SU717999A3 - Способ легировани монокристаллов кремни - Google Patents

Способ легировани монокристаллов кремни Download PDF

Info

Publication number
SU717999A3
SU717999A3 SU752106377A SU2106377A SU717999A3 SU 717999 A3 SU717999 A3 SU 717999A3 SU 752106377 A SU752106377 A SU 752106377A SU 2106377 A SU2106377 A SU 2106377A SU 717999 A3 SU717999 A3 SU 717999A3
Authority
SU
USSR - Soviet Union
Prior art keywords
silicon
gallium
germanium
crystal
monocrystal
Prior art date
Application number
SU752106377A
Other languages
English (en)
Inventor
Мартин Иоахим
Ройшель Конрад
Original Assignee
Сименс Аг (Фирма)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Аг (Фирма) filed Critical Сименс Аг (Фирма)
Application granted granted Critical
Publication of SU717999A3 publication Critical patent/SU717999A3/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/261Bombardment with radiation to produce a nuclear reaction transmuting chemical elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Light Receiving Elements (AREA)

Description

Изобретение относится к способам ' легирования монокристаллов кремния галлием путем нейтронного облучения.
Легирование кристаллических стержней кремния обычно производят при .5 осаждении его из газовой фазы путем термического и/или пиролитического разложения газообразного соединения кремния на нагретом стержнеобразном носителе. 10
При этом легирующие вещества примешивают к газообразным соединениям кремния и разлагают на носителе. Полученные таким образом кремниевые стержни являются поликристаллически- 15 ми и их необходимо переводить в монокристаллическое состояние Путем последующей зонной плавки. При этом концентрация добавленного вещества часто изменяется неконтролируемым 2θ образом и необходимо вводить значительно' более высокие концентрации легирующих веществ с тем, чтобы в конечном продукте (даже после нескольких зонных плавок) содержалось 25 необходимое количество легирующих веществ. Эти способы отнимают много времени и не являются точными.
Для изготовления р-легированного кремния часто используют галлий. 30
Распределение этого легирующего вещества в кристаллической решетке кремния также не является достаточно однородным. В особенности это относится к высокоомному кремнию. Вследствие относительно малых коэффициентов распределения желаемого однородного распределения галлия в решетке кремния очень трудно достичь. Полученные из этого материала полупроводниковые элементы не могут достичь своих оптимальных характеристик, так как колебания концентраций легирующего вещества образующегося при росте монокристалла в процессе зонной плавки вследствие образования граней и неравномерного распределения температур в расплаве ^весьма значительны, . что приводит к заметной неоднородности в распределении сопротивлений в радиальном и аксиальном направлениях.
Наиболее прогрессивный метод легирования, обеспечивающий более равномерное распределение примеси, состоит в облучении исходного материала тепловыми нейтронами [1].Однако этот метод·не использовали для получения кремния, легированного галлием.
Целью изобретения является легирование кремния галлием и получение более однородных кристаллов с проводимостью р-типа.
Для достижения этой цели предлагается в качестве исходного материала брать монокристалл кремния, со- 5 держаший германий в количестве от 1СГ%э 10 об.%, и вести облучение тепловыми нейтронами с интенсивностью 1-5 · 1047 нейтронов/см.2
Если подвергать кремний, содержащий германий, облучению тепловыми нейтронами, то согласно известной ядерной реакции:
70Ge Ge -^*71 Ges, 15 где 8 означает поглощение электрона к-оболочки с испусканием характеристического рентгеновского излучения;
η - облучающие нейтроны; эд у- квант энергии,
В кристалле образуется галлий.
Для получения однородного кристалла для облучения нейтронами монокристалл кремния с добавкой герма- __ ния подвергают дополнительной зонной *·* плавке, при которой для достижения однородности материала применяют известные способы с ориентацией з’атравочны-х кристаллов (111) , (ЮО)или (115) ,
Предусматривается также вращение .30 кристалла кремния, содержащего германий, в процессе облучения нейтронами. В качестве источника излучения применяют известные ядерные реакторы типа реактора с легкой или 35 тяжелой водой или реактор с графитовым замедлителем. Пример 1. Исходным материалом является поликристаллический кремниевый стержень длиной 900 мм 4Q и диаметром 35 мм, который имеет удельное сопротивление, измеренное при высокой частоте, 900 ом.см
И ‘проводимость р-Фипа. Это соответ- « .
ствует 1,5-10акцепторов/см9. К этому стержню добавляют 1,2 об.% гер- 5 мания и посредством зонной плавки' изготавливают сплав, содержащий германий. Затем при следующей зонной плавке в атмосфере аргона путем при.....плавления затравочного кристалла с 5и ориентацией (11'1) изготавливают однородный монокристаллический стержень. Для получения стержня с сопротивлением 500 ом см, что соответствует
2,78 Ч0<3 акцепторов/см,3 его облучают 55 в реакторе потоком нейтронов интенсивностью = 2,5 · 10-*7 нейтронов/см'2' в течение 1ч. Это приводит к изменению добавки в кремнии вследствие образования фосфора до 4,0·10^ доноров/сми превращению атомов германия в атомы галлия, что соответствует 5,3 -107¾ акнепторов/см^. Отсюда концентрация акцепторов (добавочное количество гаЛлия) составляет 2,8 -101*акцепторов/см 3, что соответствует 500 ом*см.
Пример 2. Исходным материриалом является поликристаллический кремниевый стержень с удельным сопротивлением 400 ом·см и проводи,мостью η-типа. Это соответствует 1,3 -1013 доноров/см 3.Содержание германия 3 об.%. Ориентация затравки (111). Цель - получение кристалла с проводимостью p-типа с сопротивлением 180 ом-см, что соответствует ,7,7· 1013 акцепторов/см\Облучение ведут потоком нейтронов интенсивностью 2,5 - нейтронов/см в течение 1 ч. Количество 'полученных атомов галлия 1,3'Ю^^атомов/см? Полученная концентрация акцепторов с учетом образования фосфора составляет 7,7·10акцепторов/см.
В предлагаемом способе предусматривается также последующий отжиг кристаллов при температуре выше 1000°C в кремниевой трубке в течение, по меньшей мере 1 ч. Этот процесс однако нет необходимости проводить, если кристалл .в дальнейшем перерабатывается в конструктивные элементы •с проведением высокотемпературных процессов, например диффузии.
В данном способе возможно также регулируемое введение примеси р-типа с хорошей точностью по изменению двух параметров: изменению содержания германия в сплаве и изменению интенсив ности или времени облучения.
Применяя предлагаемый способ,удалось впервые получить монокристалли ческие кремниевые стержни относительно больших диаметров с однородным распределением добавок галлия и без неравномерностей. Эти кремниевые монокристаллы особенно необходима для изготовления счетчиков частиц, таких как детекторы излучения.

Claims (1)

  1. Формула изобретения
    Способ легирования монокристаллов кремния путем облучения исходного кристалла тепловыми нейтронами, о т л и ч а ю щ и й с я тем, что, с целью легирования кремния галлием и получения более однородных кристаллов с проводимостыд р-типа, в качестве исходного берут монокристалл кремния, содержаний германий в количестве от 10~8до 10 об.%, и облучение ведут с интенсивностью 1-5 · Ю17 нейтронов/смГ
SU752106377A 1974-02-18 1975-02-17 Способ легировани монокристаллов кремни SU717999A3 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2407697A DE2407697C3 (de) 1974-02-18 1974-02-18 Verfahren zum Herstellen eines homogen Ga-dotierten Siliciumeinkristalls

Publications (1)

Publication Number Publication Date
SU717999A3 true SU717999A3 (ru) 1980-02-25

Family

ID=5907718

Family Applications (1)

Application Number Title Priority Date Filing Date
SU752106377A SU717999A3 (ru) 1974-02-18 1975-02-17 Способ легировани монокристаллов кремни

Country Status (12)

Country Link
JP (1) JPS5329572B2 (ru)
AT (1) AT339379B (ru)
BE (1) BE816719A (ru)
DE (1) DE2407697C3 (ru)
DK (1) DK658274A (ru)
FR (1) FR2261055B1 (ru)
GB (1) GB1442930A (ru)
IT (1) IT1031627B (ru)
NL (1) NL7410745A (ru)
PL (1) PL91842B1 (ru)
SU (1) SU717999A3 (ru)
ZA (1) ZA746269B (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799736B1 (en) 2016-07-20 2017-10-24 International Business Machines Corporation High acceptor level doping in silicon germanium

Also Published As

Publication number Publication date
GB1442930A (en) 1976-07-14
ZA746269B (en) 1975-10-29
JPS50120253A (ru) 1975-09-20
JPS5329572B2 (ru) 1978-08-22
DE2407697A1 (de) 1975-09-18
IT1031627B (it) 1979-05-10
BE816719A (fr) 1974-10-16
FR2261055A1 (ru) 1975-09-12
DK658274A (ru) 1975-10-27
NL7410745A (nl) 1975-08-20
AT339379B (de) 1977-10-10
FR2261055B1 (ru) 1979-01-05
PL91842B1 (ru) 1977-03-31
DE2407697B2 (de) 1978-04-06
DE2407697C3 (de) 1978-11-30
ATA667874A (de) 1977-02-15

Similar Documents

Publication Publication Date Title
Tanenbaum et al. Preparation of uniform resistivity n‐type silicon by nuclear transmutation
JP2016500641A (ja) 一様な抵抗を有するドーピングされたシリコンインゴットを形成する方法
US3967982A (en) Method of doping a semiconductor layer
CA1068583A (en) Method of producing homogeneously doped semiconductor material of p-conductivity
US4135951A (en) Annealing method to increase minority carrier life-time for neutron transmutation doped semiconductor materials
CA1045523A (en) N-conductivity silicon mono-crystals produced by neutron irradiation
CA1100390A (en) N-conductivity silicon monocrystals produced by neutron irradiation
SU717999A3 (ru) Способ легировани монокристаллов кремни
Su et al. Growth of ZnTe by physical vapor transport and traveling heater method
Cockayne et al. The Czochralski growth of gallium antimonide single crystals under reducing conditions
CN111850685A (zh) 一种快衰减高光输出氧化镓闪烁晶体及其制备方法
Wiedemeier et al. Chemical Vapor Transport and Crystal Growth of the Hg0. 8Cd0. 2Te System, Crystal Morphology and Homogeneity
JPH0523494B2 (ru)
WO2023199954A1 (ja) 不純物ドープ半導体の製造方法
JP4723082B2 (ja) Gaドープシリコン単結晶の製造方法
CA1072423A (en) Method of producing homogeneously doped semiconductor material of p-conductivity
Jones Anthracene and Anthracene-Tetracene Crystals from Vapor
RU2344209C2 (ru) Способ получения монокристаллов антимонида индия, легированного оловом
CA1072422A (en) Method of producing homogeneously doped semiconductor material of p-conductivity
RU2202655C1 (ru) Способ получения резистентного кремния
RU2344510C2 (ru) Способ получения монокристаллов фосфида индия, легированного оловом
CN112466987B (zh) 一种基于铯铅溴辐射探测器的溴气氛围后处理方法
Findlay et al. Photonuclear transmutation doping of semiconductors
Dutta et al. Bulk growth of GaSb and Ga 1-x In x Sb
JP2961340B2 (ja) 高純度シリコン単結晶の製造方法および高純度シリコン単結晶