CN1653627A - 光生伏打电池的后处理方法 - Google Patents

光生伏打电池的后处理方法 Download PDF

Info

Publication number
CN1653627A
CN1653627A CNA038106728A CN03810672A CN1653627A CN 1653627 A CN1653627 A CN 1653627A CN A038106728 A CNA038106728 A CN A038106728A CN 03810672 A CN03810672 A CN 03810672A CN 1653627 A CN1653627 A CN 1653627A
Authority
CN
China
Prior art keywords
barrier
layer cell
electric field
heat treatment
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038106728A
Other languages
English (en)
Inventor
塞尔达尔·萨勒哲伏特茨
埃哈德·格洛茨鲁
帕特里克·登克
罗曼·利特伯格
弗兰茨·帕丁格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konarka Austria Forschungs- und Entwicklungs GmbH
Original Assignee
Konarka Austria Forschungs- und Entwicklungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konarka Austria Forschungs- und Entwicklungs GmbH filed Critical Konarka Austria Forschungs- und Entwicklungs GmbH
Publication of CN1653627A publication Critical patent/CN1653627A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种后处理光生伏打电池的方法。所述光生伏打电池带有由两种分子成分构成的光活性层,所述两种分子成分即一个电子施主和一个电子受主,特别是一个共轭聚合物部分和一个富勒烯成分,并且所述光活性层的双侧设有金属的电极,其中在一个预定的处理时间段在施主的玻璃转化温度下把光生伏打电池投入热处理。为了提高效率,光生伏打电池的热处理至少在处理的时间一部分过程中在电场的影响下进行,所述电场通过加在光生伏打电池的电极上的、超过其空载电压的激励电压激励。

Description

光生伏打电池的后处理方法
技术领域
本发明涉及一种后处理光生伏打电池的方法,所述光生伏打电池带有由两种分子成分构成的光活性层,所述两种分子成分即一个电子施主和一个电子受主,特别是一个共轭聚合物部分和一个富勒烯成分(fullerenkomponente),并且所述光活性层的双侧设有金属电极,其中在一个预定的处理时间段在施主的玻璃转化温度下把光生伏打电池投入热处理。
技术背景
称为共轭塑料的带有交替的单键和双键的塑料在电子能量方面具有与半导体可比较的能带,从而它们也可以通过掺杂从不导电的状态转化为金属导电的状态。这样的共轭塑料例子有聚亚苯基、聚乙烯亚苯基、聚硫苯或者聚苯胺。然而一个共轭聚合物制造的光伏打聚合物电池的效率却典型地在10-3至10-2%之间。为了提高该效率公知(US5454 880A),由两个分子成分构成光活性层,其中一个用一种共轭聚合物构成了电子施主而另一个通过一种富勒烯(fulleren),特别是一种buckminster富勒烯C60,构成为电子受主。在这些成分之间的交界面上通过光诱导的、非常快速的电子运动阻挡继续进行的载流子重新复合,导致相应的重新复合,这使之出现相应的电荷分离。这种有效的电荷分离却只在电子施主和电子受主之间的交界面区域进行,从而人们追求起电子受主作用的富勒烯成分在构成电子施主的聚合物成分中均匀地分布。
因为可以表明,在结晶的聚合物基质中的电子活动性比无定形基质中的电子活动性高,并且在玻璃转化温度以上的温度下晶体构成增加,所以已经有人提出,把光生伏打电池投入一种通过热进行的后处理,以能够提高效率。在此把光生伏打电池在一个1小时的处理时间段上放在从60℃至150℃的处理温度下,其中得出约3%的效率的上界,这通过优化热处理不再能够提高了。
发明内容
从而本发明的任务是扩展前序所述技术的光生伏打电池的后处理方法使之可以进一步地提高效率。
完成本发明提出的任务是通过光生伏打电池的热处理至少在处理的时间一部分过程中在电场的影响下进行,所述电场通过加在光生伏打电池的电极上的、超过其空载电压的激励电压激励。
通过在热处理过程中经光生伏打电池的电极激励的电场可以用令人惊喜的方式提高光生伏打电池的效率。对于这种效率提高的一个可能的解释是,通过所述电场,附加的载流子通过电极注入光活性。这种附加的载流子支持聚合物成分沿所加电场的方向排列,这以通过在聚合物成分的玻璃转化温度以上加热光生伏打电池确保的聚合物分子的相应的活动性为前提。随着加强聚合物的排列对载流子的导电率提高。此外,持久地改善了电极与光活性层之间的电连接,从而降低了光生伏打电池内部的串联电阻。随着该串联电阻的下降还加大了短路电流和填隙因数。
为了能够在光活性的聚合物成分中通过所述电场注入载流子,为激励所述电场加在光生伏打电池的电极上的激励电压必须相应地超过光生伏打电池的空载电压。为了达到良好的作用,激励电压必须至少超过空载电压1V。如果所述激励电压选择在2.5V至3V之间,对于多数应用情况就得出特别有利的关系。激励电压的上限由光生伏打电池对所加电场的承载能力限制。然而激励电压的提高超过所说明的2.5至3V的范围总体上并不对光活性聚合物分子带来定向作用的提高。
热处理对光活性聚合物分子结晶趋向的积极作用在一定的处理时间段以后下降,从而有利地限制光生伏打电池在一个电场的影响下受热处理的时间段。2至8分钟之间的处理时间为热处理得出有利的前提,其中在4至5分钟之间的热处理时间范围达到一个优化结果。
附图说明
下面参照附图详细说明根据本发明的后处理光生伏打电池的方法。在附图中:
图1用示意图示出一个要受后处理的光生伏打电池,
图2为特性曲线,示出原理上相同的结构、但是是没有热处理的、有热处理的和有在一个电场的影响下的热处理的光生伏打电池的电压与电流密度之间的关系,
图3示出还是对其结构上相符的、没有热处理的、以及有热处理的、和有在一个电场的影响下的热处理的光生伏打电池每落射光功率下与光致激发的波长相关的电荷充分利用,以及
图4示出光生伏打电池的可达到的效率与有和没有电场的影响的热处理的持续时间长度的相依性。
具体实施方式
如图1所示,光生伏打电池包含一个带有用氧化铟锌(ITO)覆层的一个电极2的可透光的玻璃载体1。在总体上覆盖一个由通过掺杂使之导电的、通常是聚乙烯二氧噻吩(PEDOT)的、聚合物制造的平滑层的电极2上,设置一个光活性层3,所述光活性层3由两个分子构成,即一个共轭聚合物成分和一个富勒烯成分。然后,所述光活性层3承载反向电极4,在采用ITO作收集空穴的电极2时所述反向电极4由一个铝层组成以构成一个收集电子的电极。
在本实施例的情况下,采用聚噻吩作为聚合物成分,作为良好的空穴导电性的前提聚噻吩具有突出的结晶特性。作为聚噻吩在此采用带有甲烷富勒烯即[6,6]苯基C61-丁酸甲酯(PCBM)的聚-3-己基噻吩(P3HT)作为电子受体。在层厚为125nm的ITO电极上设置一个由厚度约50nm的聚乙烯二氧噻吩-聚苯乙烯磺酸(PEDOT)制造的层,在经过约10-1至10-2毫巴的真空约45分钟的干燥时间以前涂上所述光活性层,并且是以每毫升溶剂10毫克P3HT和20毫克PCBM的溶液形式涂覆。溶剂采用1,2二氯苯。在10-1至10-2毫巴的真空约45分钟的干燥时间以后在相同的高真空步骤(10-6毫巴)中首先蒸镀一个约0.6nm的氟化锂层,然后以约70nm的层厚蒸镀一个铝电极。
把以此方式制造的光生伏打电池通过加热而且与一个电场相关联地进行后处理。为此目的把光生伏打电池放在一个加热板5上,在此把电极2和4连接在电压源6上。只要把光活性层3加热到70至75℃之间的处理温度,也就是超过该聚合物成分的玻璃转化温度,就立即在加载2.7V的电极2和4之间把光活性层3置于由该电压激励的电场的影响之下。在4分钟的处理时间段以后中止所述后处理。把光活性层冷却到室温。在图2和图3所示对相同地构成的、一方面保持不作热处理的、另一方面有或没有根据以上说明的条件的一个电场的影响受热处理的光生伏打电池测量的特性曲线用以表明用加热并且同时激励一个电场可以达到的作用。
如图2所示的特性曲线用一个是用白光(80mW/cm2)照亮时测量的。对一个没有热处理的光生伏打电池测量的曲线a示出在填隙因数为0.4时约300mV的空载电压和约2.5mA/cm2的短路电流密度。对该光生伏打电池可以得出效率为约0.4%。、曲线b是对只受过用热进行的后处理的光生伏打电池测量的。与特性曲线a比较,空载电压提高到约500mV而短路电流密度提高到约7.5mA/cm2。得出填隙因数为0.57。在此光生伏打电池中效率0 2.5%。对于在一个电场的影响下受热处理的光生伏打电池,曲线c表明约550mV的空载电压和约8.5mA/cm2的短路电流密度。在填隙因数为0.6时效率提高到3.5%。
图3中可以读出以用nm测量的波长λ上对作比较的光生伏打电池每落射光功率的电荷充分利用率
IPCE[%]=1240.1k/λ.11
上式中1k是用μA/cm2测量的短路电流密度而11是用W/m2测量的光功率。实验表明没有后处理的光生伏打电池的量子效益IPCE在约440nm的波长达到约30%的最大值,如特性曲线a所示。用无电场影响的热处理量子效益IPCE同时移到较高的波长范围时提高到近两倍,从而可以较好地利用该太阳光照的波长范围。通过受电场影响的热处理可以保证相应特性曲线c的进一步提高,这得出约61%的量子效益IPCE。
图4示出在有和没有电场的影响的热处理时光生伏打电池与处理时间的相依性。可以直接看出,效率随着处理时间而改变。无电场影响的热处理的光生伏打电池的效率在约6分钟范围的处理时间达到最大值。在一个电场影响下对于效率的最大值得出约4分钟量级的缩短的处理时间。

Claims (4)

1.一种后处理光生伏打电池的方法,所述光生伏打电池带有由两种分子成分构成的光活性层,所述两种分子成分即一个电子施主和一个电子受主,特别是一个共轭聚合物部分和一个富勒烯成分,并且所述光活性层的双侧设有金属电极,其中在一个预定的处理时间段在施主的玻璃转化温度下把光生伏打电池投入热处理,其特征在于,光生伏打电池的热处理至少在处理的时间一部分过程中在电场的影响下进行,所述电场通过加在光生伏打电池的电极上的、超过其空载电压的激励电压激励。
2.如权利要求1所述的方法,其特征在于,激励电压至少超过光生伏打电池的空载电压1V。
3.如权利要求3所述的方法,其特征在于,激励电压选择在2.5V至3V之间.
4.如权利要求1至3之一所述的方法,其特征在于,在2至8分钟之间的处理时间,优选地在4至5分钟之间的热处理时间中,使光生伏打电池受一个在一个电场影响下的热处理。
CNA038106728A 2002-05-22 2003-05-06 光生伏打电池的后处理方法 Pending CN1653627A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA775/2002 2002-05-22
AT0077502A AT411305B (de) 2002-05-22 2002-05-22 Verfahren zur nachbehandlung einer photovoltaischen zelle

Publications (1)

Publication Number Publication Date
CN1653627A true CN1653627A (zh) 2005-08-10

Family

ID=3680753

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038106728A Pending CN1653627A (zh) 2002-05-22 2003-05-06 光生伏打电池的后处理方法

Country Status (10)

Country Link
US (1) US20060011233A1 (zh)
EP (1) EP1506582B1 (zh)
JP (1) JP2005526404A (zh)
CN (1) CN1653627A (zh)
AT (2) AT411305B (zh)
AU (1) AU2003232901A1 (zh)
CA (1) CA2482579A1 (zh)
DE (1) DE50313347D1 (zh)
TW (1) TW200405559A (zh)
WO (1) WO2003098715A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687301A (zh) * 2010-02-22 2012-09-19 株式会社东芝 太阳能电池及其制造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784017B2 (en) * 2002-08-12 2004-08-31 Precision Dynamics Corporation Method of creating a high performance organic semiconductor device
US7597927B2 (en) * 2003-06-25 2009-10-06 The Trustees Of Princeton Univeristy Solar cells
US7407831B2 (en) 2003-07-01 2008-08-05 Konarka Technologies, Inc. Method for producing organic solar cells or photo detectors
GB0413398D0 (en) * 2004-06-16 2004-07-21 Koninkl Philips Electronics Nv Electronic device
US20060292736A1 (en) * 2005-03-17 2006-12-28 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
US20060211272A1 (en) * 2005-03-17 2006-09-21 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
JP2006278583A (ja) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd 有機薄膜太陽電池
JP2006310729A (ja) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd 有機薄膜太陽電池
JP2006278582A (ja) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2006134090A1 (de) * 2005-06-16 2006-12-21 Siemens Aktiengesellschaft Organischer zeilendetektor und verfahren zu seiner herstellung
WO2007029750A1 (ja) * 2005-09-06 2007-03-15 Kyoto University 有機薄膜光電変換素子及びその製造方法
JP4677314B2 (ja) * 2005-09-20 2011-04-27 富士フイルム株式会社 センサーおよび有機光電変換素子の駆動方法
FR2892563B1 (fr) 2005-10-25 2008-06-27 Commissariat Energie Atomique Reseau de nanofibrilles polymeriques pour cellules photovoltaiques
US20090126779A1 (en) * 2006-09-14 2009-05-21 The Regents Of The University Of California Photovoltaic devices in tandem architecture
DE112007003754A5 (de) 2007-11-13 2010-10-21 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Photoelektrisches Halbleiterbauelement, basierend auf einem löslichen Fullerenderivat
US9293720B2 (en) * 2008-02-19 2016-03-22 New Jersey Institute Of Technology Carbon nanotubes as charge carriers in organic and hybrid solar cells
CN101978525A (zh) * 2008-03-25 2011-02-16 住友化学株式会社 有机光电转换元件
WO2009122575A1 (ja) * 2008-04-02 2009-10-08 パイオニア株式会社 後処理装置及び後処理方法
JP2010192863A (ja) * 2008-05-23 2010-09-02 Sumitomo Chemical Co Ltd 有機光電変換素子およびその製造方法
JP5340656B2 (ja) 2008-07-02 2013-11-13 シャープ株式会社 太陽電池アレイ
JP5249825B2 (ja) * 2009-03-16 2013-07-31 パナソニック株式会社 有機太陽電池
WO2013094456A1 (ja) * 2011-12-22 2013-06-27 コニカミノルタ株式会社 有機光電変換素子
JP5814293B2 (ja) * 2012-05-24 2015-11-17 富士フイルム株式会社 光電変換素子および撮像素子、ならびに、光電変換素子の製造方法および撮像素子の製造方法
KR101563048B1 (ko) 2013-05-10 2015-10-30 주식회사 엘지화학 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법
KR102002396B1 (ko) 2017-08-03 2019-07-23 한국화학연구원 신규한 유기 반도체 화합물, 이의 제조방법 및 이를 이용하는 유기 전자 소자
US20200303667A1 (en) * 2017-12-05 2020-09-24 Board Of Trustees Of Michigan State University Enhancing the lifetime of organic salt photovoltaics
KR102211925B1 (ko) * 2019-08-28 2021-02-08 연세대학교 산학협력단 유연성이 향상되고 일함수 조절이 가능한 전도성 박막 및 이를 위한 전도성 고분자의 제조방법
CN114141888A (zh) * 2021-11-29 2022-03-04 江西仁江科技有限公司 一种高反射涂层高强度双玻组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185208A (en) * 1987-03-06 1993-02-09 Matsushita Electric Industrial Co., Ltd. Functional devices comprising a charge transfer complex layer
US5331183A (en) * 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
JPH1015249A (ja) * 1996-06-28 1998-01-20 Sega Enterp Ltd 落下遊戯装置
JPH10150234A (ja) * 1996-09-17 1998-06-02 Toshiba Corp 電子デバイスおよびその製造方法
FR2759495B1 (fr) * 1997-02-10 1999-03-05 Commissariat Energie Atomique Dispositif semiconducteur en polymere comportant au moins une fonction redresseuse et procede de fabrication d'un tel dispositif

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687301A (zh) * 2010-02-22 2012-09-19 株式会社东芝 太阳能电池及其制造方法
US8980672B2 (en) 2010-02-22 2015-03-17 Kabushiki Kaisha Toshiba Photovoltaic cell and method for manufacturing the same
US9178171B2 (en) 2010-02-22 2015-11-03 Kabushiki Kaisha Toshiba Photovoltaic cell and method for manufacturing the same

Also Published As

Publication number Publication date
AU2003232901A1 (en) 2003-12-02
EP1506582B1 (de) 2010-12-22
DE50313347D1 (de) 2011-02-03
ATE492914T1 (de) 2011-01-15
AT411305B (de) 2003-11-25
US20060011233A1 (en) 2006-01-19
TW200405559A (en) 2004-04-01
ATA7752002A (de) 2003-04-15
WO2003098715A1 (de) 2003-11-27
CA2482579A1 (en) 2003-11-27
JP2005526404A (ja) 2005-09-02
EP1506582A1 (de) 2005-02-16

Similar Documents

Publication Publication Date Title
CN1653627A (zh) 光生伏打电池的后处理方法
Xie et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells
Lian et al. Polymer modification on the NiO x hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells
Baumann et al. Identification of trap states in perovskite solar cells
Zhang et al. Solid‐state dye‐sensitized solar cells with conjugated polymers as hole‐transporting materials
Jung et al. High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer
Hu et al. Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly (ethylene glycol) hybrids as cathode buffer layers
KR100882503B1 (ko) 염료감응 태양전지용 고효율 대향전극 및 그 제조방법
EP1964144B1 (en) Tandem photovoltaic cells
US20070181179A1 (en) Tandem photovoltaic cells
Conings et al. Influence of interface morphology onto the photovoltaic properties of nanopatterned ZnO/poly (3-hexylthiophene) hybrid solar cells. An impedance spectroscopy study
Osterloh et al. P3HT: PCBM bulk-heterojunctions: observing interfacial and charge transfer states with surface photovoltage spectroscopy
US11329241B2 (en) Exciton-blocking treatments for buffer layers in organic photovoltaics
JP2011513951A (ja) タンデム型光電池
CN1426607A (zh) 光电池
Liu et al. Decreased charge transport barrier and recombination of organic solar cells by constructing interfacial nanojunction with annealing-free ZnO and Al layers
Lv et al. Self-assembled TiO2 nanorods as electron extraction layer for high-performance inverted polymer solar cells
Chiou et al. Fluorene conjugated polymer/nickel oxide nanocomposite hole transport layer enhances the efficiency of organic photovoltaic devices
Cai et al. Self-assembly of 1-pyrenemethanol on ZnO surface toward combined cathode buffer layers for inverted polymer solar cells
Yang et al. Organic–inorganic hybrid interfacial layer for high-performance planar perovskite solar cells
Jiang et al. Water-soluble SnO2 nanoparticles as the electron collection layer for efficient and stable inverted organic tandem solar cells
Chambon et al. Lanthanum hexaboride as novel interlayer for improving the thermal stability of P3HT: PCBM organic solar cells
Ling et al. In-situ synthesis of organic-inorganic hybrid thin film of PEDOT/V2O5 as hole transport layer for polymer solar cells
Kimata et al. Open-circuit-voltage improvement mechanism of perovskite solar cells revealed by operando spin observation
Fadili et al. Improved photovoltaic performance of phosphonic acid‐based sensitized solar cells via an electron‐withdrawing moiety: A density of functional theory study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication