TW200405559A - Method for the post-treatment of a photovoltaic cell - Google Patents

Method for the post-treatment of a photovoltaic cell Download PDF

Info

Publication number
TW200405559A
TW200405559A TW092113311A TW92113311A TW200405559A TW 200405559 A TW200405559 A TW 200405559A TW 092113311 A TW092113311 A TW 092113311A TW 92113311 A TW92113311 A TW 92113311A TW 200405559 A TW200405559 A TW 200405559A
Authority
TW
Taiwan
Prior art keywords
photovoltaic cell
photovoltaic special
photovoltaic
treatment
electron donor
Prior art date
Application number
TW092113311A
Other languages
English (en)
Inventor
Sariciftci Serdar
Denk Patrick
Rittberger Roman
Padinger Franz
Gloetzl Erhard
Original Assignee
Konarka Austria Forschungs Und Entwicklungs Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konarka Austria Forschungs Und Entwicklungs Gmbh filed Critical Konarka Austria Forschungs Und Entwicklungs Gmbh
Publication of TW200405559A publication Critical patent/TW200405559A/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Description

200405559 玖、發明說明: 【發明所屬之技術領域】 本發明係關於-種光伏特電池之後續處理方法,其具一 二分子成份構成之光祕層,即1子施體及—電子受體,尤指 -共輛聚合物成份及-富勒缔成份而言,並具有二設置於光感應 層兩侧之金屬修’而光伏特電池會在—預設處輯間内,以超 過電子施體之玻璃臨界溫度進行熱處理。 【先前技術】 所謂之共輛塑膠’係指i連續交互單鍵及雙鍵具有關於電 子能量與半導體㈣之娜,以至於其村透過轉之方式,由 非導電性轉變成金屬性《導電狀態。細之聽塑膠,舉例有聚 苯、聚苯乙烯、鐘吩或聚苯胺。由共姉合物構成之光伏特聚 合物電池之能量轉換效率,典型係處於10-3及10-2%之間。習知 之(美國專利案US 5 454 880A)係為改善光效率,其光感應層 係由二分子成份所構成,其一為電子施體之共軛聚合物,^ 為電子受體之富勒烯,尤指巴克明斯特富勒烯Q()。在該二成份 間<界面上,藉由光所引發之非常快速之電予運動,造成相當程 度之粒子再結合及一相當程度之粒子隔離,而阻止帶電粒子進行 進一步的結合。該有效之粒子隔離,只發生在電子施體及電子受 體間之界面區域,因此為電子受體之有效之富勒婦成份,在構成 電子施體之聚合物中儘可能均勻分佈。 與非晶狀基體相較,結晶態聚合物基體之電子移動性較大, 並且在超過玻璃臨界溫度之下,結晶形成增加可被顯示,因此習 知之光伏特電池可利用熱進行後續處理,以便提昇效率。此時, 光伏特電池於60°C至150°C之處理溫度下,在ih處理時間中, 其得到之效率上限約為3〇/〇,且該值已無法再利用最佳化之熱處 6 200405559 理加以提昇。 【發明内容】 後續==:口建立-種光伏特電池進行 =ί:特電池上之’所施加,其開路電壓 於熱處_,受光讀電池之電極所 ,池之效率可ι令人料之方式提昇。該效;^;且= 此《解釋為·增加之帶電粒子、 ,中。該增加之帶電電子促使聚合物下於=場: 齊,其前提即聚合物分子有-適當之運動性’其藉由 以超過聚合物絲之朗臨界溫度加熱 對齊聚合物之方式,可使㈣^羊、道#于保障这加強 及光咸U 拉子^導電性提高。此外,電極 及先感應制(電性_,村獲得持久性之改善, Ϊ内邵之串聯電阻變小。由於轉電阻變小,因此短路電流及充 電因數也隨之變大。 姓•為使帶電粒子能經由電場注入光感應聚合物成份中,在光伏 、电池《電極上所杨及用為激發電場之激發電壓,關相對超 過光伏特電>也之開路電壓。為達H好之絲,激發電壓至少 須超過開路電壓1V。在多數之應用情況下,如果選擇2·5ν至 =間之激發電壓是特別合適之比例。激發電壓之上限,本質為 又限方;光伏特遠池對所施加電場之負荷能力。一激發電壓提高至 =:·5。至”圍時’其本身並不提高光一 7 200405559 經過-疋之處理時間後’熱處理對光感應聚合物成份結晶化 趨勢產生之良好影響將開始下降,以致齡該時間内,最^加以 限制受熱絲電鄉響Τ之献特·。2至8分鐘之間之處理 時間係-良好之熱處理歧條件,所以最佳之處料間 至5分鐘之間。 μ 【圖式簡單說明】 藉由下酬式更進-步說明根據本發明之光伏特f池之 處理方法,各圖式内容如下: 圖一 一光伏特電池進行後續處理之截面示意圖, ϋ二-基本結構完全相同之光伏特池,但分別為未經熱處理、 經熱處理、以及一於電場之影響下經過熱處理,其電壓及 電流密度間之特性曲線, 圖二同為一構造完全相同之光伏特電池,分別於未經熱處理、 經熱處理、以及於電場之影響下經過熱處理時,各入射之 光能量針對其光子激發波長之電荷捕獲率,以及 圖四在受及不受電場影響時,光伏特電池與其熱處理時間所達 到之效率之關係圖。 【實施方式】 根據圖一,光伏特電池係由一透光之玻璃載體1與鍍有—層 由銦_錫-氧(ITO)之電極2所構成。於通常覆有一平滑層之電極1 上方’係覆上一層由兩種分子成份所構成之光感應層3,即—共 軛聚合物成份及一富勒烯成份,該平滑層是由一種經摻雜且能導 黾之聚合物所構成,通常為聚乙烯乙噻吩(pED〇T)。光感應屑 3係覆上一層相對電極4,其應用IT〇做為收集電洞之電極2 : 該電極係由鋁覆層所構成,做為一收集電子之電極。 於該實施例之情況中,係採用多噻吩做為聚合物成份,該優 200405559 良之結晶化特性,使其具有形成良好電洞導體之條件。以多噻吩 而言,係採用聚各己基噻吩(P3HT)、及一曱烷富勒稀,即[6.6]-苯基-Cm-丁基酸甲酯(PCBM)做為電子受體。在ι〇·ι至1〇_2毫 巴之真空經過約45分鐘之乾燥時間後,於光感應層覆蓋之前, 在塗層厚度為l25nmiITO電極2上,將覆上一層厚度約為5〇nm 之聚乙烯乙嚷吩-聚丰乙埽橫酸(PEDOT-PSS ),且以一種溶液形 式,即每一毫升之溶劑含有l〇mgP3HT及20mgPCBM。該溶劑 為1.2-二乳聯笨。在10至10 2毫巴之真空下經過約45分鐘之 乾燥時間後,首先覆上一層0.6nm之氣化鋰,然後在相同之高真 空步驟下(1〇·6毫巴)下,再蒸鍍上一層塗層厚度為70nm之鋁 電極。 依此方式製成之光伏特電池,將經過一後續之熱處理,及與 一個電場相結合。針對此目的,該光伏特電池置放於一熱台5 上,其中電極2及4與一電壓源6相連接。在達到2·7ν之電極 2及4之間,一旦光感應層3加熱至一介於川^至75°c間之處 理溫度時,亦超過聚合物成份之玻璃臨界溫度時,光感應層3會 感受一個經由該激發電壓所激發出來之電場。經過4分鐘之處理 時間後,泫後續處理中止。光伏特電池則冷卻至室溫。圖二及圖 三所示之特性曲線說明加熱、以及同時於一激發電場下所能達到 之效果’均由相同構造之光伏特電池所測量,該等光伏特電池一 方面不經後續之熱處理,另_方賴是在及不在電場及影響下, 根據上述之條件進行熱處理。 圖一之特性曲線,係取自白光(8〇mW/cm2)之照射。在一 非經過後續處理之光伏特電池上所截取下來的特性曲線a,顯示 =路电塵為30Gmv、及在充電因數為Q 4之下的短路電流之電流 密度約為2.5mA/cm2。該光伏特電池之效率可達到約〇 4%。特 9 277 性曲線b係取自一僅為加熱之光伏特電池之後續處理。相較於特 性曲線a,其開路電壓上昇至500mV,而短路電流之密度則約為 7.5mA/cm2。測得之充電因數為0.57。該光伏特電池之效率為 2.5%。對於一在一電場之影響下進行熱處理之光伏特電池",特性 曲線c得到一約為550mv之開路電壓,以及一約為85mA/^2 之短路電流密度。在一 0·6之充電因數下,所得之效率提 3·5〇/〇。 疋开 圖三中 對於所比較足光伏特廷池而言,以一 nmg單位之 波長又下,各入射光能量之電荷捕獲率可由下式讀出。 IPCE[%]=1240.IK/ Λ .Ij 上,巾㈣之Ικ#、以〃A/em2為單位之短路電流蚊, 以W/m為單位之光能量。結果_,光伏特電池在未⑹續虛 IPCE > 440nm #it,l - 3〇〇/0^ 取大值’如由特性曲線a所得知。經過熱處理而未 時’量子效率IPCE㈣約-倍,時推移至奸 j 内,因此’該波長範圍可更有效的利用太陽縣在電場^ 響下德處理’可相當於特性曲線e之再 5 子效率IPCE為61%。 叮運到足量 圖四中所捕紐特電池於減_,經過絲 j下,效率及處理時間之關純率隨著處理時間之:琢:
直接巧,對-在減_未_鄉#之献特電池二 4效率取大值係、於6分鐘之處理時間範圍内達到。在· I
下,其效率之最大健摘為4分鐘之H

Claims (1)

  1. 拾、申請專利範圍: 1. -種方法光伏特電池之後續處理方法,其具—層由二分予成份 構成之光感應層,即-電子施體及一電子受體,尤指一共輛聚 合物成份及-富勒缔成份,並具有二設置於光感應層兩側之金 屬電極,而光伏特電池會在一預設處理時間内,以超過電子施 體之玻璃臨界溫度進行熱處理,其特徵為,光伏特電池進行截 處理時,至少於處理時間内之—小段時間中,使電池受到一^ 場之影響,該電場係藉由光伏特電池上之一電極所施加,其開 路電壓將引發一陡峭之激發電壓。
TW092113311A 2002-05-22 2003-05-16 Method for the post-treatment of a photovoltaic cell TW200405559A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0077502A AT411305B (de) 2002-05-22 2002-05-22 Verfahren zur nachbehandlung einer photovoltaischen zelle

Publications (1)

Publication Number Publication Date
TW200405559A true TW200405559A (en) 2004-04-01

Family

ID=3680753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092113311A TW200405559A (en) 2002-05-22 2003-05-16 Method for the post-treatment of a photovoltaic cell

Country Status (10)

Country Link
US (1) US20060011233A1 (zh)
EP (1) EP1506582B1 (zh)
JP (1) JP2005526404A (zh)
CN (1) CN1653627A (zh)
AT (2) AT411305B (zh)
AU (1) AU2003232901A1 (zh)
CA (1) CA2482579A1 (zh)
DE (1) DE50313347D1 (zh)
TW (1) TW200405559A (zh)
WO (1) WO2003098715A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784017B2 (en) * 2002-08-12 2004-08-31 Precision Dynamics Corporation Method of creating a high performance organic semiconductor device
US7597927B2 (en) * 2003-06-25 2009-10-06 The Trustees Of Princeton Univeristy Solar cells
US7407831B2 (en) 2003-07-01 2008-08-05 Konarka Technologies, Inc. Method for producing organic solar cells or photo detectors
GB0413398D0 (en) * 2004-06-16 2004-07-21 Koninkl Philips Electronics Nv Electronic device
US20060292736A1 (en) * 2005-03-17 2006-12-28 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
US20060211272A1 (en) * 2005-03-17 2006-09-21 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
JP2006278583A (ja) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd 有機薄膜太陽電池
JP2006310729A (ja) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd 有機薄膜太陽電池
JP2006278582A (ja) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2006134090A1 (de) * 2005-06-16 2006-12-21 Siemens Aktiengesellschaft Organischer zeilendetektor und verfahren zu seiner herstellung
WO2007029750A1 (ja) * 2005-09-06 2007-03-15 Kyoto University 有機薄膜光電変換素子及びその製造方法
JP4677314B2 (ja) * 2005-09-20 2011-04-27 富士フイルム株式会社 センサーおよび有機光電変換素子の駆動方法
FR2892563B1 (fr) 2005-10-25 2008-06-27 Commissariat Energie Atomique Reseau de nanofibrilles polymeriques pour cellules photovoltaiques
US20090126779A1 (en) * 2006-09-14 2009-05-21 The Regents Of The University Of California Photovoltaic devices in tandem architecture
DE112007003754A5 (de) 2007-11-13 2010-10-21 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Photoelektrisches Halbleiterbauelement, basierend auf einem löslichen Fullerenderivat
US9293720B2 (en) * 2008-02-19 2016-03-22 New Jersey Institute Of Technology Carbon nanotubes as charge carriers in organic and hybrid solar cells
CN101978525A (zh) * 2008-03-25 2011-02-16 住友化学株式会社 有机光电转换元件
WO2009122575A1 (ja) * 2008-04-02 2009-10-08 パイオニア株式会社 後処理装置及び後処理方法
JP2010192863A (ja) * 2008-05-23 2010-09-02 Sumitomo Chemical Co Ltd 有機光電変換素子およびその製造方法
JP5340656B2 (ja) 2008-07-02 2013-11-13 シャープ株式会社 太陽電池アレイ
JP5249825B2 (ja) * 2009-03-16 2013-07-31 パナソニック株式会社 有機太陽電池
CN102687301B (zh) 2010-02-22 2015-07-08 株式会社东芝 太阳能电池及其制造方法
WO2013094456A1 (ja) * 2011-12-22 2013-06-27 コニカミノルタ株式会社 有機光電変換素子
JP5814293B2 (ja) * 2012-05-24 2015-11-17 富士フイルム株式会社 光電変換素子および撮像素子、ならびに、光電変換素子の製造方法および撮像素子の製造方法
KR101563048B1 (ko) 2013-05-10 2015-10-30 주식회사 엘지화학 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법
KR102002396B1 (ko) 2017-08-03 2019-07-23 한국화학연구원 신규한 유기 반도체 화합물, 이의 제조방법 및 이를 이용하는 유기 전자 소자
US20200303667A1 (en) * 2017-12-05 2020-09-24 Board Of Trustees Of Michigan State University Enhancing the lifetime of organic salt photovoltaics
KR102211925B1 (ko) * 2019-08-28 2021-02-08 연세대학교 산학협력단 유연성이 향상되고 일함수 조절이 가능한 전도성 박막 및 이를 위한 전도성 고분자의 제조방법
CN114141888A (zh) * 2021-11-29 2022-03-04 江西仁江科技有限公司 一种高反射涂层高强度双玻组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185208A (en) * 1987-03-06 1993-02-09 Matsushita Electric Industrial Co., Ltd. Functional devices comprising a charge transfer complex layer
US5331183A (en) * 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
JPH1015249A (ja) * 1996-06-28 1998-01-20 Sega Enterp Ltd 落下遊戯装置
JPH10150234A (ja) * 1996-09-17 1998-06-02 Toshiba Corp 電子デバイスおよびその製造方法
FR2759495B1 (fr) * 1997-02-10 1999-03-05 Commissariat Energie Atomique Dispositif semiconducteur en polymere comportant au moins une fonction redresseuse et procede de fabrication d'un tel dispositif

Also Published As

Publication number Publication date
AU2003232901A1 (en) 2003-12-02
EP1506582B1 (de) 2010-12-22
DE50313347D1 (de) 2011-02-03
ATE492914T1 (de) 2011-01-15
AT411305B (de) 2003-11-25
US20060011233A1 (en) 2006-01-19
ATA7752002A (de) 2003-04-15
WO2003098715A1 (de) 2003-11-27
CA2482579A1 (en) 2003-11-27
JP2005526404A (ja) 2005-09-02
EP1506582A1 (de) 2005-02-16
CN1653627A (zh) 2005-08-10

Similar Documents

Publication Publication Date Title
TW200405559A (en) Method for the post-treatment of a photovoltaic cell
CN108767118B (zh) 一种三元全聚合物太阳能电池
US6872970B2 (en) Photoresponsive devices
Liu et al. High performance planar pin perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers
US20120118368A1 (en) Method for Increasing the Efficiency of Organic Photovoltaic Cells
Chen et al. Enhanced efficiency of plastic photovoltaic devices by blending with ionic solid electrolytes
Al-Ibrahim et al. Comparison of normal and inverse poly (3-hexylthiophene)/fullerene solar cell architectures
Ayllon et al. Application of MEH-PPV/SnO2 bilayer as hybrid solar cell
Huan et al. A Dopant‐Free Zwitterionic Conjugated Polyelectrolyte as a Hole‐Transporting and Interfacial Material for Perovskite Solar Cells
Chambon et al. Lanthanum hexaboride as novel interlayer for improving the thermal stability of P3HT: PCBM organic solar cells
TW201140854A (en) Electrode plate and dye-sensitized photovoltaic cell having the same
KR101189664B1 (ko) 고전도성 버퍼층 및 저 일함수 금속 버퍼층을 도입한 유기 태양전지 및 그의 제조방법
Loheeswaran et al. Controlling recombination kinetics of hybrid nanocrystalline titanium dioxide/polymer solar cells by inserting an alumina layer at the interface
Aziz et al. Electrical Conductivity of Chlorophyll with Polythiophene Thin Film on Indium Tin Oxide as P‐N Heterojunction Solar Cell
CN102790177B (zh) 聚合物太阳能电池及其制备方法
Chen et al. Effect of preparation parameters on performance of P3HT: PCBM solar cells
JP2007027171A (ja) 光電変換素子
Chu et al. Fully solution processed, stable, and flexible bifacial polymer solar cells
CN108832000A (zh) 一种三元聚合物太阳能电池
JP5326743B2 (ja) 有機薄膜太陽電池及びその製造方法
Ndabakuranye et al. Optoelectronic Characteristics of rr-P3HT: PC61BM-based Organic Solar Cells.
Xiao et al. Efficiency enhancement in polymer solar cells with a polar small molecule both at interface and in the bulk heterojunction layer
Rodríguez-Mas et al. Enhancing efficiency and decelerating degradation in bulk heterojunction solar cells with N, N-Dimethylformamide cosolvent for poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)
Ding et al. A reduced electron-extraction barrier at an interface between a polymer poly (3-hexylthiophene) layer and an indium tin oxide layer
Zheng et al. Simply modified indium tin oxides by ultrathin aluminum and sodium chloride composite interlayer for high performance inverted polymer solar cells