TW200925316A - Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment - Google Patents

Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment Download PDF

Info

Publication number
TW200925316A
TW200925316A TW097129547A TW97129547A TW200925316A TW 200925316 A TW200925316 A TW 200925316A TW 097129547 A TW097129547 A TW 097129547A TW 97129547 A TW97129547 A TW 97129547A TW 200925316 A TW200925316 A TW 200925316A
Authority
TW
Taiwan
Prior art keywords
coating
reactor
metal component
applying
group
Prior art date
Application number
TW097129547A
Other languages
English (en)
Inventor
Catherine Procik Dulka
David Wesley Sandusky
Young-Jin Kim
Rajasingh Schwartz Israel
Original Assignee
Ge Hitachi Nucl Energy America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Hitachi Nucl Energy America filed Critical Ge Hitachi Nucl Energy America
Publication of TW200925316A publication Critical patent/TW200925316A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Description

200925316 九、發明說明 【發明所屬之技術領域】 本發明有關金屬反應器組件以減少腐鈾產物從 件脫落的防護性塗料。 【先前技術】 核反應器水環境例如沸水反應器(B WR )、加 0 應器(PWR)及加拿大氘鈾(CANDU )反應器中之 件會產生腐蝕產物。在反應器組件係由鎳合金製成 下,出現有關含鈷腐蝕產物之顧慮,該含鈷腐蝕產 經活化物質(特別是鈷-60 )污染反應器水。某些 然存在鎳合金中作爲夾入(tramp )元素。此外, 素可被轉化成中子通量中之經活化鈷同位素。更具 ,具有鈷之腐蝕產物問題支配該污染問題。鈷在該 中子通量中變得被活化,因此有可能以經活化腐蝕 〇 染該水。反應器水中之經活化腐蝕產物可遷移至反 器外部之組件與系統,因而造成工作人員的職業曝 〇 美國專利第6,63〇,2〇2號’標題「經堅硬耐磨 蒸氣管線栓握柄的CVD處理(CVD Treatment 〇 Friction Coated Steam Line Plug Grips)」說明化 沉積(CVD )之塗層有關在溫和環境下的腐蝕防護 美國專利第6,633,623號支持該堅硬抗侵鈾一腐蝕'丨 塗層在沸水反應器(BWR )環境中之積垢方面。 該等組
壓水反 金屬組 之情況 物係以 鈷係天 鎳同位 體地說 反應器 產物污 應器容 露提高 塗佈之 f Hard 學氣相 性質。 生CVD 200925316 【發明內容】 本發明係藉由施用隔絕塗料至組件表面而減少來自核 反應器水環境中之金屬組件腐蝕的經活化腐蝕產物(諸如 Co-60 )之方法。該隔絕塗料諸如二氧化鈦(Ti02 )、二 氧化锆(Zr02 )、五氧化二鉅(Ta205 )、三氧化二鋁( A1203 )、二氧化給(Hf02 )、二氧化姉(Ce02 )或相似 氧化物係藉由化學氣相沉積(CVD )或其他塗佈方法施用 於組件表面。亦可能使用其他塗佈方法諸如藉由電漿或 HVOF之熱噴灑塗佈、引線弧、PVD、RF濺鍍與電鍍。塗 層厚度可在0.1微米至〇.3mm之範圍,此係視塗佈方法而 定。亦注意到該塗料可以金屬元素施用,該金屬元素即Ti 、Zr、Ta、Al、Hf、Ce等最終在反應器水中會被氧化而 形成氧化物例如Ti02。該塗料在該組件表面與該反應器水 環境之間提供一防護層。在反應器金屬組件上塗佈的主要 目的係減少及/或消除腐鈾的可能性。進行此舉,經活化 腐蝕產物污染反應器水的可能性因此被消除或最小化。該 塗料對於造成大量含鈷腐蝕產物的以鎳合金爲基底之金屬 尤其有益。其在沃斯田不鏽鋼組件上亦有效,此係因不鏽 鋼含有大量鎳,以及含有某些鈷作爲夾入元素之故。例如 ,CVD處理施用保形表面塗層,且塡充該金屬組件中之孔 隙及/或孔洞。此外,在先前專利中,該堅硬、抗侵鈾-腐蝕CVD塗層已顯示出對反應器水環境有抗性。因此, 藉由密封表面與孔隙,濕氣侵入基底金屬的可能性降低及 -6 - 200925316 落至反應器水 將被設置於反 薄隔絕塗層( 較佳塗料爲二 鉅、二氧化锆 相似氧化物。 處理之優點如 0.1至5微米 面,包括穿孔 、二氧化酞、 易劣化之其他 表面並以CVD 有抗侵蝕與抗 /或消除,因而降低腐蝕與隨後腐鈾產物脫 的可能性。 【實施方式】 本發明藉由CVD或其他塗佈方法而在 應器水環境內之反應器組件的曝露表面提供 或會在反應器水環境中氧化之金屬塗層)。 Q 氧化鈦,不過其他氧化物塗料可爲五氧化二 或用於反應器水環境中不會輕易劣化之其他 對反應器水環境中之金屬組件做CVD表面 下: • 施用最小厚度之CVD塗層(例如 ); • 容許保形表面處理,其覆蓋所有表 、孔洞、間隙與裂縫之內部; 0 · 以堅硬氧化物材料例如五氧化二鉬 二氧化銷或不會因反應器水與中子曝露而輕 類似氧化物塡充金屬組件之孔洞及/或間隙; • 係保形表面處理,其容許覆蓋金屬 材料塡充任何孔洞、間隙、裂縫; • 該CVD處理在反應器水環境下具 腐蝕性; 該CVD處理係在金屬表面上之堅硬而黏著塗層 200925316 • 該CVD處理可消除或減少金屬組件之腐蝕產物 進入該反應器水環境;及 • 藉由電漿或高速氧燃料熱噴灑法(HVOF )之熱 噴灑塗佈、物理氣相沉積(PVD )、射頻(RF )濺鍍處理 、電鍍與無電式電鍍係在某些組件上施用塗層厚度5微米 至0.3mm之此種塗料的替代性方法。 • 該金屬元素諸如Ti、Ta ' Al、Zr、Hf、Ce等可 Q 經塗佈作爲最終在反應器水環境中會氧化之防護性塗料。 可藉以化學氣相沉積(CVD )施用之各種金屬氧化物 例如 Ti02、Ta205、Zr02、A1203、Hf02 與 Ce02 因其熱安 定性與化學安定性以及低熱膨脹係數之故而廣泛作爲腐蝕 阻障層之材料。耐火氧化物的主要特徵係在各種腐蝕與高 溫環境下具有優異抗腐蝕性。因此,塗佈反應器水環境中 之金屬組件消除及/或減少該組件腐蝕因而以經活化物質 〇 污染該反應器水的可能性。由於鈷構成水準高之故,鎳合 金組件最受關切。該CVD處理(如圖1所見)在金屬部 件之表面上產生保形塗層,其塡充孔隙/間隙並保護該部 件的基底金屬免於腐蝕。由於該處理,使基底金屬合金免 於接觸該反應器水環境與所形成的腐蝕及腐蝕產物進入水 中的損失。此等抑制腐蝕塗料已用於會經受腐蝕的氣體渦 輪機、飛機引擎、葉輪、閥與其他組件/表面。針對該塗 料提出之一種應用係維持個別燃料棒在BWR燃料束中之 位置的間隔件裝配件。就某些設計而言,此等間隔件係由 -8- 200925316 鎳合金X-75 0製成。各燃料束中有數個間隔件,因此鎳合 金大量表面積曝露於反應器水環境。由於間隔件直接在核 心中,其受到高度輻射,因此可能釋放出大量經腐蝕產物 至反應器水。施用該氧化物塗料藉由隔絕鎳合金與反應器 水而明顯減少或消除經活化腐蝕產物之釋放。 圖2係經CVD處理之不鏽鋼表面的電子顯微照片( SEM )。埋入環氧樹脂無法從304SS基材去除Ti02塗層 ,亦無法令Ti02塗層本身斷裂。此表示對金屬基材進行 CVD所產生之Ti02塗層的強機械安定性與黏著性。此種 塗料亦已用於各種產物,諸如氣體渦輪機與飛機引擎葉片 。反映此等結果之數據係列於下表1。
關於圖2,注意到在高流動性電極設置中浸沒一個月 後,介於塗層與不鏽鋼表面之黏著力未從其原有數値改變 。此外,在此試驗期間發現該塗層未層離,而是在BWR ❹ 環境中被緩慢侵蝕。已測量試驗期間之侵鈾一腐蝕率,並 從試驗結果外推求得該Ti〇2塗層的可能使用期限大於20 年。反映此等結果之數據係列於下表1。 200925316 表1在304 SS上之Ti02塗層的電阻測量 在304SS試片上之Ti02塗層 在 1000 rpm 下浸入 150ppb H2+30 ppb 〇2+5ppb Zn 以Keithley 017型靜電計測量電阻 試樣 Ti〇2塗層 浸漬 在304 SS上之Ti〇2電阻,ΜΩ 邊緣-中心 邊緣-邊緣 112204 Ιμιη ίΕ 8.3-10.5 7.8-11.5 5.6-9.2 112904 2μιη yfrrr M 7.4-12.1 6.5-10.9 7.2-8.9 112204-Α2 Ιμιη 1個月 1.5-5.1 0.2-2.3 2.0-7.5 112904-Α2 2μηι 1個月 23-44 20-54 15-25 ❹
在2 8 0 °C水中塗層完整性未劣化 在3 04 SS上之Ti02塗層的黏著強度(在280 °C水中浸 漬1個月後) 受測日期 塗料 樣本ID 塗層厚度 (微米) 黏著性 試驗編號 所施加之 最大壓力 (ksi) 黏著性試驗螺 樁是否突然脫 離? 顯示濕潤該 表面之環氧 樹脂% 區域測量 2/15/2005 Ti02 112204-A2 1 1 9 否 110 位於中心 2/16/2005 2 9 否 110 册邊緣 2/15/2005 Ti02 112304-A2 1 1 9 否 110 位於中心 2/16/2005 2 9 否 110 位於邊緣 2/15/2005 Ti02 112904-A2 2 1 9 否 110 位於邊緣 2/16/2005 2 9 否 110 位於中心 2/15/2005 Ti02 113004-A2 2 1 9 否 110 mm緣 2/16/2005 2 9 否 110 位於中心 •使用Sebastian 1黏著性試驗機。使用P/N 9011060 0.105"頭直徑全新螺樁,批號 409101 。 •環氧樹脂係在空氣中於145-150Ό下固化1.1小時。此等新螺樁上之環氧樹脂濕潤比螺 樁之金屬頭多約10%之表面積。 ,雖然所有此等試驗進行該儀器之10.0-10.2 ksi限制,但考慮較大環氧樹脂塗佈面積, 所施加之最大壓力係降至9 ksi。 __ 在280°C水中浸漬無黏著性損失 -10- Ο Ο 200925316 圖3係Ti02塗層之抗侵飩-腐蝕性質。抗廢 例如Ta205 (五氧化二钽)、Ti02 (二氧化鈦)' 三氧化二鋁)等係施用在蒸氣管線栓握柄之堅硬摩 該塗佈目的係藉由各種塗佈方法例如藉由PVD或 充摩擦面中之孔洞與龜裂。 圖5顯示沿著蒸氣管線栓握柄之堅硬耐磨塗閹 裂與孔洞表面而沉積之CVD五氧化二钽層的SEM 其說明塗料進入孔洞/龜裂/間隙內之深度。藉由鹽 ASTM標準G1 12 )評估五氧化二鉅抗腐蝕層之功效 圖4a與4b顯示具有及不具五氧化二鉬塗層 擦面在鹽霧試驗後的經腐蝕表面形態。可看出藉 化二鉬塗層明顯減少或緩和摩擦面之腐蝕。 雖然已有關目前被視爲最實用且較佳具體實 本發明,但應暸解本發明不局限於所揭示具體實 ,希望本發明涵蓋包括在附錄申請專利範圍之精 內的各種修改與等效物。 【圖式簡單說明】 圖1顯示化學氣相沉積之隔絕氧化物塗層的 與強黏著性。 圖2係經CVD處理之不鏽鋼表面的電子顯 其顯示二氧化鈦(Ti02)塗層在模擬之高溫與高 的估算腐蝕率。 圖3係二氧化鈦(Ti02 )塗層之黏著且抗侵 ί蝕塗料 A 1 2 〇 3 ( 〖擦面。 CVD塡 [中的龜 斷面。 霧法( 〇 .堅硬摩 該五氧 而說明 ,反之 與範圍 形性質 照片, 動性下 一腐蝕 -11 - 200925316 性質的圖。 圖4a與4b顯示具有五氧化二鉬(Ta2〇5) 具該塗層之蒸氣管線栓握柄在鹽霧試驗後之堅® 層的表面形態。 圖5顯示藉由CVD所製得之五氧化二钽( 的斷面圖,其顯示該五氧化二鉬層係沿著堅硬雨 之龜裂與孔洞表面而沉積。 塗層與不 5耐磨性塗 Ta2〇5 )層 f磨塗層中
-12-

Claims (1)

  1. 200925316 十、申請專利範圍 1· 一種減少及/或緩和核反應器水環境中之金屬組件 腐蝕之方法,其包含令一隔絕塗料施用於該金屬組件表面 之步驟。 2.如申請專利範圍第1項之方法,其中該核反應器 水環境係選自由沸水反應器(BWR )、加壓水反應器( PWR)及加拿大氘鈾(CANDU)反應器所組成之群組的環 ❹ 境。 3- 如申請專利範圍第1項之方法,其包含令該隔絕 塗料施用於該金屬組件表面之步驟,以便塡充該金屬組件 中之孔隙及/或孔洞。 4- 如申請專利範圍第1項之方法,其中該隔絕塗料 係氧化物隔絕塗料。 5. 如申請專利範圍第4項之方法,其中該氧化物隔 絕塗料係選自由 Ti02、Zr02、Ta205、Al2〇3、Ce02 與 Q Hf02所組成之群組。 6. 如申請專利範圍第1項之方法,其中該隔絕塗料 係於反應器水環境中會氧化之金屬塗料。 7. 如申請專利範圍第6項之方法,其中該金屬塗料 係選自由Ti、Zr、Ta、Al、Ce與Hf所組成之群組。 8. 如申請專利範圍第1項之方法,其中令該隔絕塗 料施用於金屬組件表面之步驟另外包含使用化學氣相沉積 (CVD)之施用法’其厚度實質上在0.1至5微米之範圍 -13- 200925316 9.如申請專利範圍第1項之方法,其中令該隔絕塗 料施用S金屬組件表面的步驟另外包含使用選自由藉由電 漿或高速氧燃料熱噴灑法(HVOF)之熱噴灑塗佈、物理 氣相沉積(PVD )、射頻(RF)濺鍍處理、電鍍與無電式 電鍍所組成之群組的施用方法。 1〇·如申請專利範圍第9項之方法,其中令該隔絕塗 料施用至金屬組件表面的步驟另外包含施用厚度實質上在 0.1微米至0.3mm之範圍的塗料。 11.如申請專利範圍第1項之方法,其中該塗料在核 反應器水中具有抗侵蝕及抗腐蝕性,該核反應器水包括重 水。 1 2.如申請專利範圍第1項之方法,其中該塗料係 0.1微米至0.3 mm之氧化物或金屬元素的薄層,該金屬元 素亦即Ti、Zr、Ta、Al、Hf、Ce等在反應器水中最終會 氧化而形成氧化物,例如Ti02。 1 3 .如申請專利範圍第1項之方法’其中該塗料係在 該金屬組件表面之堅硬而黏著塗層。 14. 一種減少及/或緩和核反應器水環境中之金屬組 件腐蝕之方法,包含令一塗料施用於該金屬組件表面之步 驟,以便對該等表面施用保形表面處理’因而塡充該金屬 組件中之空隙及/或孔洞。 15. 如申請專利範圍第14項之方法’其中該核反應 器水環境係選自由沸水反應器(BWR)、加壓水反應器( PWR)及加拿大氘鈾(CANDU)反應器所組成群組之環境 -14- 200925316 16. 如申請專利範圍第14項之方法,其中該塗料係 選自由 Ti02、Zr02、Ta205、Al2〇3、Ce02 及 Hf02 所組成 之群組的氧化物隔絕塗料。 17. 如申請專利範圍第14項之方法,其中該塗料係 在反應器水環境中會氧化並選自由Ti、Zr、Ta、Al、Ce 與Hf所組成之群組的金屬塗料。 18. 如申請專利範圍第14項之方法,其中該塗料係 使用選自由化學氣相沉積(CVD )、藉由電漿或高速氧燃 料熱噴灑法(HVOF )之熱噴灑塗佈、物理氣相沉積( PVD )、射頻(RF)濺鍍處理、電鑛與無電式電鍍所組成 之群組的施用方法加以施用。 19. 如申請專利範圍第16項之方法,其中令該氧化 物隔絕塗料施用至金屬組件表面的步驟另外包含施用最小 厚度實質上在0.1至5微米之範圍的該氧化物塗料。 20. 如申請專利範圍第18項之方法,其中令該隔絕 塗料施用至金屬組件表面的步驟另外包含施用厚度實質上 在0.1微米至〇.3mm之範圍的該塗料。 21. 如申請專利範圍第1項之方法,其另外包含令該 隔絕塗料施用於該金屬組件表面之步驟,以便對該等表面 施用保形表面處理。 15-
TW097129547A 2007-08-16 2008-08-04 Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment TW200925316A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/889,757 US20090046825A1 (en) 2007-08-16 2007-08-16 Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment

Publications (1)

Publication Number Publication Date
TW200925316A true TW200925316A (en) 2009-06-16

Family

ID=40010740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129547A TW200925316A (en) 2007-08-16 2008-08-04 Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment

Country Status (6)

Country Link
US (1) US20090046825A1 (zh)
EP (1) EP2031091A1 (zh)
JP (1) JP2009047692A (zh)
CN (1) CN101423943A (zh)
MX (1) MX2008010475A (zh)
TW (1) TW200925316A (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872286B2 (ja) * 2009-03-30 2016-03-01 株式会社東芝 耐食性部材
US8871306B2 (en) * 2009-04-16 2014-10-28 Chevron U.S.A. Inc. Structural components for oil, gas, exploration, refining and petrochemical applications
US9284227B2 (en) * 2009-04-16 2016-03-15 Chevron U.S.A. Inc. Structural components for oil, gas, exploration, refining and petrochemical applications
US20100266790A1 (en) * 2009-04-16 2010-10-21 Grzegorz Jan Kusinski Structural Components for Oil, Gas, Exploration, Refining and Petrochemical Applications
US8320427B2 (en) * 2009-12-16 2012-11-27 General Electric Company Cold walled induction guide tube
JP6088173B2 (ja) * 2011-11-24 2017-03-01 日立Geニュークリア・エナジー株式会社 原子力プラントの構成部材への放射性核種付着抑制方法
US8971476B2 (en) * 2012-11-07 2015-03-03 Westinghouse Electric Company Llc Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application
US20140349013A1 (en) * 2013-05-23 2014-11-27 Uni-Pixel Displays, Inc. Method of manufacturing a low volume transfer anilox roll for high-resolution flexographic printing
CN104294205B (zh) * 2014-09-11 2017-01-25 芜湖鼎瀚再制造技术有限公司 一种ZrO2‑HfO2涂层及其制备方法
CN104409118B (zh) * 2014-10-23 2017-01-11 华北电力大学 研究聚变堆腐蚀产物沉积的热工水力实验系统及方法
JP2016186430A (ja) * 2015-03-27 2016-10-27 日立Geニュークリア・エナジー株式会社 原子炉構造部材の防食方法と製造方法、及び原子炉構造部材
JP6588356B2 (ja) * 2016-02-09 2019-10-09 日立Geニュークリア・エナジー株式会社 原子炉構造部材の製造方法および防食方法
US20180016678A1 (en) 2016-07-15 2018-01-18 Applied Materials, Inc. Multi-layer coating with diffusion barrier layer and erosion resistant layer
US20180025794A1 (en) * 2016-07-22 2018-01-25 Westinghouse Electric Company Llc Spray methods for coating nuclear fuel rods to add corrosion resistant barrier
JP7198746B2 (ja) * 2016-09-28 2023-01-04 コミサーリャ ア レナジー アトミック エー オー エナジー アルタナティブ 金属基材を有する原子炉コンポーネント、dli-mocvdによる製造方法および酸化/水素化に対する使用
WO2021092401A1 (en) 2019-11-08 2021-05-14 Abilene Christian University Identifying and quantifying components in a high-melting-point liquid
CN114085098B (zh) * 2021-11-26 2023-02-28 云南警官学院 一种耐腐蚀抗烧结抗高温蠕变的氧化铝复合陶瓷及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389055A (en) * 1965-04-05 1968-06-18 Gen Electric Jet pump assembly in a nuclear reactor
EP0209048B1 (en) * 1985-07-10 1990-06-13 Hitachi, Ltd. Process and apparatus for cleaning nuclear reactor cooling water
JPS63274751A (ja) * 1987-05-01 1988-11-11 Toyota Motor Corp セラミック溶射部材
JPH07228963A (ja) * 1994-02-17 1995-08-29 Nuclear Fuel Ind Ltd 原子燃料用折出硬化型ニッケル基合金材
JP3605969B2 (ja) * 1996-10-31 2004-12-22 石川島播磨重工業株式会社 防食用チタン酸化膜の作製方法および防食用チタン酸化膜
US6633623B2 (en) * 2000-11-29 2003-10-14 General Electric Company Apparatus and methods for protecting a jet pump nozzle assembly and inlet-mixer
JP2003232886A (ja) * 2002-02-06 2003-08-22 Toshiba Corp 金属材料の腐食低減方法
US6630202B1 (en) * 2002-09-30 2003-10-07 General Electric Company CVD treatment of hard friction coated steam line plug grips
JP4430372B2 (ja) * 2003-04-15 2010-03-10 株式会社神戸製鋼所 耐食性に優れた金属構造体、前記金属構造体を製造するための材料および前記金属構造体の製法
US8023609B2 (en) * 2004-12-30 2011-09-20 General Electric Company Dielectric coating for surfaces exposed to high temperature water
US20070003001A1 (en) * 2005-06-30 2007-01-04 General Electric Company Method for mitigation oxide fouling in structural components in light water reactors
JP3828139B2 (ja) * 2005-07-05 2006-10-04 株式会社東芝 構造物の補修装置

Also Published As

Publication number Publication date
CN101423943A (zh) 2009-05-06
US20090046825A1 (en) 2009-02-19
JP2009047692A (ja) 2009-03-05
EP2031091A1 (en) 2009-03-04
MX2008010475A (es) 2009-03-05

Similar Documents

Publication Publication Date Title
TW200925316A (en) Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment
Kuprin et al. Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air
Khatkhatay et al. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water
Ma et al. Evaluation of corrosion and oxidation behaviors of TiAlCrN coatings for nuclear fuel cladding
CA2753268C (en) Anti-erosion coating system for gas turbine components
US8038894B2 (en) Method of selectively stripping an engine-run ceramic coating
Jin et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam
Wang et al. Degradation and structure evolution in corrosive LiOH solution of microarc oxidation coated Zircaloy-4 alloy in silicate and phosphate electrolytes
Raiman et al. Hydrothermal corrosion of coatings on silicon carbide in boiling water reactor conditions
US7758743B2 (en) Electrochemical corrosion potential sensor and method of making
JP2022547597A (ja) ジルコニウム合金核燃料棒におけるセラミックコーティングの物理的気相成長
JP2000355752A (ja) 可動部品の表面に適用されるセラミック溶射皮膜
Dai et al. Al2O3–TiO2 composite coatings with enhanced anticorrosion properties for 316L stainless steel
Lee et al. Microstructural characteristics and different effects of 800–1200° C preformed oxides on high-temperature steam oxidation of a zirconium alloy cladding
RU2402639C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на детали из жаропрочных сплавов
Kumar et al. Mitigation of chloride driven stress corrosion cracking susceptibility of 316L austenitic stainless steel using plasma sprayed TiO2 coating
Lee et al. The effect of bond coat oxidation on the failure of thermal barrier coatings
Memarrashidi The aqueous corrosion response of Ti (C, N), TiC and WC based ceramic-metal composites
Pazderová et al. Improvement of steels' corrosion resistance in liquid lead and lead-bismuth by coatings
JPS60100657A (ja) 金属の表面処理法
Baiamonte et al. Thermal spray coatings for corrosion and wear protection of naval Diesel engines components
RU2349679C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд
Dai et al. Hydrothermal corrosion of SiC coupons suppressed by magnetron sputtered Cr coatings
WO2013061945A1 (ja) 耐熱合金部材およびその製造方法
RU2688417C1 (ru) Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя