SG10201802450PA - Semiconductor device and method of manufacturing the same - Google Patents
Semiconductor device and method of manufacturing the sameInfo
- Publication number
- SG10201802450PA SG10201802450PA SG10201802450PA SG10201802450PA SG10201802450PA SG 10201802450P A SG10201802450P A SG 10201802450PA SG 10201802450P A SG10201802450P A SG 10201802450PA SG 10201802450P A SG10201802450P A SG 10201802450PA SG 10201802450P A SG10201802450P A SG 10201802450PA
- Authority
- SG
- Singapore
- Prior art keywords
- work function
- transistor
- metal layer
- function metal
- substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title abstract 5
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 239000002184 metal Substances 0.000 abstract 5
- 239000000758 substrate Substances 0.000 abstract 3
- 238000000034 method Methods 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4983—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823437—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/82345—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1251—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
- H01L29/42392—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Disclosed are semiconductor devices and methods of manufacturing the same. The semiconductor device comprises a first transistor on a substrate, and a second transistor on the substrate. Each of the first and second transistors includes a plurality of semiconductor patterns vertically stacked on the substrate and vertically spaced apart from each other, and a gate dielectric pattern and a work function pattern filling a space between the semiconductor patterns. The work function pattern of the first transistor includes a first work function metal layer, the work function pattern of the second transistor includes the first work function metal layer and a second work function metal layer, the first work function metal layer of each of the first and second transistors has a work function greater than that of the second work function metal layer, and the first transistor has a threshold voltage less than that of the second transistor. [FIG. ] 30
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170079888A KR102293127B1 (en) | 2017-06-23 | 2017-06-23 | Semiconductor device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
SG10201802450PA true SG10201802450PA (en) | 2019-01-30 |
Family
ID=64693603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG10201802450PA SG10201802450PA (en) | 2017-06-23 | 2018-03-23 | Semiconductor device and method of manufacturing the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US10461167B2 (en) |
KR (1) | KR102293127B1 (en) |
CN (1) | CN109119420B (en) |
SG (1) | SG10201802450PA (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102303302B1 (en) * | 2017-04-28 | 2021-09-16 | 삼성전자주식회사 | Method for fabricating Semiconductor device |
DE102018108152A1 (en) * | 2017-08-31 | 2019-02-28 | Taiwan Semiconductor Manufacturing Co. Ltd. | SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREOF |
KR102341721B1 (en) * | 2017-09-08 | 2021-12-23 | 삼성전자주식회사 | Semiconductor device |
US11043567B2 (en) | 2017-11-30 | 2021-06-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
US11239339B2 (en) * | 2019-04-29 | 2022-02-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure and method |
KR20200142158A (en) | 2019-06-11 | 2020-12-22 | 삼성전자주식회사 | Semiconductor devices |
US11264289B2 (en) * | 2019-07-11 | 2022-03-01 | Tokyo Electron Limited | Method for threshold voltage tuning through selective deposition of high-K metal gate (HKMG) film stacks |
US12094781B2 (en) * | 2019-09-13 | 2024-09-17 | Hitachi High-Tech Corporation | Manufacturing method of three-dimensional semiconductor device |
US11031292B2 (en) * | 2019-09-29 | 2021-06-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-gate device and related methods |
US20210126018A1 (en) * | 2019-10-24 | 2021-04-29 | International Business Machines Corporation | Gate stack quality for gate-all-around field-effect transistors |
KR20210059471A (en) | 2019-11-15 | 2021-05-25 | 삼성전자주식회사 | Integrated circuits and method of manufacturing the same |
US11264503B2 (en) * | 2019-12-18 | 2022-03-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Metal gate structures of semiconductor devices |
KR20210129284A (en) * | 2020-04-16 | 2021-10-28 | 삼성전자주식회사 | Semiconductor devices and method of manufacturing the same |
US11417766B2 (en) * | 2020-04-21 | 2022-08-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistors having nanostructures |
CN113206083A (en) * | 2020-05-15 | 2021-08-03 | 台湾积体电路制造股份有限公司 | Transistor grid and forming method |
US11295989B2 (en) | 2020-05-26 | 2022-04-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structures for semiconductor devices |
US11444198B2 (en) * | 2020-05-29 | 2022-09-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Work function control in gate structures |
US12015066B2 (en) | 2020-06-17 | 2024-06-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Triple layer high-k gate dielectric stack for workfunction engineering |
KR20210156985A (en) | 2020-06-19 | 2021-12-28 | 삼성전자주식회사 | Semiconductor devices including work function layers |
US11538805B2 (en) * | 2020-06-29 | 2022-12-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of tuning threshold voltages of transistors |
KR20220023426A (en) * | 2020-08-21 | 2022-03-02 | 삼성전자주식회사 | Semiconductor device |
KR20220091655A (en) * | 2020-12-23 | 2022-07-01 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
US11688797B2 (en) * | 2021-01-04 | 2023-06-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and forming method thereof |
US11688786B2 (en) | 2021-01-22 | 2023-06-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method |
US11605720B2 (en) | 2021-02-26 | 2023-03-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate cap |
US11810948B2 (en) | 2021-03-10 | 2023-11-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method |
US11948981B2 (en) | 2021-07-15 | 2024-04-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Seam-filling of metal gates with Si-containing layers |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861712B2 (en) | 2003-01-15 | 2005-03-01 | Sharp Laboratories Of America, Inc. | MOSFET threshold voltage tuning with metal gate stack control |
KR20100037975A (en) * | 2008-10-02 | 2010-04-12 | 주식회사 하이닉스반도체 | Semiconductor device with midgap workfunction gate electrode and method for manufacturing the same |
KR101649967B1 (en) * | 2010-05-04 | 2016-08-23 | 삼성전자주식회사 | SEMICONDUCTOR DEVICES HAVING AN e-FUSE STRUCTURE AND METHODS OF FABRICATING THE SAME |
DE112011105970B4 (en) * | 2011-12-19 | 2020-12-03 | Intel Corporation | CMOS implementation from germanium and III-V nanowires and nanobelts in gate all-round architecture |
CN104126228B (en) * | 2011-12-23 | 2016-12-07 | 英特尔公司 | Non-planar gate fully-enclosed device and method of making same |
US9093550B1 (en) | 2012-01-31 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
US9093558B2 (en) | 2012-08-24 | 2015-07-28 | International Business Machines Corporation | Integration of multiple threshold voltage devices for complementary metal oxide semiconductor using full metal gate |
US8669167B1 (en) * | 2012-08-28 | 2014-03-11 | International Business Machines Corporation | Techniques for metal gate workfunction engineering to enable multiple threshold voltage FINFET devices |
KR20140034347A (en) * | 2012-08-31 | 2014-03-20 | 삼성전자주식회사 | Semiconductor device and method for fabricating the same |
CN104766823A (en) * | 2014-01-07 | 2015-07-08 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
CN104821296B (en) * | 2014-01-30 | 2017-11-28 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor devices and forming method thereof |
KR102190673B1 (en) | 2014-03-12 | 2020-12-14 | 삼성전자주식회사 | Semiconductor element having mid-gap work function metal gate electrode |
KR102212267B1 (en) * | 2014-03-19 | 2021-02-04 | 삼성전자주식회사 | Semiconductor device and method for fabricating the same |
KR102083632B1 (en) * | 2014-04-25 | 2020-03-03 | 삼성전자주식회사 | Semiconductor device and method for forming the same |
EP2953162A1 (en) | 2014-06-06 | 2015-12-09 | IMEC vzw | Method for manufacturing a semiconductor device comprising transistors each having a different effective work function |
US9209186B1 (en) | 2014-06-26 | 2015-12-08 | Globalfoundries Inc. | Threshold voltage control for mixed-type non-planar semiconductor devices |
US9786774B2 (en) | 2014-06-27 | 2017-10-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate of gate-all-around transistor |
US9443978B2 (en) | 2014-07-14 | 2016-09-13 | Samsung Electronics Co., Ltd. | Semiconductor device having gate-all-around transistor and method of manufacturing the same |
KR102312262B1 (en) | 2014-09-02 | 2021-10-15 | 삼성전자주식회사 | Semiconductor device and method of fabricating the same |
KR102211254B1 (en) | 2015-02-03 | 2021-02-04 | 삼성전자주식회사 | Semiconductor device and fabricating method thereof |
KR102354460B1 (en) * | 2015-02-12 | 2022-01-24 | 삼성전자주식회사 | Semiconductor device and methods of forming the same |
US9502414B2 (en) | 2015-02-26 | 2016-11-22 | Qualcomm Incorporated | Adjacent device isolation |
CN106033745B (en) * | 2015-03-19 | 2020-07-07 | 联华电子股份有限公司 | Semiconductor device and method for forming the same |
US9356027B1 (en) * | 2015-05-11 | 2016-05-31 | International Business Machines Corporation | Dual work function integration for stacked FinFET |
KR20160148795A (en) * | 2015-06-16 | 2016-12-27 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
CN106409830B (en) * | 2015-07-27 | 2020-05-05 | 联华电子股份有限公司 | Semiconductor element with metal grid and manufacturing method thereof |
CN113764526A (en) * | 2015-09-25 | 2021-12-07 | 英特尔公司 | Semiconductor device and method for manufacturing the same |
KR102474431B1 (en) * | 2015-12-08 | 2022-12-06 | 삼성전자주식회사 | Method of manufacturing semiconductor devices |
KR102434993B1 (en) | 2015-12-09 | 2022-08-24 | 삼성전자주식회사 | Semiconductor device |
US9653289B1 (en) * | 2016-09-19 | 2017-05-16 | International Business Machines Corporation | Fabrication of nano-sheet transistors with different threshold voltages |
-
2017
- 2017-06-23 KR KR1020170079888A patent/KR102293127B1/en active IP Right Grant
-
2018
- 2018-01-04 US US15/861,949 patent/US10461167B2/en active Active
- 2018-03-23 SG SG10201802450PA patent/SG10201802450PA/en unknown
- 2018-06-22 CN CN201810654945.3A patent/CN109119420B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109119420B (en) | 2023-12-05 |
KR20190000965A (en) | 2019-01-04 |
KR102293127B1 (en) | 2021-08-26 |
US10461167B2 (en) | 2019-10-29 |
CN109119420A (en) | 2019-01-01 |
US20180374926A1 (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SG10201802450PA (en) | Semiconductor device and method of manufacturing the same | |
SG10201805116YA (en) | Semiconductor devices and manufacturing methods thereof | |
SG10201804984VA (en) | Semiconductor devices | |
SG10201807790YA (en) | Semiconductor devices | |
SG10201808204VA (en) | Semiconductor devices and methods of manufacturing the same | |
SG10201804119SA (en) | Non-volatile memory devices and methods of fabricating the same | |
GB2556260A (en) | Vertical transistor fabrication and devices | |
EP3726943A4 (en) | Glass wiring substrate, method for manufacturing same, and semiconductor device | |
SG10201804042RA (en) | Semiconductor Memory Devices | |
SG10201805059SA (en) | Semiconductor memory device and method of manufacturing the same | |
SG10201805477YA (en) | Semiconductor device | |
SG10201805060XA (en) | Semiconductor device and method of manufacturing the same | |
WO2018056694A3 (en) | Logic semiconductor device | |
SG10201805010VA (en) | Vertical-Type Memory Device | |
SG10201804609UA (en) | Semiconductor device and manufacturing method thereof | |
TW201614838A (en) | Semiconductor device and methods for forming the same | |
GB2559935A (en) | Variable gate lengths for vertical transistors | |
SG10201803922PA (en) | Semiconductor Device | |
SG10201806114YA (en) | Semiconductor memory devices | |
TW201614841A (en) | Semiconductor device having metal gate and method for manufacturing the same | |
EP4273306A4 (en) | Semiconductor substrate, semiconductor device and electronic device | |
WO2015105049A3 (en) | Semiconductor memory device and method for manufacturing same | |
SG10201804393TA (en) | A semiconductor device including a multigate transistor formed with fin structure | |
SG10201804909VA (en) | Chip structure including heating element | |
TW201614792A (en) | Semiconductor devices and methods for manufacturing the same |