JP2004059763A - Method for producing fluorine-containing polymer - Google Patents

Method for producing fluorine-containing polymer Download PDF

Info

Publication number
JP2004059763A
JP2004059763A JP2002220962A JP2002220962A JP2004059763A JP 2004059763 A JP2004059763 A JP 2004059763A JP 2002220962 A JP2002220962 A JP 2002220962A JP 2002220962 A JP2002220962 A JP 2002220962A JP 2004059763 A JP2004059763 A JP 2004059763A
Authority
JP
Japan
Prior art keywords
fluorine
rod
polymer
containing monomer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002220962A
Other languages
Japanese (ja)
Inventor
Hidenobu Murofushi
室伏 英伸
Masahiro Ito
伊藤 昌宏
Masahiro Kanda
神田 眞宏
Kuniko Okano
岡野 邦子
Hajime Ogawa
尾川 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002220962A priority Critical patent/JP2004059763A/en
Publication of JP2004059763A publication Critical patent/JP2004059763A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fluorine-containing polymer having excellent discoloring stability under a high-temperature and high-humidity condition without stabilization treatment such as fluorination treatment. <P>SOLUTION: The fluorine-containing polymer having a fluorine-containing alicyclic structure in the main chain is obtained by using a polymerization initiator having the fluorine-containing alicyclic structure, and carrying out bulk polymerization of a fluorine-containing monomer having the fluorine-containing ring structure and a fluorine-containing monomer having two or more polymerizable double bonds. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素化処理等の安定化処理をすることなく、透明性が高く高温高湿下の耐着色性に優れる含フッ素重合体の製造方法に関する。
【0002】
【従来の技術】
従来、熱安定性が高く、また化学的安定性に優れる、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体を製造する方法としては、例えば、特開2000−1511号公報に開示された方法等が知られている。すなわち前記公報では、[CC(O)O]、[CC(CHC(O)O]等の含フッ素ジアシルペルオキシド等が重合開始剤として用いられてきた。
【0003】
【発明が解決しようとする課題】
しかし前記公報に記載の条件のうち、芳香環を有する含フッ素ジアシルペルオキシドを重合開始剤として用いて前記含フッ素重合体を製造した場合であって、フッ素化処理等の安定化処理をしない場合には、高温高湿下で長期間保存すると着色するという問題があることがわかった。この着色の原因は重合開始剤由来の着色物質によるものと推定される。特にフッ素原子の結合した芳香環を有する化合物を重合開始剤として用いると、この芳香環が酸化されキノン型となった化合物が生成し、これが着色の原因となっていると考えられる。
【0004】
そこで本発明は、前述の課題を解決し、フッ素化処理等の安定化処理をすることなく、透明性が高く、高温高湿下での耐着色性に優れる含フッ素重合体を製造する方法を提供する。
【0005】
【課題を解決するための手段】
本発明は、含フッ素脂肪族環構造を有する重合開始剤を用いて、下記含フッ素単量体(a)、(b)、(c)または(d)を塊状重合し、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体を得ることを特徴とする含フッ素重合体の製造方法を提供する。
(a)重合性二重結合の少なくとも一方の炭素原子が環を構成する炭素原子である、含フッ素脂肪族環構造を有する含フッ素単量体。
(b)2つ以上の重合性二重結合を有する環化重合しうる含フッ素単量体。
(c)含フッ素単量体(a)と、含フッ素単量体(b)。
(d)含フッ素単量体(a)、(b)から選ばれる1種以上の含フッ素単量体と、含フッ素単量体(a)、(b)以外の他の含フッ素単量体。
【0006】
【発明の実施の形態】
本発明で用いられる重合開始剤は、含フッ素脂肪族環構造を有する重合開始剤(以下、開始剤Zという。)である。開始剤Zが含フッ素脂肪族環構造を有するとは、開始剤Zが環構造を有しているが、芳香環を有していないことを意味する。芳香環を有していると、得られた重合体を高温高湿下で保存した場合に、着色物質を生成する可能性がある。ここで開始剤Zは炭素−炭素または炭素−窒素の二重結合を含まないことが好ましく、不飽和結合を有していないことが特に好ましい。また上記の環構造としては、炭素−酸素の単結合または炭素−窒素の単結合を含んでいてもよい。しかし上記の環構造としては炭素−炭素の単結合のみから成る、すなわち炭素原子から構成される飽和環構造が最も好ましい。このような環構造を有していることにより、開始剤Zと後述する含フッ素単量体との相溶性が向上する点で好ましい。また、前記開始剤Zは実質的に水素原子を含まないことが好ましく、ペルフルオロ化合物であることがより好ましい。ペルフルオロ化合物であることは、開始剤Zと後述する含フッ素単量体との相溶性が向上する点、得られる含フッ素重合体の熱安定性が向上する点から好ましい。また開始剤Zとしては、対応するエーテルの過酸化物、対応するカルボン酸無水物の過酸化物、過オキシ酸化合物が好ましい。このような開始剤Zの具体例としては、ペルフルオロ(ビス(シクロヘキサンカルボニル)ペルオキシド)が挙げられる。前記の開始剤Zの合成例としては、Hideo Sawada et al., J.Appl.poly.Soc., p1101−1108,vol72(1999) に記載の方法が挙げられる。
【0007】
含フッ素単量体に対する開始剤Zの割合は、含フッ素単量体100質量部に対して、0.01〜5質量部が好ましく、0.1〜1質量部がより好ましい。開始剤Zの割合が少なすぎる場合には、得られた含フッ素重合体中の未反応含フッ素単量体の残存量が多くなり、含フッ素重合体の物性低下、高温下での着色等の点で好ましくない。また、開始剤Zの割合が多すぎる場合には、重合に寄与しなかった開始剤Zの割合が多くなり、この過剰の開始剤Zの誘発分解等により含フッ素重合体が白濁する、または着色するため好ましくない。これらの開始剤Zを用いた塊状重合の反応温度は30〜150℃が好ましく、40〜120℃がより好ましい。
【0008】
本発明においては、得られた含フッ素重合体はフッ素化処理等の安定化処理を行わなくても、安定性に優れている。しかし、塊状重合により得られた含フッ素重合体はフッ素ガスで処理することにより熱安定性をさらに高めることができる。例えば、含フッ素重合体のガラス転移温度以下の温度または軟化温度以下の温度でフッ素ガスに暴露させることにより、白濁または着色の発生を抑制できる。フッ素ガスの作用は必ずしも明確ではないが、フッ素ガスは未反応単量体の二重結合に付加し、未反応単量体は安定な飽和化合物に変化しているものと思われる。これにより、含フッ素重合体の熱安定性が向上するものと思われる。また、必要に応じて含フッ素重合体を加熱真空乾燥することにより揮発性物質を除去することも、白濁または着色の発生を抑制できる点で有効である。
【0009】
本発明において得られる、含フッ素重合体としては、フッ素含有量が40〜75質量%であって、数平均分子量が1万〜100万である含フッ素重合体が好ましい。フッ素含有量は50〜70質量%がより好ましく、数平均分子量は2万〜50万がより好ましい。
【0010】
本発明において塊状重合に用いられる含フッ素単量体は、下記含フッ素単量体(a)、(b)、(c)または(d)である。
(a)重合性二重結合の少なくとも一方の炭素原子が環を構成する炭素原子である、含フッ素脂肪族環構造を有する含フッ素単量体。
(b)2つ以上の重合性二重結合を有する環化重合しうる含フッ素単量体。
(c)含フッ素単量体(a)と、含フッ素単量体(b)。
(d)含フッ素単量体(a)、(b)から選ばれる1種以上の含フッ素単量体と、含フッ素単量体(a)、(b)以外の他の含フッ素単量体。
【0011】
含フッ素単量体(a)としては、ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)等が挙げられる。含フッ素単量体(b)としては、ペルフルオロ(アリルビニルエーテル)、ペルフルオロ(ブテニルビニルエーテル)等の環化重合し得る含フッ素単量体が挙げられる。
【0012】
含フッ素単量体(a)、(b)以外の他の含フッ素単量体としてはテトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)等の含フッ素環構造を有せず、環化重合し得ない含フッ素単量体が挙げられる。好ましい含フッ素単量体(または含フッ素単量体の組み合わせ)は、含フッ素単量体(a)、(b)および(c)である。
【0013】
含フッ素単量体(a)を重合して得られる含フッ素重合体や、含フッ素単量体(a)と、含フッ素単量体(a)、(b)以外の他の含フッ素単量体を重合して得られる含フッ素重合体は、特公昭63−18964等により知られている。また、含フッ素単量体(b)を環化重合して得られる含フッ素重合体や、含フッ素単量体(b)と、含フッ素単量体(a)、(b)以外の他の含フッ素単量体を重合して得られる含フッ素重合体は、特開昭63−238111や特開昭63−238115等により知られている。また、ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)等の含フッ素単量体(a)と、ペルフルオロ(アリルビニルエーテル)やペルフルオロ(ブテニルビニルエーテル)等の含フッ素単量体(b)とを共重合することによっても、含フッ素重合体が得られる。
【0014】
含フッ素重合体は、含フッ素重合体の全重合単位に対して含フッ素脂肪族環構造を有する重合単位を20モル%以上、特には40モル%以上含有するものが透明性、機械的特性等の面から好ましい。
【0015】
上記の含フッ素重合体としては、具体的には下記一般式(1)〜(5)から選ばれる繰り返し単位を有するものが例示される。これらの含フッ素重合体中のフッ素原子は、一部塩素原子で置換されていてもよい。
【0016】
【化1】

Figure 2004059763
【0017】
一般式(1)〜(5)において、hは0〜5の整数、iは0〜4の整数、jは0または1、h+i+jは1〜6、sは0〜5の整数、tは0〜4の整数、uは0または1、s+t+uは1〜6、p、q、rはそれぞれ独立に0〜5の整数、p+q+rは1〜6、R、R、R、R、X、Xはそれぞれ独立にH、D(重水素)F、ClまたはCFである。R、R、R、Rはそれぞれ独立にH、D(重水素)、F、Cl、C2n+1、C2n+1−mClまたはC2n+1−mであり、nは1〜5の整数、mは0〜5の整数、kは0〜2の整数であり、R、Rが連結して環を形成してもよい。
【0018】
本発明における重合性二重結合の少なくとも一方の炭素原子が環を構成する炭素原子である、含フッ素脂肪族環構造を有する含フッ素単量体としては、下記一般式(6)〜(8)で表される化合物から選ばれる含フッ素単量体が好ましい。
【0019】
【化2】
Figure 2004059763
【0020】
一般式(6)〜(8)において、X〜Xはそれぞれ独立にH、D(重水素)、F、ClまたはCFである。R〜R14はそれぞれ独立にH、D(重水素)、F、Cl、C2n+1、C2n+1−mClまたはC2n+1−mであり、nは1〜5の整数、mは0〜5の整数、kは0〜2の整数であり、RとR10が連結して環を形成してもよく、R11とR12が連結して環を形成してもよく、R13とR14が連結して環を形成してもよい。一般式(6)〜(8)で表される化合物の具体例としては、式(9)〜(16)で表される化合物等が挙げられる。
【0021】
【化3】
Figure 2004059763
【0022】
2つ以上の重合性二重結合を有する環化重合しうる含フッ素単量体としては、下記一般式(17)〜(19)で表される化合物が好ましい。
【0023】
【化4】
Figure 2004059763
【0024】
一般式(17)〜(19)において、X〜X34は、それぞれ独立にH、D(重水素)、F、ClまたはCFである。一般式(17)〜(19)で表される化合物の具体例としては、以下の化合物等が挙げられる。
CF=CFOCFCFCF=CF
CF=CFOCClCFCF=CF
CF=CFOCFCFCCl=CF
CF=CFOCFCFCF=CF
CF=CFOCFCFClCF=CF
CF=CFOCFCFCF=CFCl、
CF=CFOCFCF(CF)CF=CF
CF=CFOCFCF(CF)CCl=CF
CF=CFOCFCF=CF
CF=CFOCF(CF)CF=CF
CF=CFOCFOCF=CF
CF=CClOCFOCCl=CF
CF=CFOCClOCF=CF
CF=CFOC(CFOCF=CF
【0025】
本発明における塊状重合では、重合反応を行う反応器の形状により、塊状重合で得られた含フッ素重合体をそのまま板状、管状、棒状等種々の形状を有する物品とすることができる。また、塊状重合で得られた含フッ素重合体を加熱変形加工、圧縮成形、押出成形、射出成形等の溶融成形により板状、管状、棒状等種々の形状を有する物品に成形することもできる。本発明の製造方法で得られる含フッ素重合体は透明性が高く、含フッ素重合体の光散乱損失を100dB/km以下、50dB/km以下または30dB/km以下とすることができる。
【0026】
本発明の製造方法により得られた透明性の高い含フッ素重合体は光学樹脂材料として有用であり、例えば、光ファイバまたはその母材、光導波路、光学レンズ、コンパクトディスク等のメディア用基板材料等に利用できる。また、耐薬品性に優れるため化学プラント等で用いられる窓材、また、紫外線透過性が高いため紫外線ランプの管等に利用できる。
【0027】
また、本発明の製造方法により得られた透明性の高い含フッ素重合体は重合後にフッ素化等安定化処理することなく高温高湿下で着色安定性が高いことから特開平5−173025に記されるようなゲル効果を利用したラジカル重合法による屈折率分布形状を有する光ファイバー母材の製造にも利用できる。
【0028】
塊状重合する際に含フッ素単量体中に可溶であれば色素、高屈折率化合物、導電性化合物等のドーパントや各種の有機金属錯体等を混合させ、含フッ素重合体中に均一分散させることもできるので、各種のオプトエレクトロニックデバイスのマトリックス材としても利用できる。
【0029】
【実施例】
以下の例において下記の略号を使用する。また、例1、2、3は実施例を、例4、5は比較例を示す。
PBTHF:ペルフルオロ(2−ブチルテトラヒドロフラン)、
PBVE:ペルフルオロ(ブテニルビニルエーテル)、
PDD:ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)、
PFCP:ペルフルオロ(ビス(シクロヘキサンカルボニル)ペルオキシド)、
PFBPO:ペルフルオロベンゾイルペルオキシド。
【0030】
(例1)
外径16mm、内径12mmのガラス管に、10gのPBVE、0.1gのPFCP(10時間半減温度41℃)、および、0.04gのクロロホルムを仕込み、液体窒素を用いて凍結脱気を3回繰り返した後に封管した。これを40℃のオーブン中に3日間保持したところ完全に固化した。ガラス管を壊して重合体を取り出したところ、無色透明で強靭なロッド状固体が得られた。
【0031】
得られたロッド状固体(以下、ロッドAという)のPBTHF中30℃における固有粘度は0.55dl/gであった。また、ロッドAを200℃で1時間加熱したところわずかな泡の発生も認められず無色透明であった。加熱前後の重量を測定したところ重量減少が0.5%であったことからPBVEの反応率は99%以上の高い値であることがわかった。
【0032】
また、波長633nmのレーザ光を用いて、散乱角20〜120度の範囲における水平偏向成分および垂直偏向成分のロッドAの光散乱強度を求め、全散乱損失を計算したところ16dB/kmであった。またロッドAを温度60℃、湿度95%にて30日保管しても着色は一切ないことがわかった。これにより、ロッドAは透明性に優れており、なおかつ重合上がりでフッ素化等の安定化処理をすることなく高温高湿下で安定な重合体であることが確認され、本重合体は光ファイバ等の光学樹脂材料として適することがわかった。
【0033】
ロッドAを金型にセットして180℃、50kg荷重にて圧縮成形することによりプラスチックレンズを得た。このレンズ中には泡の形成はなく、また、着色も認められなかった。
【0034】
(例2)
外径16mm、内径12mmのガラス管に、6gのPBVE、4gのPDD、0.5gのPFCP、および、0.04gのクロロホルムを仕込み液体窒素を用いて凍結脱気を3回繰り返した後に封管した。これを40℃のオーブン中に3日間保持したところ完全に固化した。ガラス管を壊して重合体を取り出したところ無色透明で強靭なロッド状固体が得られた。
【0035】
真空乾燥後のロッド状固体(以下、ロッドBという)のPBTHF中30℃の固有粘度は0.36dl/gであった。ロッドBを200℃で1時間加熱したところ泡の発生も認められず無色透明であった。加熱前後の重量を測定したところ重量減少が0.8%であったことから単量体の反応率は99%以上の高い値であることがわかった。
【0036】
また、ロッドBの光散乱強度を波長633nmのレーザ光を用いて測定し、例1と同様な方法により全散乱損失を計算したところ35dB/kmであった。またロッドBを温度60℃、湿度95%にて30日保管を行っても着色は一切ないことがわかった。これにより、ロッドBは透明性に優れており、なおかつ重合上がりでフッ素化等の安定化処理をすることなく高温高湿下で安定な重合体であることが確認され、本重合体は光ファイバ等の光学樹脂材料として適することがわかった。
【0037】
ロッドBを金型にセットして180℃、50kg荷重にて圧縮成形することによりプラスチックレンズを得た。このレンズ中には泡の形成はなく、また、着色も認められなかった。
【0038】
(例3)
外径16mm、内径12mmのガラス管に、12gのPBVE、8gのPDD、0.2gのPFCP、および、0.12gのクロロホルムを仕込み、液体窒素を用いて凍結脱気を3回繰り返したのちに封管した。このガラス管を回転させながら40℃で3日間保持して重合固化させることにより長さ約20cmの中空管を作製した。
【0039】
次に、この中空管の内部に45gのPBVE、0.45gのPFCP、および、0.18gのクロロホルムを仕込み、40℃で2日間、つづいて100℃で1日間保持して重合固化させた後、90℃で1日間真空乾燥することによりコア−クラッド型の光ファイバプリフォームを作製した。このプリフォームを250℃の加熱炉を用いて、先端より加熱溶融させ、直径0.6mmのプラスチック光ファイバを紡糸した。この光ファイバの光伝送損失をカットバック法により測定したところ波長780nmで100dB/km、850nmで60dB/kmおよび1300nmで50dB/kmであり、可視光から近赤外光までの光を良好に伝達できる光ファイバであることを確かめた。
【0040】
(例4)
外径16mm、内径12mmのガラス管に、10gのPBVE、0.1gのPFBPO(10時間半減温度68℃)、および、0.04gのクロロホルムを仕込み、液体窒素を用いて凍結脱気を3回繰り返した後に封管した。これを90℃のオーブン中に2日間保持したところ完全に固化した。さらに110℃で1日保持した後、ガラス管を壊して重合体を取り出したところ無色透明で強靭なロッド状固体が得られた。
【0041】
得られたロッド状固体(以下、ロッドCという)のPBTHF中30℃における固有粘度は0.43dl/gであった。また、ロッドCを200℃で1時間加熱したところわずかな泡の発生も認められず無色透明であった。加熱前後の重量を測定したところ重量減少が0.4%であったことからPBVEの反応率は99%以上の高い値であることがわかった。また、例1と同様にロッドCの光散乱強度を求め、全散乱損失を計算したところ35dB/kmであった。
【0042】
ロッドCを温度60℃、湿度95%にて保管を行った場合、7日目から着色が確認され始め30日目でロッドCは褐色となった。これにより、ロッドCは透明性に優れてはいるものの、重合上がりでフッ素化等の安定化処理を行わなければ高温高湿下で着色をする重合体であることが確認された。
【0043】
(例5)
外径16mm、内径12mmのガラス管に、6gのPBVE、4gのPDD、0.1gのPFBPO、および、0.04gのクロロホルムを仕込み、液体窒素を用いて凍結脱気を3回繰り返た後に封管した。これを90℃のオーブン中に2日間保持したところ完全に固化した。さらに110℃で1日保持した後、ガラス管を壊して重合体を取り出したところ無色透明で強靭なロッド状固体が得られた。
【0044】
得られたロッド状固体(以下、ロッドDという)のPBTHF中30℃における固有粘度は0.43dl/gであった。また、ロッドDを200℃で1時間加熱したところわずかな泡の発生も認められず無色透明であった。加熱前後の重量を測定したところ重量減少が0.9%であったことからPBVEの反応率は99%以上の高い値であることがわかった。また、例1と同様にロッドDの光散乱強度を求め、全散乱損失を計算したところ36dB/kmであった。
【0045】
ロッドDを温度60℃、湿度95%にて保管を行った場合、7日目から着色が確認され始め30日目でロッドDは褐色となった。これにより、ロッドDは透明性に優れてはいるものの、重合上がりでフッ素化等の安定化処理を行わなければ高温高湿下で着色をする重合体であることが確認された。
【0046】
【発明の効果】
本発明方法により熱安定性および化学的安定性に優れ、かつ白濁、発泡、着色等の問題のない透明性の高い含フッ素重合体が得られる。この含フッ素重合体はフッ素化等の安定化処理をすることなく高温高湿下での着色がなく、白濁、発泡、着色等を発生することなく溶融成形が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fluoropolymer having high transparency and excellent coloration resistance under high temperature and high humidity without performing a stabilization treatment such as a fluorination treatment.
[0002]
[Prior art]
Conventionally, a method for producing a fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain, which has high thermal stability and excellent chemical stability, is disclosed in, for example, JP-A No. 2000-1511. There are known methods. That is, in the above publication, fluorine-containing diacyl peroxides such as [C 6 F 5 C (O) O] 2 and [C 6 F 5 C (CH 3 ) 2 C (O) O] 2 are used as the polymerization initiator. I came.
[0003]
[Problems to be solved by the invention]
However, among the conditions described in the above publication, when the fluorine-containing polymer is produced using a fluorine-containing diacyl peroxide having an aromatic ring as a polymerization initiator, and when a stabilization treatment such as a fluorination treatment is not performed. Was found to have a problem of coloring when stored for a long time under high temperature and high humidity. The cause of this coloring is presumed to be due to a coloring substance derived from the polymerization initiator. In particular, when a compound having an aromatic ring to which a fluorine atom is bonded is used as a polymerization initiator, this aromatic ring is oxidized to form a quinone compound, which is considered to cause coloring.
[0004]
Therefore, the present invention solves the above-mentioned problems and provides a method for producing a fluorine-containing polymer having high transparency and excellent coloration resistance under high temperature and high humidity without performing a stabilization treatment such as a fluorination treatment. provide.
[0005]
[Means for Solving the Problems]
In the present invention, the following fluorine-containing monomer (a), (b), (c) or (d) is bulk-polymerized using a polymerization initiator having a fluorine-containing aliphatic ring structure, and fluorine is contained in the main chain. Provided is a method for producing a fluoropolymer, characterized in that a fluoropolymer having an aliphatic ring structure is obtained.
(A) A fluorine-containing monomer having a fluorine-containing aliphatic ring structure, wherein at least one carbon atom of the polymerizable double bond is a carbon atom constituting a ring.
(B) A fluorine-containing monomer capable of cyclopolymerization having two or more polymerizable double bonds.
(C) A fluorine-containing monomer (a) and a fluorine-containing monomer (b).
(D) One or more fluorine-containing monomers selected from fluorine-containing monomers (a) and (b) and other fluorine-containing monomers other than fluorine-containing monomers (a) and (b) .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The polymerization initiator used in the present invention is a polymerization initiator having a fluorine-containing aliphatic ring structure (hereinafter referred to as initiator Z). The initiator Z having a fluorine-containing aliphatic ring structure means that the initiator Z has a ring structure but does not have an aromatic ring. When it has an aromatic ring, when the obtained polymer is stored under high temperature and high humidity, a colored substance may be generated. Here, the initiator Z preferably does not contain a carbon-carbon or carbon-nitrogen double bond, and particularly preferably has no unsaturated bond. The ring structure may contain a carbon-oxygen single bond or a carbon-nitrogen single bond. However, the above ring structure is most preferably a saturated ring structure composed of only a carbon-carbon single bond, that is, composed of carbon atoms. Having such a ring structure is preferable in that the compatibility between the initiator Z and the fluorine-containing monomer described later is improved. Moreover, it is preferable that the said initiator Z does not contain a hydrogen atom substantially, and it is more preferable that it is a perfluoro compound. A perfluoro compound is preferable from the viewpoint of improving the compatibility between the initiator Z and the fluorine-containing monomer described later, and improving the thermal stability of the resulting fluorine-containing polymer. The initiator Z is preferably a corresponding ether peroxide, a corresponding carboxylic anhydride peroxide, or a peroxide compound. Specific examples of such initiator Z include perfluoro (bis (cyclohexanecarbonyl) peroxide). Examples of the synthesis of the initiator Z include those of Hideo Sawada et al. , J. et al. Appl. poly. Soc. , P1101-1108, vol72 (1999).
[0007]
The ratio of the initiator Z to the fluorine-containing monomer is preferably 0.01 to 5 parts by mass and more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the fluorine-containing monomer. When the proportion of the initiator Z is too small, the residual amount of the unreacted fluorine-containing monomer in the obtained fluorine-containing polymer increases, and the physical properties of the fluorine-containing polymer are deteriorated, coloring at high temperature, etc. It is not preferable in terms. In addition, when the proportion of the initiator Z is too large, the proportion of the initiator Z that has not contributed to the polymerization increases, and the fluoropolymer becomes cloudy due to the induced decomposition of the excess initiator Z or the like. Therefore, it is not preferable. The reaction temperature of the bulk polymerization using these initiators Z is preferably 30 to 150 ° C, more preferably 40 to 120 ° C.
[0008]
In the present invention, the obtained fluoropolymer is excellent in stability without performing a stabilization treatment such as a fluorination treatment. However, the fluoropolymer obtained by bulk polymerization can be further improved in thermal stability by treatment with fluorine gas. For example, the occurrence of white turbidity or coloring can be suppressed by exposing the fluorine-containing polymer to fluorine gas at a temperature lower than the glass transition temperature or lower than the softening temperature. Although the action of the fluorine gas is not necessarily clear, it is considered that the fluorine gas is added to the double bond of the unreacted monomer, and the unreacted monomer is changed to a stable saturated compound. This seems to improve the thermal stability of the fluoropolymer. In addition, it is also effective to remove the volatile substance by heating and vacuum drying the fluoropolymer as necessary in terms of suppressing the occurrence of white turbidity or coloring.
[0009]
The fluorine-containing polymer obtained in the present invention is preferably a fluorine-containing polymer having a fluorine content of 40 to 75% by mass and a number average molecular weight of 10,000 to 1,000,000. The fluorine content is more preferably 50 to 70% by mass, and the number average molecular weight is more preferably 20,000 to 500,000.
[0010]
The fluorine-containing monomer used for bulk polymerization in the present invention is the following fluorine-containing monomer (a), (b), (c) or (d).
(A) A fluorine-containing monomer having a fluorine-containing aliphatic ring structure, wherein at least one carbon atom of the polymerizable double bond is a carbon atom constituting a ring.
(B) A fluorine-containing monomer capable of cyclopolymerization having two or more polymerizable double bonds.
(C) A fluorine-containing monomer (a) and a fluorine-containing monomer (b).
(D) One or more fluorine-containing monomers selected from fluorine-containing monomers (a) and (b) and other fluorine-containing monomers other than fluorine-containing monomers (a) and (b) .
[0011]
Examples of the fluorine-containing monomer (a) include perfluoro (2,2-dimethyl-1,3-dioxole). Examples of the fluorine-containing monomer (b) include fluorine-containing monomers capable of undergoing cyclopolymerization such as perfluoro (allyl vinyl ether) and perfluoro (butenyl vinyl ether).
[0012]
Other fluorine-containing monomers other than fluorine-containing monomers (a) and (b) do not have a fluorine-containing ring structure such as tetrafluoroethylene, chlorotrifluoroethylene, and perfluoro (methyl vinyl ether) and are cyclized. Examples thereof include fluorine-containing monomers that cannot be polymerized. Preferred fluorine-containing monomers (or combinations of fluorine-containing monomers) are fluorine-containing monomers (a), (b) and (c).
[0013]
Fluorinated polymer obtained by polymerizing fluorinated monomer (a), fluorinated monomer (a), and other fluorinated monomers other than fluorinated monomers (a) and (b) A fluorine-containing polymer obtained by polymerizing a polymer is known from JP-B 63-18964. Further, a fluorine-containing polymer obtained by cyclopolymerizing the fluorine-containing monomer (b), a fluorine-containing monomer (b), and other fluorine-containing monomers (a) and (b) other than Fluoropolymers obtained by polymerizing fluorinated monomers are known from JP-A-63-238111 and JP-A-63-238115. Further, a fluorine-containing monomer (a) such as perfluoro (2,2-dimethyl-1,3-dioxole) and a fluorine-containing monomer (b) such as perfluoro (allyl vinyl ether) or perfluoro (butenyl vinyl ether). Can also be copolymerized to obtain a fluoropolymer.
[0014]
The fluorine-containing polymer contains 20 mol% or more, particularly 40 mol% or more of polymer units having a fluorine-containing aliphatic ring structure with respect to all polymer units of the fluorine-containing polymer, such as transparency and mechanical properties. From the viewpoint of
[0015]
Specific examples of the fluoropolymer include those having a repeating unit selected from the following general formulas (1) to (5). Some of the fluorine atoms in these fluoropolymers may be substituted with chlorine atoms.
[0016]
[Chemical 1]
Figure 2004059763
[0017]
In the general formulas (1) to (5), h is an integer of 0 to 5, i is an integer of 0 to 4, j is 0 or 1, h + i + j is 1 to 6, s is an integer of 0 to 5, and t is 0. to 4 integer, u is 0 or 1, s + t + u is 1~6, p, q, r are each independently an integer of 0 to 5, p + q + r is 1~6, R 1, R 2, R 3, R 4, X 1 and X 2 are each independently H, D (deuterium) F, Cl or CF 3 . R 5 , R 6 , R 7 and R 8 are each independently H, D (deuterium), F, Cl, C n F 2n + 1 , C n F 2n + 1-m Cl m O k or C n F 2n + 1-m H m O k , n is an integer of 1 to 5, m is an integer of 0 to 5, k is an integer of 0 to 2, and R 7 and R 8 may be linked to form a ring.
[0018]
Examples of the fluorinated monomer having a fluorinated aliphatic ring structure in which at least one carbon atom of the polymerizable double bond in the present invention is a carbon atom constituting a ring include the following general formulas (6) to (8). A fluorine-containing monomer selected from the compounds represented by:
[0019]
[Chemical formula 2]
Figure 2004059763
[0020]
In the general formulas (6) to (8), X 3 to X 8 are each independently H, D (deuterium), F, Cl, or CF 3 . R 9 to R 14 are each independently H, D (deuterium), F, Cl, a C n F 2n + 1, C n F 2n + 1-m Cl m O k or C n F 2n + 1-m H m O k, n is an integer of 1 to 5, m is an integer of 0 to 5, k is an integer of 0 to 2, R 9 and R 10 may be linked to form a ring, and R 11 and R 12 are linked. To form a ring, or R 13 and R 14 may be linked to form a ring. Specific examples of the compounds represented by the general formulas (6) to (8) include compounds represented by the formulas (9) to (16).
[0021]
[Chemical Formula 3]
Figure 2004059763
[0022]
As the fluorine-containing monomer having two or more polymerizable double bonds and capable of cyclopolymerization, compounds represented by the following general formulas (17) to (19) are preferable.
[0023]
[Formula 4]
Figure 2004059763
[0024]
In the general formulas (17) to (19), X 9 to X 34 are each independently H, D (deuterium), F, Cl, or CF 3 . Specific examples of the compounds represented by the general formulas (17) to (19) include the following compounds.
CF 2 = CFOCF 2 CF 2 CF = CF 2 ,
CF 2 = CFOCCl 2 CF 2 CF = CF 2,
CF 2 = CFOCF 2 CF 2 CCl = CF 2 ,
CF 2 = CFOCF 2 CF 2 CF = CF 2 ,
CF 2 = CFOCF 2 CFClCF═CF 2 ,
CF 2 = CFOCF 2 CF 2 CF = CFCl,
CF 2 = CFOCF 2 CF (CF 3 ) CF═CF 2 ,
CF 2 = CFOCF 2 CF (CF 3 ) CCl═CF 2 ,
CF 2 = CFOCF 2 CF = CF 2 ,
CF 2 = CFOCF (CF 3 ) CF═CF 2 ,
CF 2 = CFOCF 2 OCF = CF 2 ,
CF 2 = CClOCF 2 OCCl = CF 2 ,
CF 2 = CFOCCl 2 OCF = CF 2 ,
CF 2 = CFOC (CF 3) 2 OCF = CF 2.
[0025]
In the bulk polymerization in the present invention, the fluoropolymer obtained by the bulk polymerization can be used as it is as an article having various shapes such as a plate shape, a tubular shape, and a rod shape, depending on the shape of the reactor for performing the polymerization reaction. In addition, the fluoropolymer obtained by bulk polymerization can be molded into articles having various shapes such as plate, tube, and rod by melt molding such as heat deformation, compression molding, extrusion molding, and injection molding. The fluoropolymer obtained by the production method of the present invention has high transparency, and the light scattering loss of the fluoropolymer can be 100 dB / km or less, 50 dB / km or less, or 30 dB / km or less.
[0026]
The highly transparent fluoropolymer obtained by the production method of the present invention is useful as an optical resin material, for example, an optical fiber or a base material thereof, an optical waveguide, an optical lens, a substrate material for media such as a compact disk, etc. Available to: In addition, since it has excellent chemical resistance, it can be used for window materials used in chemical plants and the like, and because it has high ultraviolet transmittance, it can be used for tubes of ultraviolet lamps.
[0027]
Further, since a highly transparent fluoropolymer obtained by the production method of the present invention has high coloration stability under high temperature and high humidity without being subjected to stabilization treatment such as fluorination after polymerization, it is described in JP-A-5-173025. It can also be used for the production of an optical fiber preform having a refractive index profile by a radical polymerization method utilizing the gel effect.
[0028]
If soluble in the fluorine-containing monomer during bulk polymerization, a dopant such as a dye, a high refractive index compound or a conductive compound, or various organometallic complexes are mixed and dispersed uniformly in the fluorine-containing polymer. It can also be used as a matrix material for various optoelectronic devices.
[0029]
【Example】
The following abbreviations are used in the following examples. Examples 1, 2, and 3 are examples, and examples 4 and 5 are comparative examples.
PBTHF: perfluoro (2-butyltetrahydrofuran),
PBVE: perfluoro (butenyl vinyl ether),
PDD: perfluoro (2,2-dimethyl-1,3-dioxole),
PFCP: perfluoro (bis (cyclohexanecarbonyl) peroxide),
PFBPO: perfluorobenzoyl peroxide.
[0030]
(Example 1)
A glass tube having an outer diameter of 16 mm and an inner diameter of 12 mm is charged with 10 g of PBVE, 0.1 g of PFCP (10 hours half-temperature 41 ° C.), and 0.04 g of chloroform, and freeze degassing three times using liquid nitrogen. The tube was sealed after repeating. When this was kept in an oven at 40 ° C. for 3 days, it completely solidified. When the glass tube was broken and the polymer was taken out, a colorless transparent and tough rod-like solid was obtained.
[0031]
The intrinsic viscosity of the obtained rod-like solid (hereinafter referred to as “rod A”) in PBTHF at 30 ° C. was 0.55 dl / g. Further, when the rod A was heated at 200 ° C. for 1 hour, the generation of slight bubbles was not recognized and the rod A was colorless and transparent. When the weight before and after heating was measured, the weight loss was 0.5%, and thus the reaction rate of PBVE was found to be a high value of 99% or more.
[0032]
Further, the light scattering intensity of the horizontal deflection component and the vertical deflection component of the rod A in the scattering angle range of 20 to 120 degrees was determined using a laser beam having a wavelength of 633 nm, and the total scattering loss was calculated to be 16 dB / km. . It was also found that the rod A was not colored at all even when stored for 30 days at a temperature of 60 ° C. and a humidity of 95%. As a result, it was confirmed that the rod A is excellent in transparency, and is a polymer that is stable under high temperature and high humidity without undergoing stabilization treatment such as fluorination after polymerization, and this polymer is an optical fiber. It was found to be suitable as an optical resin material.
[0033]
The rod A was set in a mold and compression molded at 180 ° C. under a 50 kg load to obtain a plastic lens. No bubbles were formed in this lens, and no coloring was observed.
[0034]
(Example 2)
A glass tube having an outer diameter of 16 mm and an inner diameter of 12 mm was charged with 6 g of PBVE, 4 g of PDD, 0.5 g of PFCP, and 0.04 g of chloroform, and freeze deaeration was repeated three times using liquid nitrogen, followed by sealing. did. When this was kept in an oven at 40 ° C. for 3 days, it completely solidified. When the glass tube was broken and the polymer was taken out, a colorless, transparent and tough rod-like solid was obtained.
[0035]
The intrinsic viscosity of the rod-shaped solid after vacuum drying (hereinafter referred to as rod B) in PBTHF at 30 ° C. was 0.36 dl / g. When the rod B was heated at 200 ° C. for 1 hour, generation of bubbles was not observed, and it was colorless and transparent. When the weight before and after heating was measured, the weight loss was 0.8%, and it was found that the monomer reaction rate was a high value of 99% or more.
[0036]
The light scattering intensity of the rod B was measured using a laser beam having a wavelength of 633 nm, and the total scattering loss was calculated by the same method as in Example 1. As a result, it was 35 dB / km. Further, it was found that the rod B was not colored at all even when stored at a temperature of 60 ° C. and a humidity of 95% for 30 days. As a result, it was confirmed that the rod B is excellent in transparency, and is a polymer that is stable under high temperature and high humidity without undergoing stabilization treatment such as fluorination after polymerization, and this polymer is an optical fiber. It was found to be suitable as an optical resin material.
[0037]
A plastic lens was obtained by setting the rod B in a mold and compression molding at 180 ° C. under a load of 50 kg. No bubbles were formed in this lens, and no coloring was observed.
[0038]
(Example 3)
A glass tube with an outer diameter of 16 mm and an inner diameter of 12 mm was charged with 12 g of PBVE, 8 g of PDD, 0.2 g of PFCP, and 0.12 g of chloroform, and freeze degassing was repeated three times using liquid nitrogen. Sealed. The glass tube was rotated and held at 40 ° C. for 3 days for polymerization and solidification to produce a hollow tube having a length of about 20 cm.
[0039]
Next, 45 g of PBVE, 0.45 g of PFCP, and 0.18 g of chloroform were charged into the hollow tube, and the mixture was solidified by polymerization at 40 ° C. for 2 days, and then at 100 ° C. for 1 day. Thereafter, a core-clad type optical fiber preform was produced by vacuum drying at 90 ° C. for one day. This preform was heated and melted from the tip using a heating furnace at 250 ° C., and a plastic optical fiber having a diameter of 0.6 mm was spun. The optical transmission loss of this optical fiber was measured by the cut-back method, and it was 100 dB / km at a wavelength of 780 nm, 60 dB / km at 850 nm, and 50 dB / km at 1300 nm, and transmitted light from visible light to near infrared light well. It was confirmed that the optical fiber can be used.
[0040]
(Example 4)
A glass tube having an outer diameter of 16 mm and an inner diameter of 12 mm is charged with 10 g of PBVE, 0.1 g of PFBPO (10 hour half-temperature 68 ° C.) and 0.04 g of chloroform, and freeze degassing three times using liquid nitrogen. The tube was sealed after repeating. When this was kept in an oven at 90 ° C. for 2 days, it completely solidified. Furthermore, after maintaining at 110 ° C. for 1 day, the glass tube was broken and the polymer was taken out. As a result, a colorless transparent and tough rod-like solid was obtained.
[0041]
The intrinsic viscosity of the obtained rod-like solid (hereinafter referred to as rod C) in PBTHF at 30 ° C. was 0.43 dl / g. Further, when the rod C was heated at 200 ° C. for 1 hour, the generation of slight bubbles was not observed, and it was colorless and transparent. When the weight before and after heating was measured, the weight loss was 0.4%, and thus the reaction rate of PBVE was found to be a high value of 99% or more. Further, the light scattering intensity of the rod C was determined in the same manner as in Example 1, and the total scattering loss was calculated to be 35 dB / km.
[0042]
When the rod C was stored at a temperature of 60 ° C. and a humidity of 95%, coloring started to be confirmed from the 7th day, and the rod C turned brown on the 30th day. Thereby, although it was excellent in transparency, it was confirmed that the rod C is a polymer that is colored under high temperature and high humidity unless a stabilization treatment such as fluorination is performed after polymerization.
[0043]
(Example 5)
A glass tube with an outer diameter of 16 mm and an inner diameter of 12 mm was charged with 6 g of PBVE, 4 g of PDD, 0.1 g of PFBPO, and 0.04 g of chloroform, and after freeze-deaeration was repeated three times using liquid nitrogen Sealed. When this was kept in an oven at 90 ° C. for 2 days, it completely solidified. Furthermore, after maintaining at 110 ° C. for 1 day, the glass tube was broken and the polymer was taken out. As a result, a colorless transparent and tough rod-like solid was obtained.
[0044]
The intrinsic viscosity of the obtained rod-like solid (hereinafter referred to as “rod D”) in PBTHF at 30 ° C. was 0.43 dl / g. Further, when the rod D was heated at 200 ° C. for 1 hour, the generation of slight bubbles was not recognized and the rod D was colorless and transparent. When the weight before and after heating was measured, the weight loss was 0.9%, and it was found that the reaction rate of PBVE was a high value of 99% or more. Further, the light scattering intensity of the rod D was determined in the same manner as in Example 1, and the total scattering loss was calculated to be 36 dB / km.
[0045]
When the rod D was stored at a temperature of 60 ° C. and a humidity of 95%, coloring started to be confirmed from the 7th day, and the rod D turned brown on the 30th day. Thereby, although it was excellent in transparency, it was confirmed that the rod D is a polymer that is colored under high temperature and high humidity unless a stabilization treatment such as fluorination is performed after the polymerization.
[0046]
【The invention's effect】
By the method of the present invention, a highly transparent fluorine-containing polymer having excellent thermal stability and chemical stability and free from problems such as cloudiness, foaming and coloring can be obtained. This fluorine-containing polymer is not colored under high temperature and high humidity without being subjected to stabilization treatment such as fluorination, and can be melt-molded without generating cloudiness, foaming, coloring or the like.

Claims (1)

含フッ素脂肪族環構造を有する重合開始剤を用いて、下記含フッ素単量体(a)、(b)、(c)または(d)を塊状重合し、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体を得ることを特徴とする含フッ素重合体の製造方法。
(a)重合性二重結合の少なくとも一方の炭素原子が環を構成する炭素原子である、含フッ素脂肪族環構造を有する含フッ素単量体。
(b)2つ以上の重合性二重結合を有する環化重合しうる含フッ素単量体。
(c)含フッ素単量体(a)と、含フッ素単量体(b)。
(d)含フッ素単量体(a)、(b)から選ばれる1種以上の含フッ素単量体と、含フッ素単量体(a)、(b)以外の他の含フッ素単量体。
Using the polymerization initiator having a fluorine-containing aliphatic ring structure, the following fluorine-containing monomers (a), (b), (c) or (d) are bulk polymerized, and the main chain contains a fluorine-containing aliphatic ring structure. A method for producing a fluorine-containing polymer, comprising obtaining a fluorine-containing polymer having
(A) A fluorine-containing monomer having a fluorine-containing aliphatic ring structure, wherein at least one carbon atom of the polymerizable double bond is a carbon atom constituting a ring.
(B) A fluorine-containing monomer capable of cyclopolymerization having two or more polymerizable double bonds.
(C) a fluorine-containing monomer (a) and a fluorine-containing monomer (b).
(D) One or more fluorine-containing monomers selected from fluorine-containing monomers (a) and (b) and other fluorine-containing monomers other than fluorine-containing monomers (a) and (b) .
JP2002220962A 2002-07-30 2002-07-30 Method for producing fluorine-containing polymer Pending JP2004059763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220962A JP2004059763A (en) 2002-07-30 2002-07-30 Method for producing fluorine-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220962A JP2004059763A (en) 2002-07-30 2002-07-30 Method for producing fluorine-containing polymer

Publications (1)

Publication Number Publication Date
JP2004059763A true JP2004059763A (en) 2004-02-26

Family

ID=31941419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220962A Pending JP2004059763A (en) 2002-07-30 2002-07-30 Method for producing fluorine-containing polymer

Country Status (1)

Country Link
JP (1) JP2004059763A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256761A1 (en) * 2008-02-22 2010-12-01 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
US8129869B2 (en) 2008-09-19 2012-03-06 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
US8212433B2 (en) 2008-03-27 2012-07-03 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
US8277927B2 (en) 2008-04-17 2012-10-02 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
US8763461B2 (en) 2008-03-31 2014-07-01 Asahi Glass Company, Limited Acceleration sensor device and sensor network system
JP2021110951A (en) * 2020-01-08 2021-08-02 ダイキン工業株式会社 Display protective film
WO2021193717A1 (en) * 2020-03-26 2021-09-30 東ソ-株式会社 Fluorine resin and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256761A1 (en) * 2008-02-22 2010-12-01 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
EP2256761A4 (en) * 2008-02-22 2011-08-31 Asahi Glass Co Ltd Electret and electrostatic induction conversion device
US8212433B2 (en) 2008-03-27 2012-07-03 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
US8763461B2 (en) 2008-03-31 2014-07-01 Asahi Glass Company, Limited Acceleration sensor device and sensor network system
US8277927B2 (en) 2008-04-17 2012-10-02 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
US8129869B2 (en) 2008-09-19 2012-03-06 Asahi Glass Company, Limited Electret and electrostatic induction conversion device
JP2021110951A (en) * 2020-01-08 2021-08-02 ダイキン工業株式会社 Display protective film
CN114981689A (en) * 2020-01-08 2022-08-30 大金工业株式会社 Display protective film
WO2021193717A1 (en) * 2020-03-26 2021-09-30 東ソ-株式会社 Fluorine resin and method for producing same

Similar Documents

Publication Publication Date Title
US6221987B1 (en) Method for producing a fluorine-containing polymer
CN1049050C (en) Refractive index distribution type optical resin and production method thereof
JP3818344B2 (en) Process for producing fluorine-containing aliphatic ring structure-containing polymer
US4897457A (en) Novel fluorine-containing cyclic polymer
JP5327057B2 (en) Curable composition, fluorine-containing cured product
WO2004025340A1 (en) Plastic optical fiber
JP3719733B2 (en) Gradient index type optical resin material and manufacturing method thereof
TW201921018A (en) Optical fiber cable
JP2003040938A (en) Amorphous perfluorinated copolymer
JP2004059763A (en) Method for producing fluorine-containing polymer
JPH08510763A (en) Molded articles with progressive refractive index and low dispersibility
JP2000001511A (en) Production of fluoropolymer
WO2021020566A1 (en) Fluorine-containing copolymer, optical resin composition, and optical resin molded body
JP4132282B2 (en) Gradient index type optical resin material
JP2020023688A (en) Manufacturing method of fluorine-containing polymer and manufacturing method of molded body of fluorine-containing polymer
US7459512B2 (en) Process for preparing perfluoroalkyl vinyl ether copolymer and copolymer
KR100191225B1 (en) Transparent thermoplastic moulding material for the production of beam waveguides and the method of producing it
JP2003268039A (en) Method for producing fluorine-containing polymer
JP4747815B2 (en) Method for producing amorphous fluorine-containing resin
Nakao et al. Fabrication of high glass transition temperature graded-index plastic optical fiber: part 1–material preparation and characterizations
US20030021577A1 (en) Plastic optical fiber and process for its production
JP3489764B2 (en) Refractive index distribution type optical resin material
JP2009227787A (en) Method for producing methyl methacrylate-based copolymer, and method for producing plastic optical fiber
JP2005509912A (en) Method for producing plastic optical fiber, and plastic optical fiber obtained by the method
JP2006106779A (en) Optical plastic material, graded-refractive-index optical fiber and method for manufacturing graded-refractive-index optical plastic material