RU2349679C1 - Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд - Google Patents

Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд Download PDF

Info

Publication number
RU2349679C1
RU2349679C1 RU2007119212/02A RU2007119212A RU2349679C1 RU 2349679 C1 RU2349679 C1 RU 2349679C1 RU 2007119212/02 A RU2007119212/02 A RU 2007119212/02A RU 2007119212 A RU2007119212 A RU 2007119212A RU 2349679 C1 RU2349679 C1 RU 2349679C1
Authority
RU
Russia
Prior art keywords
zro
blades
coating
ceramic layer
annealing
Prior art date
Application number
RU2007119212/02A
Other languages
English (en)
Other versions
RU2007119212A (ru
Inventor
Владимир Петрович Панков (RU)
Владимир Петрович Панков
Петр Тимофеевич Коломыцев (RU)
Петр Тимофеевич Коломыцев
Денис Владимирович Панков (RU)
Денис Владимирович Панков
Original Assignee
Владимир Петрович Панков
Петр Тимофеевич Коломыцев
Денис Владимирович Панков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Петрович Панков, Петр Тимофеевич Коломыцев, Денис Владимирович Панков filed Critical Владимир Петрович Панков
Priority to RU2007119212/02A priority Critical patent/RU2349679C1/ru
Publication of RU2007119212A publication Critical patent/RU2007119212A/ru
Application granted granted Critical
Publication of RU2349679C1 publication Critical patent/RU2349679C1/ru

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к машиностроению, а именно к способам нанесения комбинированных покрытий для защиты деталей ГТД от газовой и сульфидной коррозии. Способ включает хромоалитирование в порошковой смеси, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2-8Y2O3 на входные кромки лопаток электронно-лучевым методом и диффузионный отжиг для окончательного формирования структуры покрытия. Перед диффузионным отжигом на слой керамики ZrO2-8Y2О3 электронно-лучевым методом наносят слой керамики ZrO2-11Y2O3-40Аl2О3 толщиной 10-15 мкм. Диффузионный отжиг проводят с формированием структуры покрытия на входных кромках лопаток, состоящей из [ZrO2-11Y2O3-40Аl2O3]-(ZrO2-8V2О3) - β+γ' - фазы и переходящей в β+γ' - фазу на остальных участках лопатки. Технический результат заключается в повышении долговечности и надежности лопаток турбин. 2 ил.

Description

Изобретение относится к способам получения комбинированных покрытий для защиты от окисления при высокой температуре металлов и сплавов и может быть использовано в машиностроении для защиты деталей от газовой и сульфидной коррозии.
Известны способы нанесения конденсационных, диффузионных и теплозащитных покрытий, применяемых для обеспечения работоспособности лопаток высокотемпературных турбин, полученные методом электронно-лучевого напыления или плазменного осаждения на воздухе или в вакууме. Основными факторами, влияющими на долговечность теплозащитного покрытия, являются: жаростойкость металлического подслоя, структура и состав керамического слоя, соответствие коэффициентов термического расширения подслоя и керамики (см. Коломыцев П.Т. Газовая коррозия и прочность никелевых сплавов. М.: Металлургия, 1984 г., 215 с.).
Существенным недостатком диффузионных покрытий является их низкая стабильность и долговечность при высоких температурах. Теплозащитные покрытия характеризуются более низкой теплопроводностью, но растрескиваются и отслаиваются при теплосменах под действием термомеханических нагрузок (см. Абраимов Н.В., Елисеев Ю.С. Химико-термическая обработка жаропрочных сталей и сплавов. М.: Интермет Инжиниринг, 2001 г., 620 с.).
Электронно-лучевые керамики на основе диоксида циркония имеют высокую кислородопроницаемость (см. Жук И.Н., Коломыцев П.Т., Семенов А.П. Исследование эффективности применения теплозащитных покрытий. Защитные покрытия. Научно-методические материалы. М.: ВВИА им. Н.Е.Жуковского, 1994 г., стр.106-111).
Известен способ нанесения покрытия на лопатки турбин, включающий предварительную абразивно-жидкостную обработку, нанесение слоя жаростойкого покрытия из сплава на никелевой основе методом вакуум-плазменной технологии, нанесение второго слоя из сплава на основе алюминия, легированного никелем 13-16% и иттрием 1,5-1,8%, вакуумный отжиг и подготовку перед нанесением третьего керамического слоя из диоксида циркония, стабилизированного 7-9% оксида иттрия (ZrO2 - 7V2О3), и последующий вакуумный диффузионный и окислительный отжиг (патент на изобретение РФ №2078148). Покрытие, получаемое данным способом, должно иметь толщину до 300 мкм с целью получения достаточного теплоперепада по толщине покрытия, что приводит к снижению его служебных характеристик и не снижает кислородопроницаемости керамического слоя.
Известен способ нанесения покрытия на детали, работающие при высоких температурах, включающий предварительную обработку поверхности детали, нанесение первого слоя жаростойкого покрытия из сплава на основе никеля, нанесение второго слоя, содержащего алюминий. Затем проводят вакуумный диффузионный отжиг, подготовку поверхности под напыление третьего слоя покрытия из порошка ZrO2 - Yb2О3 или смеси порошков ZrO2 - Yb2О3 и ZrO2 - Y2О3 (патент на изобретение РФ №2280095, опубл. 20.07.2006 г., бюл. №20).
Для нанесения покрытия используют порошок ZrO2+(2-5)%Y2О3+(3-4)%YbO3 (патент Японии 61-41757).
Частичная замена в порошковой смеси иттрия на иттербий не повышает долговечность покрытия, а лишь снижает его стоимость.
Известен способ получения эрозионностойких теплозащитных покрытий на основе композиции ZrO2+NiCr (патент на изобретение РФ №2283363, опубл. 10.09.2006 г., бюл. №25). В данном способе использование оксида кальция в качестве стабилизирующей добавки приводит к снижению теплостойкости композиции в целом, а введение порошка нихрома в порошки диоксида циркония повышают лишь эрозионную стойкость покрытия.
Наиболее близким техническим решением является способ нанесения комбинированного жаростойкого покрытия на лопатки турбин, включающий хромоалитирование в вакууме в порошковой смеси, термовакуумную обработку путем закалки, после чего производят электронно-лучевое напыление на входные кромки лопаток слоя керамики ZrO2 - 8Y2О3 и последующий диффузионный отжиг для окончательного формирования покрытия (см. патент на изобретение РФ №2272089, кл. С23С 28/00, опубл. 20.03.2006 г., бюл. №8), принятый за прототип.
Покрытие используется для защиты наружной поверхности рабочих лопаток ГТД от высокотемпературного окисления, работающих при более высоких температурах (1000-1180)°С.
Покрытие имеет состав, толщину и структуру, а следовательно, и свойства, соответствующие условиям работы, профилю защищаемой лопатки.
Покрытие, получаемое таким образом, обладает недостаточной долговечностью при температурах (1150-1200)°С. Это объясняется тем, что керамическая составляющая комбинированного покрытия, нанесенная электронно-лучевым методом, обладая высокой термостойкостью, имеет высокую кислородопроницаемость, обусловленную ее структурой столбчатого строения.
При работе двигателя к сокращению долговечности покрытия приводят процессы образования солевых отложений на поверхности керамического слоя, заполнение отложениями солей пор и микротрещин, развитие химических реакций в структуре керамики. Эти реакции оказывают влияние на дестабилизацию диоксида циркония и вызывают образование неблагоприятного напряженного состояния в системе вследствие изменения фазового состава ZrO2, изменение пористости и проницаемости покрытия.
Технической задачей изобретения является увеличение рабочих температур газовых турбин и повышение их долговечности за счет применения комбинированного теплозащитного покрытия (ТЗП).
Технический результат изобретения заключается в повышении долговечности и надежности деталей, работающих в условиях переменных термомеханических нагрузок и высокотемпературного окисления за счет нанесения комбинированного теплозащитного покрытия с изменяющимся в соответствии с условиями работы составом и структурой по профилю защищаемой детали и пониженной кислородопроницаемостью керамической составляющей покрытия.
Сущность изобретения заключается а том, что в способе нанесения комбинированного теплозащитного покрытия на лопатки турбин, включающем хромоалитирование в порошковой смеси, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2-8Y2О3 на входные кромки лопаток электронно-лучевым методом и диффузионный отжиг для окончательного формирования структуры покрытия, перед диффузионным отжигом на слой керамики (ZiO2-8Y2O3) электронно-лучевым методом наносят слой керамики [ZrO2-11Y2O3 - 40Al2О3] толщиной 10-15 мкм, а диффузионный отжиг проводят с формированием структуры покрытия на входных кромках лопаток, состоящей из [ZrO2-11Y2О3-40Al2О3]-(ZrO2-8Y2О3) - β+γ' - фазы и переходящей в β+γ' - фазу на остальных участках лопатки.
Технический результат достигается за счет нового действия в нанесении комбинированного теплозащитного покрытия на лопатки турбин, а именно: нанесения электронно-лучевым методом на входные кромки лопаток с керамическим слоем столбчатого строения состава ZrO2-8Y2О3 плотного слоя керамики [ZrO2-11Y2O3-40Al2O3].
Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ существенно отличается от известного тем, что на входные кромки лопаток состава ZrO2-8Y2О3 - β+γ' - фаза дополнительно электронно-лучевым методом наносят плотный слой керамики состава ZrO2-11Y2О3-40 Al2О3. Последующий диффузионный отжиг формирует окончательный состав, структуру и свойства комбинированного теплозащитного покрытия.
На фиг.1 приведена зависимость изменения удельной массы образцов с покрытиями при изотермической выдержке при температуре 1100°С.
На фиг.2 приведена зависимость числа циклов испытаний до появления первой трещины в покрытии от состава покрытия.
Пример конкретного выполнения (оптимальный)
Способ нанесения комбинированного покрытия реализован следующим способом. Покрытие наносят на лопатку, изготовленную из никелевого сплава. Хромоалитирование в вакууме в порошковой смеси вели при температуре процесса, равной 1190°С, продолжительностью процесса 1 ч 30 мин. Толщина получаемого покрытия 70-80 мкм. Порошковая смесь содержит 13% алюминия, 47% хрома, 50% окиси алюминия. Затем лопатки турбины с покрытием подвергались термовакуумной обработке (ТВО) путем закалки - температура 1240°С, продолжительностью 1 ч 45 мин. В процессе ТВО происходит формирование оптимальной структуры и свойств покрытия в районе спинки, корыта, выходной кромки. На входные кромки лопаток электронно-лучевым методом дополнительно наносили слой системы ZrO2-8Y2О3 столбчатой структуры. На слой покрытия Zr2O3-8Y2О3 электронно-лучевым методом наносили плотный слой керамики толщиной 10-15 мкм состава ZrO2-11Y2O3-40Al2О3. Толщина керамического слоя составляет 80-95 мкм. Все керамические слои наносили на промышленной установке УЭ-175. В процессе последующего диффузионного отжига при температуре 850°С и продолжительности 32 часа формируется окончательный состав покрытия.
Данные по толщинам слоев покрытия определяли на оптическом микроскопе «Neophot-21». Химический состав определялся микрорентгеноспектральным способом на электронном микроскопе «Stereoscan - S-600» с микроанализатором «Link». Состояние покрытий при испытаниях контролировали ЛЮМ-1-ОВ методом.
Использование способа наиболее эффективно для защиты от высокотемпературного окисления рабочих лопаток турбин в связи с их высокой стоимостью и решающим влиянием их ресурса на ресурс ГТД в целом.

Claims (1)

  1. Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин, включающий хромоалитирование в порошковой смеси, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2-8Y2O3, на входные кромки лопаток электронно-лучевым методом и диффузионный отжиг для окончательного формирования структуры покрытия, отличающийся тем, что перед диффузионным отжигом на слой керамики ZrO2-8Y2О3 электронно-лучевым методом наносят слой керамики ZrO2-11Y2O3-40Аl2O3 толщиной 10-15 мкм, а диффузионный отжиг проводят с формированием структуры покрытия на входных кромках лопаток, состоящей из [ZrO2-11Y2O3-40Аl2O3]-(ZrO2-8V2O3) - β+γ' - фазы и переходящей в β+γ' - фазу на остальных участках лопатки.
RU2007119212/02A 2007-05-23 2007-05-23 Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд RU2349679C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007119212/02A RU2349679C1 (ru) 2007-05-23 2007-05-23 Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007119212/02A RU2349679C1 (ru) 2007-05-23 2007-05-23 Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд

Publications (2)

Publication Number Publication Date
RU2007119212A RU2007119212A (ru) 2008-11-27
RU2349679C1 true RU2349679C1 (ru) 2009-03-20

Family

ID=40545272

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007119212/02A RU2349679C1 (ru) 2007-05-23 2007-05-23 Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд

Country Status (1)

Country Link
RU (1) RU2349679C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469129C1 (ru) * 2011-04-01 2012-12-10 Общество с ограниченной ответственностью Научно-производственное предприятие "Защита-Юг" (ООО НПП "Защита-Юг") Способ нанесения комбинированного теплозащитного покрытия на детали из жаропрочных сплавов
RU2755131C1 (ru) * 2020-10-20 2021-09-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное авиационное училище летчиков имени Героя Советского Союза А.К. Серова" Способ нанесения комбинированного жаростойкого покрытия на лопатки турбин гтд

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469129C1 (ru) * 2011-04-01 2012-12-10 Общество с ограниченной ответственностью Научно-производственное предприятие "Защита-Юг" (ООО НПП "Защита-Юг") Способ нанесения комбинированного теплозащитного покрытия на детали из жаропрочных сплавов
RU2755131C1 (ru) * 2020-10-20 2021-09-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное авиационное училище летчиков имени Героя Советского Союза А.К. Серова" Способ нанесения комбинированного жаростойкого покрытия на лопатки турбин гтд

Also Published As

Publication number Publication date
RU2007119212A (ru) 2008-11-27

Similar Documents

Publication Publication Date Title
US4916022A (en) Titania doped ceramic thermal barrier coatings
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
JP5437573B2 (ja) 合金組成物及びそれを含む物品
KR20070077057A (ko) 용융 규산염 저항성 외층을 구비한 이트리아 안정화지르코니아 피막
US7537806B2 (en) Method for producing a thermal barrier coating on a substrate
JP7174811B2 (ja) 高温部材
Saini et al. Thermal barrier coatings-applications, stability and longevity aspects
JP2008168346A (ja) 合金組成物及びそれを含んでなる物品
EP3748031B1 (en) Reflective coating and coating process therefor
Zhu et al. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process
Goti et al. Isothermal oxidation behaviour of NiCoCrAlYTa coatings produced by HVOF spraying and Tribomet™ process
RU2423551C2 (ru) Способ формирования теплозащитного покрытия
RU2375499C2 (ru) Способ получения многослойного теплозащитного покрытия на деталях из жаропрочных сплавов
EP1400607B1 (en) Thermal barrier coating with improved strength and fracture toughness
RU2402639C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на детали из жаропрочных сплавов
RU2349679C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд
JP2007239101A (ja) 遮熱コーティングのためのボンドコーティング法
RU2532646C1 (ru) Многослойное теплозащитное покрытие
RU2755131C1 (ru) Способ нанесения комбинированного жаростойкого покрытия на лопатки турбин гтд
Prater et al. Ceramic thermal barrier coatings with improved corrosion resistance
RU2469129C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на детали из жаропрочных сплавов
Bakkar et al. A new approach to protect and extend longevity of the thermal barrier coating by an impermeable layer of silicon nitride
RU2272089C1 (ru) Способ нанесения комбинированного жаростойкого покрытия на лопатки турбин
RU2688417C1 (ru) Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя
Pint et al. Effect of APS flash bond coatings on furnace cycle lifetime of disks and rods