SG140464A1 - Circuit to reduce gate-induced drain leakage (gidl) current in thin gate oxide mosfets - Google Patents

Circuit to reduce gate-induced drain leakage (gidl) current in thin gate oxide mosfets

Info

Publication number
SG140464A1
SG140464A1 SG200501097-0A SG2005010970A SG140464A1 SG 140464 A1 SG140464 A1 SG 140464A1 SG 2005010970 A SG2005010970 A SG 2005010970A SG 140464 A1 SG140464 A1 SG 140464A1
Authority
SG
Singapore
Prior art keywords
gate
gidl
current
circuit
gate oxide
Prior art date
Application number
SG200501097-0A
Other languages
English (en)
Inventor
Chndra V Mouli
Ceredig Roberts
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of SG140464A1 publication Critical patent/SG140464A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0221Manufacture or treatment of FETs having insulated gates [IGFET] having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended-drain MOSFETs [EDMOS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/683Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being parallel to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
SG200501097-0A 2000-08-25 2001-08-23 Circuit to reduce gate-induced drain leakage (gidl) current in thin gate oxide mosfets SG140464A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/648,044 US7247919B1 (en) 2000-08-25 2000-08-25 Method and device to reduce gate-induced drain leakage (GIDL) current in thin gate oxides MOSFETs

Publications (1)

Publication Number Publication Date
SG140464A1 true SG140464A1 (en) 2008-03-28

Family

ID=24599198

Family Applications (1)

Application Number Title Priority Date Filing Date
SG200501097-0A SG140464A1 (en) 2000-08-25 2001-08-23 Circuit to reduce gate-induced drain leakage (gidl) current in thin gate oxide mosfets

Country Status (7)

Country Link
US (3) US7247919B1 (enExample)
EP (1) EP1312110A2 (enExample)
JP (1) JP2004508717A (enExample)
KR (1) KR100563398B1 (enExample)
AU (1) AU2001286666A1 (enExample)
SG (1) SG140464A1 (enExample)
WO (1) WO2002019431A2 (enExample)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177192B2 (ja) * 2003-08-05 2008-11-05 株式会社日立ハイテクノロジーズ プラズマエッチング装置およびプラズマエッチング方法
US6797555B1 (en) * 2003-09-10 2004-09-28 National Semiconductor Corporation Direct implantation of fluorine into the channel region of a PMOS device
US7189292B2 (en) 2003-10-31 2007-03-13 International Business Machines Corporation Self-encapsulated silver alloys for interconnects
US7245548B2 (en) * 2004-07-27 2007-07-17 Micron Technology, Inc. Techniques for reducing leakage current in memory devices
US20060291114A1 (en) * 2005-06-27 2006-12-28 Teo Chee K Electrostatic discharge protection circuit and method
US8154088B1 (en) 2006-09-29 2012-04-10 Cypress Semiconductor Corporation Semiconductor topography and method for reducing gate induced drain leakage (GIDL) in MOS transistors
US20080286932A1 (en) * 2007-05-17 2008-11-20 Dongbu Hitek Co., Ltd. Method of manufacturing semiconductor device
US20090090975A1 (en) * 2007-10-09 2009-04-09 Chartered Semiconductor Manufacturing Ltd. Integrated circuit system employing fluorine doping
KR20120133652A (ko) * 2011-05-31 2012-12-11 삼성전자주식회사 반도체 소자의 제조 방법
CN102420228B (zh) * 2011-06-17 2015-01-07 上海华力微电子有限公司 抑制gidl效应的后栅极工艺半导体器件及其制备方法
US8896035B2 (en) 2012-10-22 2014-11-25 International Business Machines Corporation Field effect transistor having phase transition material incorporated into one or more components for reduced leakage current
KR102065973B1 (ko) 2013-07-12 2020-01-15 삼성전자 주식회사 반도체 장치 및 그 제조 방법
WO2017171824A1 (en) * 2016-03-31 2017-10-05 Intel Corporation High mobility asymmetric field effect transistors with a band-offset semiconductor drain spacer
WO2018182570A1 (en) * 2017-03-28 2018-10-04 Intel IP Corporation Assymetric transistor arrangements with smartly spaced drain regions
CN112864223A (zh) 2019-11-28 2021-05-28 联华电子股份有限公司 半导体晶体管及其制作方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652108B2 (ja) * 1991-09-05 1997-09-10 三菱電機株式会社 電界効果トランジスタおよびその製造方法
JPH0653492A (ja) * 1992-07-29 1994-02-25 Kawasaki Steel Corp 半導体装置及びその製造方法
US5382533A (en) * 1993-06-18 1995-01-17 Micron Semiconductor, Inc. Method of manufacturing small geometry MOS field-effect transistors having improved barrier layer to hot electron injection
US5372957A (en) 1993-07-22 1994-12-13 Taiwan Semiconductor Manufacturing Company Multiple tilted angle ion implantation MOSFET method
JP3297173B2 (ja) * 1993-11-02 2002-07-02 三菱電機株式会社 半導体記憶装置およびその製造方法
KR0136932B1 (ko) 1994-07-30 1998-04-24 문정환 반도체 소자 및 그의 제조방법
SG50741A1 (en) * 1995-07-26 1998-07-20 Chartered Semiconductor Mfg Method for minimizing the hot carrier effect in m-mosfet devices
US5719425A (en) 1996-01-31 1998-02-17 Micron Technology, Inc. Multiple implant lightly doped drain (MILDD) field effect transistor
JPH1079506A (ja) 1996-02-07 1998-03-24 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US5672525A (en) 1996-05-23 1997-09-30 Chartered Semiconductor Manufacturing Pte Ltd. Polysilicon gate reoxidation in a gas mixture of oxygen and nitrogen trifluoride gas by rapid thermal processing to improve hot carrier immunity
US5804496A (en) 1997-01-08 1998-09-08 Advanced Micro Devices Semiconductor device having reduced overlap capacitance and method of manufacture thereof
US5840610A (en) * 1997-01-16 1998-11-24 Advanced Micro Devices, Inc. Enhanced oxynitride gate dielectrics using NF3 gas
US5998274A (en) 1997-04-10 1999-12-07 Micron Technology, Inc. Method of forming a multiple implant lightly doped drain (MILDD) field effect transistor
JPH1117174A (ja) 1997-06-20 1999-01-22 Sony Corp Mis型トランジスタ素子のゲート電極及びその形成方法
US5920782A (en) 1997-07-18 1999-07-06 United Microelectronics Corp. Method for improving hot carrier degradation
AU1933199A (en) * 1997-12-18 1999-07-05 Micron Technology, Inc. Semiconductor processing method and field effect transistor
US6030875A (en) 1997-12-19 2000-02-29 Advanced Micro Devices, Inc. Method for making semiconductor device having nitrogen-rich active region-channel interface
US6188101B1 (en) 1998-01-14 2001-02-13 Advanced Micro Devices, Inc. Flash EPROM cell with reduced short channel effect and method for providing same
US6238998B1 (en) 1998-11-20 2001-05-29 International Business Machines Corporation Shallow trench isolation on a silicon substrate using nitrogen implant into the side wall
JP3376305B2 (ja) 1998-12-25 2003-02-10 株式会社東芝 半導体装置の製造方法
US6242334B1 (en) 1999-03-23 2001-06-05 United Microelectronics Corp. Multi-step spacer formation of semiconductor devices
US6297098B1 (en) 1999-11-01 2001-10-02 Taiwan Semiconductor Manufacturing Company Tilt-angle ion implant to improve junction breakdown in flash memory application
US6352912B1 (en) 2000-03-30 2002-03-05 International Business Machines Corporation Reduction of reverse short channel effects by deep implantation of neutral dopants
US6352885B1 (en) * 2000-05-25 2002-03-05 Advanced Micro Devices, Inc. Transistor having a peripherally increased gate insulation thickness and a method of fabricating the same

Also Published As

Publication number Publication date
US6693012B2 (en) 2004-02-17
EP1312110A2 (en) 2003-05-21
WO2002019431A2 (en) 2002-03-07
US7247919B1 (en) 2007-07-24
JP2004508717A (ja) 2004-03-18
US20060263964A1 (en) 2006-11-23
WO2002019431A3 (en) 2002-10-17
KR20030043939A (ko) 2003-06-02
AU2001286666A1 (en) 2002-03-13
KR100563398B1 (ko) 2006-03-23
US20020050621A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
TW344141B (en) An insulated gate field effect transistor having a crystalline channel region
TWI257179B (en) High-speed compound semiconductor device operable at large output power with minimum leakage current
SG140464A1 (en) Circuit to reduce gate-induced drain leakage (gidl) current in thin gate oxide mosfets
TW345693B (en) LDMOS device with self-aligned RESURF region and method of fabrication
SG161098A1 (en) Semiconductor device and manufacturing method thereof
MY133983A (en) Halo-free non-rectifying contact on chip with halo source/drain diffusion
MY135655A (en) Semiconductor display device and manufacturing method thereof
TW200625640A (en) Field effect transistor
EP1306905A3 (en) Lateral power MOSFET
TW200509259A (en) Highly integrated semiconductor device with silicide layer that secures contact margin and method of manufacturing the same
TW200520237A (en) Semiconductor device with high-k gate dielectric
EP2858115A3 (en) Semiconductor device comprising a MIS transistor
WO2000030182A3 (en) Offset drain fermi-threshold field effect transistors
EP1280205A3 (en) Semiconductor memory device
MY111990A (en) Mos transistor and method for making the same
TW200616239A (en) Asymmetric hetero-doped high-voltage MOSFET (AH2MOS)
GB9921068D0 (en) Bipolar mosfet device
EP1253634A3 (en) Semiconductor device
EP2264776A3 (en) High-voltage insulated gate field-effect transistor
TW200503115A (en) An enhancement mode metal-oxide-semiconductor field effect transistor and method for forming the same
WO2002027800A3 (en) Trench dmos transistor having lightly doped source structure
EP1274134A3 (en) MOS transistor and its fabrication method
EP0969516A3 (en) MOSFET with structured source/drain region and method for producing the same
GB2371921B (en) Architecture for circuit connection of a vertical transistor
TW200616031A (en) High voltage lateral diffused MOSFET device