TW201215887A - Inertia sensing device and using method thereof - Google Patents

Inertia sensing device and using method thereof Download PDF

Info

Publication number
TW201215887A
TW201215887A TW99134799A TW99134799A TW201215887A TW 201215887 A TW201215887 A TW 201215887A TW 99134799 A TW99134799 A TW 99134799A TW 99134799 A TW99134799 A TW 99134799A TW 201215887 A TW201215887 A TW 201215887A
Authority
TW
Taiwan
Prior art keywords
mass
comb capacitor
capacitor plates
comb
substrate
Prior art date
Application number
TW99134799A
Other languages
Chinese (zh)
Other versions
TWI426232B (en
Inventor
Han-Pang Huang
Ming-Hui Chang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW99134799A priority Critical patent/TWI426232B/en
Publication of TW201215887A publication Critical patent/TW201215887A/en
Application granted granted Critical
Publication of TWI426232B publication Critical patent/TWI426232B/en

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

An inertia sensing device includes a substrate, a first mass disposed over the substrate and has an opening, a second mass disposed in the opening, first elastic elements connected between the substrate and the first mass, second elastic elements connected between the first and second masses, a voltage driving element disposed between the substrate and the first mass, a acceleration sensing element disposed between the substrate and the first mass and an inertia sensing structure disposed between the first and second masses. The acceleration sensing element is suitable for sensing an acceleration of the first mass in a first direction. The inertia sensing structure is suitable for sensing an acceleration of the second mass in a second direction perpendicular to the first direction, and suitable for sensing an angular velocity of the second mass.

Description

201215887 υ〇Α-ιυυ4Ζ4 34781twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種慣性感測裝置,且特別是有關 於一種適於感測角速度與加速度的慣性感測裝置。 【先前技術】 加速度計(acceleration sensor)目前在市場上已逐 漸被普遍地使用於許多裝置中以做為運動感測器,如遊 戲機、健康監控、手機界面控制與自動靜音、慣性游標 指向器等領域。此外’相較於加速度計是用以感測加速 度,陀螺儀(gyro sensor)是一種基於角動量守怪理論而 設計出來用以感測角速度的裝置’其可用於導航、定位 等系統。 台灣專利申請號第13 17807號與第131 7498號,以 及美國專利申請號第7237437號皆揭露了將加速度計 及陀螺儀裝配於同一裝置中的技術。然由於其加速度計 及陀螺儀係分別配置,而非整合於單一中心質量塊中, 因此較為占據配置空間,使裝置無法具有較小的體積。 【發明内容】 本發明提供一種慣性感測裝置,可感測加速度與角 速度且具有較小的體積。 本發明提供一種慣性感測裝置的使用方法,可藉由 f貝性感測裝置感測加速度及角速度。 201215887 uun.-iwU424 34781twf.doc/n 本發明提出一種慣性感測裝置,包括基板、第一質量 塊、第二質量塊、多個第一彈性件、多個第二彈性件、 電壓驅動單元、加速度感測單元、慣性感測結構及此振 頻調變單元。第一質量塊配置於基板上方且具有開^ 第一質量塊配置於開口内。第一彈性件連接於基板及第 一質量塊之間。第二彈性件連接於第一質量塊及第二質 量塊之間。電壓驅動單元配置於基板與第一質量塊之 間。加速度感測單元配置於基板與第一質量塊之間,且 適於感測第一質量塊在第一方向的加速度。慣性感測結 構配置於第一質量塊與第二質量塊之間,且適於感測第 一質S:塊在垂直於第一方向的第二方向的加速度,並適 於感測第二質量塊的角速度。共振頻調變單元配置於基 板與第一質量塊之間,且適於調變第一質量塊在第一方 向的共振頻率。 在本發明之一實施例中,上述之電壓驅動單元包括 多個第一梳狀電容板、多個第二梳狀電容板、多個第三 梳狀電容板及多個第四梳狀電容板。第一梳狀電容板連 接於第一質量塊的一側。第二梳狀電容板連接於基板且 第梳狀電谷板相互平行且交替配置。第三梳狀電容 板連接於第一質量塊的另一側。第四梳狀電容板連接於 基板且與第二梳狀電容板相互平行且交替配置。 在本發明之一實施例中’上述之加速度感測單元包 括多個第一梳狀電容板、多個第二梳狀電容板' 多個第 三梳狀電容板及多個第四梳狀電容板。第一梳狀電容板 201215887 υ〇Λ-卿 hz4 34781twf.doc/n 連接於第—f量塊的—側1二梳狀電容板連接於基板 ^與第一梳狀電容板相互平行且交替配置。第三梳狀電 令板連接於第一質量塊的另一側。第四梳狀電容板連接 於基板且與第二梳狀電容板相互平行且交替配置。 在本發明之一實施例中,上述之慣性感測結構包括 多個第一梳狀電容板、多個第二梳狀電容板、多個第三 梳狀電容板及多個第四梳狀電容板。第一梳狀電容板連 接於第二質量塊的一側。第二梳狀電容板連接於基板且 與第一梳狀電容板相互平行且交替配置。第三梳狀電容 板連接於第二質量塊的另一側。第四梳狀電容板連接於 基板且與第三梳狀電容板相互平行且交替配置。 在本發明之一實施例中,上述之共振頻調變單元包 括多個第一梳狀電容板、多個第二梳狀電容板、多個第 三梳狀電容板及多個第四梳狀電容板。第一梳狀電容板 連接於第-質量塊的―側。第二梳狀電容板連接於基板 ^與第一梳狀電容板相互平行且交替配置。第三梳狀電 容板連接於第一質量塊的另一側。第四梳狀電容板連接 於基板且與第三梳狀電容板相互平行且交替配置。 在本發明之一實施例中,上述之基板具有多個固定 基座固疋基座为別對應於第一彈性件,各第一彈性件 連接於對應之固定基座與第一質量塊之間。 本發明提出一種上述之慣性感測裝置的使用方 法。首先,開啟電壓驅動單元,以施加直流電壓及交流 小訊號於第一質量塊,而驅動第一質量塊產生作動,並 201215887 υυΛ- ιυν/424 34781 twf.doc/n 藉由外部角速度產生之科氏力,造成第二質量塊相對第 一質量塊的振盪。若第一質量塊在第—方向與第二方向 的共振頻率與第二質量塊在第一方向與第二方向的共 振頻率不相等,施加電壓於共振頻調變單元,以將第二 質量塊的共振頻率調整為與第二質量塊的共振頻率相 等。藉由第二質量塊相對第一質量塊的振盪,測得第二 質量塊的角速度。在測得第二質量塊的角速度之後,= 加反相電壓於電壓驅動單元,以大幅減緩第二質量塊的 作動。在大幅。減緩第二質量塊的作動之後,施加電壓於 共振頻調變單元’以小幅減緩第5質量塊的作動。在減 緩第二質量塊的作動之後’藉由加速度感測單元及慣性 感測結構感測第一質量塊與第二質量塊的振盪,以測 第一質量塊與第二質量塊的加速度。 月提出-種上述之慣性感測裝置的使用方 -質加單元及慣性感測結構感測第 與第二質量塊的振盪’以測得第—質量塊與第 :::的加速度。開啟電麼驅動單元’以施加直流電 於第—質量塊,而驅動第-質量塊產生 作動,並猎由外部角速度產生 θ , 座生之科氏力,造成第二質量 第-方⑽並Γ 盪。若第一質量塊在第-方向與 =方向的共振頻率與第二質量塊在第—方二 以將第—質量塊的❹“電壓於共振頻調變單元’ 振頻率相等:調整為與第二質量塊的共 羊㈣。糟由第二質量塊相對第-質量塊的振盈, 201215887 w/-k-1 w-r-t.4 34781 twf.doc/n 測得第二質量塊的角速度。201215887 υ〇Α-ιυυ4Ζ4 34781twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to an inertial sensing device, and more particularly to an inertial sense suitable for sensing angular velocity and acceleration Measuring device. [Prior Art] Acceleration sensors are now widely used in many devices in the market as motion sensors, such as game consoles, health monitoring, mobile interface control and automatic mute, inertial cursor pointing devices. And other fields. In addition, the gyro sensor is a device designed to sense angular velocity based on the angular momentum singularity theory, which can be used for navigation, positioning, and the like, as compared to accelerometers for sensing acceleration. Techniques for assembling accelerometers and gyroscopes in the same device are disclosed in Taiwan Patent Application Nos. 13 17807 and 131 7498, and U.S. Patent Application Serial No. 7,237,437. However, because the accelerometer and the gyroscope are separately configured, rather than integrated into a single central mass, they occupy a larger configuration space, so that the device cannot have a smaller volume. SUMMARY OF THE INVENTION The present invention provides an inertial sensing device that senses acceleration and angular velocity and has a small volume. The invention provides a method for using an inertial sensing device, which can sense acceleration and angular velocity by means of a f-beauty sensing device. 201215887 uun.-iwU424 34781twf.doc/n The present invention provides an inertial sensing device comprising a substrate, a first mass, a second mass, a plurality of first elastic members, a plurality of second elastic members, a voltage driving unit, Acceleration sensing unit, inertial sensing structure and the vibration frequency modulation unit. The first mass is disposed above the substrate and has an opening. The first mass is disposed in the opening. The first elastic member is coupled between the substrate and the first mass. The second elastic member is coupled between the first mass and the second mass. The voltage driving unit is disposed between the substrate and the first mass. The acceleration sensing unit is disposed between the substrate and the first mass and is adapted to sense an acceleration of the first mass in the first direction. The inertial sensing structure is disposed between the first mass and the second mass, and is adapted to sense the first mass S: an acceleration of the block in a second direction perpendicular to the first direction, and is adapted to sense the second quality The angular velocity of the block. The resonant frequency modulation unit is disposed between the substrate and the first mass and is adapted to modulate a resonant frequency of the first mass in the first direction. In an embodiment of the invention, the voltage driving unit includes a plurality of first comb capacitor plates, a plurality of second comb capacitor plates, a plurality of third comb capacitor plates, and a plurality of fourth comb capacitor plates. . The first comb capacitor plate is coupled to one side of the first mass. The second comb capacitor plate is connected to the substrate and the first comb-shaped grid plates are arranged in parallel and alternately with each other. The third comb capacitor plate is coupled to the other side of the first mass. The fourth comb capacitor plate is connected to the substrate and is alternately arranged in parallel with the second comb capacitor plate. In one embodiment of the present invention, the acceleration sensing unit includes a plurality of first comb capacitor plates, a plurality of second comb capacitor plates, a plurality of third comb capacitor plates, and a plurality of fourth comb capacitors. board. The first comb capacitor plate 201215887 υ〇Λ-Qing hz4 34781twf.doc/n is connected to the -f gauge block - the side 1 two comb capacitor plate is connected to the substrate ^ and the first comb capacitor plate are parallel and alternately arranged . The third comb-shaped electrical board is coupled to the other side of the first mass. The fourth comb capacitor plate is connected to the substrate and is alternately arranged in parallel with the second comb capacitor plate. In an embodiment of the invention, the inertial sensing structure includes a plurality of first comb capacitor plates, a plurality of second comb capacitor plates, a plurality of third comb capacitor plates, and a plurality of fourth comb capacitors. board. The first comb capacitor plate is coupled to one side of the second mass. The second comb capacitor plates are connected to the substrate and are arranged in parallel with each other and alternately with the first comb capacitor plates. The third comb capacitor plate is coupled to the other side of the second mass. The fourth comb-shaped capacitor plates are connected to the substrate and are arranged in parallel with each other and alternately with the third comb-shaped capacitor plates. In an embodiment of the invention, the resonant frequency modulation unit includes a plurality of first comb capacitor plates, a plurality of second comb capacitor plates, a plurality of third comb capacitor plates, and a plurality of fourth combs. Capacitor plate. The first comb capacitor plate is connected to the "side" of the first mass. The second comb capacitor plate is connected to the substrate ^ and the first comb capacitor plates are parallel to each other and alternately arranged. The third comb-shaped capacitor plate is coupled to the other side of the first mass. The fourth comb capacitor plate is connected to the substrate and is alternately arranged in parallel with the third comb capacitor plate. In an embodiment of the invention, the substrate has a plurality of fixed base fixing bases corresponding to the first elastic members, and each of the first elastic members is connected between the corresponding fixed base and the first mass. . The present invention provides a method of using the inertial sensing device described above. First, the voltage driving unit is turned on to apply a DC voltage and a small AC signal to the first mass to drive the first mass to generate an action, and 201215887 υυΛ- ιυν/424 34781 twf.doc/n is generated by an external angular velocity The force causes the second mass to oscillate relative to the first mass. If the resonant frequency of the first mass in the first direction and the second direction is not equal to the resonant frequency of the second mass in the first direction and the second direction, applying a voltage to the resonant frequency modulation unit to apply the second mass The resonant frequency is adjusted to be equal to the resonant frequency of the second mass. The angular velocity of the second mass is measured by the oscillation of the second mass relative to the first mass. After the angular velocity of the second mass is measured, = an inverse voltage is applied to the voltage drive unit to substantially slow the actuation of the second mass. In a big deal. After mitigating the operation of the second mass, a voltage is applied to the resonant frequency modulation unit to slightly slow down the operation of the fifth mass. After the actuation of the second mass is slowed down, the oscillations of the first mass and the second mass are sensed by the acceleration sensing unit and the inertial sensing structure to measure the acceleration of the first mass and the second mass. It is proposed that the above-described inertial sensing device uses a mass adding unit and an inertial sensing structure to sense the oscillations of the second and second masses to measure the acceleration of the first mass and the :::. Turn on the electric drive unit to apply direct current to the first mass, and drive the first mass to actuate, and hunt the external angular velocity to produce θ, the Coriolis force of the seat, causing the second mass to be squared (10) and swaying . If the resonant frequency of the first mass in the first direction and the = direction is equal to the second mass in the second square to equalize the "voltage of the first mass" in the resonant frequency modulation unit: A total mass of two masses (four). The angular velocity of the second mass is measured by the vibration of the second mass relative to the first mass, 201215887 w/-k-1 wrt.4 34781 twf.doc/n.

基於上述,本發明的第—質量塊係用於第一方向之 加速度的感測,而設置在第—質量塊的開口中之 量塊係用於角速度與第二方向之加速度的感測1 _胃 量塊除了用於加速度的感測之外,更可被驅動而相對第 一質量塊作動’以利角速度的感測。此種將第一質量塊 及第二質量塊整合,且慣性感測結構兼具加速度感測功 能與角速度感測功能之配置方式,可節省配置空間,使 整體結構具有較小的體積。此外,在完成角速度的感測 之後,藉由施加反相電壓於電壓驅動單元,以減緩第二 質量塊的作動,直到第二質量塊靜止,而可避免後續Z 速度的感測受到第二質量塊作動之干擾’以提升加速度 感測的準確性。 為讓本發明之上述特徵和優點能更明顯易懂,下文 特舉實施例’並配合所附圖式作詳細說明如下。 【實施方式】 圖1為本發明一實施例之慣性感測裝置的立體 圖。請參考圖1 ’本實施例的慣性感測裝置1〇〇包括基 板110、第一質量塊120、第二質量塊130、多個第一 彈性件14 0 (繪示為四個)、多個第二彈性件1 $ 〇 (繪示為 四個)、電壓驅動單元160、加速度感測單元n〇、慣性 感測結構1 80及共振頻調變單元190。 第一質ΐ塊1^0配置於基板110上方且具有開口 201215887 υυΛ-1υυ424 34781twf_ doc/n 122。第二質量塊13〇配置於開口 122内。這些第—彈 性件140連接於基板110及第一質量塊120之間,使第 一質量塊120適於在基板11〇上振盪。這些第二彈性件 150連接於第一質量塊ι2〇及第二質量塊13〇之間,使 第二質量塊130適於相對第一質量塊丨2〇振盪。 電壓驅動單元160配置於基板11〇與該第一質量塊 12〇之間。加速度感測單元ι7〇配置於基板11〇與第一 質量塊120之間’且適於感測第一質量塊丨2〇在γ方 向的加速度。慣性感測結構丨8〇配置於第一質量塊i 2〇 第一質量塊130之間,且適於感測第二質量塊13〇 在垂直於Y方向的χ方向的加速度,並適於感測第二 質量塊130的角速度。電壓驅動單元16〇施加直流電壓 及交流小訊號,使得第一質量塊12〇振動。當第一質量 塊120作振動時,藉由外部角速度產生之科氏力,造成 第一質量塊130相對第一質量塊j 1〇的振盪,以測得整 體、’、。構的角速度的值。共振頻調變單元i 9〇配置於基板 110與第—質量塊12〇之間,且適於調變第一質量塊 在Y方向的共振頻率。藉由將第一質量塊120的共振 .頻率微調為與第二質量塊13{)的共振頻率相等,可使慣 性感,裝置1〇〇達到最佳的靈敏度。 稭由上述將第-質量w 120及第二質量塊130整 :且^〖生感測結構i 8〇兼具感測加速度與角速度的功 月b可即省配置空間,使整體結構具有較小的體積。本 實施例的慣性感測裝置1〇〇可應用於衛星定位系統、移 201215887 34781twf.doc/n 動式機器人或其它須具備加速度感測及角速度感測之 裝置。 詳細而言,本實施例的電壓驅動單元160包括多個 梳狀電容板162、多個梳狀電容板164、多個梳狀電容 板166及多個梳狀電容板168。梳狀電容板162連接於 第一質量塊120的一側《梳狀電容板164連接於基板 120且與梳狀電容板1 62相互平行且交替配置。梳狀電 容板166連接於第一質量塊120的另一側《梳狀電容板 168連接於基板11〇且與梳狀電容板166相互平行且交 替配置。電壓驅動單元1 60藉由梳狀電容板1 62、梳狀 電容板164、梳狀電容板166及梳狀電容板168施加直 流電壓及交流小訊號,使得第一質量塊120振動。 加速度感測單元1 70包括多個梳狀電容板172、多 個梳狀電容板1 74、多個梳狀電容板1 76及多個梳狀電 容板178«梳狀電容板172連接於第一質量塊12〇的一 側。梳狀電容板174連接於基板120且與梳狀電容板 172相互平行且交替配置。梳狀電容板176連接於第一 質量塊120的另一側。梳狀電容板178連接於基板11〇 且與梳狀電容板1*76相互平行且交替配置。隨著第一質 里塊120的振盡’加速度感測單元17〇的梳狀電容板 1 72 '梳狀電容板丨74、梳狀電容板丨76及梳狀電容板 1 7 8會產生電容變化量,藉此可感測γ方向的加速度。 慣性感測結構1 8〇包括多個梳狀電容板i 82、多個 梳狀電容板1 84、多個梳狀電容板1 86及多個梳狀電容 10 201215887 υν/Λ-ινν424 34781twf.doc/nBased on the above, the first mass of the present invention is used for sensing the acceleration in the first direction, and the measuring block disposed in the opening of the first mass is used for sensing the angular velocity and the acceleration in the second direction. In addition to sensing for acceleration, the gastric mass can be driven to actuate relative to the first mass to facilitate angular velocity sensing. This integrates the first mass and the second mass, and the inertial sensing structure combines the acceleration sensing function and the angular velocity sensing function to save configuration space and make the overall structure smaller. In addition, after the sensing of the angular velocity is completed, the voltage is driven to the voltage driving unit to slow down the operation of the second mass until the second mass is stationary, and the sensing of the subsequent Z speed can be prevented from being subjected to the second quality. Block action interference' to improve the accuracy of acceleration sensing. The above described features and advantages of the present invention will be more apparent from the following description. [Embodiment] FIG. 1 is a perspective view of an inertial sensing device according to an embodiment of the present invention. Referring to FIG. 1 , the inertial sensing device 1 of the present embodiment includes a substrate 110 , a first mass 120 , a second mass 130 , a plurality of first elastic members 14 0 (shown as four), and a plurality of The second elastic members 1 〇 (shown as four), the voltage driving unit 160 , the acceleration sensing unit n 〇 , the inertial sensing structure 180 , and the resonant frequency modulation unit 190 . The first mass block 1^0 is disposed above the substrate 110 and has an opening 201215887 υυΛ-1υυ424 34781twf_doc/n 122. The second mass 13〇 is disposed within the opening 122. The first elastic members 140 are coupled between the substrate 110 and the first mass 120 such that the first mass 120 is adapted to oscillate on the substrate 11A. The second elastic members 150 are coupled between the first mass ι2 and the second mass 13〇 such that the second mass 130 is adapted to oscillate relative to the first mass 丨2〇. The voltage driving unit 160 is disposed between the substrate 11A and the first mass 12〇. The acceleration sensing unit ι7 is disposed between the substrate 11 〇 and the first mass 120 ′ and is adapted to sense the acceleration of the first mass 丨 2 〇 in the γ direction. The inertial sensing structure 丨 8〇 is disposed between the first mass i 2 〇 the first mass 130 and is adapted to sense the acceleration of the second mass 13 χ in the 垂直 direction perpendicular to the Y direction, and is suitable for the sensation The angular velocity of the second mass 130 is measured. The voltage driving unit 16 applies a DC voltage and an AC small signal to cause the first mass 12 to vibrate. When the first mass 120 vibrates, the Coriolis force generated by the external angular velocity causes the first mass 130 to oscillate relative to the first mass j 1 , to measure the whole, '. The value of the angular velocity of the structure. The resonant frequency modulation unit i 9 is disposed between the substrate 110 and the first mass 12 , and is adapted to modulate the resonant frequency of the first mass in the Y direction. By fine-tuning the resonance frequency of the first mass 120 to be equal to the resonance frequency of the second mass 13{), it is possible to achieve the optimum sensitivity of the device. The straw is formed by the above-mentioned first mass w 120 and the second mass 130: and the life sensing structure i 8 has both the sensing acceleration and the angular velocity, which can save the overall configuration. volume of. The inertial sensing device 1 of the present embodiment can be applied to a satellite positioning system, a mobile robot or other device that requires acceleration sensing and angular velocity sensing. In detail, the voltage driving unit 160 of the present embodiment includes a plurality of comb capacitor plates 162, a plurality of comb capacitor plates 164, a plurality of comb capacitor plates 166, and a plurality of comb capacitor plates 168. The comb capacitor plate 162 is connected to one side of the first mass 120. The comb capacitor plates 164 are connected to the substrate 120 and are alternately arranged in parallel with the comb capacitor plates 1 62. The comb-shaped capacitor plate 166 is connected to the other side of the first mass 120. The comb-shaped capacitor plates 168 are connected to the substrate 11A and are parallel and alternately arranged with the comb-shaped capacitor plates 166. The voltage driving unit 1 60 applies a DC voltage and an AC small signal by the comb capacitor plate 1 62, the comb capacitor plate 164, the comb capacitor plate 166, and the comb capacitor plate 168, so that the first mass 120 vibrates. The acceleration sensing unit 1 70 includes a plurality of comb capacitor plates 172, a plurality of comb capacitor plates 1 74, a plurality of comb capacitor plates 1 76, and a plurality of comb capacitor plates 178 « comb capacitor plates 172 are connected to the first One side of the mass block 12〇. The comb capacitor plates 174 are connected to the substrate 120 and are alternately arranged in parallel with the comb capacitor plates 172. The comb capacitor plate 176 is coupled to the other side of the first mass 120. The comb capacitor plates 178 are connected to the substrate 11A and are alternately arranged in parallel with the comb capacitor plates 1*76. As the first mass lumps 120 are vibrated, the acceleration capacitive sensing unit 17 〇 comb capacitor plate 1 72 ' comb capacitor plate 丨 74, comb capacitor plate 丨 76 and comb capacitor plate 178 will generate capacitance. The amount of change, whereby the acceleration in the gamma direction can be sensed. The inertial sensing structure 1 8 includes a plurality of comb capacitor plates i 82 , a plurality of comb capacitor plates 1 84 , a plurality of comb capacitor plates 1 86 and a plurality of comb capacitors 10 201215887 υν/Λ-ινν424 34781twf.doc /n

板188。梳狀電容板182連接於第二質量塊13〇的一 侧。梳狀電容板184連接於第一質量塊12〇且與梳狀電 容板182相互平行且交替配置。梳狀電容板186連接於 第二質量塊130的另一側。梳狀電容板188連接於第一 質S塊120且與梳狀電容板186相互平行且交替配置。 隨著第二質量塊130相對於第一質量塊12〇的振盪,慣 性感測結構1 80的梳狀電容板i 82、梳狀電容板丄84、 梳狀電容板186及梳狀電容板188會產生電容變化量, 藉此可感測角速度及X方向的加速度。 共振頻調變單元19〇包括多個梳狀電容板192、多 個梳狀電容板194、多個梳狀電容板196及多個梳狀電 容板198。梳狀電容板192連接於第量塊⑶的一 側。梳狀電容194連接於基12〇且與梳狀電容板 192曰相互平行且交替配置。梳狀電容板m連接於第一 質量塊120的另一側。梳狀電容板198連接於基板11〇 且與梳狀電容板196相互平行且交替配置。 圖2績丨·之共振頻調變單元的局部示意圖。請參 考圖1及圖2’詳細而言,共振頻 „ _ 雪六始10,曰士 八振頻調變早凡190的梳狀 Υ板192具有特殊形狀,以使共振頻調變單元19〇 適於被施加直流電壓來㈣㈣結構之共 共振頻調變單元190的梳狀電容 雷衮妬lQ9认姑以攸196亦具有如同梳狀 電备板192的特殊形狀,以使共振頻調 被施加直流電壓來微調整體結構之共振、於 1 ’為了在有限的配置空間中吏'°月參考圖 、振頻调變單元190 201215887 υοΛ-ιυυπζπ 34781twf.doc/n 的配置較為對稱,本實施例的梳狀電容板1 92及梳狀電 容板194分為兩部分,分別配置於電壓驅動單元ι6〇 之梳狀電容板162與梳狀電容板164的兩側,且梳狀電 容板196及梳狀電容板198亦分為兩部分,分別配置於 電壓驅動單元160之梳狀電容板166與梳狀電容板168 的兩側。 圖3為圖1之慣性感測結構的局部示意圖。請參考 圖1及圖3,詳細而言,在本實施例的慣性感測結構1 8〇 中’相鄰的兩梳狀電容板182之間具有兩梳狀電容板 184’且所述兩梳狀電容板184具有不同電位,藉以使 感測電容值提升為兩倍,以利加速度及角速度的感測。 此外’相鄰的兩梳狀電容板1 8 6之間亦具有兩梳狀電容 板188 ’且所述兩梳狀電容板ι88具有不同電位,藉以 使感測電容值提升為兩倍,以利加速度及角速度的感 測0 本實施例的基板11 〇具有多個固定基座丨丨2(繪示 為四個)’這些固定基座112分別對應於這些第一彈性 件140,各第一彈性件14〇連接於對應之固定基座112 與第一質里塊120之間。此外,本實施例的第一質量塊 1 20與第一質里塊i 3 〇分別具有多個蝕刻孔】μ及多個 蝕刻孔132 ’在製作慣性感測裝置⑽的過程中,蝕刻 液可透過姓刻孔124及触刻孔132,均句地將第一質量 塊120與基板110之間以及第二質量塊13〇與基板ιι〇 之間蝕刻出間距。以下配合圖4及圖5對本實施例之慣 12 201215887 v〇/\-iw424 3478 ltwf.doc/n 性感測裝置100的使用方法進行說明。 圖4及圖5為圖1之慣性感測裝置的使用方法流程 圖。請先參考圖1及圖4,當使用者欲依序進行角速度 的感測及加速度的感測時,可開啟電壓驅動單元, 以施加直流電壓及交流小訊號於第一質量塊12〇,而驅 動第一質量塊120產生作動(步驟S6〇2),並藉由外部角 速度產生之科氏力,造成第二質量塊丨3〇相對第一質量 • 塊I20的振盪。若第一質量塊120在Y方向的共振頻 率與第二質量塊13〇在X方向的共振頻率不相等,施 加電壓於共振頻調變單元190,以將第一質量塊12〇的 共振頻率調整為與第二質量塊13〇的共振頻率相等(步 驟S6〇3”若第一質量塊12〇在γ方向的共振頻率與第 二質量塊130在X方向的共振頻率相等,則可省略步 驟 S603 。 接著,藉由第二質量塊130相對第一質量塊12〇 的振盪,測得第二質量塊13〇的角速度(步驟S6〇4卜在 • ’則得第二質量塊i30的角速度之後,施加反相電壓於電 壓驅動單元160’以大幅減緩第二質量塊13〇的作動(步 驟S606)。在大幅減緩第二質量塊13〇的作動之後,施 加電壓於該共振頻調變單元19〇,使這些第一彈性件 140的電性彈性係數下降(如此可降低這些第一彈性件 140的振盪頻率),以小幅減緩第二質量塊1 3〇的作動 (v驟S608)。在減緩第二質量塊丨3〇的作動之後,藉由 加速度感測單元1 70及慣性感測結構i 8〇感測第一質量 13 201215887Board 188. The comb capacitor plate 182 is connected to one side of the second mass 13'. The comb capacitor plates 184 are connected to the first mass 12 〇 and are alternately arranged in parallel with the comb capacitor plates 182. The comb capacitor plate 186 is coupled to the other side of the second mass 130. The comb capacitor plates 188 are connected to the first mass S block 120 and are alternately arranged in parallel with the comb capacitor plates 186. As the second mass 130 oscillates relative to the first mass 12 ,, the comb capacitor plate i 82 of the inertial sensing structure 180, the comb capacitor plate 84, the comb capacitor plate 186, and the comb capacitor plate 188 A change in capacitance is generated, whereby the angular velocity and the acceleration in the X direction are sensed. The resonance frequency modulation unit 19 includes a plurality of comb capacitor plates 192, a plurality of comb capacitor plates 194, a plurality of comb capacitor plates 196, and a plurality of comb capacitor plates 198. The comb capacitor plate 192 is connected to one side of the first block (3). The comb capacitors 194 are connected to the base 12A and are arranged alternately and alternately with the comb capacitor plates 192A. The comb capacitor plate m is connected to the other side of the first mass 120. The comb capacitor plates 198 are connected to the substrate 11A and are alternately arranged in parallel with the comb capacitor plates 196. Figure 2 is a partial schematic diagram of the resonant frequency modulation unit of the performance. Please refer to FIG. 1 and FIG. 2' in detail, the resonance frequency „ _ snow six start 10, the gentleman eight-tone frequency modulation early 190 comb-shaped jaw 192 has a special shape, so that the resonance frequency modulation unit 19〇 The comb capacitor Thunder 1Q9 suitable for the co-resonance frequency modulation unit 190 to which the DC voltage is applied to the (4) (4) structure also has a special shape like the comb-shaped power board 192, so that the resonance tone is applied. The DC voltage is used to finely adjust the resonance of the body structure, and the configuration of the vibration modulation unit 190 201215887 υοΛ-ιυυπζπ 34781twf.doc/n is relatively symmetrical in the finite arrangement space, and the configuration of the embodiment is The comb capacitor plate 1 92 and the comb capacitor plate 194 are divided into two parts, which are respectively disposed on the comb capacitor plate 162 and the comb capacitor plate 164 of the voltage driving unit ι6, and the comb capacitor plate 196 and the comb shape. The capacitor plate 198 is also divided into two parts, which are respectively disposed on the comb capacitor plate 166 of the voltage driving unit 160 and the comb capacitor plate 168. Figure 3 is a partial schematic view of the inertial sensing structure of Figure 1. Please refer to Figure 1. And FIG. 3, in detail, in this embodiment The inertial sensing structure 1 〇 Between the adjacent two comb capacitor plates 182 has two comb capacitor plates 184 ′ and the two comb capacitor plates 184 have different potentials, so that the sensing capacitance value is raised to Two times, the acceleration and the angular velocity are sensed. In addition, the two adjacent comb capacitor plates 1 8 6 also have two comb capacitor plates 188 ', and the two comb capacitor plates ι88 have different potentials. The sensing capacitance value is doubled to facilitate the sensing of the acceleration and the angular velocity. The substrate 11 of the embodiment has a plurality of fixed pedestals 丨丨2 (shown as four). In the first elastic member 140, each of the first elastic members 14 is connected between the corresponding fixed base 112 and the first inner block 120. In addition, the first mass 1 20 and the first mass in the embodiment The blocks i 3 〇 respectively have a plurality of etching holes μ and a plurality of etching holes 132 ′ in the process of fabricating the inertial sensing device ( 10 ), the etching liquid can pass through the surname hole 124 and the tracing hole 132 , and the first step is first Between the mass 120 and the substrate 110 and between the second mass 13〇 and the substrate The pitch is etched. The method of using the 12 201215887 v〇/\-iw424 3478 ltwf.doc/n sensing device 100 of the present embodiment will be described below with reference to FIG. 4 and FIG. 5. FIG. 4 and FIG. Flow chart of the use of the sexy measuring device. Please refer to FIG. 1 and FIG. 4 first, when the user wants to sequentially perform the sensing of the angular velocity and the sensing of the acceleration, the voltage driving unit can be turned on to apply the DC voltage and the small alternating current signal. At the first mass 12〇, the first mass 120 is driven to act (step S6〇2), and the Coriolis force generated by the external angular velocity causes the second mass 丨3〇 relative to the first mass•block I20 Oscillation. If the resonance frequency of the first mass 120 in the Y direction is not equal to the resonance frequency of the second mass 13〇 in the X direction, a voltage is applied to the resonance frequency modulation unit 190 to adjust the resonance frequency of the first mass 12〇. In order to be equal to the resonance frequency of the second mass 13〇 (step S6〇3), if the resonance frequency of the first mass 12〇 in the γ direction is equal to the resonance frequency of the second mass 130 in the X direction, step S603 may be omitted. Next, the angular velocity of the second mass 13〇 is measured by the oscillation of the second mass 130 relative to the first mass 12〇 (step S6〇4 is after • the angular velocity of the second mass i30 is obtained, An inverting voltage is applied to the voltage driving unit 160' to substantially slow down the operation of the second mass 13" (step S606). After greatly reducing the operation of the second mass 13", a voltage is applied to the resonant frequency modulation unit 19 The electrical elastic coefficients of the first elastic members 140 are lowered (so that the oscillation frequency of the first elastic members 140 can be lowered) to slightly slow down the operation of the second mass 13 〇 (v S608). Two masses 丨3〇 After the actuation, the first quality is sensed by the acceleration sensing unit 170 and the inertial sensing structure i 8〇 13 201215887

Wa-iuuw4 34781 twf_d〇c/n 塊120與第二質量塊丨3〇的振盪,以測得第一質量塊 120與第二質量塊130的加速度。 上述步驟S606至步驟S608可視為對慣性感測裝置 1 〇〇進行模態的切換(由驅動模態切換為感測模態)。當 系統處於所述驅動模態時,適於對角速度進行感測,而 當系統處於所述感測模態時,適於對加速度進行感測。 藉此,慣性感測裝置1 〇〇在對角速度進行感測之後,可 在不觉到第二質量塊13 〇作動之干擾的情況下,接著對 加速度進行感測,以提升慣性感測裝置1〇〇於加速度感 測的準確性。 詳細而言,本實施例之慣性感測裝置1 〇〇之系統的 統禦方程式可如下表示: msx + Bsx + ksx - 2msyQ - wf λΏ2 + ms 'pe cos Θ + msqe sin Θ mcty + ^dy + Ky + ~ ^>Ώ2 + + mdqe cos Θ ~mdPeSm^ = Fd d (2) 其申,%為第二質量塊1 30的質量(所述感測模態 的等效質量),~•為第一質量塊120與第二質量塊13〇 的質量和(所述驅動模態的等效質量)。第二質量塊i 3〇 係連接於第一質量塊120’因此當藉由電壓驅動單元 160驅動第一質量塊120產生作動時(圖4的步驟 S602),第二質量塊130會隨著第一質量塊i2〇作動, 201215887 υ〇Α-ιυυ424 34781twf.doc/n = (2)中^ ·為第—質量塊12〇與第二質量塊ΐ3〇的 質篁和。:r與扣為向心加速度,/ :與,柯氏加速度,一斤欲量測的線性:速度度: j為第二質量塊的阻尼係數’見為第-質量塊與第二質 量塊的阻尼係數,七為第二彈性件的機械彈性係數,心為 第-彈性件的機械彈性係數。藉由執行圖2中的步驟 S606至步驟議,可使上述柯氏加速度與角加速度為 零,而將式(1)及式(2)簡化為如下所示的式(3)及式⑷: + Bsx + (ks-msQ2)χ+m;pe cosΘ + msq2 sine = 0 ⑺ mdy + Bdy + {K~ ^Ω2) y + mdqe oosO-mdp sin0 = 〇 e (4) 式(3)及式(4)為兩個完全獨立的二階振盪系統,形 成了標準的加速度統禦方程式,以使慣性感測裝置1〇〇 適於對2向X及方向γ的加速度進行感測。 值得注意的是’上述步驟S608之施加力量於第一 質量塊120,其方法例如為先測得第二質量塊12〇之作 動方向及作動程度,以施加適當大小之反相電壓來大幅 j緩第一質量塊丨2〇的作動。上述步驟s6丨〇之施加電 壓於技些共振頻調變單元,其作用則在於進一步減緩第 二質量塊120的殘餘作動量。 π參考圖1及圖5,當使用者欲依序進行加速度的 感測及角速度的感測時,可先藉由加速度感測單元17〇 15 201215887 υ〇Λ- 34781 twf.doc/n 及慣性感測結構180感測第一質量塊i2〇愈第 no的振堡’以測得第一質量塊12〇與第二質量塊量龙 的加速度(步驟S702)H,開啟電壓驅動單元 .以施加直流電壓及交流小訊號於第_質量塊⑶亂 動第-質量請產生作動(步驟S704),並藉由The Wa-iuuw4 34781 twf_d〇c/n block 120 and the second mass 丨3〇 oscillate to measure the acceleration of the first mass 120 and the second mass 130. The above steps S606 to S608 can be regarded as modal switching of the inertial sensing device 1 ( (switching from the driving mode to the sensing mode). The system is adapted to sense angular velocity when the system is in the drive mode, and is adapted to sense acceleration when the system is in the sensing mode. Thereby, after the inertial sensing device 1 senses the diagonal velocity, the acceleration can be sensed without disturbing the interference of the second mass 13 以 to improve the inertial sensing device 1 Contrary to the accuracy of acceleration sensing. In detail, the governing equation of the system of the inertial sensing device 1 of the present embodiment can be expressed as follows: msx + Bsx + ksx - 2msyQ - wf λΏ2 + ms 'pe cos Θ + msqe sin Θ mcty + ^dy + Ky + ~ ^>Ώ2 + + mdqe cos Θ ~mdPeSm^ = Fd d (2), % is the mass of the second mass 1 30 (the equivalent mass of the sensing mode), ~• is The mass of the first mass 120 and the second mass 13〇 (the equivalent mass of the drive mode). The second mass i 3 is connected to the first mass 120'. Therefore, when the first mass 120 is driven by the voltage driving unit 160 to generate motion (step S602 of FIG. 4), the second mass 130 will follow the first A mass i2 〇 actuation, 201215887 υ〇Α-ιυυ424 34781twf.doc/n = (2) Medium ^ · is the mass balance of the first mass block 12〇 and the second mass block ΐ3〇. :r and buckle for centripetal acceleration, / : and, Koch's acceleration, one kilogram of linearity to be measured: speed: j is the damping coefficient of the second mass 'see the first mass and the second mass Damping coefficient, seven is the mechanical elastic coefficient of the second elastic member, and the core is the mechanical elastic coefficient of the first elastic member. By performing step S606 to step by step in FIG. 2, the above-mentioned Korotkberg acceleration and angular acceleration can be made zero, and equations (1) and (2) can be simplified to equations (3) and (4) shown below: + Bsx + (ks-msQ2)χ+m;pe cosΘ + msq2 sine = 0 (7) mdy + Bdy + {K~ ^Ω2) y + mdqe oosO-mdp sin0 = 〇e (4) Equation (3) and ( 4) For two completely independent second-order oscillating systems, a standard acceleration governing equation is formed to enable the inertial sensing device 1 〇〇 to sense the acceleration in the 2-direction X and the direction γ. It is worth noting that the force applied to the first mass 120 in the above step S608 is, for example, first measuring the direction of actuation and the degree of actuation of the second mass 12 以 to apply an appropriate magnitude of the reverse voltage to greatly slow down The action of the first mass 丨2〇. The applying voltage of the above step s6 is applied to the resonant frequency modulation unit, which functions to further slow down the residual momentum of the second mass 120. π Referring to FIG. 1 and FIG. 5, when the user wants to sequentially perform acceleration sensing and angular velocity sensing, the acceleration sensing unit can be first used by the acceleration sensing unit 17〇15 201215887 υ〇Λ-34781 twf.doc/n The sensing structure 180 senses that the first mass i2 recovers the noon of the second to measure the acceleration of the first mass 12〇 and the second mass (step S702) H, and turns on the voltage driving unit to apply The DC voltage and the AC small signal are generated by the first quality block (3) turbulent first-quality (step S704), and by

速度產生之科氏力,造成第二質量塊130相對第 塊120的振盪。 貝I 若第一質量塊12〇纟Y方向的共振頻率與第二質 量塊130 IX方向的共振頻率不相等,施加電壓於丑 振頻調變單元19〇,以將第-質量塊的共振頻率調整: 與第二質量塊的共振頻率相等(步驟S7〇5)。若第—質旦 塊120在Y方向的共振頻率與第二質量塊13〇在χ = 向的共振頻率相等’則可省略步驟S703。最後,藉由 第二質量塊!3〇相對第一質量塊12〇的振盪,測得^二 質量塊130的角速度(步驟S706)。 綜上所述,本發明的第一質量塊係用於第一方向之 加速度的感測,而設置在第一質量塊的開口中之第二質 量塊係用於角速度與第二方向之加速度的感測。第:質 量塊除了用於加速度的感測之外’更可被驅動而相對第 二質量塊作動’以利角速度的感測。此種將第一質量塊 及第二質量塊整合’且慣性感測結構兼具加速度感測功 能與角速度感測功能之配置方式’可節省配置空間,使 整體結構具有較小的體積。此外’在完成角速度的感測 之後’藉由施加反相電壓於電壓驅動單元,以減緩第二 16 201215887 vwm w424 3478 ltwf.d〇c/n 質s塊的作動,直到第二質量塊靜止,而可避免後續加 速度的感測受到第二質量塊作動之干擾,以提升加速度 感測的準確性。The Coriolis force generated by the velocity causes oscillation of the second mass 130 relative to the first block 120. If the resonance frequency of the first mass 12 〇纟 Y direction is not equal to the resonance frequency of the second mass 130 IX direction, a voltage is applied to the ugly frequency modulation unit 19 〇 to resonate the resonance frequency of the first mass Adjustment: Equal to the resonance frequency of the second mass (step S7〇5). If the resonance frequency of the first mass substrate 120 in the Y direction is equal to the resonance frequency of the second mass 13 〇 in the χ = direction, the step S703 may be omitted. Finally, with the second mass! 3〇 The angular velocity of the second mass 130 is measured with respect to the oscillation of the first mass 12〇 (step S706). In summary, the first mass of the present invention is used for sensing the acceleration in the first direction, and the second mass disposed in the opening of the first mass is used for the angular velocity and the acceleration in the second direction. Sensing. The first: mass block, in addition to the sensing for acceleration, is more "driven" and actuated relative to the second mass to facilitate angular velocity sensing. This integration of the first mass and the second mass 'and the inertial sensing structure has both the acceleration sensing function and the angular velocity sensing function configuration' saves configuration space and allows the overall structure to have a small volume. In addition, 'after the completion of the sensing of the angular velocity', by applying an inverting voltage to the voltage driving unit, the operation of the second 16 201215887 vwm w424 3478 ltwf.d〇c/n mass s block is slowed down until the second mass is stationary. The sensing of the subsequent acceleration can be prevented from being disturbed by the action of the second mass to improve the accuracy of the acceleration sensing.

,,;'發明已以實施例揭露如上,然其並非用以限 定本發明,任何所屬技術領域中具有通常知識者,在不 :離本發明之精神和範圍内,當可作些許之更動與潤 定者為/明之保護範圍當視後附之中請專利範圍所界 圖1為本發明一實施例之慣性感 圖2為圖丨之丘振 。。 裝置的立體圖。 U頻調變早元的局 :3為圖1之慣性感測結構的局部示、圖。 圖 圖4及圖5為圖1之慣性感測裝置的:田圖。 的使用方法流程 【主要元件符號說明] 100 :慣性感測裝置 :基板 11 2 :固定基座 U0 :第一質量塊 ! 2 2 ·開口 Ϊ24、132 :钱刻孔 130 :第二質量塊 17 201215887 uo/\-iuuhz4 34781 twf.doc/n 140 第 一彈性件 150 第 二彈性件 160 電壓驅動單元 162、 164、 166、 168、 172、 174、 176、 178、 182、 184、186、188、192、194、196、198 :梳狀電容板 170 :加速度感測單元 180 :慣性感測結構 190 :共振頻調變單元 18The invention has been disclosed in the above embodiments, but it is not intended to limit the invention, and any one of ordinary skill in the art may, without departing from the spirit and scope of the invention, The scope of protection of the present invention is defined by the scope of the patent. FIG. 1 is an inertial sense of an embodiment of the present invention. . A perspective view of the device. The U-tone is changed to the early element: 3 is a partial view and diagram of the inertial sensing structure of Fig. 1. Figure 4 and Figure 5 are the field diagrams of the inertial sensing device of Figure 1. Usage flow [Main component symbol description] 100: Inertial sensing device: Substrate 11 2: Fixed base U0: First mass! 2 2 · Open port 24, 132: Money hole 130: Second mass 17 201215887 Uo/\-iuuhz4 34781 twf.doc/n 140 first elastic member 150 second elastic member 160 voltage driving unit 162, 164, 166, 168, 172, 174, 176, 178, 182, 184, 186, 188, 192 194, 196, 198: comb capacitor plate 170: acceleration sensing unit 180: inertial sensing structure 190: resonance frequency modulation unit 18

Claims (1)

201215887 υυΛ-1 υυ424 3478 ltwf.doc/n 七、申請專利範園: 1 · 一種慣性感測裝置,包括: 一基板; 一第一質量塊’配置於該基板上方且具有一開口; 一第二質量塊,配置於該開口内; 多個第一彈性件,連接於該基板及該第一質量塊之 間; 多個第二彈性件,連接於該第一質量塊及該第二質 量塊之間; — 間; 電壓驅動單元,配置於該基板與該第一質 量塊之 一加速度感測單元,配置於該基板與該第—質量塊 之間,且適於感測該第_f4 现 貝里塊在第一方向的加速 度; -慣性感測結構’配置於該第一質量塊盥 量塊之間,且適於感測該第二f量塊㈣❹5 向::第二方向的加速度,並適於感測該第二質量二 角速度;以及 貝里塊的 -共振頻調變單元,配置於該基板 之間,且適於調變該第一暂曰 買量槐 率。 f置塊在該第-方向的共振賴 2.如申請專利範 其中該電壓驅動單元包括$所述之慣性感測裝Ϊ, 多個第一梳狀電定 令极,連接於該第—質量塊的〜 19 34781tw£doc/n 201215887 側; 多個第二梳狀電容板’連接於該基 梳狀電容板相互平行且交替配置; 兴落些第一 多個第三梳狀電容板, m 迷接於这第-質量 多個第四《電容板,連接於該基板 梳狀電容板相互平行且交替配置。 與該些第三 3.如申請專利範圍第丨項所述之慣 其中該加速度感測單元包括: 裝置, 側; 多個第一梳狀電容板,連接於該第一質量 塊的 些第 多個第二梳狀電容板,連接於該基板且與該些 梳狀電容板相互平行且交替配置. 多個第三梳狀電容板’連接於第-質量塊的另— 側;以及 乃— 多個第四梳狀電容板’連接於該基板且與該 梳狀電容板相互平行且交替配置。 — 4.如申請專利範㈣1項所述之慣性感測裝置, 其中該慣性感測結構包括·. 側; 多個第一梳狀電容板,連接於該第二質量塊的一 多個第二梳狀電容板,連接於哕坌 租旦… 丈设a 笫—質量塊且與該 些第一梳狀電容板相互平行且交替配置. 多個第三梳狀電容板,連接於該第二質量塊的另— 20 201215887 vw k-xw424 34781twf.doc/n 側;以及 多個第四梳狀電容板,連接於該第一質量塊且與該 些第二梳狀電容板相互平行且交替配置。 5.如申請專利範圍第1項所述之慣性感測裴置, 其中該共振頻調變單元包括: 多個第一梳狀電容板,連接於該第一質量塊的— 側;201215887 υυΛ-1 υυ424 3478 ltwf.doc/n VII. Patent Application: 1 · An inertial sensing device comprising: a substrate; a first mass 'disposed over the substrate and having an opening; a second a plurality of first elastic members connected between the substrate and the first mass; a plurality of second elastic members connected to the first mass and the second mass And a voltage driving unit disposed on the substrate and the acceleration sensing unit of the first mass, disposed between the substrate and the first mass, and adapted to sense the first _f4 The acceleration of the inner block in the first direction; the inertial sensing structure is disposed between the first mass block and adapted to sense the acceleration of the second f block (4) ❹5 direction:: second direction, and The second mass angular velocity is adapted to be sensed; and the Belle block-resonant frequency modulation unit is disposed between the substrates and adapted to modulate the first temporary buy rate. f is a resonance in the first direction. 2. In the patent application, the voltage driving unit includes the inertial sensing device described above, and a plurality of first comb-shaped electric terminals are connected to the first-quality a block of ~ 19 34781 tw doc / n 201215887 side; a plurality of second comb capacitor plates 'connected to the base comb capacitor plates are parallel and alternately arranged; the first plurality of third comb capacitor plates are muffled, m The fourth capacitive capacitor plate is connected to the first mass, and the comb capacitor plates connected to the substrate are parallel and alternately arranged. And the third aspect of the invention as described in claim 3, wherein the acceleration sensing unit comprises: a device, a side; a plurality of first comb capacitor plates connected to the first mass of the first mass a second comb capacitor plate connected to the substrate and arranged alternately and alternately with the comb capacitor plates. The plurality of third comb capacitor plates 'connected to the other side of the first mass; and The fourth comb capacitor plates ' are connected to the substrate and are arranged in parallel with each other and alternately with the comb capacitor plates. 4. The inertial sensing device of claim 1, wherein the inertial sensing structure comprises a side portion; a plurality of first comb capacitor plates connected to a plurality of second portions of the second mass block. The comb-shaped capacitor plate is connected to the 哕坌... The a-mass block is arranged parallel to and alternately with the first comb capacitor plates. A plurality of third comb capacitor plates are connected to the second mass. And a plurality of fourth comb capacitor plates connected to the first mass and parallel to each other and alternately arranged with the second comb capacitor plates. 5. The inertial sensing device according to claim 1, wherein the resonant frequency modulation unit comprises: a plurality of first comb capacitor plates connected to the side of the first mass; 多個第二梳狀電容板,連接於該基板且與該些第 梳狀電谷板相互平行且交替配置; 多個第三梳狀電容板,連接於該第一質量塊的另 側;以及 夕個第四梳狀電容板,連接於該基板且與該些第三 梳狀電容板相互平行且交替配置。 6.如申請專利範圍第丨項所述之慣性感測裝置, 其中該基板具有多個固定基座,該些固定基座分別對應 =該些第-彈性件’各該第—彈性件連接於該對應之固 疋基座與該第一質量塊之間。 1項所述之慣性感測裝 7· —種如申請專利範圍第 置的使用方法,包括: 開啟該電壓驅動 號於該第一質量塊, 藉由外部角速度產生 該第一質量塊的振盪 早儿’以施加直流電壓及交流小訊 而驅動該第一質量塊產生作動,並 之科氏力’造成該第二質量塊相對 若該第 一質量塊在該第一方向 的共振頻率與該第 21 201215887 34781 twf.doc/n 一量塊在該第二方向的共振頻率不相箄# 該共振頻調變單元,以將㈣二羊不㈣,施加電屋於 為與,第:質量塊的共振頻率//塊的共振頻率調整 藉由該第一質量塊相對該一 該第二質量塊的角速度; 冑量兔的振盧’測得 ㈣ίΓ得該第二質量塊的角速度之後,施加反相電壓 動单元’以大幅減緩該第二質量塊的作動; 在大ί田減緩該第二f量塊的作動之後,施加電壓於 該共振頻調變單元,以小幅減緩該第二質量塊的作動、; 以及 仰在減緩該第二質量塊的作動之後,藉由該加速度感 測單元及該慣性感測結構感測該第一質量塊與該第二 質量塊的振盪,以測得該第一質量塊與該第二質量塊的 加速度。 8. —種如申請專利範圍第丨項所述之慣性感測裝 置的使用方法,包括: 藉由該加速度感測單元及該慣性感測結構感測該 第—質量塊與該第二質量塊的振盪,以測得該第一質量 塊與該第二質量塊的加速度; 開啟該電壓驅動單元,以施加直流電壓及交流小訊 號於該第一質量塊,而驅動該第一質量塊產生作動,並 藉由外部角速度產生之科氏力,造成該第二質量塊相對 該第一質量塊的振盪; 若該第一質量塊在該第一方向的共振頻率與該第 22 201215887424 34781twf.doc/n 二質量塊在該第二方向的共振頻率不相等,施加電壓於 該共振頻調變單元,以將該第一質量塊的共振頻率調整 為與該第二質量塊的共振頻率相等;以及 藉由該第二質量塊相對該第一質量塊的振盪,測得 該第二質量塊的角速度。a plurality of second comb capacitor plates connected to the substrate and arranged alternately and alternately with the first comb-shaped grid plates; a plurality of third comb capacitor plates connected to the other side of the first mass; The fourth comb capacitor plate is connected to the substrate and is arranged in parallel with each other and alternately with the third comb capacitor plates. 6. The inertial sensing device of claim 2, wherein the substrate has a plurality of fixed bases, and the fixed bases respectively correspond to the first elastic members. The corresponding solid base is between the first mass. The inertial sensing device of claim 1 is a method for using the first aspect of the patent application, comprising: turning on the voltage driving number on the first mass, and generating an oscillation of the first mass by an external angular velocity. Actuating the first mass by applying a DC voltage and an AC signal, and causing the Coriolis force to cause the second mass to be opposite to the first mass in the first direction and the first 21 201215887 34781 twf.doc/n The resonance frequency of a quantum block in the second direction is not opposite. # The resonance frequency modulation unit, to (4) Eryang not (four), is applied to the electric house, and the mass: The resonant frequency//the resonant frequency of the block is adjusted by the angular velocity of the first mass relative to the second mass; the measured vibration of the rabbit is measured by (4) after the angular velocity of the second mass is applied The voltage moving unit 'to substantially slow down the operation of the second mass; after the large field slows down the operation of the second f-block, applying a voltage to the resonant frequency modulation unit to slightly slow down the operation of the second mass And detecting the first quality by sensing the oscillation of the first mass and the second mass by the acceleration sensing unit and the inertial sensing structure after the operation of the second mass is slowed down The acceleration of the block and the second mass. 8. The method of using an inertial sensing device as described in claim 2, comprising: sensing the first mass and the second mass by the acceleration sensing unit and the inertial sensing structure Oscillation to measure the acceleration of the first mass and the second mass; turning on the voltage driving unit to apply a DC voltage and a small AC signal to the first mass, and driving the first mass to generate an actuation And causing oscillation of the second mass relative to the first mass by a Coriolis force generated by an external angular velocity; if the resonant frequency of the first mass in the first direction is the 22nd 201215887424 34781 twf.doc/ n the two masses have different resonance frequencies in the second direction, applying a voltage to the resonance frequency modulation unit to adjust the resonance frequency of the first mass to be equal to the resonance frequency of the second mass; An angular velocity of the second mass is measured by oscillation of the second mass relative to the first mass. 23twenty three
TW99134799A 2010-10-12 2010-10-12 Inertia sensing device and using method thereof TWI426232B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99134799A TWI426232B (en) 2010-10-12 2010-10-12 Inertia sensing device and using method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99134799A TWI426232B (en) 2010-10-12 2010-10-12 Inertia sensing device and using method thereof

Publications (2)

Publication Number Publication Date
TW201215887A true TW201215887A (en) 2012-04-16
TWI426232B TWI426232B (en) 2014-02-11

Family

ID=46786992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99134799A TWI426232B (en) 2010-10-12 2010-10-12 Inertia sensing device and using method thereof

Country Status (1)

Country Link
TW (1) TWI426232B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548861B (en) * 2012-08-07 2016-09-11 國立清華大學 Inertial sensing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308308B (en) * 2019-06-27 2021-07-13 深迪半导体(绍兴)有限公司 In-plane translational accelerometer with compensation electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002308545A1 (en) * 2001-05-02 2002-11-11 The Regents Of The University Of California Non-resonant four degrees-of-freedom micromachined gyroscope
US6955086B2 (en) * 2001-11-19 2005-10-18 Mitsubishi Denki Kabushiki Kaisha Acceleration sensor
US7377167B2 (en) * 2004-02-27 2008-05-27 The Regents Of The University Of California Nonresonant micromachined gyroscopes with structural mode-decoupling
DE102006046772A1 (en) * 2006-09-29 2008-04-03 Siemens Ag Rotating rate measuring arrangement, has capacitive units formed by fixed electrodes and by other electrodes that are connected with fixed connection, where exciting voltages are supplied to fixed electrodes of capacitive units

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548861B (en) * 2012-08-07 2016-09-11 國立清華大學 Inertial sensing device

Also Published As

Publication number Publication date
TWI426232B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
US9278847B2 (en) Microelectromechanical gyroscope with enhanced rejection of acceleration noises
JP5960257B2 (en) Apparatus and method for time domain measurement of vibrational perturbations
JP6256623B2 (en) Improved gyroscope structure and gyroscope
EP3279608B1 (en) Improved vibratory gyroscope
Maenaka MEMS inertial sensors and their applications
Kunz et al. Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors
TWI512268B (en) A gyroscope and method for inertial sensing using a time-domain,tuning-fork gyroscope
JP4281985B2 (en) Improvement on offset removal device for vibrating gyroscope
Kawai et al. High-resolution microgyroscope using vibratory motion adjustment technology
Alzgool et al. Self-powered triboelectric MEMS accelerometer
TW201215887A (en) Inertia sensing device and using method thereof
JP2000512019A (en) Small box type vibration gyroscope
JP6117180B2 (en) Physical quantity sensor
CN103115620B (en) A kind of four-degree-of-freedom micromechanical gyro array
JP2000097707A (en) Acceleration sensor
Alshehri et al. Two-mass MEMS velocity sensor: Internal feedback loop design
JP4362739B2 (en) Vibration type angular velocity sensor
TWI245110B (en) Apparatus of micro angular motion detector and fabrication method thereof
RU2489722C1 (en) Sensitive element of angular accelerometre
RU2006126723A (en) METHOD FOR MEASURING THE GAP BETWEEN ELECTRODES AND MOBILE WEIGHT OF A MICROMECHANICAL DEVICE AND A DEVICE FOR ITS IMPLEMENTATION
RU2400708C1 (en) Micromechanical gyroscope
Wang et al. Equivalent electrical model for quartz vibrating gyroscope
RU2649226C1 (en) Device for measuring gap in micromechanical gyroscope of rr-type
Nguyen et al. A two degrees of freedom comb capacitive-type accelerometer with low cross-axis sensitivity
Wang et al. A bulk micro-machined accelerometer with comb fingers sense capacitors