。このため、アドホックネットワーク100では、一部のノードNがゲートウェイGW1と通信可能であればよい。図1では、ゲートウェイGW1と直接通信可能なノードは、ノードNA,NDであるとする。 Each node N is a device capable of multi-hop communication with other nodes that can communicate within a predetermined communication range. In the ad hoc network 100, it is not necessary that all the nodes NA to NH can directly communicate with the gateway GW1, and each node NA to NH communicates with the gateway GW1 via other nodes. Therefore, in the ad hoc network 100, it is only necessary that some nodes N can communicate with the gateway GW1. In FIG. 1, nodes that can directly communicate with the gateway GW1 are assumed to be nodes NA and ND.
 各ノードNA~NHは、個別にルーティングテーブルを生成する。各ノードNA~NHは、ハローパケットを周囲のノードと通信することで、ルーティングテーブルを生成する。なお、ハローパケットは、自装置の存在や通信用の鍵を共有する為のパケットであり、あるノードから他のノードに対してブロードキャストされるパケットである。 Each node NA-NH generates a routing table individually. Each node NA to NH generates a routing table by communicating a hello packet with surrounding nodes. The hello packet is a packet for sharing the presence of the own device and a communication key, and is a packet broadcast from one node to another node.
 ルーティングテーブルの生成は、従来の方式を用いて行う。各ノードがルーティングテーブルを生成する事で、例えば、あるノードが通信不能となり、パケットの転送ができなくなった場合でも、他の転送経路の設定が可能となる。 The routing table is generated using a conventional method. When each node generates a routing table, for example, even when a certain node becomes unable to communicate and cannot transfer a packet, another transfer path can be set.
 図1では、アドホックネットワーク100を構成するノードNA~NHにより、4つの経路が設定されているものとする。具体的には、ノードNCとノードNBとノードNAとゲートウェイGW1とを含むルート、ノードNEとノードNDとゲートウェイGW1とを含むルート、ノードNGとノードNFとノードNDとゲートウェイGW1とを含むルート、ノードNHとノードNFとノードNDとゲートウェイGW1とを含むルートが設定されている。 In FIG. 1, it is assumed that four routes are set by the nodes NA to NH constituting the ad hoc network 100. Specifically, a route including the node NC, the node NB, the node NA, and the gateway GW1, a route including the node NE, the node ND, and the gateway GW1, a route including the node NG, the node NF, the node ND, and the gateway GW1, A route including the node NH, the node NF, the node ND, and the gateway GW1 is set.
 ここで、ゲートウェイGW1に近いノードを上流側のノードと呼ぶ。なお、アドホックネットワーク100の規模によっては、ノードNBやノードNEも上流側のノードとなる。各ノードNA~NHから管理サーバSへデータが送信される場合は、各ノードNA~NHは、各々検出したデータをルーティングされたルートに従ってゲートウェイGW1に送信する。 Here, a node close to the gateway GW1 is called an upstream node. Depending on the scale of the ad hoc network 100, the node NB and the node NE are also upstream nodes. When data is transmitted from each node NA to NH to the management server S, each node NA to NH transmits the detected data to the gateway GW1 according to the routed route.
 また、本実施形態のアドホックネットワークシステムでは、セキュリティの為に、各ノードNA~NHが、暗号鍵を用いて、パケット内のペイロードデータを暗号化する。暗号化により、パケットの秘匿性が確保される。 In the ad hoc network system of this embodiment, each node NA to NH encrypts payload data in a packet using an encryption key for security. Encryption ensures packet confidentiality.
 さらなるセキュリティ向上のために、各ノードNA~NHが、メッセージ認証コード(MAC)を生成し、各パケットに付加してもよい。MAC値を検証することで、データの完全性が検証されるとともに、MACを生成したノードの正当性が検証される。なお、MACを生成する際には、MAC生成用の鍵が使用される。 For further security improvement, each node NA to NH may generate a message authentication code (MAC) and add it to each packet. By verifying the MAC value, the integrity of the data is verified, and the validity of the node that generated the MAC is verified. When generating the MAC, a key for generating the MAC is used.
 同一のMAC鍵により、同一のデータ内容に対して、算出されたMAC値同士は、同一となる。言い換えれば、異なるMAC鍵により算出されたMAC値や、異なるデータ内容に対して算出されたMAC値は、同一とならない。よって、マルチホップ通信の過程で、MAC値を検証する事で、ノードNやゲートウェイGW1は、データが完全でないパケットや、不正な可能性のあるノードが生成したパケットを検出することができる。 The calculated MAC values are the same for the same data content with the same MAC key. In other words, the MAC values calculated with different MAC keys and the MAC values calculated for different data contents are not the same. Therefore, by verifying the MAC value in the process of multi-hop communication, the node N and the gateway GW1 can detect a packet with incomplete data or a packet generated by a node that may be illegal.
 以上のように、各種鍵を利用することで、アドホックネットワーク100のセキュア通信を確保する。なお、暗号鍵やMAC生成用の鍵は、各ノードNA~NHの記憶領域に記憶される。 As described above, secure communication of the ad hoc network 100 is ensured by using various keys. The encryption key and the MAC generation key are stored in the storage areas of the nodes NA to NH.
 本実施例においては、各ノードNA~NHは、さらに、振動を検出する加速度センサを備えることで、自装置における振動を検出する。そして、ゲートウェイGW1は、各ノードNA~NHにおいて検出された振動情報を収集する。振動情報は、各ノードから送信される振動に関する情報である。振動情報に基づいて、ゲートウェイGW1は、アドホックネットワーク100のエリアにおける地震の発生を判定する。 In the present embodiment, each of the nodes NA to NH further includes an acceleration sensor that detects vibration, thereby detecting vibration in the own device. Then, the gateway GW1 collects vibration information detected at each of the nodes NA to NH. The vibration information is information related to vibration transmitted from each node. Based on the vibration information, the gateway GW1 determines the occurrence of an earthquake in the area of the ad hoc network 100.
 そして、ゲートウェイGW1は、地震があったことを判定した場合には、地震発生時に必要な制御を、各ノードNA~NHに対して実施する。つまり、ゲートウェイGW1は、地震発生時には、ノードNA~NHに対して、制御情報を送信する。制御情報は、各ノードに地震時の制御を行わせるための情報である。 When the gateway GW1 determines that an earthquake has occurred, the gateway GW1 performs the control necessary for the occurrence of the earthquake on each of the nodes NA to NH. That is, the gateway GW1 transmits control information to the nodes NA to NH when an earthquake occurs. The control information is information for causing each node to perform control during an earthquake.
 また、ゲートウェイGW1において、地震の有無を判定した場合に、他のゲートウェイに対して判定結果を共有する。他のゲートウェイとは、ゲートウェイGW1の周囲のアドホックネットワークエリアを管理するゲートウェイである。例えば、ゲートウェイGW1に隣接するエリアを管理するゲートウェイGW2が、ゲートウェイGW1より、判定結果の共有を受ける。 Also, when it is determined whether there is an earthquake in the gateway GW1, the determination result is shared with other gateways. The other gateway is a gateway that manages an ad hoc network area around the gateway GW1. For example, the gateway GW2 that manages the area adjacent to the gateway GW1 receives the determination result sharing from the gateway GW1.
 したがって、他のゲートウェイGW2が管理する複数のノードNI~NPの振動情報だけでは、他のゲートウェイGW2が管理するアドホックネットワーク101のエリアにおける地震の発生を検知できないような場合でも、ゲートウェイGW1から共有された情報に基づいて、地震の発生を検知できる。ひいては、他のゲートウェイGW2は、ノードNI~NPに対して、地震発生時に必要な制御を実施することができる。 Therefore, even if the occurrence of an earthquake in the area of the ad hoc network 101 managed by the other gateway GW2 cannot be detected only by the vibration information of the plurality of nodes NI to NP managed by the other gateway GW2, it is shared from the gateway GW1. The occurrence of an earthquake can be detected based on the information. As a result, the other gateway GW2 can perform necessary control on the nodes NI to NP when an earthquake occurs.
 ここで、地震発生時に必要な制御の例について説明する。各ノードNは、暗号化やMAC検証によりセキュアな通信を確立する為に、暗号鍵やMAC生成用の鍵等の情報を、自身の記憶領域に記憶する。言い換えると、各ノードNは、第三者に漏洩させるべきではない、秘密情報を記憶領域に保持している。その一方で、悪意のある第三者が、ノードを盗難することによって、秘密情報を不当に入手することが考えられる為、盗難対策が求められる。 そこで、加速度センサにより振動が検出された場合には、各ノードNは、盗難の可能性があると判断して、秘密情報の漏えいを防止する為の制御を行うことが考えられる。例えば、各ノードNは、振動を検出した場合にタイマを作動させ、一定時間経過後に秘密情報を消去する。 Here, an example of control necessary when an earthquake occurs will be described. Each node N stores information such as an encryption key and a MAC generation key in its own storage area in order to establish secure communication by encryption or MAC verification. In other words, each node N holds secret information in a storage area that should not be leaked to a third party. On the other hand, since it is conceivable that a malicious third party illegally obtains secret information by stealing a node, anti-theft measures are required. Therefore, when vibration is detected by the acceleration sensor, each node N may determine that there is a possibility of theft and perform control for preventing leakage of secret information. For example, each node N activates a timer when vibration is detected, and erases secret information after a predetermined time has elapsed.
 しかし、検知した振動が地震による振動である場合には、秘密情報を消去する必要はない。したがって、ゲートウェイGWが地震の発生を検知した場合に、各ノードNに対して、地震発生時の制御を行う事で、各ノードNはタイマを停止させ、秘密情報が消去されることを防ぐことができる。
また、本実施例のアドホックネットワークシステムは、各家庭の電力の使用量を収集する検針システムに適用される。検針システムでは、暗号鍵やMAC生成用の鍵以外にも、使用電気量などの個人情報も記憶領域に記憶される。振動の検出に伴い、個人情報も含む秘密情報の漏えい防止為の処理を開始するとともに、振動が地震による振動であった場合には、当該処理を解除することができる。
However, when the detected vibration is an earthquake-induced vibration, it is not necessary to delete the secret information. Therefore, when the gateway GW detects the occurrence of an earthquake, by controlling each node N when the earthquake occurs, each node N stops the timer and prevents secret information from being erased. Can do.
In addition, the ad hoc network system of the present embodiment is applied to a meter reading system that collects the amount of power used in each home. In the meter reading system, personal information such as the amount of electricity used is stored in the storage area in addition to the encryption key and the key for generating the MAC. Along with the detection of vibration, processing for preventing leakage of confidential information including personal information is started, and when the vibration is caused by an earthquake, the processing can be canceled.
 なお、図1の例では、アドホックネットワーク100内に1台のゲートウェイGW1を設ける構成としたが、一つのアドホックネットワーク100内に複数台のゲートウェイを設ける構成としてもよい。また、本アドホックネットワークシステムは、電力の使用量の収集だけでなく、各ノードに温度,湿度,光量などを検知するセンサ機能を持たせて、例えば、環境などの調査に使用することも可能である。 In the example of FIG. 1, one gateway GW1 is provided in the ad hoc network 100, but a plurality of gateways may be provided in one ad hoc network 100. In addition to collecting power usage, this ad hoc network system can also be used to investigate the environment, for example, by providing each node with a sensor function that detects temperature, humidity, light intensity, etc. is there.
 ここで、本実施の形態に係るアドホックネットワークシステムは、ゲートウェイGW1は、複数のノードNA~NHと通信することで、アドホックネットワーク100のエリアでの地震有無を判定する。さらに、ゲートウェイGW1は、他のゲートウェイにおける判定結果を利用して、アドホックネットワーク100のエリアでの地震有無を判定する。そして、ゲートウェイGW1は、地震があったことを判定した場合には、ノードNA~NHに対して何らかの制御を行う。 Here, in the ad hoc network system according to the present embodiment, the gateway GW1 communicates with a plurality of nodes NA to NH to determine whether there is an earthquake in the area of the ad hoc network 100. Furthermore, the gateway GW1 determines the presence / absence of an earthquake in the area of the ad hoc network 100 using the determination result in another gateway. If the gateway GW1 determines that an earthquake has occurred, the gateway GW1 performs some control on the nodes NA to NH.
 次に、ノードNの機能的構成について説明する。図2は、ノードNの機能ブロック図である。なお、以下、ノードNA乃至NTの各々を、ノードNとして、ゲートウェイGW1乃至GW3の各々を、ゲートウェイGWとして説明する。 Next, the functional configuration of the node N will be described. FIG. 2 is a functional block diagram of the node N. Hereinafter, each of the nodes NA to NT will be described as a node N, and each of the gateways GW1 to GW3 will be described as a gateway GW.
 ノードNは、通信部11、検出部12、制御部13、取得部14、記憶部15を有する。通信部11は、他の装置と通信を行う処理部である。例えば、通信部11は、他のノードNとパケットの授受を行う。また、一部のノードNにおける通信部11は、ゲートウェイGWと通信を行う。 The node N includes a communication unit 11, a detection unit 12, a control unit 13, an acquisition unit 14, and a storage unit 15. The communication unit 11 is a processing unit that communicates with other devices. For example, the communication unit 11 exchanges packets with other nodes N. In addition, the communication unit 11 in some nodes N communicates with the gateway GW.
 ここで、アドホックネットワークを流れるパケットには、ブロードキャストされるパケットと、ユニキャストされるパケットとが含まれる。本実施例においては、ブロードキャストされるパケットには、例えば、ゲートウェイGWが生成する制御パケットや、ハローパケットが含まれる。なお、制御パケットは特定のノードに対してユニキャストされてもよい。 Here, the packet flowing through the ad hoc network includes a broadcast packet and a unicast packet. In the present embodiment, the broadcast packet includes, for example, a control packet generated by the gateway GW and a hello packet. Note that the control packet may be unicast to a specific node.
 また、ユニキャストされるパケットには、例えば、各ノードにおいて検出された検出データを含むデータパケットが含まれる。なお、本実施例においては、データパケットは、さらに加速度センサによる検出データを含む振動データパケットと、加速度センサ以外のセンサによる検出データを含む通常データパケットとを含む。なお、振動データパケットは、上記振動情報の一種である。 Also, the unicast packet includes, for example, a data packet including detection data detected at each node. In the present embodiment, the data packet further includes a vibration data packet including detection data by the acceleration sensor and a normal data packet including detection data by a sensor other than the acceleration sensor. The vibration data packet is a kind of the vibration information.
 検出部12は、ノードNの振動を検出する処理部である。例えば、検出部12は、ノードNが備える加速度センサからの出力を受けて、振動を検出する。なお、加速度センサからの出力が、所定値以上である場合のみ振動を検出した旨の情報を制御部13に出力するようにしてもよい。 The detection unit 12 is a processing unit that detects the vibration of the node N. For example, the detection unit 12 receives an output from an acceleration sensor included in the node N and detects vibration. Note that information indicating that vibration has been detected may be output to the control unit 13 only when the output from the acceleration sensor is equal to or greater than a predetermined value.
 制御部13は、検出部12からの出力を受けて振動情報を生成するとともに、ノードNの状態を制御する処理部である。例えば、制御部13は、ゲートウェイが生成した制御パケットを受信した場合に、地震時の制御を行う。 The control unit 13 is a processing unit that receives the output from the detection unit 12 to generate vibration information and controls the state of the node N. For example, the control part 13 performs control at the time of an earthquake, when the control packet which the gateway produced | generated is received.
 本実施の形態においては、地震時の制御とは、ノードの状態を盗難に対する警戒状態を解除する制御であるとして説明する。つまり、検出部12が振動を検出した場合に、制御部13は、盗難に対する警戒状態に移行する。その後、制御パケットを受信した場合、警戒状態を解除する。 In the present embodiment, the control at the time of an earthquake will be described on the assumption that the state of the node is control for canceling a warning state against theft. That is, when the detection unit 12 detects vibration, the control unit 13 shifts to a warning state against theft. Thereafter, when a control packet is received, the alert state is released.
 警戒状態とは、例えば、振動検知からの経過時間を監視し、所定時間経過後に、秘密情報を消去する状態である。他の例には、記憶装置へのアクセスに対するセキュリティを通常状態よりも高く設定された状態である。 The alert state is a state in which, for example, the elapsed time from vibration detection is monitored and secret information is deleted after a predetermined time has elapsed. Another example is a state where security for access to the storage device is set higher than the normal state.
 ここで、先に述べたとおり、各ノードは秘密情報を記憶する為、ノードが盗難されたことで、秘密情報が漏えいする可能性がある。そこで、振動を検出した場合には、盗難の可能性を考慮して、通常の状態から警戒状態に遷移することが有効である。しかし、検出した振動が盗難による振動でなかった場合に、警戒状態が継続されることは好ましくない。例えば、秘密情報が消去されると、その後の通信ができなくなってしまう。そこで、制御パケットに基づいて、警戒状態を解除することが有効である。 Here, as described above, since each node stores secret information, there is a possibility that secret information may be leaked when the node is stolen. Therefore, when vibration is detected, it is effective to transition from the normal state to the alert state in consideration of the possibility of theft. However, it is not preferable that the alert state is continued when the detected vibration is not a vibration due to theft. For example, if secret information is erased, subsequent communication cannot be performed. Therefore, it is effective to release the alert state based on the control packet.
 取得部14は、ノードNが有するセンサや装置、または外部のセンサまたは装置からの検出データを取得する。そして、取得部14は、検出データを、記憶部15へ記憶する。 The acquisition unit 14 acquires detection data from a sensor or device included in the node N or an external sensor or device. Then, the acquisition unit 14 stores the detection data in the storage unit 15.
 記憶部15は、検出データを記憶する記憶装置である。さらに、記憶部15は、暗号鍵等のセキュリティに関する情報を記憶する記憶装置である。 The storage unit 15 is a storage device that stores detection data. Furthermore, the storage unit 15 is a storage device that stores information about security such as an encryption key.
 図3は、制御パケットのデータ構成例を示す図である。なお、制御パケットは、制御情報の一種である。制御パケット3は、地震発生時にノードを制御する為のパケットである。制御パケット3には、ヘッダ情報格納部31、ペイロードデータ格納部32が、それぞれ割り当てられる。ヘッダ情報格納部31には、ヘッダ情報が格納される。ヘッダ情報は、宛先アドレス、ローカル送信元アドレス、グローバル送信元アドレス、パケットタイプを含む。 FIG. 3 is a diagram illustrating a data configuration example of the control packet. The control packet is a kind of control information. The control packet 3 is a packet for controlling a node when an earthquake occurs. A header information storage unit 31 and a payload data storage unit 32 are allocated to the control packet 3. The header information storage unit 31 stores header information. The header information includes a destination address, a local source address, a global source address, and a packet type.
 宛先アドレスは、ブロードキャスト専用の特別なアドレスである。例えば、宛先アドレスは、予め用意されたアドレス「255.255.255.255」である。各ノードは、個別に設定されたアドレス宛に送信されたパケットを受信するが、当該特別なアドレス宛に送信されたパケットも受信する。つまり、特別なアドレスが設定されたパケットは、当該パケットを送信した装置と通信可能な範囲に存在する全てのノードにより受信される。 The destination address is a special address dedicated to broadcasting. For example, the destination address is an address “255.255.255.255” prepared in advance. Each node receives a packet transmitted to an address set individually, but also receives a packet transmitted to the special address. That is, a packet in which a special address is set is received by all nodes that are in a range where communication with the device that transmitted the packet is possible.
 ローカル送信元アドレスは、マルチホップ通信を形成する一つの通信において、パケットを送信する装置のアドレスに関する情報である。ローカル送信元アドレスは、マルチホップ通信の途中で、パケットが一回送信される毎に、送信する主体となる装置のアドレスに書きかわる。 The local transmission source address is information related to the address of a device that transmits a packet in one communication forming a multi-hop communication. The local transmission source address is rewritten to the address of the main device to be transmitted each time a packet is transmitted once during multi-hop communication.
 グローバル送信元アドレスは、パケットを生成した装置のアドレスに関する情報である。つまり、グローバル送信元アドレスは、マルチホップ通信において、始点となる装置のアドレスに関する情報である。制御パケット3の場合は、制御パケット3を生成したゲートウェイのアドレスに関する情報である。パケットタイプは、当該パケットの種別を示す情報である。例えば、制御パケット3の場合には「0」が設定される。したがって、パケットタイプを参照することで、パケットを受信したノードNは、受信したパケットの種別を把握することができる。 The global source address is information related to the address of the device that generated the packet. That is, the global transmission source address is information related to the address of the device that is the starting point in multihop communication. In the case of the control packet 3, it is information relating to the address of the gateway that generated the control packet 3. The packet type is information indicating the type of the packet. For example, in the case of the control packet 3, “0” is set. Therefore, by referring to the packet type, the node N that has received the packet can grasp the type of the received packet.
 また、パケットタイプに応じて、受信したパケットを他のノードへ転送するか否かが判定される。例えば、ノードNが、宛先アドレスに特別なアドレスが設定されたパケットを受信し、パケットタイプが「0」である場合は、受信した制御パケット3を、他のノードNへ転送する。つまり、制御パケットは、マルチホップ通信の対象として、ネットワークを転送される。 Also, it is determined whether or not to forward the received packet to another node according to the packet type. For example, when the node N receives a packet in which a special address is set as the destination address and the packet type is “0”, the received control packet 3 is transferred to another node N. That is, the control packet is transferred through the network as a target of multihop communication.
 一方、制御パケットと同様にブロードキャストされるハローパケットは、例えばパケットタイプ「1」が設定される。ノードNが、宛先アドレスに特別なアドレスが設定されたパケットを受信し、パケットタイプが「1」である場合は、受信したハローパケットを、他のノードNへ転送しない。つまり、ハローパケットは、マルチホップ通信の対象から除外され、パケットの転送は、あるノードNで収束する。 On the other hand, for example, the packet type “1” is set in the hello packet broadcasted in the same manner as the control packet. When the node N receives a packet in which a special address is set as a destination address and the packet type is “1”, the received hello packet is not transferred to another node N. That is, the hello packet is excluded from the target of multi-hop communication, and the packet transfer converges at a certain node N.
 次に、ペイロードデータ格納部32には、ペイロードデータが格納される。ペイロードデータは、例えば、ノードにおける制御の内容を指示する情報や、ヘッダ情報を暗号化した情報である。また、予め制御パケットを受信した場合の制御が、各ノードで指定されている場合には、ペイロードデータは、例えば、ヘッダ情報を暗号化した情報のみであってもよい。 Next, the payload data storage unit 32 stores payload data. The payload data is, for example, information indicating the content of control in the node or information obtained by encrypting header information. Further, when the control when receiving the control packet in advance is designated by each node, the payload data may be, for example, only information obtained by encrypting header information.
 図4は、振動データパケットのデータ構成例を示す図である。振動データパケット4は、ノードNにおいて検出された振動を、ゲートウェイGWへ通知する為のパケットである。 FIG. 4 is a diagram showing a data configuration example of the vibration data packet. The vibration data packet 4 is a packet for notifying the gateway GW of the vibration detected at the node N.
 振動データパケット4には、ヘッダ情報格納部41、ペイロードデータ格納部42がそれぞれ割り当てられる。ヘッダ情報格納部41には、ヘッダ情報が格納される。ヘッダ情報は、ローカル送信元アドレス、ローカル送信先アドレス、グローバル送信元アドレス、グローバル送信先アドレス、パケットタイプを含む。 The vibration data packet 4 is assigned a header information storage unit 41 and a payload data storage unit 42, respectively. The header information storage unit 41 stores header information. The header information includes a local transmission source address, a local transmission destination address, a global transmission source address, a global transmission destination address, and a packet type.
 ローカル送信元アドレス、グローバル送信元アドレス、パケットタイプは、制御パケット3と同様の情報である。ただし、振動データパケットの場合には、パケットタイプとして「2」が設定される。また、グローバル送信元アドレスは、振動データパケットを生成したノードのアドレスが設定される。 The local source address, global source address, and packet type are the same information as the control packet 3. However, in the case of a vibration data packet, “2” is set as the packet type. The global transmission source address is set to the address of the node that generated the vibration data packet.
 ローカル送信先アドレスは、マルチホップ通信を形成する一つの通信において、パケットの送信先となる装置のアドレスに関する情報である。グローバル送信先アドレスは、パケットを最終的に受信する装置のアドレスに関する情報である。つまり、グローバル送信先アドレスは、振動データパケット4がマルチホップ通信される場合に、終点となるゲートウェイGWのアドレスに関する情報である。 The local transmission destination address is information relating to the address of a device that is a transmission destination of a packet in one communication forming a multi-hop communication. The global destination address is information regarding the address of the device that finally receives the packet. That is, the global transmission destination address is information regarding the address of the gateway GW that is the end point when the vibration data packet 4 is subjected to multi-hop communication.
 ペイロードデータ格納部42には、ペイロードデータが格納される。ペイロードデータは、加速度センサが検出した加速度の値や、検出時刻などを含む情報である。 The payload data storage unit 42 stores payload data. The payload data is information including the acceleration value detected by the acceleration sensor, the detection time, and the like.
 なお、ここでは詳細に説明しないが、通常データパケットは、振動データパケットと同様のデータ構成である。ただし、ペイロードデータには、他のセンサによる検出データが設定される。また、各ノードが、MAC検証を行う場合には、通常データパケットは、さらにMAC鍵により算出されたMAC値を含む。 Although not described in detail here, the normal data packet has the same data configuration as the vibration data packet. However, detection data by other sensors is set in the payload data. When each node performs MAC verification, the normal data packet further includes a MAC value calculated by the MAC key.
 ここで、制御パケット3は、振動データパケットを送信したノードに対してのみ送信されるとしてもよい。その場合は、図4と同様に、制御パケットには、グローバル送信先アドレスと、ローカル送信先アドレスを含むヘッダ情報が、設定される。 Here, the control packet 3 may be transmitted only to the node that transmitted the vibration data packet. In this case, as in FIG. 4, header information including a global transmission destination address and a local transmission destination address is set in the control packet.
 次に、ゲートウェイについて説明する。図5は、ゲートウェイGWの機能ブロック図である。ゲートウェイGWは、通信部21と制御部22と記憶部23とを有する。 Next, the gateway will be described. FIG. 5 is a functional block diagram of the gateway GW. The gateway GW includes a communication unit 21, a control unit 22, and a storage unit 23.
 通信部21は、他の装置と直接的または間接的に通信する。例えば、通信部21は、アドホック通信が可能なノードに対して、制御パケットを送信する。また、通信部21は、各ノードNから、振動パケットを受信する。さらに、通信部21は、他のゲートウェイGWに地震情報を送信する、または他のゲートウェイから地震情報を受信する。 The communication unit 21 communicates directly or indirectly with other devices. For example, the communication unit 21 transmits a control packet to a node capable of ad hoc communication. The communication unit 21 receives a vibration packet from each node N. Furthermore, the communication unit 21 transmits earthquake information to another gateway GW or receives earthquake information from another gateway.
 ここで、通信部21は、情報を受信する場合には受信部として機能するとともに、情報を送信する場合には送信部として機能する。なお、異なる通信プロトコルに応じて、通信部21は複数の通信部から構成される場合もある。 Here, the communication unit 21 functions as a reception unit when receiving information, and functions as a transmission unit when transmitting information. Note that the communication unit 21 may include a plurality of communication units according to different communication protocols.
 地震情報は、ゲートウェイGWにおける地震の有無の判定結果を含む情報である。また、他のゲートウェイGWは、例えば、複数のアドホックネットワークのエリアのうち、自ゲートウェイGWと地理的に隣接するエリアを管理するゲートウェイGWである。 The earthquake information is information including a determination result of the presence or absence of an earthquake in the gateway GW. The other gateway GW is, for example, a gateway GW that manages an area that is geographically adjacent to the own gateway GW among areas of a plurality of ad hoc networks.
 制御部22は、制御パケットを生成する処理部である。制御部22は、振動パケットに基づいて、地震の有無を判定する。また、制御部22は、地震の有無の判定結果に基づいて、地震情報を生成する。そして、制御部22は、共有先テーブル6を参照し、共有先を指定して、通信部21に地震情報を送信させる。さらに、他のゲートウェイGWから地震情報を受信した場合には、地震情報に基づいて、地震の有無を判定する。 The control unit 22 is a processing unit that generates a control packet. The controller 22 determines the presence or absence of an earthquake based on the vibration packet. Moreover, the control part 22 produces | generates earthquake information based on the determination result of the presence or absence of an earthquake. Then, the control unit 22 refers to the sharing destination table 6, specifies the sharing destination, and causes the communication unit 21 to transmit the earthquake information. Furthermore, when earthquake information is received from another gateway GW, the presence / absence of an earthquake is determined based on the earthquake information.
 記憶部23は、地震情報を共有するゲートウェイに関する共有先テーブル6を記憶する。図6は、共有先テーブル6のデータ構成例を示す図である。共有先テーブル6は、共有先GWと、共有先アドレスと、エリア情報とを対応付けて記憶する。 The storage unit 23 stores a shared destination table 6 related to gateways that share earthquake information. FIG. 6 is a diagram illustrating a data configuration example of the sharing destination table 6. The share destination table 6 stores a share destination GW, a share destination address, and area information in association with each other.
 共有先GWは、地震情報を送信する共有先のゲートウェイを識別する情報である。また、共有先GWは、管理サーバSによって、ゲートウェイ毎に予め設定される。なお、管理サーバSの管理者は、各ゲートウェイが管理するアドホックネットワークのエリアの位置関係に基づいて、共有先GWを設定する。 The shared GW is information for identifying a shared gateway that transmits earthquake information. The sharing destination GW is set in advance by the management server S for each gateway. Note that the administrator of the management server S sets the sharing destination GW based on the positional relationship between the areas of the ad hoc network managed by each gateway.
 共有先アドレスは、共有先GWのアドレスの情報である。エリア情報は、共有先GWが管理するアドホックネットワークのエリアに関する情報である。例えば、住所や、地理的な範囲の情報が、エリア情報として記憶される。なお、共有先テーブル6に記憶される情報は、管理サーバSから受信され、記憶部23に格納される。 The shared address is information on the address of the shared GW. The area information is information related to the area of the ad hoc network managed by the sharing destination GW. For example, an address and geographical range information are stored as area information. Information stored in the sharing destination table 6 is received from the management server S and stored in the storage unit 23.
 次に、ノードNにおける、振動検出時の処理を説明する。図7は、ノードNにより実行される処理フローチャートである。なお、図7に示す処理とは独立に、ノードNは、取得部14が各種センサから取得した検出データを含む通常データパケットを、アドホックネットワークに送信する。通常データパケットの転送処理は、従来の手法と同様である。 Next, processing at the time of vibration detection in the node N will be described. FIG. 7 is a process flowchart executed by the node N. Independently of the process illustrated in FIG. 7, the node N transmits a normal data packet including detection data acquired by the acquisition unit 14 from various sensors to the ad hoc network. The normal data packet transfer process is the same as the conventional method.
 検出部12は、加速度センサから、加速度センサが検出した加速度を受信する(OP.1)。検出部12は、受信した加速度が、閾値以上であるか否かを判定する(OP.2)。閾値以上であれば、閾値以上の振動がノードNに発生したと判定し、ノードNは、OP.3へ処理を進める(OP.2Yes)。一方、閾値未満の加速度であれば(OP.2NO)、ノードNは、処理をOP.1へ戻す。 The detection unit 12 receives the acceleration detected by the acceleration sensor from the acceleration sensor (OP.1). The detecting unit 12 determines whether or not the received acceleration is equal to or greater than a threshold (OP.2). If it is equal to or greater than the threshold, it is determined that vibration equal to or greater than the threshold has occurred in node N. The process proceeds to 3 (OP. 2 Yes). On the other hand, if the acceleration is less than the threshold (OP. 2 NO), the node N performs the process in OP. Return to 1.
 通信部11は、制御部13の制御の下、ゲートウェイGWへ向けて、振動情報を送信する(OP.3)。さらに、振動を検出した場合に、制御部13は、タイマを作動させる。また、制御部13は、振動情報を生成する。具体的には、図4の通り、各種アドレスをヘッダ情報格納部に格納するとともに、パケットタイプとして「2」を設定する。なお、制御部13は、ルーティングテーブルを参照し、ゲートウェイGWへ向けて振動データパケットを送信する為のローカル送信先アドレスを設定する。さらに、制御部13は、検出部12が検出した振動に関する情報をペイロードデータ格納部に格納する。 The communication unit 11 transmits vibration information to the gateway GW under the control of the control unit 13 (OP.3). Furthermore, when vibration is detected, the control unit 13 activates a timer. In addition, the control unit 13 generates vibration information. Specifically, as shown in FIG. 4, various addresses are stored in the header information storage unit, and “2” is set as the packet type. The control unit 13 refers to the routing table and sets a local transmission destination address for transmitting the vibration data packet toward the gateway GW. Further, the control unit 13 stores information on the vibration detected by the detection unit 12 in the payload data storage unit.
 つぎに、制御部13は、通信部11が制御情報を受信したかを判定する(OP.4)。制御情報を、ゲートウェイGWから受信する場合と、他のノードNから受信する場合とがある。制御情報を受信した場合は(OP.4YES)、制御部13は、地震発生時における所定の制御を行う(OP.6)。なお、所定の制御は、予めノードNに設定された制御であってもよいし、制御情報において指定された制御であってもよい。 Next, the control unit 13 determines whether the communication unit 11 has received control information (OP.4). There are cases where control information is received from the gateway GW and cases where it is received from another node N. When the control information is received (OP.4 YES), the control unit 13 performs predetermined control when an earthquake occurs (OP.6). The predetermined control may be control set in advance in the node N or may be control specified in the control information.
 一方、制御情報を受信していない場合は(OP,4NO)、制御部13は、所定時間経過したか否かを判定する(OP.5)。所定時間経過していない場合は(OP.5NO)、制御部13は、OP.4へ処理を戻す。所定時間経過した場合は(OP.5YES)、処理を終了する。 On the other hand, when the control information is not received (OP, 4NO), the control unit 13 determines whether or not a predetermined time has elapsed (OP.5). When the predetermined time has not elapsed (OP. 5 NO), the control unit 13 determines that OP. Return processing to 4. If the predetermined time has elapsed (YES in OP.5), the process is terminated.
 以上のように、本実施例における各ノードNは、制御情報の受信に基づいて、地震発生時の所定の制御を実行することができる。 As described above, each node N in the present embodiment can execute predetermined control when an earthquake occurs based on reception of control information.
 また、地震発生時おける所定の制御として、警戒状態を解除する制御を行う場合には、まず、OP.2において、閾値以上の加速度を検知した場合に、制御部13は、ノードNを警戒状態に遷移させる処理を行う。そして、通信部11が所定時間以内に制御情報を受信した場合に、制御部13は、警戒状態を解除する。 In addition, when performing the control to release the warning state as the predetermined control when an earthquake occurs, first, the OP. 2, when detecting an acceleration equal to or higher than the threshold, the control unit 13 performs a process of causing the node N to transition to the alert state. When the communication unit 11 receives control information within a predetermined time, the control unit 13 cancels the alert state.
 したがって、秘密情報の漏えい防止のための警戒状態が、地震時にも継続されることを防ぐことができる。よって、各ノードNは、一旦警戒状態に遷移するが、地震による振動であれば警戒状態を解除することができる。一方、地震による振動でなければ警戒状態を維持することができる為、地震でない場合の振動に対して、秘密情報の漏えいを防止する警戒状態を維持することができる。 Therefore, it is possible to prevent a warning state for preventing leakage of confidential information from being continued even during an earthquake. Therefore, each node N temporarily transitions to the alert state, but can cancel the alert state if the vibration is caused by an earthquake. On the other hand, if the vibration is not caused by an earthquake, the alert state can be maintained. Therefore, the alert state for preventing leakage of secret information can be maintained against the vibration in the case of not being an earthquake.
 次に、ゲートウェイGWにおける、地震判定処理を説明する。図8は、ゲートウェイGWにより実行される処理フローチャートである。なお、図8に示す処理とは独立に、ゲートウェイGWは、各ノードNから通常データパケットを受信すると共に、管理サーバSへ転送する処理を行う。また、通常データパケットの転送処理は、従来の手法と同様である。 Next, the earthquake determination process in the gateway GW will be described. FIG. 8 is a process flowchart executed by the gateway GW. Independently of the process shown in FIG. 8, the gateway GW performs a process of receiving a normal data packet from each node N and transferring it to the management server S. The normal data packet transfer process is the same as the conventional method.
 ゲートウェイGWにおける制御部22は、通信部21が振動情報を受信したか否かを判定する(OP.10)。振動情報を受信している場合は(OP.10YES)、制御部22は、受信した振動情報に対する統計処理を行う(OP.11)。なお、通信部21が振動情報を受信するたびに、受信した振動情報はメモリに記憶される。 The control unit 22 in the gateway GW determines whether or not the communication unit 21 has received vibration information (OP.10). When vibration information is received (OP.10 YES), the control unit 22 performs statistical processing on the received vibration information (OP.11). Each time the communication unit 21 receives vibration information, the received vibration information is stored in the memory.
 統計処理では、例えば、制御部22は、振動情報の受信数を計数する。また、振動情報に、各ノードの位置情報が含まれている場合には、制御部22は、位置情報応じて、振動情報を生成したノードの分布を生成してもよい。また、振動情報に振動の大きさに関する情報が含まれている場合には、制御部22は、振動の大きさに応じて、振動情報を生成したノードの分布を生成してもよい。 In the statistical processing, for example, the control unit 22 counts the number of vibration information received. Further, when the position information of each node is included in the vibration information, the control unit 22 may generate a distribution of the nodes that generated the vibration information according to the position information. When the vibration information includes information related to the magnitude of vibration, the control unit 22 may generate a distribution of nodes that generated the vibration information according to the magnitude of vibration.
 次に、制御部22は、統計処理の結果が、地震判定条件を満たすか否か判定する(OP.12)。地震判定条件は、統計処理の結果と比較されることで、地震の有無を判定する為の条件である。 Next, the control unit 22 determines whether or not the statistical processing result satisfies the earthquake determination condition (OP.12). The earthquake determination condition is a condition for determining the presence or absence of an earthquake by being compared with the result of statistical processing.
 例えば、統計処理において、振動情報の受信数が計数される場合には、地震判定条件は、振動情報の受信数の下限値を示す整数や、全ノード数に対する割合の下限値となる。また、統計処理で分布を生成する場合には、地震判定条件は、分布のパターンとなる。以下、地震判定条件は、「全ノード数に対して50%以上」であるとして説明する。 For example, in statistical processing, when the number of vibration information receptions is counted, the earthquake determination condition is an integer indicating the lower limit value of the vibration information reception number or the lower limit value of the ratio to the total number of nodes. Further, when a distribution is generated by statistical processing, the earthquake determination condition is a distribution pattern. Hereinafter, the earthquake determination condition will be described as “50% or more with respect to the total number of nodes”.
 地震判定条件を満たす場合(OP.12YES)、制御部22は制御情報を生成し、通信部21は、制御情報を各ノードNへ送信する(OP.13)。制御情報は、全ノードに対してブロードキャストされてもよいし、特定のノードに対してユニキャストされてもよい。 When the earthquake determination condition is satisfied (YES in OP.12), the control unit 22 generates control information, and the communication unit 21 transmits the control information to each node N (OP.13). The control information may be broadcast to all nodes or unicast to a specific node.
 例えば、ゲートウェイGWが管理するアドホックネットワークに100台のノードNが含まれるとともに、統計処理において振動情報の受信数が60であったとする。この場合、制御部22は、地震判定条件(受信数が全ノード数に対して50%以上)を満たすと判定する。そして、制御部22は、各ノードNに送信する制御情報を生成する。 For example, it is assumed that 100 nodes N are included in the ad hoc network managed by the gateway GW and that the number of vibration information received is 60 in the statistical processing. In this case, the control unit 22 determines that the earthquake determination condition (the number of receptions is 50% or more with respect to the total number of nodes) is satisfied. Then, the control unit 22 generates control information to be transmitted to each node N.
 制御情報として、図3に示す制御パケットが生成される。制御部22は、各種アドレスをヘッダ情報格納部に設定するとともに、パケットタイプに「0」を設定する。さらに、制御部22は、必要に応じてペイロードデータ格納部に情報を格納する。 The control packet shown in FIG. 3 is generated as control information. The control unit 22 sets various addresses in the header information storage unit and sets “0” in the packet type. Furthermore, the control unit 22 stores information in the payload data storage unit as necessary.
 次に、制御部22の制御の下、通信部21は、地震情報を共有先GWへ送信する(OP.14)。つまり、ゲートウェイGWは、周囲のゲートウェイGWに対して、地震の判定結果を共有する。本実施例においては、地震があったことを判定した場合にのみ、地震情報が送信されるとしているが、判定結果に関わらず、地震情報を送信してもよい。そして、ゲートウェイGWは、一連の処理を終了する。 Next, under the control of the control unit 22, the communication unit 21 transmits the earthquake information to the sharing destination GW (OP.14). That is, the gateway GW shares the earthquake determination result with the surrounding gateway GW. In this embodiment, the earthquake information is transmitted only when it is determined that an earthquake has occurred. However, the earthquake information may be transmitted regardless of the determination result. Then, the gateway GW ends a series of processes.
 一方、制御部22が振動情報を受信していない場合(OP.10NO)、または地震判定条件を満たさないと判定した場合(OP.12NO)は、制御部22は、通信部21において、他のゲートウェイGWからの地震情報を受信したかを判定する(OP.15)。 On the other hand, when the control unit 22 has not received the vibration information (OP. 10 NO), or when it is determined that the earthquake determination condition is not satisfied (OP. 12 NO), the control unit 22 performs other communication with the communication unit 21. It is determined whether the earthquake information from the gateway GW has been received (OP.15).
 つまり、他のゲートウェイGWにおいて、地震の発生があったと判定された場合であって、かつ自装置が他のゲートウェイGWにおける共有先GWである場合には、自装置の通信部21は、地震情報を他のゲートウェイGWから受信することとなる。本実施例では、自装置に対して隣接するゲートウェイGWが地震の発生を検知した場合に、通信部21は、地震情報を受信することとなる。 That is, when it is determined that an earthquake has occurred in another gateway GW and the own device is a shared destination GW in another gateway GW, the communication unit 21 of the own device Will be received from another gateway GW. In the present embodiment, when the gateway GW adjacent to the device detects the occurrence of an earthquake, the communication unit 21 receives the earthquake information.
 地震情報を受信した場合には(OP.15YES)、制御部22は、制御情報を生成するとともに、通信部21は、各ノードへ制御情報を送信する(OP.16)。そして、ゲートウェイGWは、処理を終了する。一方、地震情報を受信しなかった場合には(OP.15NO)、ゲートウェイは、そのまま処理を終了する。 When the earthquake information is received (OP.15 YES), the control unit 22 generates the control information and the communication unit 21 transmits the control information to each node (OP.16). Then, the gateway GW ends the process. On the other hand, when the earthquake information is not received (OP.15 NO), the gateway ends the process as it is.
 ここでは、地震情報を受信することで、隣接するアドホックネットワークのエリアに地震が発生していることを、ゲートウェイは検知できる。したがって、自身が管理するアドホックネットワーク内のノードからの振動情報により、地震の発生を検知できなかった場合でも、ゲートウェイは、地震時の制御を行うことができる。 Here, by receiving earthquake information, the gateway can detect that an earthquake has occurred in an adjacent ad hoc network area. Therefore, even when the occurrence of an earthquake cannot be detected by vibration information from a node in the ad hoc network managed by the gateway, the gateway can perform control at the time of the earthquake.
 つまり、各々のゲートウェイが、各々のアドホックネットワークエリア内のノードにおける振動の発生だけでは、正確に地震の有無を検知できない場合に、地震を検知することができる。例えば、ノードNの検出部12が検出する程度の振動を与える地震が、図1のエリア1000で発生したとする。 That is, each gateway can detect an earthquake when it is not possible to accurately detect the presence or absence of an earthquake only by the occurrence of vibration at a node in each ad hoc network area. For example, it is assumed that an earthquake that gives a vibration of the level detected by the detection unit 12 of the node N occurs in the area 1000 of FIG.
 この場合には、アドホックネットワーク100のエリアを管理するゲートウェイGW1は、地震の発生を検知することができるが、アドホックネットワーク101のエリアを管理するゲートウェイGW2は、地震の発生を検知することができない。したがって、ゲートウェイGW1が地震情報をゲートウェイGW2に共有することで、アドホックネットワーク101に含まれる各ノードNI~NPに対する制御が可能となる。 In this case, the gateway GW1 that manages the area of the ad hoc network 100 can detect the occurrence of the earthquake, but the gateway GW2 that manages the area of the ad hoc network 101 cannot detect the occurrence of the earthquake. Therefore, when the gateway GW1 shares the earthquake information with the gateway GW2, it is possible to control the nodes NI to NP included in the ad hoc network 101.
 以上のように、ゲートウェイGWは、地震発生の判定結果を他のゲートウェイと共有することができる。さらに、共有されたゲートウェイでは、地震情報を加味して、地震の発生を判定することができる。したがって、より精度よく、地震の有無を判定することができる。 As described above, the gateway GW can share the determination result of the occurrence of the earthquake with other gateways. Furthermore, the shared gateway can determine the occurrence of an earthquake by taking earthquake information into account. Therefore, the presence or absence of an earthquake can be determined with higher accuracy.
 (実施例2)
 ゲートウェイGWは、地震判定処理を、図9に示す処理フローで行ってもよい。図9は、ゲートウェイにより実行される他のフローチャートである。なお、図8に示すフローチャートと同様の処理内容については、同一の符号を付すと共に、説明を省略する。
(Example 2)
The gateway GW may perform the earthquake determination process with the process flow shown in FIG. FIG. 9 is another flowchart executed by the gateway. In addition, about the same processing content as the flowchart shown in FIG. 8, while attaching | subjecting the same code | symbol, description is abbreviate | omitted.
 OP.11の処理に続いて、制御部22は、統計処理の結果が第一の地震判定条件を満たすか判定する(OP.17)。第一の地震判定条件を満たす場合(OP.17YES)、OP.13へ進む。一方、第一の地震判定条件を満たさない場合(OP.17NO)、制御部22は、他のゲートウェイGWより地震情報を受信したか判定する(OP.15)。 OP. Following the process of 11, the control unit 22 determines whether the result of the statistical process satisfies the first earthquake determination condition (OP.17). When the first earthquake judgment condition is satisfied (OP.17 YES), OP. Proceed to step 13. On the other hand, when the first earthquake determination condition is not satisfied (OP.17 NO), the control unit 22 determines whether earthquake information is received from another gateway GW (OP.15).
 他のゲートウェイGWより地震情報を受信していない場合には(OP.15NO)、ゲートウェイは処理を終了する。一方、他のゲートウェイGWより、地震情報を受信している場合には(OP.15YES)、制御部22は、統計処理の結果が、第二の地震判定条件を満たすか判定する(OP.18)。第二の地震判定条件を満たす場合(OP.18YES)、制御部22は、OP.16を実行する。 If the earthquake information has not been received from another gateway GW (OP.15 NO), the gateway ends the process. On the other hand, when earthquake information is received from another gateway GW (OP.15 YES), the control unit 22 determines whether the result of the statistical processing satisfies the second earthquake determination condition (OP.18). ). When the second earthquake determination condition is satisfied (OP.18 YES), the control unit 22 determines that the OP. 16 is executed.
 ここで、第一の地震判定条件と第二の地震判定条件との違いについて説明する。第一の地震判定条件は、第二の地震判定条件よりも厳しい条件である。例えば、第一の地震判定条件が、「全ノードの50%以上」であるのに対して、第二の地震判定条件は「全ノードの10%以上」である。 Here, the difference between the first earthquake judgment condition and the second earthquake judgment condition will be described. The first earthquake determination condition is a stricter condition than the second earthquake determination condition. For example, the first earthquake determination condition is “50% or more of all nodes”, whereas the second earthquake determination condition is “10% or more of all nodes”.
 以上のように、第二の実施例におけるゲートウェイGWは、第一の地震判定条件を満たさない場合には、地震情報の受信状況と第二の地震判定条件とに基づいて、地震の有無を判定することができる。 As described above, when the gateway GW in the second embodiment does not satisfy the first earthquake determination condition, the gateway GW determines whether there is an earthquake based on the reception status of the earthquake information and the second earthquake determination condition. can do.
 なお、さらに地震情報の内容に基づいて、地震の有無を判定しても良い。例えば、ゲートウェイGWは、地震を検知した場合に、地震判定条件と統計結果との差分を示す情報を地震情報に設定する。そして、ゲートウェイGWは、地震情報を共有先GWへ送信する。地震情報を受信したゲートウェイGWは、当該差分が閾値以上であって、第二の地震判定条件を満たす場合に、自身が管理するアドホックネットワークのエリアに地震が発生したと判定する。 In addition, the presence or absence of an earthquake may be determined based on the content of the earthquake information. For example, when the gateway GW detects an earthquake, the gateway GW sets information indicating the difference between the earthquake determination condition and the statistical result in the earthquake information. Then, the gateway GW transmits the earthquake information to the sharing destination GW. The gateway GW that has received the earthquake information determines that an earthquake has occurred in the area of the ad hoc network managed by the gateway GW when the difference is equal to or greater than the threshold and the second earthquake determination condition is satisfied.
 以上のように、ゲートウェイGWは、地震発生の判定結果を他のゲートウェイと共有することができる。さらに、共有されたゲートウェイでは、地震情報を加味して、地震の発生を判定することができる。
(実施例3)
 図10は、ノードNのハードウェア構成例である。ノードNは、CPU(CENTRAL PROCESSING UNIT)301と、RAM(RANDOM ACCESS MEMORY)302と、フラッシュメモリ303と、インターフェース(I/F)304と、暗号化回路305と、センサ306と、バス307とを備えている。CPU301乃至センサ306は、バス307よってそれぞれ接続されている。
As described above, the gateway GW can share the determination result of the occurrence of the earthquake with other gateways. Furthermore, the shared gateway can determine the occurrence of an earthquake by taking earthquake information into account.
(Example 3)
FIG. 10 is a hardware configuration example of the node N. The node N includes a CPU (CENTRAL PROCESSING UNIT) 301, a RAM (RANDOM ACCESS MEMORY) 302, a flash memory 303, an interface (I / F) 304, an encryption circuit 305, a sensor 306, and a bus 307. I have. The CPU 301 to the sensor 306 are connected by a bus 307, respectively.
 CPU301は、ノードNの全体の制御を司る。CPU301は、RAM302に展開されたプログラムを実行することにより、検出部12、制御部13、取得部14などとして機能する。 CPU 301 governs overall control of node N. The CPU 301 functions as the detection unit 12, the control unit 13, the acquisition unit 14, and the like by executing a program expanded in the RAM 302.
 RAM302は、CPU301のワークエリアとして使用される。フラッシュメモリ303は、プログラムや、センサが検出した情報、暗号鍵などの鍵情報を記憶している。なお、フラッシュメモリ303は、記憶部15の一例である。I/F304は、マルチホップ通信によりパケットを送受信する。I/F304は、通信部11の一例である。プログラムには、例えば、フローチャートに示した通信装置における各処理を実行させる為のプログラムが含まれる。 The RAM 302 is used as a work area for the CPU 301. The flash memory 303 stores key information such as a program, information detected by a sensor, and an encryption key. The flash memory 303 is an example of the storage unit 15. The I / F 304 transmits and receives packets by multi-hop communication. The I / F 304 is an example of the communication unit 11. The program includes, for example, a program for executing each process in the communication apparatus shown in the flowchart.
 暗号化回路305は、データを暗号化する場合に暗号鍵によりデータを暗号化する回路である。例えば、パケットを暗号化して転送する場合は、暗号化回路305が機能する。暗号化をソフトウェア的に実行する場合は、暗号化回路305に相当するプログラムをフラッシュメモリ303に記憶させておくことで、暗号化回路305は不要となる。センサ306は、センサ306固有のデータを検出する。たとえば、温度、湿度、水位、降水量、風量、音量、電力使用量、時間、時刻、加速度など、測定対象にあったデータを検出する。 The encryption circuit 305 is a circuit that encrypts data using an encryption key when encrypting the data. For example, when the packet is encrypted and transferred, the encryption circuit 305 functions. When encryption is executed by software, the encryption circuit 305 is not necessary by storing a program corresponding to the encryption circuit 305 in the flash memory 303. The sensor 306 detects data unique to the sensor 306. For example, data suitable for the measurement target is detected, such as temperature, humidity, water level, precipitation, air volume, volume, power consumption, time, time, and acceleration.
 なお、ノードNは、汎用コンピュータと同様の構成であってもよい。つまり、ノードNとして機能するコンピュータは、CPU(CENTRAL PROCESSING UNIT)、ROM(READ ONLY MEMORY),RAM(RANDOM ACCESS MEMORY),通信装置、HDD(HARD DISK DRIVE)、入力装置、表示装置、媒体読取装置などを有するコンピュータであってもよい。なお、各部は、バスを介して相互に接続されている。 Note that the node N may have the same configuration as a general-purpose computer. In other words, the computer functioning as the node N is a CPU (CENTRAL PROCESSING UNIT), ROM (READ ONLY MEMORY), RAM (RANDOM ACCESS MEMORY), communication device, HDD (HARD DISK DRIVE), input device, display device, medium reading device. A computer having the above may be used. Each unit is connected to each other via a bus.
 図11は、ゲートウェイGWのハードウェア構成例である。ゲートウェイGWは、CPU(CENTRAL PROCESSING UNIT)401、ROM(READ ONLY MEMORY)402,RAM(RANDOM ACCESS MEMORY)403,通信装置404、HDD(HARD DISK DRIVE)405、入力装置406、表示装置407、媒体読取装置408を有しており、各部はバス409を介して相互に接続されている。そしてCPU401による管理下で相互にデータの送受を行うことができる。なお、ゲートウェイGWは、図11に示す全ての構成を備える必要はない。 FIG. 11 is a hardware configuration example of the gateway GW. The gateway GW includes a CPU (CENTRAL PROCESSING UNIT) 401, a ROM (READ ONLY MEMORY) 402, a RAM (RANDOM ACCESS MEMORY) 403, a communication device 404, an HDD (HARD DISK DRIVE) 405, an input device 406, a display device 407, a medium reading device. A device 408 is included, and each unit is connected to each other via a bus 409. Data can be transmitted and received between them under the control of the CPU 401. Note that the gateway GW does not have to have all the configurations shown in FIG.
 フローチャートに示したゲートウェイGWの各処理を実行させる為の地震検知プログラムは、コンピュータが読み取り可能な記録媒体に記録される。コンピュータが読み取り可能な記録媒体には、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリなどがある。磁気記録装置には、HDD、フレキシブルディスク(FD)、磁気テープ(MT)などがある。 The earthquake detection program for executing each process of the gateway GW shown in the flowchart is recorded on a computer-readable recording medium. Examples of the computer-readable recording medium include a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory. Examples of the magnetic recording device include an HDD, a flexible disk (FD), and a magnetic tape (MT).
 光ディスクには、DVD(DIGITAL VERSATILE DISC)、DVD-RAM、CD-ROM(COMPACT DISC - READ ONLY MEMORY)、CD-R(RECORDABLE)/RW(REWRITABLE)などがある。光磁気記録媒体には、MO(MAGNETO - OPTICAL DISK)などがある。このプログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD、CD-ROMなどの可搬型記録媒体が販売されることが考えられる。 Optical discs include DVD (DIGITAL VERSATILE DISC), DVD-RAM, CD-ROM (COMPACT DISC-READ ONLY MEMORY), CD-R (RECORABLE) / RW (REWRITABLE), and the like. Magneto-optical recording media include MO (MAGNETO-OPTICAL DISK). When this program is distributed, for example, a portable recording medium such as a DVD or CD-ROM in which the program is recorded may be sold.
 そしてゲートウェイGWは、例えば媒体読取装置409が、プログラムを記録した記録媒体から、該プログラムを読み出す。CPU401は、読み出されたプログラムをHDD405若しくはROM402、RAM403に格納する。 In the gateway GW, for example, the medium reading device 409 reads the program from the recording medium on which the program is recorded. The CPU 401 stores the read program in the HDD 405, the ROM 402, or the RAM 403.
 CPU401は、ゲートウェイGW全体の動作制御を司る中央処理装置である。通信装置404はネットワークを介してノードNや管理サーバSなどからの信号を受信し、その信号の内容をCPU401に渡す。通信装置404は、通信部21の一例である。さらに通信装置404はCPU401からの指示に応じて、ノードNなどに信号を送信する。 The CPU 401 is a central processing unit that controls operation of the entire gateway GW. The communication device 404 receives signals from the node N, the management server S, etc. via the network, and passes the contents of the signals to the CPU 401. The communication device 404 is an example of the communication unit 21. Further, the communication device 404 transmits a signal to the node N or the like in response to an instruction from the CPU 401.
 HDD405には、フローチャートに示す各処理をコンピュータに実行させるプログラムが記憶されている。そして、CPU401が、当該プログラムをHDD405から読み出して実行することで、図5に示す制御部22として機能する。また、当該プログラムはCPU401とアクセス可能なROM402またはRAM403に格納されていても良い。 The HDD 405 stores a program that causes a computer to execute each process shown in the flowchart. The CPU 401 reads out the program from the HDD 405 and executes it to function as the control unit 22 shown in FIG. The program may be stored in the ROM 402 or the RAM 403 that can be accessed by the CPU 401.
 さらにHDD405にはCPU401の管理下で、情報が記憶される。プログラム同様、情報はCPU401とアクセス可能なROM402またはRAM403に格納されても良い。つまり、記憶部23に記憶されるとして説明したデータテーブルは、HDD405や、ROM402またはRAM403などの記憶装置に格納される。そして入力装置406はCPU401の管理下でデータの入力を受付ける。表示装置407は、各情報の表示を行う。 Further, information is stored in the HDD 405 under the control of the CPU 401. Similar to the program, information may be stored in the ROM 402 or RAM 403 accessible to the CPU 401. That is, the data table described as being stored in the storage unit 23 is stored in a storage device such as the HDD 405, the ROM 402, or the RAM 403. The input device 406 receives data input under the control of the CPU 401. The display device 407 displays each information.
S    管理サーバ
GW   ゲートウェイ
N    ノード
11   通信部
12   検出部
13   制御部
14   取得部
15   記憶部
21   通信部
22   制御部
23   記憶部
S management server GW gateway N node 11 communication unit 12 detection unit 13 control unit 14 acquisition unit 15 storage unit 21 communication unit 22 control unit 23 storage unit

Claims (10)

  1. エリアに存在する複数のノードを管理するゲートウェイであって、
    前記複数のノードの少なくとも一部のノードから、該少なくとも一部のノードにおいて検出された振動に関する振動情報を受信する受信部と、
     前記振動情報に基づいて、前記エリアにおける地震の有無を判定する制御部と、
     前記制御部による判定の結果を含む地震情報を、他のゲートウェイ装置へ送信する送信部とを有することを特徴とするゲートウェイ。
    A gateway that manages multiple nodes in an area,
    A receiving unit that receives vibration information related to vibration detected in at least some of the nodes from at least some of the plurality of nodes;
    A control unit for determining the presence or absence of an earthquake in the area based on the vibration information;
    The gateway characterized by having the transmission part which transmits the earthquake information containing the determination result by the said control part to another gateway apparatus.
  2.  前記制御部は、受信した前記振動情報の個数に基づき、地震の有無を判定することを特徴とする請求項1記載のゲートウェイ。 The gateway according to claim 1, wherein the control unit determines the presence or absence of an earthquake based on the number of received vibration information.
  3.  前記制御部により地震があったことを判定された場合に、前記送信部は、さらに、前記少なくとも一部のノードに、地震時の制御情報を送信することを特徴とする請求項1または2記載のゲートウェイ。 The said transmission part further transmits the control information at the time of an earthquake to the said at least one part node, when it determines with the said control part having an earthquake, The control information at the time of an earthquake is characterized by the above-mentioned. Gateway.
  4. 前記受信部は、前記ゲートウェイ装置および前記他のゲートウェイ装置を管理する管理サーバから、該他のゲートウェイ装置のアドレス情報を受信し、
    前記制御部は、前記アドレス情報を、記憶部へ格納することを特徴とする請求項1乃至請求項3の何れか一項に記載のゲートウェイ。
    The receiving unit receives address information of the other gateway device from a management server that manages the gateway device and the other gateway device;
    The gateway according to any one of claims 1 to 3, wherein the control unit stores the address information in a storage unit.
  5. エリアに存在する複数のノードを管理するゲートウェイであって、
    前記複数のノードの少なくとも一部のノードから、該少なくとも一部のノードにおいて検出された振動に関する振動情報を受信するとともに、他のゲートウェイ装置から、該他のゲートウェイ装置が管理する他のエリアにおける地震発生の有無に関する地震情報を受信する受信部と、
    前記他のエリアにおける前記地震情報を参照し、前記エリアにおける地震の有無を判定する制御部と、
    前記エリアにおいて地震があった場合には、前記振動情報を送信した前記少なくとも一部のノードに、地震発生時の制御情報を送信する送信部とを有することを特徴とするゲートウェイ。
    A gateway that manages multiple nodes in an area,
    The vibration information related to the vibration detected in the at least some nodes is received from at least some of the plurality of nodes, and the earthquakes in other areas managed by the other gateway devices are received from the other gateway devices. A receiver for receiving earthquake information about occurrence of occurrence,
    A controller that refers to the earthquake information in the other area and determines the presence or absence of an earthquake in the area;
    A gateway, comprising: a transmission unit that transmits control information at the time of occurrence of an earthquake to the at least some of the nodes that transmitted the vibration information when an earthquake occurs in the area.
  6.  前記制御部は、前記地震情報が前記他のエリアにおいて地震があったことを示す情報である場合に、前記エリアにおいて地震があったことを判定することを特徴とする請求項5記載のゲートウェイ。 The gateway according to claim 5, wherein the control unit determines that an earthquake has occurred in the area when the earthquake information is information indicating that an earthquake has occurred in the other area.
  7.  前記制御部は、前記振動情報に対する統計処理を実行するとともに、前記統計処理の結果および前記地震情報に基づいて、前記エリアにおける地震の有無を判定することを特徴とする請求項5記載のゲートウェイ。 The gateway according to claim 5, wherein the control unit performs statistical processing on the vibration information, and determines whether there is an earthquake in the area based on a result of the statistical processing and the earthquake information.
  8.  前記制御部は、前記統計処理の前記結果が地震判定の条件を満たさなかった場合に、前記他のエリアにおいて地震があったことを示す情報である場合に、前記エリアにおいて地震があったことを判定することを特徴とする請求項7記載のゲートウェイ。 When the control unit is information indicating that an earthquake has occurred in the other area when the result of the statistical processing does not satisfy an earthquake determination condition, the control unit indicates that an earthquake has occurred in the area. The gateway according to claim 7, wherein the gateway is determined.
  9. エリアに存在する複数のノードを管理するゲートウェイが、
    前記複数のノードの少なくとも一部のノードから、該少なくとも一部のノードにおいて検出された振動に関する振動情報を受信し、
     前記振動情報に基づいて、前記エリアにおける地震の有無を判定し、
     前記判定の結果を含む地震情報を、他のゲートウェイ装置へ送信する処理を実行することを特徴とする地震検知方法。
    A gateway that manages multiple nodes in the area
    Receiving vibration information relating to vibration detected in at least some of the nodes from at least some of the plurality of nodes;
    Based on the vibration information, determine the presence or absence of an earthquake in the area,
    The earthquake detection method characterized by performing the process which transmits the earthquake information containing the result of the said determination to another gateway apparatus.
  10. エリアに存在する複数のノードを管理するゲートウェイが、
    他のゲートウェイ装置から、該他のゲートウェイ装置が管理する他のエリアにおける地震発生の有無に関する地震情報を受信し、
    前記他のエリアにおける前記地震情報を参照し、前記エリアにおける地震の有無を判定し、
    前記エリアにおいて地震があった場合に、前記複数のノードのうち少なくとも一部のノードに、地震発生時の制御情報を送信する処理を実行することを特徴とする地震検知方法。
    A gateway that manages multiple nodes in the area
    From other gateway devices, receive earthquake information regarding the occurrence of earthquakes in other areas managed by the other gateway devices,
    Refer to the earthquake information in the other area, determine the presence or absence of an earthquake in the area,
    An earthquake detection method, comprising: executing a process of transmitting control information when an earthquake occurs to at least some of the plurality of nodes when an earthquake occurs in the area.
PCT/JP2012/003253 2012-05-17 2012-05-17 Gateways and earthquake detection method WO2013171798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/003253 WO2013171798A1 (en) 2012-05-17 2012-05-17 Gateways and earthquake detection method
JP2014515354A JP5949909B2 (en) 2012-05-17 2012-05-17 Gateway and earthquake detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003253 WO2013171798A1 (en) 2012-05-17 2012-05-17 Gateways and earthquake detection method

Publications (1)

Publication Number Publication Date
WO2013171798A1 true WO2013171798A1 (en) 2013-11-21

Family

ID=49583252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003253 WO2013171798A1 (en) 2012-05-17 2012-05-17 Gateways and earthquake detection method

Country Status (2)

Country Link
JP (1) JP5949909B2 (en)
WO (1) WO2013171798A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156712A (en) * 2015-02-25 2016-09-01 Kddi株式会社 Earthquake determination device, system, program, and method capable of earthquake determination based on learning
JP7429614B2 (en) 2020-07-14 2024-02-08 森ビル株式会社 Shaking performance relative evaluation system and network sensor
JP7443276B2 (en) 2021-02-24 2024-03-05 森ビル株式会社 System and method for determining transaction conditions considering shaking performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253765A (en) * 1997-03-14 1998-09-25 Kinkei Syst:Kk Earthquake observation and quick notification system
JP2007316945A (en) * 2006-05-25 2007-12-06 Nippon Telegr & Teleph Corp <Ntt> Home gateway apparatus
JP2008139269A (en) * 2006-12-05 2008-06-19 Toshiba Corp Gas meter and its control method
WO2009123022A1 (en) * 2008-03-31 2009-10-08 旭硝子株式会社 Acceleration sensor device and sensor network system
JP2011090614A (en) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp Gateway device, management server, and system for monitoring the gateway device
JP2011154012A (en) * 2010-01-26 2011-08-11 Toyo Automation Co Ltd Earthquake sensing and measuring system and facility and equipment thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948834B2 (en) * 2011-12-09 2016-07-06 ブラザー工業株式会社 Relocation detection apparatus and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253765A (en) * 1997-03-14 1998-09-25 Kinkei Syst:Kk Earthquake observation and quick notification system
JP2007316945A (en) * 2006-05-25 2007-12-06 Nippon Telegr & Teleph Corp <Ntt> Home gateway apparatus
JP2008139269A (en) * 2006-12-05 2008-06-19 Toshiba Corp Gas meter and its control method
WO2009123022A1 (en) * 2008-03-31 2009-10-08 旭硝子株式会社 Acceleration sensor device and sensor network system
JP2011090614A (en) * 2009-10-26 2011-05-06 Mitsubishi Electric Corp Gateway device, management server, and system for monitoring the gateway device
JP2011154012A (en) * 2010-01-26 2011-08-11 Toyo Automation Co Ltd Earthquake sensing and measuring system and facility and equipment thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156712A (en) * 2015-02-25 2016-09-01 Kddi株式会社 Earthquake determination device, system, program, and method capable of earthquake determination based on learning
JP7429614B2 (en) 2020-07-14 2024-02-08 森ビル株式会社 Shaking performance relative evaluation system and network sensor
JP7443276B2 (en) 2021-02-24 2024-03-05 森ビル株式会社 System and method for determining transaction conditions considering shaking performance

Also Published As

Publication number Publication date
JP5949909B2 (en) 2016-07-13
JPWO2013171798A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
Fan et al. Security analysis of zigbee
US8116243B2 (en) Wireless sensor network and adaptive method for monitoring the security thereof
Radmand et al. Taxonomy of wireless sensor network cyber security attacks in the oil and gas industries
Wazid et al. RAD‐EI: A routing attack detection scheme for edge‐based Internet of Things environment
Boubiche et al. SDAW: secure data aggregation watermarking-based scheme in homogeneous WSNs
Jasim et al. Secure and energy-efficient data aggregation method based on an access control model
JP5949909B2 (en) Gateway and earthquake detection method
Akila et al. Preserving data and key privacy in data aggregation for wireless sensor networks
WO2014030186A1 (en) Relay device, relay method, relay program and relay system
Alzaid et al. A forward & backward secure key management in wireless sensor networks for PCS/SCADA
US20140351950A1 (en) Communication device, system, and control method
Casola et al. Freight train monitoring: A case-study for the pSHIELD project
KR20170130904A (en) Method and apparatus for provisioning between terminals and a server
JP5839125B2 (en) Node and communication method
Suryadevara et al. Secured multimedia authentication system for wireless sensor network data related to Internet of Things
WO2013145026A1 (en) Network system, node, verification node, and communication method
JP2019213131A (en) Central processing unit, meter reading system, and unauthorized access detection method
JP2020065153A (en) Unauthorized device detection apparatus and method
CN111131200B (en) Network security detection method and device
KR100827166B1 (en) Method for providing anonymity of source sensor node&#39;s id
WO2013175539A1 (en) Network system, node, and communication method
EP3592055B1 (en) Methods for securely validating localization of a wireless communication device, and related devices
JPWO2013124878A1 (en) COMMUNICATION DEVICE, SYSTEM, CONTROL PROGRAM, AND CONTROL METHOD
Gajbhiye et al. Attacks and Security Issues in IoT Communication: A Survey
KR20100061272A (en) Authentication method of sensor node in ubiquitous sensor network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876811

Country of ref document: EP

Kind code of ref document: A1